/*
* Copyright 2013 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkResourceCache.h"
#include "SkDiscardableMemory.h"
#include "SkMessageBus.h"
#include "SkMipMap.h"
#include "SkMutex.h"
#include "SkOpts.h"
#include "SkTo.h"
#include "SkTraceMemoryDump.h"
#include <stddef.h>
#include <stdlib.h>
DECLARE_SKMESSAGEBUS_MESSAGE(SkResourceCache::PurgeSharedIDMessage)
static inline bool SkShouldPostMessageToBus(
const SkResourceCache::PurgeSharedIDMessage&, uint32_t) {
// SkResourceCache is typically used as a singleton and we don't label Inboxes so all messages
// go to all inboxes.
return true;
}
// This can be defined by the caller's build system
//#define SK_USE_DISCARDABLE_SCALEDIMAGECACHE
#ifndef SK_DISCARDABLEMEMORY_SCALEDIMAGECACHE_COUNT_LIMIT
# define SK_DISCARDABLEMEMORY_SCALEDIMAGECACHE_COUNT_LIMIT 1024
#endif
#ifndef SK_DEFAULT_IMAGE_CACHE_LIMIT
#define SK_DEFAULT_IMAGE_CACHE_LIMIT (32 * 1024 * 1024)
#endif
void SkResourceCache::Key::init(void* nameSpace, uint64_t sharedID, size_t dataSize) {
SkASSERT(SkAlign4(dataSize) == dataSize);
// fCount32 and fHash are not hashed
static const int kUnhashedLocal32s = 2; // fCache32 + fHash
static const int kSharedIDLocal32s = 2; // fSharedID_lo + fSharedID_hi
static const int kHashedLocal32s = kSharedIDLocal32s + (sizeof(fNamespace) >> 2);
static const int kLocal32s = kUnhashedLocal32s + kHashedLocal32s;
static_assert(sizeof(Key) == (kLocal32s << 2), "unaccounted_key_locals");
static_assert(sizeof(Key) == offsetof(Key, fNamespace) + sizeof(fNamespace),
"namespace_field_must_be_last");
fCount32 = SkToS32(kLocal32s + (dataSize >> 2));
fSharedID_lo = (uint32_t)(sharedID & 0xFFFFFFFF);
fSharedID_hi = (uint32_t)(sharedID >> 32);
fNamespace = nameSpace;
// skip unhashed fields when computing the hash
fHash = SkOpts::hash(this->as32() + kUnhashedLocal32s,
(fCount32 - kUnhashedLocal32s) << 2);
}
#include "SkTHash.h"
namespace {
struct HashTraits {
static uint32_t Hash(const SkResourceCache::Key& key) { return key.hash(); }
static const SkResourceCache::Key& GetKey(const SkResourceCache::Rec* rec) {
return rec->getKey();
}
};
}
class SkResourceCache::Hash :
public SkTHashTable<SkResourceCache::Rec*, SkResourceCache::Key, HashTraits> {};
///////////////////////////////////////////////////////////////////////////////
void SkResourceCache::init() {
fHead = nullptr;
fTail = nullptr;
fHash = new Hash;
fTotalBytesUsed = 0;
fCount = 0;
fSingleAllocationByteLimit = 0;
// One of these should be explicit set by the caller after we return.
fTotalByteLimit = 0;
fDiscardableFactory = nullptr;
}
SkResourceCache::SkResourceCache(DiscardableFactory factory) {
this->init();
fDiscardableFactory = factory;
}
SkResourceCache::SkResourceCache(size_t byteLimit) {
this->init();
fTotalByteLimit = byteLimit;
}
SkResourceCache::~SkResourceCache() {
Rec* rec = fHead;
while (rec) {
Rec* next = rec->fNext;
delete rec;
rec = next;
}
delete fHash;
}
////////////////////////////////////////////////////////////////////////////////
bool SkResourceCache::find(const Key& key, FindVisitor visitor, void* context) {
this->checkMessages();
if (auto found = fHash->find(key)) {
Rec* rec = *found;
if (visitor(*rec, context)) {
this->moveToHead(rec); // for our LRU
return true;
} else {
this->remove(rec); // stale
return false;
}
}
return false;
}
static void make_size_str(size_t size, SkString* str) {
const char suffix[] = { 'b', 'k', 'm', 'g', 't', 0 };
int i = 0;
while (suffix[i] && (size > 1024)) {
i += 1;
size >>= 10;
}
str->printf("%zu%c", size, suffix[i]);
}
static bool gDumpCacheTransactions;
void SkResourceCache::add(Rec* rec, void* payload) {
this->checkMessages();
SkASSERT(rec);
// See if we already have this key (racy inserts, etc.)
