C++程序  |  1142行  |  42.67 KB

/*
 * Copyright 2012 Google Inc.
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */
#include "SkOpAngle.h"
#include "SkOpSegment.h"
#include "SkPathOpsCurve.h"
#include "SkTSort.h"

/* Angles are sorted counterclockwise. The smallest angle has a positive x and the smallest
   positive y. The largest angle has a positive x and a zero y. */

#if DEBUG_ANGLE
    static bool CompareResult(const char* func, SkString* bugOut, SkString* bugPart, int append,
             bool compare) {
        SkDebugf("%s %c %d\n", bugOut->c_str(), compare ? 'T' : 'F', append);
        SkDebugf("%sPart %s\n", func, bugPart[0].c_str());
        SkDebugf("%sPart %s\n", func, bugPart[1].c_str());
        SkDebugf("%sPart %s\n", func, bugPart[2].c_str());
        return compare;
    }

    #define COMPARE_RESULT(append, compare) CompareResult(__FUNCTION__, &bugOut, bugPart, append, \
            compare)
#else
    #define COMPARE_RESULT(append, compare) compare
#endif

/*             quarter angle values for sector

31   x > 0, y == 0              horizontal line (to the right)
0    x > 0, y == epsilon        quad/cubic horizontal tangent eventually going +y
1    x > 0, y > 0, x > y        nearer horizontal angle
2                  x + e == y   quad/cubic 45 going horiz
3    x > 0, y > 0, x == y       45 angle
4                  x == y + e   quad/cubic 45 going vert
5    x > 0, y > 0, x < y        nearer vertical angle
6    x == epsilon, y > 0        quad/cubic vertical tangent eventually going +x
7    x == 0, y > 0              vertical line (to the top)

                                      8  7  6
                                 9       |       5
                              10         |          4
                            11           |            3
                          12  \          |           / 2
                         13              |              1
                        14               |               0
                        15 --------------+------------- 31
                        16               |              30
                         17              |             29
                          18  /          |          \ 28
                            19           |           27
                              20         |         26
                                 21      |      25
                                     22 23 24
*/

// return true if lh < this < rh
bool SkOpAngle::after(SkOpAngle* test) {
    SkOpAngle* lh = test;
    SkOpAngle* rh = lh->fNext;
    SkASSERT(lh != rh);
    fPart.fCurve = fOriginalCurvePart;
    lh->fPart.fCurve = lh->fOriginalCurvePart;
    lh->fPart.fCurve.offset(lh->segment()->verb(), fPart.fCurve[0] - lh->fPart.fCurve[0]);
    rh->fPart.fCurve = rh->fOriginalCurvePart;
    rh->fPart.fCurve.offset(rh->segment()->verb(), fPart.fCurve[0] - rh->fPart.fCurve[0]);

