/*
* Copyright 2016 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "GrShape.h"
#include <utility>
GrShape& GrShape::operator=(const GrShape& that) {
fStyle = that.fStyle;
this->changeType(that.fType, Type::kPath == that.fType ? &that.path() : nullptr);
switch (fType) {
case Type::kEmpty:
break;
case Type::kInvertedEmpty:
break;
case Type::kRRect:
fRRectData = that.fRRectData;
break;
case Type::kArc:
fArcData = that.fArcData;
break;
case Type::kLine:
fLineData = that.fLineData;
break;
case Type::kPath:
fPathData.fGenID = that.fPathData.fGenID;
break;
}
fInheritedKey.reset(that.fInheritedKey.count());
sk_careful_memcpy(fInheritedKey.get(), that.fInheritedKey.get(),
sizeof(uint32_t) * fInheritedKey.count());
if (that.fInheritedPathForListeners.isValid()) {
fInheritedPathForListeners.set(*that.fInheritedPathForListeners.get());
} else {
fInheritedPathForListeners.reset();
}
return *this;
}
static bool flip_inversion(bool originalIsInverted, GrShape::FillInversion inversion) {
switch (inversion) {
case GrShape::FillInversion::kPreserve:
return false;
case GrShape::FillInversion::kFlip:
return true;
case GrShape::FillInversion::kForceInverted:
return !originalIsInverted;
case GrShape::FillInversion::kForceNoninverted:
return originalIsInverted;
}
return false;
}
static bool is_inverted(bool originalIsInverted, GrShape::FillInversion inversion) {
switch (inversion) {
case GrShape::FillInversion::kPreserve:
return originalIsInverted;
case GrShape::FillInversion::kFlip:
return !originalIsInverted;
case GrShape::FillInversion::kForceInverted:
return true;
case GrShape::FillInversion::kForceNoninverted:
return false;
}
return false;
}
GrShape GrShape::MakeFilled(const GrShape& original, FillInversion inversion) {
if (original.style().isSimpleFill() && !flip_inversion(original.inverseFilled(), inversion)) {
// By returning the original rather than falling through we can preserve any inherited style
// key. Otherwise, we wipe it out below since the style change invalidates it.
return original;
}
GrShape result;
if (original.fInheritedPathForListeners.isValid()) {
result.fInheritedPathForListeners.set(*original.fInheritedPathForListeners.get());
}
switch (original.fType) {
case Type::kRRect:
result.fType = original.fType;
result.fRRectData.fRRect = original.fRRectData.fRRect;
result.fRRectData.fDir = kDefaultRRectDir;
result.fRRectData.fStart = kDefaultRRectStart;
result.fRRectData.fInverted = is_inverted(original.fRRectData.fInverted, inversion);
break;
case Type::kArc:
result.fType = original.fType;
result.fArcData.fOval = original.fArcData.fOval;
result.fArcData.fStartAngleDegrees = original.fArcData.fStartAngleDegrees;
result.fArcData.fSweepAngleDegrees = original.fArcData.fSweepAngleDegrees;
result.fArcData.fUseCenter = original.fArcData.fUseCenter;
result.fArcData.fInverted = is_inverted(original.fArcData.fInverted, inversion);
break;
case Type::kLine:
// Lines don't fill.
if (is_inverted(original.fLineData.fInverted, inversion)) {
result.fType = Type::kInvertedEmpty;
} else {
result.fType = Type::kEmpty;
}
break;
case Type::kEmpty:
result.fType = is_inverted(false, inversion) ? Type::kInvertedEmpty : Type::kEmpty;
break;
case Type::kInvertedEmpty:
result.fType = is_inverted(true, inversion) ? Type::kInvertedEmpty : Type::kEmpty;
break;
case Type::kPath:
result.initType(Type::kPath, &original.fPathData.fPath);
result.fPathData.fGenID = original.fPathData.fGenID;
if (flip_inversion(original.fPathData.fPath.isInverseFillType(), inversion)) {
result.fPathData.fPath.toggleInverseFillType();
}
if (!original.style().isSimpleFill()) {
// Going from a non-filled style to fill may allow additional simplifications (e.g.
