/*
* Copyright 2015 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "GrAALinearizingConvexPathRenderer.h"
#include "GrAAConvexTessellator.h"
#include "GrCaps.h"
#include "GrDefaultGeoProcFactory.h"
#include "GrDrawOpTest.h"
#include "GrGeometryProcessor.h"
#include "GrOpFlushState.h"
#include "GrPathUtils.h"
#include "GrProcessor.h"
#include "GrRenderTargetContext.h"
#include "GrShape.h"
#include "GrStyle.h"
#include "GrVertexWriter.h"
#include "SkGeometry.h"
#include "SkPathPriv.h"
#include "SkString.h"
#include "SkTraceEvent.h"
#include "glsl/GrGLSLGeometryProcessor.h"
#include "ops/GrMeshDrawOp.h"
#include "ops/GrSimpleMeshDrawOpHelper.h"
static const int DEFAULT_BUFFER_SIZE = 100;
// The thicker the stroke, the harder it is to produce high-quality results using tessellation. For
// the time being, we simply drop back to software rendering above this stroke width.
static const SkScalar kMaxStrokeWidth = 20.0;
GrAALinearizingConvexPathRenderer::GrAALinearizingConvexPathRenderer() {
}
///////////////////////////////////////////////////////////////////////////////
GrPathRenderer::CanDrawPath
GrAALinearizingConvexPathRenderer::onCanDrawPath(const CanDrawPathArgs& args) const {
if (GrAAType::kCoverage != args.fAAType) {
return CanDrawPath::kNo;
}
if (!args.fShape->knownToBeConvex()) {
return CanDrawPath::kNo;
}
if (args.fShape->style().pathEffect()) {
return CanDrawPath::kNo;
}
if (args.fShape->inverseFilled()) {
return CanDrawPath::kNo;
}
if (args.fShape->bounds().width() <= 0 && args.fShape->bounds().height() <= 0) {
// Stroked zero length lines should draw, but this PR doesn't handle that case
return CanDrawPath::kNo;
}
const SkStrokeRec& stroke = args.fShape->style().strokeRec();
if (stroke.getStyle() == SkStrokeRec::kStroke_Style ||
stroke.getStyle() == SkStrokeRec::kStrokeAndFill_Style) {
if (!args.fViewMatrix->isSimilarity()) {
return CanDrawPath::kNo;
}
SkScalar strokeWidth = args.fViewMatrix->getMaxScale() * stroke.getWidth();
if (strokeWidth < 1.0f && stroke.getStyle() == SkStrokeRec::kStroke_Style) {
return CanDrawPath::kNo;
}
if (strokeWidth > kMaxStrokeWidth ||
!args.fShape->knownToBeClosed() ||
stroke.getJoin() == SkPaint::Join::kRound_Join) {
return CanDrawPath::kNo;
}
return CanDrawPath::kYes;
}
if (stroke.getStyle() != SkStrokeRec::kFill_Style) {
return CanDrawPath::kNo;
}
return CanDrawPath::kYes;
}
// extract the result vertices and indices from the GrAAConvexTessellator
static void extract_verts(const GrAAConvexTessellator& tess,
void* vertData,
const GrVertexColor& color,
uint16_t firstIndex,
uint16_t* idxs) {
GrVertexWriter verts{vertData};
for (int i = 0; i < tess.numPts(); ++i) {
verts.write(tess.point(i), color, tess.coverage(i));
}
for (int i = 0; i < tess.numIndices(); ++i) {
idxs[i] = tess.index(i) + firstIndex;
}
}
static sk_sp<GrGeometryProcessor> create_lines_only_gp(const GrShaderCaps* shaderCaps,
bool tweakAlphaForCoverage,
const SkMatrix& viewMatrix,
bool usesLocalCoords,
bool wideColor) {
using namespace GrDefaultGeoProcFactory;