#if DEBUG_ANGLE
    SkString bugOut;
    bugOut.printf("%s [%d/%d] %d/%d tStart=%1.9g tEnd=%1.9g"
                  " < [%d/%d] %d/%d tStart=%1.9g tEnd=%1.9g"
                  " < [%d/%d] %d/%d tStart=%1.9g tEnd=%1.9g ", __FUNCTION__,
            lh->segment()->debugID(), lh->debugID(), lh->fSectorStart, lh->fSectorEnd,
            lh->fStart->t(), lh->fEnd->t(),
            segment()->debugID(), debugID(), fSectorStart, fSectorEnd, fStart->t(), fEnd->t(),
            rh->segment()->debugID(), rh->debugID(), rh->fSectorStart, rh->fSectorEnd,
            rh->fStart->t(), rh->fEnd->t());
    SkString bugPart[3] = { lh->debugPart(), this->debugPart(), rh->debugPart() };
#endif
    if (lh->fComputeSector && !lh->computeSector()) {
        return COMPARE_RESULT(1, true);
    }
    if (fComputeSector && !this->computeSector()) {
        return COMPARE_RESULT(2, true);
    }
    if (rh->fComputeSector && !rh->computeSector()) {
        return COMPARE_RESULT(3, true);
    }
#if DEBUG_ANGLE  // reset bugOut with computed sectors
    bugOut.printf("%s [%d/%d] %d/%d tStart=%1.9g tEnd=%1.9g"
                  " < [%d/%d] %d/%d tStart=%1.9g tEnd=%1.9g"
                  " < [%d/%d] %d/%d tStart=%1.9g tEnd=%1.9g ", __FUNCTION__,
            lh->segment()->debugID(), lh->debugID(), lh->fSectorStart, lh->fSectorEnd,
            lh->fStart->t(), lh->fEnd->t(),
            segment()->debugID(), debugID(), fSectorStart, fSectorEnd, fStart->t(), fEnd->t(),
            rh->segment()->debugID(), rh->debugID(), rh->fSectorStart, rh->fSectorEnd,
            rh->fStart->t(), rh->fEnd->t());
#endif
    bool ltrOverlap = (lh->fSectorMask | rh->fSectorMask) & fSectorMask;
    bool lrOverlap = lh->fSectorMask & rh->fSectorMask;
    int lrOrder;  // set to -1 if either order works
    if (!lrOverlap) {  // no lh/rh sector overlap
        if (!ltrOverlap) {  // no lh/this/rh sector overlap
            return COMPARE_RESULT(4,  (lh->fSectorEnd > rh->fSectorStart)
                    ^ (fSectorStart > lh->fSectorEnd) ^ (fSectorStart > rh->fSectorStart));
        }
        int lrGap = (rh->fSectorStart - lh->fSectorStart + 32) & 0x1f;
        /* A tiny change can move the start +/- 4. The order can only be determined if
           lr gap is not 12 to 20 or -12 to -20.
               -31 ..-21      1
               -20 ..-12     -1
               -11 .. -1      0
                 0          shouldn't get here
                11 ..  1      1
                12 .. 20     -1
                21 .. 31      0
         */
        lrOrder = lrGap > 20 ? 0 : lrGap > 11 ? -1 : 1;
    } else {
        lrOrder = lh->orderable(rh);
        if (!ltrOverlap && lrOrder >= 0) {
            return COMPARE_RESULT(5, !lrOrder);
        }
    }
    int ltOrder;
    SkASSERT((lh->fSectorMask & fSectorMask) || (rh->fSectorMask & fSectorMask) || -1 == lrOrder);
    if (lh->fSectorMask & fSectorMask) {
        ltOrder = lh->orderable(this);
    } else {
        int ltGap = (fSectorStart - lh->fSectorStart + 32) & 0x1f;
        ltOrder = ltGap > 20 ? 0 : ltGap > 11 ? -1 : 1;
    }
    int trOrder;
    if (rh->fSectorMask & fSectorMask) {
        trOrder = this->orderable(rh);
    } else {
        int trGap = (rh->fSectorStart - fSectorStart + 32) & 0x1f;
        trOrder = trGap > 20 ? 0 : trGap > 11 ? -1 : 1;
    }
    this->alignmentSameSide(lh, &ltOrder);
    this->alignmentSameSide(rh, &trOrder);
    if (lrOrder >= 0 && ltOrder >= 0 && trOrder >= 0) {
        return COMPARE_RESULT(7, lrOrder ? (ltOrder & trOrder) : (ltOrder | trOrder));
    }
//    SkASSERT(lrOrder >= 0 || ltOrder >= 0 || trOrder >= 0);
// There's not enough information to sort. Get the pairs of angles in opposite planes.
// If an order is < 0, the pair is already in an opposite plane. Check the remaining pairs.
    // FIXME : once all variants are understood, rewrite this more simply
    if (ltOrder == 0 && lrOrder == 0) {
        SkASSERT(trOrder < 0);
        // FIXME : once this is verified to work, remove one opposite angle call
        SkDEBUGCODE(bool lrOpposite = lh->oppositePlanes(rh));
        bool ltOpposite = lh->oppositePlanes(this);
        SkOPASSERT(lrOpposite != ltOpposite);
        return COMPARE_RESULT(8, ltOpposite);
    } else if (ltOrder == 1 && trOrder == 0) {
        SkASSERT(lrOrder < 0);
        bool trOpposite = oppositePlanes(rh);
        return COMPARE_RESULT(9, trOpposite);
    } else if (lrOrder == 1 && trOrder == 1) {
        SkASSERT(ltOrder < 0);
//        SkDEBUGCODE(bool trOpposite = oppositePlanes(rh));
        bool lrOpposite = lh->oppositePlanes(rh);
//        SkASSERT(lrOpposite != trOpposite);
        return COMPARE_RESULT(10, lrOpposite);
    }
    // If a pair couldn't be ordered, there's not enough information to determine the sort.
    // Refer to:  https://docs.google.com/drawings/d/1KV-8SJTedku9fj4K6fd1SB-8divuV_uivHVsSgwXICQ
    if (fUnorderable || lh->fUnorderable || rh->fUnorderable) {
        // limit to lines; should work with curves, but wait for a failing test to verify
        if (!fPart.isCurve() && !lh->fPart.isCurve() && !rh->fPart.isCurve()) {
            // see if original raw data is orderable
            // if two share a point, check if third has both points in same half plane
            int ltShare = lh->fOriginalCurvePart[0] == fOriginalCurvePart[0];
            int lrShare = lh->fOriginalCurvePart[0] == rh->fOriginalCurvePart[0];
            int trShare = fOriginalCurvePart[0] == rh->fOriginalCurvePart[0];
            // if only one pair are the same, the third point touches neither of the pair
            if (ltShare + lrShare + trShare == 1) {
                if (lrShare) {
                    int ltOOrder = lh->linesOnOriginalSide(this);
                    int rtOOrder = rh->linesOnOriginalSide(this);
                    if ((rtOOrder ^ ltOOrder) == 1) {
                        return ltOOrder;
                    }
                } else if (trShare) {
                    int tlOOrder = this->linesOnOriginalSide(lh);
                    int rlOOrder = rh->linesOnOriginalSide(lh);
                    if ((tlOOrder ^ rlOOrder) == 1) {
                        return rlOOrder;
                    }
                } else {
                    SkASSERT(ltShare);
                    int trOOrder = rh->linesOnOriginalSide(this);
                    int lrOOrder = lh->linesOnOriginalSide(rh);
                    // result must be 0 and 1 or 1 and 0 to be valid
                    if ((lrOOrder ^ trOOrder) == 1) {
                        return trOOrder;
                    }
                }
            }
        }
    }
    if (lrOrder < 0) {
        if (ltOrder < 0) {
            return COMPARE_RESULT(11, trOrder);
        }
        return COMPARE_RESULT(12, ltOrder);
    }
    return COMPARE_RESULT(13, !lrOrder);
}

int SkOpAngle::lineOnOneSide(const SkDPoint& origin, const SkDVector& line, const SkOpAngle* test,
        bool useOriginal) const {
    double crosses[3];
    SkPath::Verb testVerb = test->segment()->verb();
    int iMax = SkPathOpsVerbToPoints(testVerb);
//    SkASSERT(origin == test.fCurveHalf[0]);
    const SkDCurve& testCurve = useOriginal ? test->fOriginalCurvePart : test->fPart.fCurve;
    for (int index = 1; index <= iMax; ++index) {
        double xy1 = line.fX * (testCurve[index].fY - origin.fY);
        double xy2 = line.fY * (testCurve[index].fX - origin.fX);
        crosses[index - 1] = AlmostBequalUlps(xy1, xy2) ? 0 : xy1 - xy2;
    }
    if (crosses[0] * crosses[1] < 0) {
        return -1;
    }
    if (SkPath::kCubic_Verb == testVerb) {
        if (crosses[0] * crosses[2] < 0 || crosses[1] * crosses[2] < 0) {
            return -1;
        }
    }
    if (crosses[0]) {
        return crosses[0] < 0;
    }
    if (crosses[1]) {
        return crosses[1] < 0;
    }
    if (SkPath::kCubic_Verb == testVerb && crosses[2]) {
        return crosses[2] < 0;
    }
    return -2;
}