// closing an open rect that wasn't closed in the original shape because it had
// stroke style).
result.attemptToSimplifyPath();
}
break;
}
// We don't copy the inherited key since it can contain path effect information that we just
// stripped.
return result;
}
SkRect GrShape::bounds() const {
// Bounds where left == bottom or top == right can indicate a line or point shape. We return
// inverted bounds for a truly empty shape.
static constexpr SkRect kInverted = SkRect::MakeLTRB(1, 1, -1, -1);
switch (fType) {
case Type::kEmpty:
return kInverted;
case Type::kInvertedEmpty:
return kInverted;
case Type::kLine: {
SkRect bounds;
if (fLineData.fPts[0].fX < fLineData.fPts[1].fX) {
bounds.fLeft = fLineData.fPts[0].fX;
bounds.fRight = fLineData.fPts[1].fX;
} else {
bounds.fLeft = fLineData.fPts[1].fX;
bounds.fRight = fLineData.fPts[0].fX;
}
if (fLineData.fPts[0].fY < fLineData.fPts[1].fY) {
bounds.fTop = fLineData.fPts[0].fY;
bounds.fBottom = fLineData.fPts[1].fY;
} else {
bounds.fTop = fLineData.fPts[1].fY;
bounds.fBottom = fLineData.fPts[0].fY;
}
return bounds;
}
case Type::kRRect:
return fRRectData.fRRect.getBounds();
case Type::kArc:
// Could make this less conservative by looking at angles.
return fArcData.fOval;
case Type::kPath:
return this->path().getBounds();
}
SK_ABORT("Unknown shape type");
return kInverted;
}
SkRect GrShape::styledBounds() const {
if (this->isEmpty() && !fStyle.hasNonDashPathEffect()) {
return SkRect::MakeEmpty();
}
SkRect bounds;
fStyle.adjustBounds(&bounds, this->bounds());
return bounds;
}
// If the path is small enough to be keyed from its data this returns key length, otherwise -1.
static int path_key_from_data_size(const SkPath& path) {
const int verbCnt = path.countVerbs();
if (verbCnt > GrShape::kMaxKeyFromDataVerbCnt) {
return -1;
}
const int pointCnt = path.countPoints();
const int conicWeightCnt = SkPathPriv::ConicWeightCnt(path);
GR_STATIC_ASSERT(sizeof(SkPoint) == 2 * sizeof(uint32_t));
GR_STATIC_ASSERT(sizeof(SkScalar) == sizeof(uint32_t));
// 2 is for the verb cnt and a fill type. Each verb is a byte but we'll pad the verb data out to
// a uint32_t length.
return 2 + (SkAlign4(verbCnt) >> 2) + 2 * pointCnt + conicWeightCnt;
}
// Writes the path data key into the passed pointer.
static void write_path_key_from_data(const SkPath& path, uint32_t* origKey) {
uint32_t* key = origKey;
// The check below should take care of negative values casted positive.
const int verbCnt = path.countVerbs();
const int pointCnt = path.countPoints();
const int conicWeightCnt = SkPathPriv::ConicWeightCnt(path);
SkASSERT(verbCnt <= GrShape::kMaxKeyFromDataVerbCnt);
SkASSERT(pointCnt && verbCnt);
*key++ = path.getFillType();
*key++ = verbCnt;
memcpy(key, SkPathPriv::VerbData(path), verbCnt * sizeof(uint8_t));
int verbKeySize = SkAlign4(verbCnt);
// pad out to uint32_t alignment using value that will stand out when debugging.