if (Rec** preexisting = fHash->find(rec->getKey())) {
Rec* prev = *preexisting;
if (prev->canBePurged()) {
// if it can be purged, the install may fail, so we have to remove it
this->remove(prev);
} else {
// if it cannot be purged, we reuse it and delete the new one
prev->postAddInstall(payload);
delete rec;
return;
}
}
this->addToHead(rec);
fHash->set(rec);
rec->postAddInstall(payload);
if (gDumpCacheTransactions) {
SkString bytesStr, totalStr;
make_size_str(rec->bytesUsed(), &bytesStr);
make_size_str(fTotalBytesUsed, &totalStr);
SkDebugf("RC: add %5s %12p key %08x -- total %5s, count %d\n",
bytesStr.c_str(), rec, rec->getHash(), totalStr.c_str(), fCount);
}
// since the new rec may push us over-budget, we perform a purge check now
this->purgeAsNeeded();
}
void SkResourceCache::remove(Rec* rec) {
SkASSERT(rec->canBePurged());
size_t used = rec->bytesUsed();
SkASSERT(used <= fTotalBytesUsed);
this->release(rec);
fHash->remove(rec->getKey());
fTotalBytesUsed -= used;
fCount -= 1;
//SkDebugf("-RC count [%3d] bytes %d\n", fCount, fTotalBytesUsed);
if (gDumpCacheTransactions) {
SkString bytesStr, totalStr;
make_size_str(used, &bytesStr);
make_size_str(fTotalBytesUsed, &totalStr);
SkDebugf("RC: remove %5s %12p key %08x -- total %5s, count %d\n",
bytesStr.c_str(), rec, rec->getHash(), totalStr.c_str(), fCount);
}
delete rec;
}
void SkResourceCache::purgeAsNeeded(bool forcePurge) {
size_t byteLimit;
int countLimit;
if (fDiscardableFactory) {
countLimit = SK_DISCARDABLEMEMORY_SCALEDIMAGECACHE_COUNT_LIMIT;
byteLimit = UINT32_MAX; // no limit based on bytes
} else {
countLimit = SK_MaxS32; // no limit based on count
byteLimit = fTotalByteLimit;
}
Rec* rec = fTail;
while (rec) {
if (!forcePurge && fTotalBytesUsed < byteLimit && fCount < countLimit) {
break;
}
Rec* prev = rec->fPrev;
if (rec->canBePurged()) {
this->remove(rec);
}
rec = prev;
}
}
//#define SK_TRACK_PURGE_SHAREDID_HITRATE
#ifdef SK_TRACK_PURGE_SHAREDID_HITRATE
static int gPurgeCallCounter;
static int gPurgeHitCounter;
#endif
void SkResourceCache::purgeSharedID(uint64_t sharedID) {
if (0 == sharedID) {
return;
}
#ifdef SK_TRACK_PURGE_SHAREDID_HITRATE
gPurgeCallCounter += 1;
bool found = false;
#endif
// go backwards, just like purgeAsNeeded, just to make the code similar.
// could iterate either direction and still be correct.
Rec* rec = fTail;
while (rec) {
Rec* prev = rec->fPrev;
if (rec->getKey().getSharedID() == sharedID) {
// even though the "src" is now dead, caches could still be in-flight, so
// we have to check if it can be removed.
if (rec->canBePurged()) {
this->remove(rec);
}
#ifdef SK_TRACK_PURGE_SHAREDID_HITRATE
found = true;
#endif
}
rec = prev;
}
#ifdef SK_TRACK_PURGE_SHAREDID_HITRATE
if (found) {
gPurgeHitCounter += 1;
}
SkDebugf("PurgeShared calls=%d hits=%d rate=%g\n", gPurgeCallCounter, gPurgeHitCounter,
gPurgeHitCounter * 100.0 / gPurgeCallCounter);
#endif
}
void SkResourceCache::visitAll(Visitor visitor, void* context) {
// go backwards, just like purgeAsNeeded, just to make the code similar.
// could iterate either direction and still be correct.