Coverage::Type coverageType =
tweakAlphaForCoverage ? Coverage::kAttributeTweakAlpha_Type : Coverage::kAttribute_Type;
LocalCoords::Type localCoordsType =
usesLocalCoords ? LocalCoords::kUsePosition_Type : LocalCoords::kUnused_Type;
Color::Type colorType =
wideColor ? Color::kPremulWideColorAttribute_Type : Color::kPremulGrColorAttribute_Type;
return MakeForDeviceSpace(shaderCaps, colorType, coverageType, localCoordsType, viewMatrix);
}
namespace {
class AAFlatteningConvexPathOp final : public GrMeshDrawOp {
private:
using Helper = GrSimpleMeshDrawOpHelperWithStencil;
public:
DEFINE_OP_CLASS_ID
static std::unique_ptr<GrDrawOp> Make(GrRecordingContext* context,
GrPaint&& paint,
const SkMatrix& viewMatrix,
const SkPath& path,
SkScalar strokeWidth,
SkStrokeRec::Style style,
SkPaint::Join join,
SkScalar miterLimit,
const GrUserStencilSettings* stencilSettings) {
return Helper::FactoryHelper<AAFlatteningConvexPathOp>(context, std::move(paint),
viewMatrix, path,
strokeWidth, style, join, miterLimit,
stencilSettings);
}
AAFlatteningConvexPathOp(const Helper::MakeArgs& helperArgs,
const SkPMColor4f& color,
const SkMatrix& viewMatrix,
const SkPath& path,
SkScalar strokeWidth,
SkStrokeRec::Style style,
SkPaint::Join join,
SkScalar miterLimit,
const GrUserStencilSettings* stencilSettings)
: INHERITED(ClassID()), fHelper(helperArgs, GrAAType::kCoverage, stencilSettings) {
fPaths.emplace_back(
PathData{color, viewMatrix, path, strokeWidth, style, join, miterLimit});
// compute bounds
SkRect bounds = path.getBounds();
SkScalar w = strokeWidth;
if (w > 0) {
w /= 2;
// If the half stroke width is < 1 then we effectively fallback to bevel joins.
if (SkPaint::kMiter_Join == join && w > 1.f) {
w *= miterLimit;
}
bounds.outset(w, w);
}
this->setTransformedBounds(bounds, viewMatrix, HasAABloat::kYes, IsZeroArea::kNo);
fWideColor = !SkPMColor4fFitsInBytes(color);
}
const char* name() const override { return "AAFlatteningConvexPathOp"; }
void visitProxies(const VisitProxyFunc& func, VisitorType) const override {
fHelper.visitProxies(func);
}
#ifdef SK_DEBUG
SkString dumpInfo() const override {
SkString string;
for (const auto& path : fPaths) {
string.appendf(
"Color: 0x%08x, StrokeWidth: %.2f, Style: %d, Join: %d, "
"MiterLimit: %.2f\n",
path.fColor.toBytes_RGBA(), path.fStrokeWidth, path.fStyle, path.fJoin,
path.fMiterLimit);
}
string += fHelper.dumpInfo();
string += INHERITED::dumpInfo();
return string;
}
#endif
FixedFunctionFlags fixedFunctionFlags() const override { return fHelper.fixedFunctionFlags(); }
GrProcessorSet::Analysis finalize(const GrCaps& caps, const GrAppliedClip* clip,
GrFSAAType fsaaType, GrClampType clampType) override {
return fHelper.finalizeProcessors(
caps, clip, fsaaType, clampType, GrProcessorAnalysisCoverage::kSingleChannel,
&fPaths.back().fColor);
}
private:
void recordDraw(Target* target, sk_sp<const GrGeometryProcessor> gp, int vertexCount,
size_t vertexStride, void* vertices, int indexCount, uint16_t* indices) const {
if (vertexCount == 0 || indexCount == 0) {