uint8_t* pad = reinterpret_cast<uint8_t*>(key)+ verbCnt;
memset(pad, 0xDE, verbKeySize - verbCnt);
key += verbKeySize >> 2;
memcpy(key, SkPathPriv::PointData(path), sizeof(SkPoint) * pointCnt);
GR_STATIC_ASSERT(sizeof(SkPoint) == 2 * sizeof(uint32_t));
key += 2 * pointCnt;
sk_careful_memcpy(key, SkPathPriv::ConicWeightData(path), sizeof(SkScalar) * conicWeightCnt);
GR_STATIC_ASSERT(sizeof(SkScalar) == sizeof(uint32_t));
SkDEBUGCODE(key += conicWeightCnt);
SkASSERT(key - origKey == path_key_from_data_size(path));
}
int GrShape::unstyledKeySize() const {
if (fInheritedKey.count()) {
return fInheritedKey.count();
}
switch (fType) {
case Type::kEmpty:
return 1;
case Type::kInvertedEmpty:
return 1;
case Type::kRRect:
SkASSERT(!fInheritedKey.count());
GR_STATIC_ASSERT(0 == SkRRect::kSizeInMemory % sizeof(uint32_t));
// + 1 for the direction, start index, and inverseness.
return SkRRect::kSizeInMemory / sizeof(uint32_t) + 1;
case Type::kArc:
SkASSERT(!fInheritedKey.count());
GR_STATIC_ASSERT(0 == sizeof(fArcData) % sizeof(uint32_t));
return sizeof(fArcData) / sizeof(uint32_t);
case Type::kLine:
GR_STATIC_ASSERT(2 * sizeof(uint32_t) == sizeof(SkPoint));
// 4 for the end points and 1 for the inverseness
return 5;
case Type::kPath: {
if (0 == fPathData.fGenID) {
return -1;
}
int dataKeySize = path_key_from_data_size(fPathData.fPath);
if (dataKeySize >= 0) {
return dataKeySize;
}
// The key is the path ID and fill type.
return 2;
}
}
SK_ABORT("Should never get here.");
return 0;
}
void GrShape::writeUnstyledKey(uint32_t* key) const {
SkASSERT(this->unstyledKeySize());
SkDEBUGCODE(uint32_t* origKey = key;)
if (fInheritedKey.count()) {
memcpy(key, fInheritedKey.get(), sizeof(uint32_t) * fInheritedKey.count());
SkDEBUGCODE(key += fInheritedKey.count();)
} else {
switch (fType) {
case Type::kEmpty:
*key++ = 1;
break;
case Type::kInvertedEmpty:
*key++ = 2;
break;
case Type::kRRect:
fRRectData.fRRect.writeToMemory(key);
key += SkRRect::kSizeInMemory / sizeof(uint32_t);
*key = (fRRectData.fDir == SkPath::kCCW_Direction) ? (1 << 31) : 0;
*key |= fRRectData.fInverted ? (1 << 30) : 0;
*key++ |= fRRectData.fStart;
SkASSERT(fRRectData.fStart < 8);
break;
case Type::kArc:
memcpy(key, &fArcData, sizeof(fArcData));
key += sizeof(fArcData) / sizeof(uint32_t);
break;
case Type::kLine:
memcpy(key, fLineData.fPts, 2 * sizeof(SkPoint));
key += 4;
*key++ = fLineData.fInverted ? 1 : 0;
break;
case Type::kPath: {
SkASSERT(fPathData.fGenID);
int dataKeySize = path_key_from_data_size(fPathData.fPath);
if (dataKeySize >= 0) {
write_path_key_from_data(fPathData.fPath, key);
return;
}
*key++ = fPathData.fGenID;
// We could canonicalize the fill rule for paths that don't differentiate between
// even/odd or winding fill (e.g. convex).
*key++ = this->path().getFillType();
break;
}
}
}
SkASSERT(key - origKey == this->unstyledKeySize());
}
void GrShape::setInheritedKey(const GrShape &parent, GrStyle::Apply apply, SkScalar scale) {
SkASSERT(!fInheritedKey.count());
// If the output shape turns out to be simple, then we will just use its geometric key
if (Type::kPath == fType) {
// We want ApplyFullStyle(ApplyPathEffect(shape)) to have the same key as
// ApplyFullStyle(shape).
// The full key is structured as (geo,path_effect,stroke).