Rec* rec = fTail;
while (rec) {
visitor(*rec, context);
rec = rec->fPrev;
}
}
///////////////////////////////////////////////////////////////////////////////////////////////////
size_t SkResourceCache::setTotalByteLimit(size_t newLimit) {
size_t prevLimit = fTotalByteLimit;
fTotalByteLimit = newLimit;
if (newLimit < prevLimit) {
this->purgeAsNeeded();
}
return prevLimit;
}
SkCachedData* SkResourceCache::newCachedData(size_t bytes) {
this->checkMessages();
if (fDiscardableFactory) {
SkDiscardableMemory* dm = fDiscardableFactory(bytes);
return dm ? new SkCachedData(bytes, dm) : nullptr;
} else {
return new SkCachedData(sk_malloc_throw(bytes), bytes);
}
}
///////////////////////////////////////////////////////////////////////////////
void SkResourceCache::release(Rec* rec) {
Rec* prev = rec->fPrev;
Rec* next = rec->fNext;
if (!prev) {
SkASSERT(fHead == rec);
fHead = next;
} else {
prev->fNext = next;
}
if (!next) {
fTail = prev;
} else {
next->fPrev = prev;
}
rec->fNext = rec->fPrev = nullptr;
}
void SkResourceCache::moveToHead(Rec* rec) {
if (fHead == rec) {
return;
}
SkASSERT(fHead);
SkASSERT(fTail);
this->validate();
this->release(rec);
fHead->fPrev = rec;
rec->fNext = fHead;
fHead = rec;
this->validate();
}
void SkResourceCache::addToHead(Rec* rec) {
this->validate();
rec->fPrev = nullptr;
rec->fNext = fHead;
if (fHead) {
fHead->fPrev = rec;
}
fHead = rec;
if (!fTail) {
fTail = rec;
}
fTotalBytesUsed += rec->bytesUsed();
fCount += 1;
this->validate();
}
///////////////////////////////////////////////////////////////////////////////
#ifdef SK_DEBUG
void SkResourceCache::validate() const {
if (nullptr == fHead) {
SkASSERT(nullptr == fTail);
SkASSERT(0 == fTotalBytesUsed);
return;
}
if (fHead == fTail) {
SkASSERT(nullptr == fHead->fPrev);
SkASSERT(nullptr == fHead->fNext);
SkASSERT(fHead->bytesUsed() == fTotalBytesUsed);
return;
}
SkASSERT(nullptr == fHead->fPrev);
SkASSERT(fHead->fNext);
SkASSERT(nullptr == fTail->fNext);
SkASSERT(fTail->fPrev);
size_t used = 0;
int count = 0;
const Rec* rec = fHead;
while (rec) {
count += 1;
used += rec->bytesUsed();
SkASSERT(used <= fTotalBytesUsed);
rec = rec->fNext;
}
SkASSERT(fCount == count);
rec = fTail;
while (rec) {
SkASSERT(count > 0);
count -= 1;
SkASSERT(used >= rec->bytesUsed());
used -= rec->bytesUsed();
rec = rec->fPrev;
}
SkASSERT(0 == count);
SkASSERT(0 == used);
}
#endif
void SkResourceCache::dump() const {
this->validate();
SkDebugf("SkResourceCache: count=%d bytes=%d %s\n",
fCount, fTotalBytesUsed, fDiscardableFactory ? "discardable" : "malloc");
}
size_t SkResourceCache::setSingleAllocationByteLimit(size_t newLimit) {
size_t oldLimit = fSingleAllocationByteLimit;
fSingleAllocationByteLimit = newLimit;
return oldLimit;
}
size_t SkResourceCache::getSingleAllocationByteLimit() const {
return fSingleAllocationByteLimit;
}
size_t SkResourceCache::getEffectiveSingleAllocationByteLimit() const {
// fSingleAllocationByteLimit == 0 means the caller is asking for our default
size_t limit = fSingleAllocationByteLimit;
// if we're not discardable (i.e. we are fixed-budget) then cap the single-limit
// to our budget.
if (nullptr == fDiscardableFactory) {
if (0 == limit) {
limit = fTotalByteLimit;
} else {
limit = SkTMin(limit, fTotalByteLimit);
}
}
return limit;
}
void SkResourceCache::checkMessages() {
SkTArray<PurgeSharedIDMessage> msgs;
fPurgeSharedIDInbox.poll(&msgs);
for (int i = 0; i < msgs.count(); ++i) {
this->purgeSharedID(msgs[i].fSharedID);
}
}
///////////////////////////////////////////////////////////////////////////////
SK_DECLARE_STATIC_MUTEX(gMutex);
static SkResourceCache* gResourceCache = nullptr;
/** Must hold gMutex when calling. */
static SkResourceCache* get_cache() {
// gMutex is always held when this is called, so we don't need to be fancy in here.