return;
}
sk_sp<const GrBuffer> vertexBuffer;
int firstVertex;
void* verts = target->makeVertexSpace(vertexStride, vertexCount, &vertexBuffer,
&firstVertex);
if (!verts) {
SkDebugf("Could not allocate vertices\n");
return;
}
memcpy(verts, vertices, vertexCount * vertexStride);
sk_sp<const GrBuffer> indexBuffer;
int firstIndex;
uint16_t* idxs = target->makeIndexSpace(indexCount, &indexBuffer, &firstIndex);
if (!idxs) {
SkDebugf("Could not allocate indices\n");
return;
}
memcpy(idxs, indices, indexCount * sizeof(uint16_t));
GrMesh* mesh = target->allocMesh(GrPrimitiveType::kTriangles);
mesh->setIndexed(std::move(indexBuffer), indexCount, firstIndex, 0, vertexCount - 1,
GrPrimitiveRestart::kNo);
mesh->setVertexData(std::move(vertexBuffer), firstVertex);
target->recordDraw(std::move(gp), mesh);
}
void onPrepareDraws(Target* target) override {
// Setup GrGeometryProcessor
sk_sp<GrGeometryProcessor> gp(create_lines_only_gp(target->caps().shaderCaps(),
fHelper.compatibleWithAlphaAsCoverage(),
this->viewMatrix(),
fHelper.usesLocalCoords(),
fWideColor));
if (!gp) {
SkDebugf("Couldn't create a GrGeometryProcessor\n");
return;
}
size_t vertexStride = gp->vertexStride();
int instanceCount = fPaths.count();
int64_t vertexCount = 0;
int64_t indexCount = 0;
int64_t maxVertices = DEFAULT_BUFFER_SIZE;
int64_t maxIndices = DEFAULT_BUFFER_SIZE;
uint8_t* vertices = (uint8_t*) sk_malloc_throw(maxVertices * vertexStride);
uint16_t* indices = (uint16_t*) sk_malloc_throw(maxIndices * sizeof(uint16_t));
for (int i = 0; i < instanceCount; i++) {
const PathData& args = fPaths[i];
GrAAConvexTessellator tess(args.fStyle, args.fStrokeWidth,
args.fJoin, args.fMiterLimit);
if (!tess.tessellate(args.fViewMatrix, args.fPath)) {
continue;
}
int currentVertices = tess.numPts();
if (vertexCount + currentVertices > static_cast<int>(UINT16_MAX)) {
// if we added the current instance, we would overflow the indices we can store in a
// uint16_t. Draw what we've got so far and reset.
this->recordDraw(
target, gp, vertexCount, vertexStride, vertices, indexCount, indices);
vertexCount = 0;
indexCount = 0;
}
if (vertexCount + currentVertices > maxVertices) {
maxVertices = SkTMax(vertexCount + currentVertices, maxVertices * 2);
if (maxVertices * vertexStride > SK_MaxS32) {
sk_free(vertices);
sk_free(indices);
return;
}
vertices = (uint8_t*) sk_realloc_throw(vertices, maxVertices * vertexStride);
}
int currentIndices = tess.numIndices();
if (indexCount + currentIndices > maxIndices) {
maxIndices = SkTMax(indexCount + currentIndices, maxIndices * 2);
if (maxIndices * sizeof(uint16_t) > SK_MaxS32) {
sk_free(vertices);
sk_free(indices);
return;
}
indices = (uint16_t*) sk_realloc_throw(indices, maxIndices * sizeof(uint16_t));
}
extract_verts(tess, vertices + vertexStride * vertexCount,
GrVertexColor(args.fColor, fWideColor), vertexCount,
indices + indexCount);
vertexCount += currentVertices;
indexCount += currentIndices;
}
if (vertexCount <= SK_MaxS32 && indexCount <= SK_MaxS32) {