// If we do ApplyPathEffect we get geo,path_effect as the inherited key. If we then
// do ApplyFullStyle we'll memcpy geo,path_effect into the new inherited key
// and then append the style key (which should now be stroke only) at the end.
int parentCnt = parent.fInheritedKey.count();
bool useParentGeoKey = !parentCnt;
if (useParentGeoKey) {
parentCnt = parent.unstyledKeySize();
if (parentCnt < 0) {
// The parent's geometry has no key so we will have no key.
fPathData.fGenID = 0;
return;
}
}
uint32_t styleKeyFlags = 0;
if (parent.knownToBeClosed()) {
styleKeyFlags |= GrStyle::kClosed_KeyFlag;
}
if (parent.asLine(nullptr, nullptr)) {
styleKeyFlags |= GrStyle::kNoJoins_KeyFlag;
}
int styleCnt = GrStyle::KeySize(parent.fStyle, apply, styleKeyFlags);
if (styleCnt < 0) {
// The style doesn't allow a key, set the path gen ID to 0 so that we fail when
// we try to get a key for the shape.
fPathData.fGenID = 0;
return;
}
fInheritedKey.reset(parentCnt + styleCnt);
if (useParentGeoKey) {
// This will be the geo key.
parent.writeUnstyledKey(fInheritedKey.get());
} else {
// This should be (geo,path_effect).
memcpy(fInheritedKey.get(), parent.fInheritedKey.get(),
parentCnt * sizeof(uint32_t));
}
// Now turn (geo,path_effect) or (geo) into (geo,path_effect,stroke)
GrStyle::WriteKey(fInheritedKey.get() + parentCnt, parent.fStyle, apply, scale,
styleKeyFlags);
}
}
const SkPath* GrShape::originalPathForListeners() const {
if (fInheritedPathForListeners.isValid()) {
return fInheritedPathForListeners.get();
} else if (Type::kPath == fType && !fPathData.fPath.isVolatile()) {
return &fPathData.fPath;
}
return nullptr;
}
void GrShape::addGenIDChangeListener(sk_sp<SkPathRef::GenIDChangeListener> listener) const {
if (const auto* lp = this->originalPathForListeners()) {
SkPathPriv::AddGenIDChangeListener(*lp, std::move(listener));
}
}
GrShape GrShape::MakeArc(const SkRect& oval, SkScalar startAngleDegrees, SkScalar sweepAngleDegrees,
bool useCenter, const GrStyle& style) {
GrShape result;
result.changeType(Type::kArc);
result.fArcData.fOval = oval;
result.fArcData.fStartAngleDegrees = startAngleDegrees;
result.fArcData.fSweepAngleDegrees = sweepAngleDegrees;
result.fArcData.fUseCenter = useCenter;
result.fArcData.fInverted = false;
result.fStyle = style;
result.attemptToSimplifyArc();
return result;
}
GrShape::GrShape(const GrShape& that) : fStyle(that.fStyle) {
const SkPath* thatPath = Type::kPath == that.fType ? &that.fPathData.fPath : nullptr;
this->initType(that.fType, thatPath);
switch (fType) {
case Type::kEmpty:
break;
case Type::kInvertedEmpty:
break;
case Type::kRRect:
fRRectData = that.fRRectData;
break;
case Type::kArc:
fArcData = that.fArcData;
break;
case Type::kLine:
fLineData = that.fLineData;
break;
case Type::kPath:
fPathData.fGenID = that.fPathData.fGenID;
break;
}
fInheritedKey.reset(that.fInheritedKey.count());
sk_careful_memcpy(fInheritedKey.get(), that.fInheritedKey.get(),
sizeof(uint32_t) * fInheritedKey.count());
if (that.fInheritedPathForListeners.isValid()) {
fInheritedPathForListeners.set(*that.fInheritedPathForListeners.get());
}
}
GrShape::GrShape(const GrShape& parent, GrStyle::Apply apply, SkScalar scale) {
// TODO: Add some quantization of scale for better cache performance here or leave that up
// to caller?