// given a line, see if the opposite curve's convex hull is all on one side
// returns -1=not on one side    0=this CW of test   1=this CCW of test
int SkOpAngle::lineOnOneSide(const SkOpAngle* test, bool useOriginal) {
    SkASSERT(!fPart.isCurve());
    SkASSERT(test->fPart.isCurve());
    SkDPoint origin = fPart.fCurve[0];
    SkDVector line = fPart.fCurve[1] - origin;
    int result = this->lineOnOneSide(origin, line, test, useOriginal);
    if (-2 == result) {
        fUnorderable = true;
        result = -1;
    }
    return result;
}

// experiment works only with lines for now
int SkOpAngle::linesOnOriginalSide(const SkOpAngle* test) {
    SkASSERT(!fPart.isCurve());
    SkASSERT(!test->fPart.isCurve());
    SkDPoint origin = fOriginalCurvePart[0];
    SkDVector line = fOriginalCurvePart[1] - origin;
    double dots[2];
    double crosses[2];
    const SkDCurve& testCurve = test->fOriginalCurvePart;
    for (int index = 0; index < 2; ++index) {
        SkDVector testLine = testCurve[index] - origin;
        double xy1 = line.fX * testLine.fY;
        double xy2 = line.fY * testLine.fX;
        dots[index] = line.fX * testLine.fX + line.fY * testLine.fY;
        crosses[index] = AlmostBequalUlps(xy1, xy2) ? 0 : xy1 - xy2;
    }
    if (crosses[0] * crosses[1] < 0) {
        return -1;
    }
    if (crosses[0]) {
        return crosses[0] < 0;
    }
    if (crosses[1]) {
        return crosses[1] < 0;
    }
    if ((!dots[0] && dots[1] < 0) || (dots[0] < 0 && !dots[1])) {
        return 2;  // 180 degrees apart
    }
    fUnorderable = true;
    return -1;
}

// To sort the angles, all curves are translated to have the same starting point.
// If the curve's control point in its original position is on one side of a compared line,
// and translated is on the opposite side, reverse the previously computed order.
void SkOpAngle::alignmentSameSide(const SkOpAngle* test, int* order) const {
    if (*order < 0) {
        return;
    }
    if (fPart.isCurve()) {
        // This should support all curve types, but only bug that requires this has lines
        // Turning on for curves causes existing tests to fail
        return;
    }
    if (test->fPart.isCurve()) {
        return;
    }
    const SkDPoint& xOrigin = test->fPart.fCurve.fLine[0];
    const SkDPoint& oOrigin = test->fOriginalCurvePart.fLine[0];
    if (xOrigin == oOrigin) {
        return;
    }
    int iMax = SkPathOpsVerbToPoints(this->segment()->verb());
    SkDVector xLine = test->fPart.fCurve.fLine[1] - xOrigin;
    SkDVector oLine = test->fOriginalCurvePart.fLine[1] - oOrigin;
    for (int index = 1; index <= iMax; ++index) {
        const SkDPoint& testPt = fPart.fCurve[index];
        double xCross = oLine.crossCheck(testPt - xOrigin);
        double oCross = xLine.crossCheck(testPt - oOrigin);
        if (oCross * xCross < 0) {
            *order ^= 1;
            break;
        }
    }
}

bool SkOpAngle::checkCrossesZero() const {
    int start = SkTMin(fSectorStart, fSectorEnd);
    int end = SkTMax(fSectorStart, fSectorEnd);
    bool crossesZero = end - start > 16;
    return crossesZero;
}

bool SkOpAngle::checkParallel(SkOpAngle* rh) {
    SkDVector scratch[2];
    const SkDVector* sweep, * tweep;
    if (this->fPart.isOrdered()) {
        sweep = this->fPart.fSweep;
    } else {
        scratch[0] = this->fPart.fCurve[1] - this->fPart.fCurve[0];
        sweep = &scratch[0];
    }
    if (rh->fPart.isOrdered()) {
        tweep = rh->fPart.fSweep;
    } else {
        scratch[1] = rh->fPart.fCurve[1] - rh->fPart.fCurve[0];
        tweep = &scratch[1];
    }
    double s0xt0 = sweep->crossCheck(*tweep);
    if (tangentsDiverge(rh, s0xt0)) {
        return s0xt0 < 0;
    }
    // compute the perpendicular to the endpoints and see where it intersects the opposite curve
    // if the intersections within the t range, do a cross check on those
    bool inside;
    if (!fEnd->contains(rh->fEnd)) {
        if (this->endToSide(rh, &inside)) {
            return inside;
        }
        if (rh->endToSide(this, &inside)) {
            return !inside;
        }
    }
    if (this->midToSide(rh, &inside)) {
        return inside;
    }
    if (rh->midToSide(this, &inside)) {
        return !inside;
    }
    // compute the cross check from the mid T values (last resort)
    SkDVector m0 = segment()->dPtAtT(this->midT()) - this->fPart.fCurve[0];
    SkDVector m1 = rh->segment()->dPtAtT(rh->midT()) - rh->fPart.fCurve[0];
    double m0xm1 = m0.crossCheck(m1);
    if (m0xm1 == 0) {
        this->fUnorderable = true;
        rh->fUnorderable = true;
        return true;
    }
    return m0xm1 < 0;
}

// the original angle is too short to get meaningful sector information
// lengthen it until it is long enough to be meaningful or leave it unset if lengthening it
// would cause it to intersect one of the adjacent angles
bool SkOpAngle::computeSector() {
    if (fComputedSector) {
        return !fUnorderable;
    }
    fComputedSector = true;
    bool stepUp = fStart->t() < fEnd->t();
    SkOpSpanBase* checkEnd = fEnd;
    if (checkEnd->final() && stepUp) {
        fUnorderable = true;
        return false;
    }
    do {
// advance end
        const SkOpSegment* other = checkEnd->segment();
        const SkOpSpanBase* oSpan = other->head();
        do {
            if (oSpan->segment() != segment()) {
                continue;
            }
            if (oSpan == checkEnd) {
                continue;
            }
            if (!approximately_equal(oSpan->t(), checkEnd->t())) {
                continue;
            }
            goto recomputeSector;
        } while (!oSpan->final() && (oSpan = oSpan->upCast()->next()));
        checkEnd = stepUp ? !checkEnd->final()
                ? checkEnd->upCast()->next() : nullptr
                : checkEnd->prev();
    } while (checkEnd);
recomputeSector:
    SkOpSpanBase* computedEnd = stepUp ? checkEnd ? checkEnd->prev() : fEnd->segment()->head()
            : checkEnd ? checkEnd->upCast()->next() : fEnd->segment()->tail();
    if (checkEnd == fEnd || computedEnd == fEnd || computedEnd == fStart) {
        fUnorderable = true;
        return false;
    }
    if (stepUp != (fStart->t() < computedEnd->t())) {
        fUnorderable = true;
        return false;
    }
    SkOpSpanBase* saveEnd = fEnd;
    fComputedEnd = fEnd = computedEnd;
    setSpans();
    setSector();
    fEnd = saveEnd;
    return !fUnorderable;
}

