/*
* Copyright 2016 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#ifndef SkRasterPipeline_DEFINED
#define SkRasterPipeline_DEFINED
#include "SkArenaAlloc.h"
#include "SkColor.h"
#include "SkImageInfo.h"
#include "SkNx.h"
#include "SkTArray.h" // TODO: unused
#include "SkTypes.h"
#include <functional>
#include <vector> // TODO: unused
/**
* SkRasterPipeline provides a cheap way to chain together a pixel processing pipeline.
*
* It's particularly designed for situations where the potential pipeline is extremely
* combinatoric: {N dst formats} x {M source formats} x {K mask formats} x {C transfer modes} ...
* No one wants to write specialized routines for all those combinations, and if we did, we'd
* end up bloating our code size dramatically. SkRasterPipeline stages can be chained together
* at runtime, so we can scale this problem linearly rather than combinatorically.
*
* Each stage is represented by a function conforming to a common interface and by an
* arbitrary context pointer. The stage funciton arguments and calling convention are
* designed to maximize the amount of data we can pass along the pipeline cheaply, and
* vary depending on CPU feature detection.
*/
#define SK_RASTER_PIPELINE_STAGES(M) \
M(callback) \
M(move_src_dst) M(move_dst_src) \
M(clamp_0) M(clamp_1) M(clamp_a) M(clamp_a_dst) M(clamp_gamut) \
M(unpremul) M(premul) M(premul_dst) \
M(force_opaque) M(force_opaque_dst) \
M(set_rgb) M(unbounded_set_rgb) M(swap_rb) M(swap_rb_dst) \
M(from_srgb) M(to_srgb) \
M(black_color) M(white_color) M(uniform_color) M(unbounded_uniform_color) \
M(seed_shader) M(dither) \
M(load_a8) M(load_a8_dst) M(store_a8) M(gather_a8) \
M(load_565) M(load_565_dst) M(store_565) M(gather_565) \
M(load_4444) M(load_4444_dst) M(store_4444) M(gather_4444) \
M(load_f16) M(load_f16_dst) M(store_f16) M(gather_f16) \
M(load_f32) M(load_f32_dst) M(store_f32) M(gather_f32) \
M(load_8888) M(load_8888_dst) M(store_8888) M(gather_8888) \
M(load_1010102) M(load_1010102_dst) M(store_1010102) M(gather_1010102) \
M(alpha_to_gray) M(alpha_to_gray_dst) M(luminance_to_alpha) \
M(bilerp_clamp_8888) \
M(store_u16_be) \
M(load_src) M(store_src) M(load_dst) M(store_dst) \
M(scale_u8) M(scale_565) M(scale_1_float) \
M( lerp_u8) M( lerp_565) M( lerp_1_float) \
M(dstatop) M(dstin) M(dstout) M(dstover) \
M(srcatop) M(srcin) M(srcout) M(srcover) \
M(clear) M(modulate) M(multiply) M(plus_) M(screen) M(xor_) \
M(colorburn) M(colordodge) M(darken) M(difference) \
M(exclusion) M(hardlight) M(lighten) M(overlay) M(softlight) \
M(hue) M(saturation) M(color) M(luminosity) \
M(srcover_rgba_8888) \
M(matrix_translate) M(matrix_scale_translate) \
M(matrix_2x3) M(matrix_3x3) M(matrix_3x4) M(matrix_4x5) M(matrix_4x3) \
M(matrix_perspective) \
M(parametric) M(gamma) \
M(mirror_x) M(repeat_x) \
M(mirror_y) M(repeat_y) \
M(decal_x) M(decal_y) M(decal_x_and_y) \
M(check_decal_mask) \
M(negate_x) \
M(bilinear_nx) M(bilinear_px) M(bilinear_ny) M(bilinear_py) \
M(bicubic_n3x) M(bicubic_n1x) M(bicubic_p1x) M(bicubic_p3x) \
M(bicubic_n3y) M(bicubic_n1y) M(bicubic_p1y) M(bicubic_p3y) \
M(save_xy) M(accumulate) \
M(clamp_x_1) M(mirror_x_1) M(repeat_x_1) \
M(evenly_spaced_gradient) \
M(gradient) \
M(evenly_spaced_2_stop_gradient) \
M(xy_to_unit_angle) \
M(xy_to_radius) \
M(xy_to_2pt_conical_strip) \
M(xy_to_2pt_conical_focal_on_circle) \
M(xy_to_2pt_conical_well_behaved) \
M(xy_to_2pt_conical_smaller) \
M(xy_to_2pt_conical_greater) \
M(alter_2pt_conical_compensate_focal) \
M(alter_2pt_conical_unswap) \
M(mask_2pt_conical_nan) \
M(mask_2pt_conical_degenerates) M(apply_vector_mask) \
M(byte_tables) \
M(rgb_to_hsl) M(hsl_to_rgb) \
M(gauss_a_to_rgba) \
M(emboss)
// The largest number of pixels we handle at a time.