// TODO: For certain shapes and stroke params we could ignore the scale. (e.g. miter or bevel
// stroke of a rect).
if (!parent.style().applies() ||
(GrStyle::Apply::kPathEffectOnly == apply && !parent.style().pathEffect())) {
this->initType(Type::kEmpty);
*this = parent;
return;
}
SkPathEffect* pe = parent.fStyle.pathEffect();
SkTLazy<SkPath> tmpPath;
const GrShape* parentForKey = &parent;
SkTLazy<GrShape> tmpParent;
this->initType(Type::kPath);
fPathData.fGenID = 0;
if (pe) {
const SkPath* srcForPathEffect;
if (parent.fType == Type::kPath) {
srcForPathEffect = &parent.path();
} else {
srcForPathEffect = tmpPath.init();
parent.asPath(tmpPath.get());
}
// Should we consider bounds? Would have to include in key, but it'd be nice to know
// if the bounds actually modified anything before including in key.
SkStrokeRec strokeRec = parent.fStyle.strokeRec();
if (!parent.fStyle.applyPathEffectToPath(&this->path(), &strokeRec, *srcForPathEffect,
scale)) {
tmpParent.init(*srcForPathEffect, GrStyle(strokeRec, nullptr));
*this = tmpParent.get()->applyStyle(apply, scale);
return;
}
// A path effect has access to change the res scale but we aren't expecting it to and it
// would mess up our key computation.
SkASSERT(scale == strokeRec.getResScale());
if (GrStyle::Apply::kPathEffectAndStrokeRec == apply && strokeRec.needToApply()) {
// The intermediate shape may not be a general path. If we we're just applying
// the path effect then attemptToReduceFromPath would catch it. This means that
// when we subsequently applied the remaining strokeRec we would have a non-path
// parent shape that would be used to determine the the stroked path's key.
// We detect that case here and change parentForKey to a temporary that represents
// the simpler shape so that applying both path effect and the strokerec all at
// once produces the same key.
tmpParent.init(this->path(), GrStyle(strokeRec, nullptr));
tmpParent.get()->setInheritedKey(parent, GrStyle::Apply::kPathEffectOnly, scale);
if (!tmpPath.isValid()) {
tmpPath.init();
}
tmpParent.get()->asPath(tmpPath.get());
SkStrokeRec::InitStyle fillOrHairline;
// The parent shape may have simplified away the strokeRec, check for that here.
if (tmpParent.get()->style().applies()) {
SkAssertResult(tmpParent.get()->style().applyToPath(&this->path(), &fillOrHairline,
*tmpPath.get(), scale));
} else if (tmpParent.get()->style().isSimpleFill()) {
fillOrHairline = SkStrokeRec::kFill_InitStyle;
} else {
SkASSERT(tmpParent.get()->style().isSimpleHairline());
fillOrHairline = SkStrokeRec::kHairline_InitStyle;
}
fStyle.resetToInitStyle(fillOrHairline);
parentForKey = tmpParent.get();
} else {
fStyle = GrStyle(strokeRec, nullptr);
}
} else {
const SkPath* srcForParentStyle;
if (parent.fType == Type::kPath) {
srcForParentStyle = &parent.path();
} else {
srcForParentStyle = tmpPath.init();
parent.asPath(tmpPath.get());
}
SkStrokeRec::InitStyle fillOrHairline;
SkASSERT(parent.fStyle.applies());
SkASSERT(!parent.fStyle.pathEffect());
SkAssertResult(parent.fStyle.applyToPath(&this->path(), &fillOrHairline, *srcForParentStyle,
scale));
fStyle.resetToInitStyle(fillOrHairline);
}
if (parent.fInheritedPathForListeners.isValid()) {
fInheritedPathForListeners.set(*parent.fInheritedPathForListeners.get());
} else if (Type::kPath == parent.fType && !parent.fPathData.fPath.isVolatile()) {
fInheritedPathForListeners.set(parent.fPathData.fPath);
}
this->attemptToSimplifyPath();
this->setInheritedKey(*parentForKey, apply, scale);
}
void GrShape::attemptToSimplifyPath() {
SkRect rect;
SkRRect rrect;
SkPath::Direction rrectDir;
unsigned rrectStart;
bool inverted = this->path().isInverseFillType();
SkPoint pts[2];
if (this->path().isEmpty()) {
// Dashing ignores inverseness skbug.com/5421.