int SkOpAngle::convexHullOverlaps(const SkOpAngle* rh) {
    const SkDVector* sweep = this->fPart.fSweep;
    const SkDVector* tweep = rh->fPart.fSweep;
    double s0xs1 = sweep[0].crossCheck(sweep[1]);
    double s0xt0 = sweep[0].crossCheck(tweep[0]);
    double s1xt0 = sweep[1].crossCheck(tweep[0]);
    bool tBetweenS = s0xs1 > 0 ? s0xt0 > 0 && s1xt0 < 0 : s0xt0 < 0 && s1xt0 > 0;
    double s0xt1 = sweep[0].crossCheck(tweep[1]);
    double s1xt1 = sweep[1].crossCheck(tweep[1]);
    tBetweenS |= s0xs1 > 0 ? s0xt1 > 0 && s1xt1 < 0 : s0xt1 < 0 && s1xt1 > 0;
    double t0xt1 = tweep[0].crossCheck(tweep[1]);
    if (tBetweenS) {
        return -1;
    }
    if ((s0xt0 == 0 && s1xt1 == 0) || (s1xt0 == 0 && s0xt1 == 0)) {  // s0 to s1 equals t0 to t1
        return -1;
    }
    bool sBetweenT = t0xt1 > 0 ? s0xt0 < 0 && s0xt1 > 0 : s0xt0 > 0 && s0xt1 < 0;
    sBetweenT |= t0xt1 > 0 ? s1xt0 < 0 && s1xt1 > 0 : s1xt0 > 0 && s1xt1 < 0;
    if (sBetweenT) {
        return -1;
    }
    // if all of the sweeps are in the same half plane, then the order of any pair is enough
    if (s0xt0 >= 0 && s0xt1 >= 0 && s1xt0 >= 0 && s1xt1 >= 0) {
        return 0;
    }
    if (s0xt0 <= 0 && s0xt1 <= 0 && s1xt0 <= 0 && s1xt1 <= 0) {
        return 1;
    }
    // if the outside sweeps are greater than 180 degress:
        // first assume the inital tangents are the ordering
        // if the midpoint direction matches the inital order, that is enough
    SkDVector m0 = this->segment()->dPtAtT(this->midT()) - this->fPart.fCurve[0];
    SkDVector m1 = rh->segment()->dPtAtT(rh->midT()) - rh->fPart.fCurve[0];
    double m0xm1 = m0.crossCheck(m1);
    if (s0xt0 > 0 && m0xm1 > 0) {
        return 0;
    }
    if (s0xt0 < 0 && m0xm1 < 0) {
        return 1;
    }
    if (tangentsDiverge(rh, s0xt0)) {
        return s0xt0 < 0;
    }
    return m0xm1 < 0;
}

// OPTIMIZATION: longest can all be either lazily computed here or precomputed in setup
double SkOpAngle::distEndRatio(double dist) const {
    double longest = 0;
    const SkOpSegment& segment = *this->segment();
    int ptCount = SkPathOpsVerbToPoints(segment.verb());
    const SkPoint* pts = segment.pts();
    for (int idx1 = 0; idx1 <= ptCount - 1; ++idx1) {
        for (int idx2 = idx1 + 1; idx2 <= ptCount; ++idx2) {
            if (idx1 == idx2) {
                continue;
            }
            SkDVector v;
            v.set(pts[idx2] - pts[idx1]);
            double lenSq = v.lengthSquared();
            longest = SkTMax(longest, lenSq);
        }
    }
    return sqrt(longest) / dist;
}

