/*
* Copyright 2013 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#ifndef SkTDynamicHash_DEFINED
#define SkTDynamicHash_DEFINED
#include "SkMath.h"
#include "SkTemplates.h"
#include "SkTypes.h"
// Traits requires:
// static const Key& GetKey(const T&) { ... }
// static uint32_t Hash(const Key&) { ... }
// We'll look on T for these by default, or you can pass a custom Traits type.
template <typename T,
typename Key,
typename Traits = T,
int kGrowPercent = 75> // Larger -> more memory efficient, but slower.
class SkTDynamicHash {
public:
SkTDynamicHash() : fCount(0), fDeleted(0), fCapacity(0), fArray(nullptr) {
SkASSERT(this->validate());
}
~SkTDynamicHash() {
sk_free(fArray);
}
class Iter {
public:
explicit Iter(SkTDynamicHash* hash) : fHash(hash), fCurrentIndex(-1) {
SkASSERT(hash);
++(*this);
}
bool done() const {
SkASSERT(fCurrentIndex <= fHash->fCapacity);
return fCurrentIndex == fHash->fCapacity;
}
T& operator*() const {
SkASSERT(!this->done());
return *this->current();
}
void operator++() {
do {
fCurrentIndex++;
} while (!this->done() && (this->current() == Empty() || this->current() == Deleted()));
}
private:
T* current() const { return fHash->fArray[fCurrentIndex]; }
SkTDynamicHash* fHash;
int fCurrentIndex;
};
class ConstIter {
public:
explicit ConstIter(const SkTDynamicHash* hash) : fHash(hash), fCurrentIndex(-1) {
SkASSERT(hash);
++(*this);
}
bool done() const {
SkASSERT(fCurrentIndex <= fHash->fCapacity);
return fCurrentIndex == fHash->fCapacity;
}
const T& operator*() const {
SkASSERT(!this->done());
return *this->current();
}
void operator++() {
do {
fCurrentIndex++;
} while (!this->done() && (this->current() == Empty() || this->current() == Deleted()));
}
private:
const T* current() const { return fHash->fArray[fCurrentIndex]; }
const SkTDynamicHash* fHash;
int fCurrentIndex;
};
int count() const { return fCount; }
// Return the entry with this key if we have it, otherwise nullptr.
T* find(const Key& key) const {
int index = this->firstIndex(key);
for (int round = 0; round < fCapacity; round++) {
SkASSERT(index >= 0 && index < fCapacity);
T* candidate = fArray[index];
if (Empty() == candidate) {
return nullptr;
}
if (Deleted() != candidate && GetKey(*candidate) == key) {
return candidate;
}
index = this->nextIndex(index, round);
}
SkASSERT(fCapacity == 0);
return nullptr;
}
// Add an entry with this key. We require that no entry with newEntry's key is already present.
void add(T* newEntry) {
SkASSERT(nullptr == this->find(GetKey(*newEntry)));
this->maybeGrow();
this->innerAdd(newEntry);
SkASSERT(this->validate());
}
// Remove the entry with this key. We require that an entry with this key is present.
void remove(const Key& key) {
SkASSERT(this->find(key));
this->innerRemove(key);
SkASSERT(this->validate());
}
void rewind() {
if (fArray) {
sk_bzero(fArray, sizeof(T*)* fCapacity);
}
fCount = 0;
fDeleted = 0;
}
void reset() {
fCount = 0;
fDeleted = 0;
fCapacity = 0;
sk_free(fArray);
fArray = nullptr;
}
protected:
// These methods are used by tests only.
int capacity() const { return fCapacity; }
// How many collisions do we go through before finding where this entry should be inserted?
int countCollisions(const Key& key) const {
int index = this->firstIndex(key);
for (int round = 0; round < fCapacity; round++) {
SkASSERT(index >= 0 && index < fCapacity);
const T* candidate = fArray[index];
if (Empty() == candidate || Deleted() == candidate || GetKey(*candidate) == key) {
return round;
}
index = this->nextIndex(index, round);
}
SkASSERT(fCapacity == 0);
return 0;
}
private:
// We have two special values to indicate an empty or deleted entry.
static T* Empty() { return reinterpret_cast<T*>(0); } // i.e. nullptr
static T* Deleted() { return reinterpret_cast<T*>(1); } // Also an invalid pointer.
bool validate() const {
#define SKTDYNAMICHASH_CHECK(x) SkASSERT(x); if (!(x)) return false
static const int kLarge = 50; // Arbitrary, tweak to suit your patience.