this->changeType(inverted && !this->style().isDashed() ? Type::kInvertedEmpty
: Type::kEmpty);
} else if (this->path().isLine(pts)) {
this->changeType(Type::kLine);
fLineData.fPts[0] = pts[0];
fLineData.fPts[1] = pts[1];
fLineData.fInverted = inverted;
} else if (SkPathPriv::IsRRect(this->path(), &rrect, &rrectDir, &rrectStart)) {
this->changeType(Type::kRRect);
fRRectData.fRRect = rrect;
fRRectData.fDir = rrectDir;
fRRectData.fStart = rrectStart;
fRRectData.fInverted = inverted;
SkASSERT(!fRRectData.fRRect.isEmpty());
} else if (SkPathPriv::IsOval(this->path(), &rect, &rrectDir, &rrectStart)) {
this->changeType(Type::kRRect);
fRRectData.fRRect.setOval(rect);
fRRectData.fDir = rrectDir;
fRRectData.fInverted = inverted;
// convert from oval indexing to rrect indexiing.
fRRectData.fStart = 2 * rrectStart;
} else if (SkPathPriv::IsSimpleClosedRect(this->path(), &rect, &rrectDir, &rrectStart)) {
this->changeType(Type::kRRect);
// When there is a path effect we restrict rect detection to the narrower API that
// gives us the starting position. Otherwise, we will retry with the more aggressive
// isRect().
fRRectData.fRRect.setRect(rect);
fRRectData.fInverted = inverted;
fRRectData.fDir = rrectDir;
// convert from rect indexing to rrect indexiing.
fRRectData.fStart = 2 * rrectStart;
} else if (!this->style().hasPathEffect()) {
bool closed;
if (this->path().isRect(&rect, &closed, nullptr)) {
if (closed || this->style().isSimpleFill()) {
this->changeType(Type::kRRect);
fRRectData.fRRect.setRect(rect);
// Since there is no path effect the dir and start index is immaterial.
fRRectData.fDir = kDefaultRRectDir;
fRRectData.fStart = kDefaultRRectStart;
// There isn't dashing so we will have to preserver inverseness.
fRRectData.fInverted = inverted;
}
}
}
if (Type::kPath != fType) {
fInheritedKey.reset(0);
// Whenever we simplify to a non-path, break the chain so we no longer refer to the
// original path. This prevents attaching genID listeners to temporary paths created when
// drawing simple shapes.
fInheritedPathForListeners.reset();
if (Type::kRRect == fType) {
this->attemptToSimplifyRRect();
} else if (Type::kLine == fType) {
this->attemptToSimplifyLine();
}
} else {
if (fInheritedKey.count() || this->path().isVolatile()) {
fPathData.fGenID = 0;
} else {
fPathData.fGenID = this->path().getGenerationID();
}
if (!this->style().hasNonDashPathEffect()) {
if (this->style().strokeRec().getStyle() == SkStrokeRec::kStroke_Style ||
this->style().strokeRec().getStyle() == SkStrokeRec::kHairline_Style) {
// Stroke styles don't differentiate between winding and even/odd.
// Moreover, dashing ignores inverseness (skbug.com/5421)
bool inverse = !this->style().isDashed() && this->path().isInverseFillType();
if (inverse) {
this->path().setFillType(kDefaultPathInverseFillType);
} else {
this->path().setFillType(kDefaultPathFillType);
}
} else if (this->path().isConvex()) {
// There is no distinction between even/odd and non-zero winding count for convex
// paths.
if (this->path().isInverseFillType()) {
this->path().setFillType(kDefaultPathInverseFillType);
} else {
this->path().setFillType(kDefaultPathFillType);
}
}
}
}
}
void GrShape::attemptToSimplifyRRect() {
SkASSERT(Type::kRRect == fType);
SkASSERT(!fInheritedKey.count());
if (fRRectData.fRRect.isEmpty()) {
// An empty filled rrect is equivalent to a filled empty path with inversion preserved.
if (fStyle.isSimpleFill()) {
fType = fRRectData.fInverted ? Type::kInvertedEmpty : Type::kEmpty;
fStyle = GrStyle::SimpleFill();
return;
}
// Dashing a rrect with no width or height is equivalent to filling an emtpy path.