bool SkOpAngle::endsIntersect(SkOpAngle* rh) {
    SkPath::Verb lVerb = this->segment()->verb();
    SkPath::Verb rVerb = rh->segment()->verb();
    int lPts = SkPathOpsVerbToPoints(lVerb);
    int rPts = SkPathOpsVerbToPoints(rVerb);
    SkDLine rays[] = {{{this->fPart.fCurve[0], rh->fPart.fCurve[rPts]}},
            {{this->fPart.fCurve[0], this->fPart.fCurve[lPts]}}};
    if (this->fEnd->contains(rh->fEnd)) {
        return checkParallel(rh);
    }
    double smallTs[2] = {-1, -1};
    bool limited[2] = {false, false};
    for (int index = 0; index < 2; ++index) {
        SkPath::Verb cVerb = index ? rVerb : lVerb;
        // if the curve is a line, then the line and the ray intersect only at their crossing
        if (cVerb == SkPath::kLine_Verb) {
            continue;
        }
        const SkOpSegment& segment = index ? *rh->segment() : *this->segment();
        SkIntersections i;
        (*CurveIntersectRay[cVerb])(segment.pts(), segment.weight(), rays[index], &i);
        double tStart = index ? rh->fStart->t() : this->fStart->t();
        double tEnd = index ? rh->fComputedEnd->t() : this->fComputedEnd->t();
        bool testAscends = tStart < (index ? rh->fComputedEnd->t() : this->fComputedEnd->t());
        double t = testAscends ? 0 : 1;
        for (int idx2 = 0; idx2 < i.used(); ++idx2) {
            double testT = i[0][idx2];
            if (!approximately_between_orderable(tStart, testT, tEnd)) {
                continue;
            }
            if (approximately_equal_orderable(tStart, testT)) {
                continue;
            }
            smallTs[index] = t = testAscends ? SkTMax(t, testT) : SkTMin(t, testT);
            limited[index] = approximately_equal_orderable(t, tEnd);
        }
    }
    bool sRayLonger = false;
    SkDVector sCept = {0, 0};
    double sCeptT = -1;
    int sIndex = -1;
    bool useIntersect = false;
    for (int index = 0; index < 2; ++index) {
        if (smallTs[index] < 0) {
            continue;
        }
        const SkOpSegment& segment = index ? *rh->segment() : *this->segment();
        const SkDPoint& dPt = segment.dPtAtT(smallTs[index]);
        SkDVector cept = dPt - rays[index][0];
        // If this point is on the curve, it should have been detected earlier by ordinary
        // curve intersection. This may be hard to determine in general, but for lines,
        // the point could be close to or equal to its end, but shouldn't be near the start.
        if ((index ? lPts : rPts) == 1) {
            SkDVector total = rays[index][1] - rays[index][0];
            if (cept.lengthSquared() * 2 < total.lengthSquared()) {
                continue;
            }
        }
        SkDVector end = rays[index][1] - rays[index][0];
        if (cept.fX * end.fX < 0 || cept.fY * end.fY < 0) {
            continue;
        }
        double rayDist = cept.length();
        double endDist = end.length();
        bool rayLonger = rayDist > endDist;
        if (limited[0] && limited[1] && rayLonger) {
            useIntersect = true;
            sRayLonger = rayLonger;
            sCept = cept;
            sCeptT = smallTs[index];
            sIndex = index;
            break;
        }
        double delta = fabs(rayDist - endDist);
        double minX, minY, maxX, maxY;
        minX = minY = SK_ScalarInfinity;
        maxX = maxY = -SK_ScalarInfinity;
        const SkDCurve& curve = index ? rh->fPart.fCurve : this->fPart.fCurve;
        int ptCount = index ? rPts : lPts;
        for (int idx2 = 0; idx2 <= ptCount; ++idx2) {
            minX = SkTMin(minX, curve[idx2].fX);
            minY = SkTMin(minY, curve[idx2].fY);
            maxX = SkTMax(maxX, curve[idx2].fX);
            maxY = SkTMax(maxY, curve[idx2].fY);
        }
        double maxWidth = SkTMax(maxX - minX, maxY - minY);
        delta = sk_ieee_double_divide(delta, maxWidth);
        // FIXME: move these magic numbers
        // This fixes skbug.com/8380
        // Larger changes (like changing the constant in the next block) cause other
        // tests to fail as documented in the bug.
        // This could probably become a more general test: e.g., if translating the
        // curve causes the cross product of any control point or end point to change
        // sign with regard to the opposite curve's hull, treat the curves as parallel.

        // Moreso, this points to the general fragility of this approach of assigning
        // winding by sorting the angles of curves sharing a common point, as mentioned
        // in the bug.
        if (delta < 4e-3 && delta > 1e-3 && !useIntersect && fPart.isCurve()
                && rh->fPart.isCurve() && fOriginalCurvePart[0] != fPart.fCurve.fLine[0]) {
            // see if original curve is on one side of hull; translated is on the other
            const SkDPoint& origin = rh->fOriginalCurvePart[0];
            int count = SkPathOpsVerbToPoints(rh->segment()->verb());
            const SkDVector line = rh->fOriginalCurvePart[count] - origin;
            int originalSide = rh->lineOnOneSide(origin, line, this, true);
            if (originalSide >= 0) {
                int translatedSide = rh->lineOnOneSide(origin, line, this, false);
                if (originalSide != translatedSide) {
                    continue;
                }
            }
        }
        if (delta > 1e-3 && (useIntersect ^= true)) {
            sRayLonger = rayLonger;
            sCept = cept;
            sCeptT = smallTs[index];
            sIndex = index;
        }
    }
    if (useIntersect) {
        const SkDCurve& curve = sIndex ? rh->fPart.fCurve : this->fPart.fCurve;
        const SkOpSegment& segment = sIndex ? *rh->segment() : *this->segment();
        double tStart = sIndex ? rh->fStart->t() : fStart->t();
        SkDVector mid = segment.dPtAtT(tStart + (sCeptT - tStart) / 2) - curve[0];
        double septDir = mid.crossCheck(sCept);
        if (!septDir) {
            return checkParallel(rh);
        }
        return sRayLonger ^ (sIndex == 0) ^ (septDir < 0);
    } else {
        return checkParallel(rh);
    }
}

bool SkOpAngle::endToSide(const SkOpAngle* rh, bool* inside) const {
    const SkOpSegment* segment = this->segment();
    SkPath::Verb verb = segment->verb();
    SkDLine rayEnd;
    rayEnd[0].set(this->fEnd->pt());
    rayEnd[1] = rayEnd[0];
    SkDVector slopeAtEnd = (*CurveDSlopeAtT[verb])(segment->pts(), segment->weight(),
            this->fEnd->t());
    rayEnd[1].fX += slopeAtEnd.fY;
    rayEnd[1].fY -= slopeAtEnd.fX;
    SkIntersections iEnd;
    const SkOpSegment* oppSegment = rh->segment();
    SkPath::Verb oppVerb = oppSegment->verb();
    (*CurveIntersectRay[oppVerb])(oppSegment->pts(), oppSegment->weight(), rayEnd, &iEnd);
    double endDist;
    int closestEnd = iEnd.closestTo(rh->fStart->t(), rh->fEnd->t(), rayEnd[0], &endDist);
    if (closestEnd < 0) {
        return false;
    }
    if (!endDist) {
        return false;
    }
    SkDPoint start;
    start.set(this->fStart->pt());
    // OPTIMIZATION: multiple times in the code we find the max scalar
    double minX, minY, maxX, maxY;
    minX = minY = SK_ScalarInfinity;
    maxX = maxY = -SK_ScalarInfinity;
    const SkDCurve& curve = rh->fPart.fCurve;
    int oppPts = SkPathOpsVerbToPoints(oppVerb);
    for (int idx2 = 0; idx2 <= oppPts; ++idx2) {
        minX = SkTMin(minX, curve[idx2].fX);
        minY = SkTMin(minY, curve[idx2].fY);
        maxX = SkTMax(maxX, curve[idx2].fX);
        maxY = SkTMax(maxY, curve[idx2].fY);
    }
    double maxWidth = SkTMax(maxX - minX, maxY - minY);
    endDist = sk_ieee_double_divide(endDist, maxWidth);
    if (!(endDist >= 5e-12)) {  // empirically found
        return false; // ! above catches NaN
    }
    const SkDPoint* endPt = &rayEnd[0];
    SkDPoint oppPt = iEnd.pt(closestEnd);
    SkDVector vLeft = *endPt - start;
    SkDVector vRight = oppPt - start;
    double dir = vLeft.crossNoNormalCheck(vRight);
    if (!dir) {
        return false;
    }
    *inside = dir < 0;
    return true;
}