this->recordDraw(target, std::move(gp), vertexCount, vertexStride, vertices, indexCount,
indices);
}
sk_free(vertices);
sk_free(indices);
}
void onExecute(GrOpFlushState* flushState, const SkRect& chainBounds) override {
fHelper.executeDrawsAndUploads(this, flushState, chainBounds);
}
CombineResult onCombineIfPossible(GrOp* t, const GrCaps& caps) override {
AAFlatteningConvexPathOp* that = t->cast<AAFlatteningConvexPathOp>();
if (!fHelper.isCompatible(that->fHelper, caps, this->bounds(), that->bounds())) {
return CombineResult::kCannotCombine;
}
fPaths.push_back_n(that->fPaths.count(), that->fPaths.begin());
fWideColor |= that->fWideColor;
return CombineResult::kMerged;
}
const SkMatrix& viewMatrix() const { return fPaths[0].fViewMatrix; }
struct PathData {
SkPMColor4f fColor;
SkMatrix fViewMatrix;
SkPath fPath;
SkScalar fStrokeWidth;
SkStrokeRec::Style fStyle;
SkPaint::Join fJoin;
SkScalar fMiterLimit;
};
SkSTArray<1, PathData, true> fPaths;
Helper fHelper;
bool fWideColor;
typedef GrMeshDrawOp INHERITED;
};
} // anonymous namespace
bool GrAALinearizingConvexPathRenderer::onDrawPath(const DrawPathArgs& args) {
GR_AUDIT_TRAIL_AUTO_FRAME(args.fRenderTargetContext->auditTrail(),
"GrAALinearizingConvexPathRenderer::onDrawPath");
SkASSERT(GrFSAAType::kUnifiedMSAA != args.fRenderTargetContext->fsaaType());
SkASSERT(!args.fShape->isEmpty());
SkASSERT(!args.fShape->style().pathEffect());
SkPath path;
args.fShape->asPath(&path);
bool fill = args.fShape->style().isSimpleFill();
const SkStrokeRec& stroke = args.fShape->style().strokeRec();
SkScalar strokeWidth = fill ? -1.0f : stroke.getWidth();
SkPaint::Join join = fill ? SkPaint::Join::kMiter_Join : stroke.getJoin();
SkScalar miterLimit = stroke.getMiter();
std::unique_ptr<GrDrawOp> op = AAFlatteningConvexPathOp::Make(
args.fContext, std::move(args.fPaint), *args.fViewMatrix, path, strokeWidth,
stroke.getStyle(), join, miterLimit, args.fUserStencilSettings);
args.fRenderTargetContext->addDrawOp(*args.fClip, std::move(op));
return true;
}
///////////////////////////////////////////////////////////////////////////////////////////////////
#if GR_TEST_UTILS
GR_DRAW_OP_TEST_DEFINE(AAFlatteningConvexPathOp) {
SkMatrix viewMatrix = GrTest::TestMatrixPreservesRightAngles(random);
SkPath path = GrTest::TestPathConvex(random);
SkStrokeRec::Style styles[3] = { SkStrokeRec::kFill_Style,
SkStrokeRec::kStroke_Style,
SkStrokeRec::kStrokeAndFill_Style };
SkStrokeRec::Style style = styles[random->nextU() % 3];
SkScalar strokeWidth = -1.f;
SkPaint::Join join = SkPaint::kMiter_Join;
SkScalar miterLimit = 0.5f;
if (SkStrokeRec::kFill_Style != style) {
strokeWidth = random->nextRangeF(1.0f, 10.0f);
if (random->nextBool()) {
join = SkPaint::kMiter_Join;
} else {
join = SkPaint::kBevel_Join;
}
miterLimit = random->nextRangeF(0.5f, 2.0f);
}
const GrUserStencilSettings* stencilSettings = GrGetRandomStencil(random, context);
return AAFlatteningConvexPathOp::Make(context, std::move(paint), viewMatrix, path, strokeWidth,
style, join, miterLimit, stencilSettings);
}
#endif