// When skbug.com/7387 is fixed this should be modified or removed as a dashed zero length
// line will produce cap geometry if the effect begins in an "on" interval.
if (fStyle.isDashed() && !fRRectData.fRRect.width() && !fRRectData.fRRect.height()) {
// Dashing ignores the inverseness (currently). skbug.com/5421.
fType = Type::kEmpty;
fStyle = GrStyle::SimpleFill();
return;
}
}
if (!this->style().hasPathEffect()) {
fRRectData.fDir = kDefaultRRectDir;
fRRectData.fStart = kDefaultRRectStart;
} else if (fStyle.isDashed()) {
// Dashing ignores the inverseness (currently). skbug.com/5421
fRRectData.fInverted = false;
// Possible TODO here: Check whether the dash results in a single arc or line.
}
// Turn a stroke-and-filled miter rect into a filled rect. TODO: more rrect stroke shortcuts.
if (!fStyle.hasPathEffect() &&
fStyle.strokeRec().getStyle() == SkStrokeRec::kStrokeAndFill_Style &&
fStyle.strokeRec().getJoin() == SkPaint::kMiter_Join &&
fStyle.strokeRec().getMiter() >= SK_ScalarSqrt2 &&
fRRectData.fRRect.isRect()) {
SkScalar r = fStyle.strokeRec().getWidth() / 2;
fRRectData.fRRect = SkRRect::MakeRect(fRRectData.fRRect.rect().makeOutset(r, r));
fStyle = GrStyle::SimpleFill();
}
}
void GrShape::attemptToSimplifyLine() {
SkASSERT(Type::kLine == fType);
SkASSERT(!fInheritedKey.count());
if (fStyle.isDashed()) {
bool allOffsZero = true;
for (int i = 1; i < fStyle.dashIntervalCnt() && allOffsZero; i += 2) {
allOffsZero = !fStyle.dashIntervals()[i];
}
if (allOffsZero && this->attemptToSimplifyStrokedLineToRRect()) {
return;
}
// Dashing ignores inverseness.
fLineData.fInverted = false;
return;
} else if (fStyle.hasPathEffect()) {
return;
}
if (fStyle.strokeRec().getStyle() == SkStrokeRec::kStrokeAndFill_Style) {
// Make stroke + fill be stroke since the fill is empty.
SkStrokeRec rec = fStyle.strokeRec();
rec.setStrokeStyle(fStyle.strokeRec().getWidth(), false);
fStyle = GrStyle(rec, nullptr);
}
if (fStyle.isSimpleFill()) {
this->changeType(fLineData.fInverted ? Type::kInvertedEmpty : Type::kEmpty);
return;
}
if (fStyle.strokeRec().getStyle() == SkStrokeRec::kStroke_Style &&
this->attemptToSimplifyStrokedLineToRRect()) {
return;
}
// Only path effects could care about the order of the points. Otherwise canonicalize
// the point order.
SkPoint* pts = fLineData.fPts;
if (pts[1].fY < pts[0].fY || (pts[1].fY == pts[0].fY && pts[1].fX < pts[0].fX)) {
using std::swap;
swap(pts[0], pts[1]);
}
}
void GrShape::attemptToSimplifyArc() {
SkASSERT(fType == Type::kArc);
SkASSERT(!fArcData.fInverted);
if (fArcData.fOval.isEmpty() || !fArcData.fSweepAngleDegrees) {
this->changeType(Type::kEmpty);
return;
}
// Assuming no path effect, a filled, stroked, hairline, or stroke-and-filled arc that traverses
// the full circle and doesn't use the center point is an oval. Unless it has square or round
// caps. They may protrude out of the oval. Round caps can't protrude out of a circle but we're
// ignoring that for now.