/*      y<0 y==0 y>0  x<0 x==0 x>0 xy<0 xy==0 xy>0
    0    x                      x               x
    1    x                      x          x
    2    x                      x    x
    3    x                  x        x
    4    x             x             x
    5    x             x                   x
    6    x             x                        x
    7         x        x                        x
    8             x    x                        x
    9             x    x                   x
    10            x    x             x
    11            x         x        x
    12            x             x    x
    13            x             x          x
    14            x             x               x
    15        x                 x               x
*/
int SkOpAngle::findSector(SkPath::Verb verb, double x, double y) const {
    double absX = fabs(x);
    double absY = fabs(y);
    double xy = SkPath::kLine_Verb == verb || !AlmostEqualUlps(absX, absY) ? absX - absY : 0;
    // If there are four quadrants and eight octants, and since the Latin for sixteen is sedecim,
    // one could coin the term sedecimant for a space divided into 16 sections.
   // http://english.stackexchange.com/questions/133688/word-for-something-partitioned-into-16-parts
    static const int sedecimant[3][3][3] = {
    //       y<0           y==0           y>0
    //   x<0 x==0 x>0  x<0 x==0 x>0  x<0 x==0 x>0
        {{ 4,  3,  2}, { 7, -1, 15}, {10, 11, 12}},  // abs(x) <  abs(y)
        {{ 5, -1,  1}, {-1, -1, -1}, { 9, -1, 13}},  // abs(x) == abs(y)
        {{ 6,  3,  0}, { 7, -1, 15}, { 8, 11, 14}},  // abs(x) >  abs(y)
    };
    int sector = sedecimant[(xy >= 0) + (xy > 0)][(y >= 0) + (y > 0)][(x >= 0) + (x > 0)] * 2 + 1;
//    SkASSERT(SkPath::kLine_Verb == verb || sector >= 0);
    return sector;
}

SkOpGlobalState* SkOpAngle::globalState() const {
    return this->segment()->globalState();
}


// OPTIMIZE: if this loops to only one other angle, after first compare fails, insert on other side
// OPTIMIZE: return where insertion succeeded. Then, start next insertion on opposite side
bool SkOpAngle::insert(SkOpAngle* angle) {
    if (angle->fNext) {
        if (loopCount() >= angle->loopCount()) {
            if (!merge(angle)) {
                return true;
            }
        } else if (fNext) {
            if (!angle->merge(this)) {
                return true;
            }
        } else {
            angle->insert(this);
        }
        return true;
    }
    bool singleton = nullptr == fNext;
    if (singleton) {
        fNext = this;
    }
    SkOpAngle* next = fNext;
    if (next->fNext == this) {
        if (singleton || angle->after(this)) {
            this->fNext = angle;
            angle->fNext = next;
        } else {
            next->fNext = angle;
            angle->fNext = this;
        }
        debugValidateNext();
        return true;
    }
    SkOpAngle* last = this;
    bool flipAmbiguity = false;
    do {
        SkASSERT(last->fNext == next);
        if (angle->after(last) ^ (angle->tangentsAmbiguous() & flipAmbiguity)) {
            last->fNext = angle;
            angle->fNext = next;
            debugValidateNext();
            return true;
        }
        last = next;
        if (last == this) {
            FAIL_IF(flipAmbiguity);
            // We're in a loop. If a sort was ambiguous, flip it to end the loop.
            flipAmbiguity = true;
        }
        next = next->fNext;
    } while (true);
    return true;
}

SkOpSpanBase* SkOpAngle::lastMarked() const {
    if (fLastMarked) {
        if (fLastMarked->chased()) {
            return nullptr;
        }
        fLastMarked->setChased(true);
    }
    return fLastMarked;
}

bool SkOpAngle::loopContains(const SkOpAngle* angle) const {
    if (!fNext) {
        return false;
    }
    const SkOpAngle* first = this;
    const SkOpAngle* loop = this;
    const SkOpSegment* tSegment = angle->fStart->segment();
    double tStart = angle->fStart->t();
    double tEnd = angle->fEnd->t();
    do {
        const SkOpSegment* lSegment = loop->fStart->segment();
        if (lSegment != tSegment) {
            continue;
        }
        double lStart = loop->fStart->t();
        if (lStart != tEnd) {
            continue;
        }
        double lEnd = loop->fEnd->t();
        if (lEnd == tStart) {
            return true;
        }
    } while ((loop = loop->fNext) != first);
    return false;
}

int SkOpAngle::loopCount() const {
    int count = 0;
    const SkOpAngle* first = this;
    const SkOpAngle* next = this;
    do {
        next = next->fNext;
        ++count;
    } while (next && next != first);
    return count;
}

bool SkOpAngle::merge(SkOpAngle* angle) {
    SkASSERT(fNext);
    SkASSERT(angle->fNext);
    SkOpAngle* working = angle;
    do {
        if (this == working) {
            return false;
        }
        working = working->fNext;
    } while (working != angle);
    do {
        SkOpAngle* next = working->fNext;
        working->fNext = nullptr;
        insert(working);
        working = next;
    } while (working != angle);
    // it's likely that a pair of the angles are unorderable
    debugValidateNext();
    return true;
}