gMutex.assertHeld();
if (nullptr == gResourceCache) {
#ifdef SK_USE_DISCARDABLE_SCALEDIMAGECACHE
gResourceCache = new SkResourceCache(SkDiscardableMemory::Create);
#else
gResourceCache = new SkResourceCache(SK_DEFAULT_IMAGE_CACHE_LIMIT);
#endif
}
return gResourceCache;
}
size_t SkResourceCache::GetTotalBytesUsed() {
SkAutoMutexAcquire am(gMutex);
return get_cache()->getTotalBytesUsed();
}
size_t SkResourceCache::GetTotalByteLimit() {
SkAutoMutexAcquire am(gMutex);
return get_cache()->getTotalByteLimit();
}
size_t SkResourceCache::SetTotalByteLimit(size_t newLimit) {
SkAutoMutexAcquire am(gMutex);
return get_cache()->setTotalByteLimit(newLimit);
}
SkResourceCache::DiscardableFactory SkResourceCache::GetDiscardableFactory() {
SkAutoMutexAcquire am(gMutex);
return get_cache()->discardableFactory();
}
SkCachedData* SkResourceCache::NewCachedData(size_t bytes) {
SkAutoMutexAcquire am(gMutex);
return get_cache()->newCachedData(bytes);
}
void SkResourceCache::Dump() {
SkAutoMutexAcquire am(gMutex);
get_cache()->dump();
}
size_t SkResourceCache::SetSingleAllocationByteLimit(size_t size) {
SkAutoMutexAcquire am(gMutex);
return get_cache()->setSingleAllocationByteLimit(size);
}
size_t SkResourceCache::GetSingleAllocationByteLimit() {
SkAutoMutexAcquire am(gMutex);
return get_cache()->getSingleAllocationByteLimit();
}
size_t SkResourceCache::GetEffectiveSingleAllocationByteLimit() {
SkAutoMutexAcquire am(gMutex);
return get_cache()->getEffectiveSingleAllocationByteLimit();
}
void SkResourceCache::PurgeAll() {
SkAutoMutexAcquire am(gMutex);
return get_cache()->purgeAll();
}
bool SkResourceCache::Find(const Key& key, FindVisitor visitor, void* context) {
SkAutoMutexAcquire am(gMutex);
return get_cache()->find(key, visitor, context);
}
void SkResourceCache::Add(Rec* rec, void* payload) {
SkAutoMutexAcquire am(gMutex);
get_cache()->add(rec, payload);
}
void SkResourceCache::VisitAll(Visitor visitor, void* context) {
SkAutoMutexAcquire am(gMutex);
get_cache()->visitAll(visitor, context);
}
void SkResourceCache::PostPurgeSharedID(uint64_t sharedID) {
if (sharedID) {
SkMessageBus<PurgeSharedIDMessage>::Post(PurgeSharedIDMessage(sharedID));
}
}
///////////////////////////////////////////////////////////////////////////////
#include "SkGraphics.h"
#include "SkImageFilter.h"
size_t SkGraphics::GetResourceCacheTotalBytesUsed() {
return SkResourceCache::GetTotalBytesUsed();
}
size_t SkGraphics::GetResourceCacheTotalByteLimit() {
return SkResourceCache::GetTotalByteLimit();
}
size_t SkGraphics::SetResourceCacheTotalByteLimit(size_t newLimit) {
return SkResourceCache::SetTotalByteLimit(newLimit);
}
size_t SkGraphics::GetResourceCacheSingleAllocationByteLimit() {
return SkResourceCache::GetSingleAllocationByteLimit();
}
size_t SkGraphics::SetResourceCacheSingleAllocationByteLimit(size_t newLimit) {
return SkResourceCache::SetSingleAllocationByteLimit(newLimit);
}
void SkGraphics::PurgeResourceCache() {
SkImageFilter::PurgeCache();
return SkResourceCache::PurgeAll();
}
/////////////
static void dump_visitor(const SkResourceCache::Rec& rec, void*) {
SkDebugf("RC: %12s bytes %9lu discardable %p\n",
rec.getCategory(), rec.bytesUsed(), rec.diagnostic_only_getDiscardable());
}
void SkResourceCache::TestDumpMemoryStatistics() {
VisitAll(dump_visitor, nullptr);
}
static void sk_trace_dump_visitor(const SkResourceCache::Rec& rec, void* context) {
SkTraceMemoryDump* dump = static_cast<SkTraceMemoryDump*>(context);
SkString dumpName = SkStringPrintf("skia/sk_resource_cache/%s_%p", rec.getCategory(), &rec);
SkDiscardableMemory* discardable = rec.diagnostic_only_getDiscardable();
if (discardable) {
dump->setDiscardableMemoryBacking(dumpName.c_str(), *discardable);
// The discardable memory size will be calculated by dumper, but we also dump what we think
// the size of object in memory is irrespective of whether object is live or dead.
dump->dumpNumericValue(dumpName.c_str(), "discardable_size", "bytes", rec.bytesUsed());
} else {
dump->dumpNumericValue(dumpName.c_str(), "size", "bytes", rec.bytesUsed());
dump->setMemoryBacking(dumpName.c_str(), "malloc", nullptr);
}
}
void SkResourceCache::DumpMemoryStatistics(SkTraceMemoryDump* dump) {
// Since resource could be backed by malloc or discardable, the cache always dumps detailed
// stats to be accurate.
VisitAll(sk_trace_dump_visitor, dump);
}