if (fStyle.isSimpleFill() || (!fStyle.pathEffect() && !fArcData.fUseCenter &&
fStyle.strokeRec().getCap() == SkPaint::kButt_Cap)) {
if (fArcData.fSweepAngleDegrees >= 360.f || fArcData.fSweepAngleDegrees <= -360.f) {
auto oval = fArcData.fOval;
this->changeType(Type::kRRect);
this->fRRectData.fRRect.setOval(oval);
this->fRRectData.fDir = kDefaultRRectDir;
this->fRRectData.fStart = kDefaultRRectStart;
this->fRRectData.fInverted = false;
return;
}
}
if (!fStyle.pathEffect()) {
// Canonicalize the arc such that the start is always in [0, 360) and the sweep is always
// positive.
if (fArcData.fSweepAngleDegrees < 0) {
fArcData.fStartAngleDegrees = fArcData.fStartAngleDegrees + fArcData.fSweepAngleDegrees;
fArcData.fSweepAngleDegrees = -fArcData.fSweepAngleDegrees;
}
}
if (this->fArcData.fStartAngleDegrees < 0 || this->fArcData.fStartAngleDegrees >= 360.f) {
this->fArcData.fStartAngleDegrees = SkScalarMod(this->fArcData.fStartAngleDegrees, 360.f);
}
// Possible TODOs here: Look at whether dash pattern results in a single dash and convert to
// non-dashed stroke. Stroke and fill can be fill if circular and no path effect. Just stroke
// could as well if the stroke fills the center.
}
bool GrShape::attemptToSimplifyStrokedLineToRRect() {
SkASSERT(Type::kLine == fType);
SkASSERT(fStyle.strokeRec().getStyle() == SkStrokeRec::kStroke_Style);
SkRect rect;
SkVector outset;
// If we allowed a rotation angle for rrects we could capture all cases here.
if (fLineData.fPts[0].fY == fLineData.fPts[1].fY) {
rect.fLeft = SkTMin(fLineData.fPts[0].fX, fLineData.fPts[1].fX);
rect.fRight = SkTMax(fLineData.fPts[0].fX, fLineData.fPts[1].fX);
rect.fTop = rect.fBottom = fLineData.fPts[0].fY;
outset.fY = fStyle.strokeRec().getWidth() / 2.f;
outset.fX = SkPaint::kButt_Cap == fStyle.strokeRec().getCap() ? 0.f : outset.fY;
} else if (fLineData.fPts[0].fX == fLineData.fPts[1].fX) {
rect.fTop = SkTMin(fLineData.fPts[0].fY, fLineData.fPts[1].fY);
rect.fBottom = SkTMax(fLineData.fPts[0].fY, fLineData.fPts[1].fY);
rect.fLeft = rect.fRight = fLineData.fPts[0].fX;
outset.fX = fStyle.strokeRec().getWidth() / 2.f;
outset.fY = SkPaint::kButt_Cap == fStyle.strokeRec().getCap() ? 0.f : outset.fX;
} else {
return false;
}
rect.outset(outset.fX, outset.fY);
if (rect.isEmpty()) {
this->changeType(Type::kEmpty);
fStyle = GrStyle::SimpleFill();
return true;
}
SkRRect rrect;
if (fStyle.strokeRec().getCap() == SkPaint::kRound_Cap) {
SkASSERT(outset.fX == outset.fY);
rrect = SkRRect::MakeRectXY(rect, outset.fX, outset.fY);
} else {
rrect = SkRRect::MakeRect(rect);
}
bool inverted = fLineData.fInverted && !fStyle.hasPathEffect();
this->changeType(Type::kRRect);
fRRectData.fRRect = rrect;
fRRectData.fInverted = inverted;
fRRectData.fDir = kDefaultRRectDir;
fRRectData.fStart = kDefaultRRectStart;
fStyle = GrStyle::SimpleFill();
return true;
}