double SkOpAngle::midT() const {
    return (fStart->t() + fEnd->t()) / 2;
}

bool SkOpAngle::midToSide(const SkOpAngle* rh, bool* inside) const {
    const SkOpSegment* segment = this->segment();
    SkPath::Verb verb = segment->verb();
    const SkPoint& startPt = this->fStart->pt();
    const SkPoint& endPt = this->fEnd->pt();
    SkDPoint dStartPt;
    dStartPt.set(startPt);
    SkDLine rayMid;
    rayMid[0].fX = (startPt.fX + endPt.fX) / 2;
    rayMid[0].fY = (startPt.fY + endPt.fY) / 2;
    rayMid[1].fX = rayMid[0].fX + (endPt.fY - startPt.fY);
    rayMid[1].fY = rayMid[0].fY - (endPt.fX - startPt.fX);
    SkIntersections iMid;
    (*CurveIntersectRay[verb])(segment->pts(), segment->weight(), rayMid, &iMid);
    int iOutside = iMid.mostOutside(this->fStart->t(), this->fEnd->t(), dStartPt);
    if (iOutside < 0) {
        return false;
    }
    const SkOpSegment* oppSegment = rh->segment();
    SkPath::Verb oppVerb = oppSegment->verb();
    SkIntersections oppMid;
    (*CurveIntersectRay[oppVerb])(oppSegment->pts(), oppSegment->weight(), rayMid, &oppMid);
    int oppOutside = oppMid.mostOutside(rh->fStart->t(), rh->fEnd->t(), dStartPt);
    if (oppOutside < 0) {
        return false;
    }
    SkDVector iSide = iMid.pt(iOutside) - dStartPt;
    SkDVector oppSide = oppMid.pt(oppOutside) - dStartPt;
    double dir = iSide.crossCheck(oppSide);
    if (!dir) {
        return false;
    }
    *inside = dir < 0;
    return true;
}

bool SkOpAngle::oppositePlanes(const SkOpAngle* rh) const {
    int startSpan = SkTAbs(rh->fSectorStart - fSectorStart);
    return startSpan >= 8;
}

int SkOpAngle::orderable(SkOpAngle* rh) {
    int result;
    if (!fPart.isCurve()) {
        if (!rh->fPart.isCurve()) {
            double leftX = fTangentHalf.dx();
            double leftY = fTangentHalf.dy();
            double rightX = rh->fTangentHalf.dx();
            double rightY = rh->fTangentHalf.dy();
            double x_ry = leftX * rightY;
            double rx_y = rightX * leftY;
            if (x_ry == rx_y) {
                if (leftX * rightX < 0 || leftY * rightY < 0) {
                    return 1;  // exactly 180 degrees apart
                }
                goto unorderable;
            }
            SkASSERT(x_ry != rx_y); // indicates an undetected coincidence -- worth finding earlier
            return x_ry < rx_y ? 1 : 0;
        }
        if ((result = this->lineOnOneSide(rh, false)) >= 0) {
            return result;
        }
        if (fUnorderable || approximately_zero(rh->fSide)) {
            goto unorderable;
        }
    } else if (!rh->fPart.isCurve()) {
        if ((result = rh->lineOnOneSide(this, false)) >= 0) {
            return result ? 0 : 1;
        }
        if (rh->fUnorderable || approximately_zero(fSide)) {
            goto unorderable;
        }
    } else if ((result = this->convexHullOverlaps(rh)) >= 0) {
        return result;
    }
    return this->endsIntersect(rh) ? 1 : 0;
unorderable:
    fUnorderable = true;
    rh->fUnorderable = true;
    return -1;
}

// OPTIMIZE: if this shows up in a profile, add a previous pointer
// as is, this should be rarely called
SkOpAngle* SkOpAngle::previous() const {
    SkOpAngle* last = fNext;
    do {
        SkOpAngle* next = last->fNext;
        if (next == this) {
            return last;
        }
        last = next;
    } while (true);
}

SkOpSegment* SkOpAngle::segment() const {
    return fStart->segment();
}

void SkOpAngle::set(SkOpSpanBase* start, SkOpSpanBase* end) {
    fStart = start;
    fComputedEnd = fEnd = end;
    SkASSERT(start != end);
    fNext = nullptr;
    fComputeSector = fComputedSector = fCheckCoincidence = fTangentsAmbiguous = false;
    setSpans();
    setSector();
    SkDEBUGCODE(fID = start ? start->globalState()->nextAngleID() : -1);
}