// O(1) checks, always done.
// Is capacity sane?
SKTDYNAMICHASH_CHECK(SkIsPow2(fCapacity));
// O(N) checks, skipped when very large.
if (fCount < kLarge * kLarge) {
// Are fCount and fDeleted correct, and are all elements findable?
int count = 0, deleted = 0;
for (int i = 0; i < fCapacity; i++) {
if (Deleted() == fArray[i]) {
deleted++;
} else if (Empty() != fArray[i]) {
count++;
SKTDYNAMICHASH_CHECK(this->find(GetKey(*fArray[i])));
}
}
SKTDYNAMICHASH_CHECK(count == fCount);
SKTDYNAMICHASH_CHECK(deleted == fDeleted);
}
// O(N^2) checks, skipped when large.
if (fCount < kLarge) {
// Are all entries unique?
for (int i = 0; i < fCapacity; i++) {
if (Empty() == fArray[i] || Deleted() == fArray[i]) {
continue;
}
for (int j = i+1; j < fCapacity; j++) {
if (Empty() == fArray[j] || Deleted() == fArray[j]) {
continue;
}
SKTDYNAMICHASH_CHECK(fArray[i] != fArray[j]);
SKTDYNAMICHASH_CHECK(!(GetKey(*fArray[i]) == GetKey(*fArray[j])));
}
}
}
#undef SKTDYNAMICHASH_CHECK
return true;
}
void innerAdd(T* newEntry) {
const Key& key = GetKey(*newEntry);
int index = this->firstIndex(key);
for (int round = 0; round < fCapacity; round++) {
SkASSERT(index >= 0 && index < fCapacity);
const T* candidate = fArray[index];
if (Empty() == candidate || Deleted() == candidate) {
if (Deleted() == candidate) {
fDeleted--;
}
fCount++;
fArray[index] = newEntry;
return;
}
index = this->nextIndex(index, round);
}
SkASSERT(fCapacity == 0);
}
void innerRemove(const Key& key) {
const int firstIndex = this->firstIndex(key);
int index = firstIndex;
for (int round = 0; round < fCapacity; round++) {
SkASSERT(index >= 0 && index < fCapacity);
const T* candidate = fArray[index];
if (Deleted() != candidate && GetKey(*candidate) == key) {
fDeleted++;
fCount--;
fArray[index] = Deleted();
return;
}
index = this->nextIndex(index, round);
}
SkASSERT(fCapacity == 0);
}
void maybeGrow() {
if (100 * (fCount + fDeleted + 1) > fCapacity * kGrowPercent) {
auto newCapacity = fCapacity > 0 ? fCapacity : 4;
// Only grow the storage when most non-empty entries are
// in active use. Otherwise, just purge the tombstones.
if (fCount > fDeleted) {
newCapacity *= 2;
}
SkASSERT(newCapacity > fCount + 1);
this->resize(newCapacity);
}
}
void resize(int newCapacity) {
SkDEBUGCODE(int oldCount = fCount;)
int oldCapacity = fCapacity;
SkAutoTMalloc<T*> oldArray(fArray);
fCount = fDeleted = 0;
fCapacity = newCapacity;
fArray = (T**)sk_calloc_throw(sizeof(T*) * fCapacity);
for (int i = 0; i < oldCapacity; i++) {
T* entry = oldArray[i];
if (Empty() != entry && Deleted() != entry) {
this->innerAdd(entry);
}
}
SkASSERT(oldCount == fCount);
}
// fCapacity is always a power of 2, so this masks the correct low bits to index into our hash.
uint32_t hashMask() const { return fCapacity - 1; }
int firstIndex(const Key& key) const {
return Hash(key) & this->hashMask();
}
// Given index at round N, what is the index to check at N+1? round should start at 0.
int nextIndex(int index, int round) const {
// This will search a power-of-two array fully without repeating an index.
return (index + round + 1) & this->hashMask();
}
static const Key& GetKey(const T& t) { return Traits::GetKey(t); }
static uint32_t Hash(const Key& key) { return Traits::Hash(key); }
int fCount; // Number of non Empty(), non Deleted() entries in fArray.
int fDeleted; // Number of Deleted() entries in fArray.
int fCapacity; // Number of entries in fArray. Always a power of 2.
T** fArray;
};
#endif