void SkOpAngle::setSpans() {
    fUnorderable = false;
    fLastMarked = nullptr;
    if (!fStart) {
        fUnorderable = true;
        return;
    }
    const SkOpSegment* segment = fStart->segment();
    const SkPoint* pts = segment->pts();
    SkDEBUGCODE(fPart.fCurve.fVerb = SkPath::kCubic_Verb);  // required for SkDCurve debug check
    SkDEBUGCODE(fPart.fCurve[2].fX = fPart.fCurve[2].fY = fPart.fCurve[3].fX = fPart.fCurve[3].fY
            = SK_ScalarNaN);   //  make the non-line part uninitialized
    SkDEBUGCODE(fPart.fCurve.fVerb = segment->verb());  //  set the curve type for real
    segment->subDivide(fStart, fEnd, &fPart.fCurve);  //  set at least the line part if not more
    fOriginalCurvePart = fPart.fCurve;
    const SkPath::Verb verb = segment->verb();
    fPart.setCurveHullSweep(verb);
    if (SkPath::kLine_Verb != verb && !fPart.isCurve()) {
        SkDLine lineHalf;
        fPart.fCurve[1] = fPart.fCurve[SkPathOpsVerbToPoints(verb)];
        fOriginalCurvePart[1] = fPart.fCurve[1];
        lineHalf[0].set(fPart.fCurve[0].asSkPoint());
        lineHalf[1].set(fPart.fCurve[1].asSkPoint());
        fTangentHalf.lineEndPoints(lineHalf);
        fSide = 0;
    }
    switch (verb) {
    case SkPath::kLine_Verb: {
        SkASSERT(fStart != fEnd);
        const SkPoint& cP1 = pts[fStart->t() < fEnd->t()];
        SkDLine lineHalf;
        lineHalf[0].set(fStart->pt());
        lineHalf[1].set(cP1);
        fTangentHalf.lineEndPoints(lineHalf);
        fSide = 0;
        } return;
    case SkPath::kQuad_Verb:
    case SkPath::kConic_Verb: {
        SkLineParameters tangentPart;
        (void) tangentPart.quadEndPoints(fPart.fCurve.fQuad);
        fSide = -tangentPart.pointDistance(fPart.fCurve[2]);  // not normalized -- compare sign only
        } break;
    case SkPath::kCubic_Verb: {
        SkLineParameters tangentPart;
        (void) tangentPart.cubicPart(fPart.fCurve.fCubic);
        fSide = -tangentPart.pointDistance(fPart.fCurve[3]);
        double testTs[4];
        // OPTIMIZATION: keep inflections precomputed with cubic segment?
        int testCount = SkDCubic::FindInflections(pts, testTs);
        double startT = fStart->t();
        double endT = fEnd->t();
        double limitT = endT;
        int index;
        for (index = 0; index < testCount; ++index) {
            if (!::between(startT, testTs[index], limitT)) {
                testTs[index] = -1;
            }
        }
        testTs[testCount++] = startT;
        testTs[testCount++] = endT;
        SkTQSort<double>(testTs, &testTs[testCount - 1]);
        double bestSide = 0;
        int testCases = (testCount << 1) - 1;
        index = 0;
        while (testTs[index] < 0) {
            ++index;
        }
        index <<= 1;
        for (; index < testCases; ++index) {
            int testIndex = index >> 1;
            double testT = testTs[testIndex];
            if (index & 1) {
                testT = (testT + testTs[testIndex + 1]) / 2;
            }
            // OPTIMIZE: could avoid call for t == startT, endT
            SkDPoint pt = dcubic_xy_at_t(pts, segment->weight(), testT);
            SkLineParameters tangentPart;
            tangentPart.cubicEndPoints(fPart.fCurve.fCubic);
            double testSide = tangentPart.pointDistance(pt);
            if (fabs(bestSide) < fabs(testSide)) {
                bestSide = testSide;
            }
        }
        fSide = -bestSide;  // compare sign only
        } break;
    default:
        SkASSERT(0);
    }
}

void SkOpAngle::setSector() {
    if (!fStart) {
        fUnorderable = true;
        return;
    }
    const SkOpSegment* segment = fStart->segment();
    SkPath::Verb verb = segment->verb();
    fSectorStart = this->findSector(verb, fPart.fSweep[0].fX, fPart.fSweep[0].fY);
    if (fSectorStart < 0) {
        goto deferTilLater;
    }
    if (!fPart.isCurve()) {  // if it's a line or line-like, note that both sectors are the same
        SkASSERT(fSectorStart >= 0);
        fSectorEnd = fSectorStart;
        fSectorMask = 1 << fSectorStart;
        return;
    }
    SkASSERT(SkPath::kLine_Verb != verb);
    fSectorEnd = this->findSector(verb, fPart.fSweep[1].fX, fPart.fSweep[1].fY);
    if (fSectorEnd < 0) {
deferTilLater:
        fSectorStart = fSectorEnd = -1;
        fSectorMask = 0;
        fComputeSector = true;  // can't determine sector until segment length can be found
        return;
    }
    if (fSectorEnd == fSectorStart
            && (fSectorStart & 3) != 3) { // if the sector has no span, it can't be an exact angle
        fSectorMask = 1 << fSectorStart;
        return;
    }
    bool crossesZero = this->checkCrossesZero();
    int start = SkTMin(fSectorStart, fSectorEnd);
    bool curveBendsCCW = (fSectorStart == start) ^ crossesZero;
    // bump the start and end of the sector span if they are on exact compass points
    if ((fSectorStart & 3) == 3) {
        fSectorStart = (fSectorStart + (curveBendsCCW ? 1 : 31)) & 0x1f;
    }
    if ((fSectorEnd & 3) == 3) {
        fSectorEnd = (fSectorEnd + (curveBendsCCW ? 31 : 1)) & 0x1f;
    }
    crossesZero = this->checkCrossesZero();
    start = SkTMin(fSectorStart, fSectorEnd);
    int end = SkTMax(fSectorStart, fSectorEnd);
    if (!crossesZero) {
        fSectorMask = (unsigned) -1 >> (31 - end + start) << start;
    } else {
        fSectorMask = (unsigned) -1 >> (31 - start) | ((unsigned) -1 << end);
    }
}

SkOpSpan* SkOpAngle::starter() {
    return fStart->starter(fEnd);
}

bool SkOpAngle::tangentsDiverge(const SkOpAngle* rh, double s0xt0) {
    if (s0xt0 == 0) {
        return false;
    }
    // if the ctrl tangents are not nearly parallel, use them
    // solve for opposite direction displacement scale factor == m
    // initial dir = v1.cross(v2) == v2.x * v1.y - v2.y * v1.x
    // displacement of q1[1] : dq1 = { -m * v1.y, m * v1.x } + q1[1]
    // straight angle when : v2.x * (dq1.y - q1[0].y) == v2.y * (dq1.x - q1[0].x)
    //                       v2.x * (m * v1.x + v1.y) == v2.y * (-m * v1.y + v1.x)
    // - m * (v2.x * v1.x + v2.y * v1.y) == v2.x * v1.y - v2.y * v1.x
    // m = (v2.y * v1.x - v2.x * v1.y) / (v2.x * v1.x + v2.y * v1.y)
    // m = v1.cross(v2) / v1.dot(v2)
    const SkDVector* sweep = fPart.fSweep;
    const SkDVector* tweep = rh->fPart.fSweep;
    double s0dt0 = sweep[0].dot(tweep[0]);
    if (!s0dt0) {
        return true;
    }
    SkASSERT(s0dt0 != 0);
    double m = s0xt0 / s0dt0;
    double sDist = sweep[0].length() * m;
    double tDist = tweep[0].length() * m;
    bool useS = fabs(sDist) < fabs(tDist);
    double mFactor = fabs(useS ? this->distEndRatio(sDist) : rh->distEndRatio(tDist));
    fTangentsAmbiguous = mFactor >= 50 && mFactor < 200;
    return mFactor < 50;   // empirically found limit
}