static const int SkRasterPipeline_kMaxStride = 16;
// Structs representing the arguments to some common stages.
struct SkRasterPipeline_MemoryCtx {
void* pixels;
int stride;
};
struct SkRasterPipeline_GatherCtx {
const void* pixels;
int stride;
float width;
float height;
};
// State shared by save_xy, accumulate, and bilinear_* / bicubic_*.
struct SkRasterPipeline_SamplerCtx {
float x[SkRasterPipeline_kMaxStride];
float y[SkRasterPipeline_kMaxStride];
float fx[SkRasterPipeline_kMaxStride];
float fy[SkRasterPipeline_kMaxStride];
float scalex[SkRasterPipeline_kMaxStride];
float scaley[SkRasterPipeline_kMaxStride];
};
struct SkRasterPipeline_TileCtx {
float scale;
float invScale; // cache of 1/scale
};
struct SkRasterPipeline_DecalTileCtx {
uint32_t mask[SkRasterPipeline_kMaxStride];
float limit_x;
float limit_y;
};
struct SkRasterPipeline_CallbackCtx {
void (*fn)(SkRasterPipeline_CallbackCtx* self, int active_pixels/*<= SkRasterPipeline_kMaxStride*/);
// When called, fn() will have our active pixels available in rgba.
// When fn() returns, the pipeline will read back those active pixels from read_from.
float rgba[4*SkRasterPipeline_kMaxStride];
float* read_from = rgba;
};
struct SkRasterPipeline_GradientCtx {
size_t stopCount;
float* fs[4];
float* bs[4];
float* ts;
bool interpolatedInPremul;
};
struct SkRasterPipeline_EvenlySpaced2StopGradientCtx {
float f[4];
float b[4];
bool interpolatedInPremul;
};
struct SkRasterPipeline_2PtConicalCtx {
uint32_t fMask[SkRasterPipeline_kMaxStride];
float fP0,
fP1;
};
struct SkRasterPipeline_UniformColorCtx {
float r,g,b,a;
uint16_t rgba[4]; // [0,255] in a 16-bit lane.
};
struct SkRasterPipeline_EmbossCtx {
SkRasterPipeline_MemoryCtx mul,
add;
};
class SkRasterPipeline {
public:
explicit SkRasterPipeline(SkArenaAlloc*);
SkRasterPipeline(const SkRasterPipeline&) = delete;
SkRasterPipeline(SkRasterPipeline&&) = default;
SkRasterPipeline& operator=(const SkRasterPipeline&) = delete;
SkRasterPipeline& operator=(SkRasterPipeline&&) = default;
void reset();
enum StockStage {
#define M(stage) stage,
SK_RASTER_PIPELINE_STAGES(M)
#undef M
};
void append(StockStage, void* = nullptr);
void append(StockStage stage, const void* ctx) { this->append(stage, const_cast<void*>(ctx)); }
// For raw functions (i.e. from a JIT). Don't use this unless you know exactly what fn needs to
// be. :)
void append(void* fn, void* ctx);
// Append all stages to this pipeline.
void extend(const SkRasterPipeline&);
// Runs the pipeline in 2d from (x,y) inclusive to (x+w,y+h) exclusive.
void run(size_t x, size_t y, size_t w, size_t h) const;
// Allocates a thunk which amortizes run() setup cost in alloc.
std::function<void(size_t, size_t, size_t, size_t)> compile() const;
void dump() const;
// Appends a stage for the specified matrix.
// Tries to optimize the stage by analyzing the type of matrix.
void append_matrix(SkArenaAlloc*, const SkMatrix&);
// Appends a stage for a constant uniform color.
// Tries to optimize the stage based on the color.
void append_constant_color(SkArenaAlloc*, const float rgba[4]);
void append_constant_color(SkArenaAlloc* alloc, const SkColor4f& color) {
this->append_constant_color(alloc, color.vec());
}
// Like append_constant_color() but only affecting r,g,b, ignoring the alpha channel.
void append_set_rgb(SkArenaAlloc*, const float rgb[3]);
void append_set_rgb(SkArenaAlloc* alloc, const SkColor4f& color) {
this->append_set_rgb(alloc, color.vec());
}
void append_load (SkColorType, const SkRasterPipeline_MemoryCtx*);
void append_load_dst(SkColorType, const SkRasterPipeline_MemoryCtx*);
void append_store (SkColorType, const SkRasterPipeline_MemoryCtx*);
void append_gamut_clamp_if_normalized(const SkImageInfo&);
bool empty() const { return fStages == nullptr; }
private:
struct StageList {
StageList* prev;
uint64_t stage;
void* ctx;
bool rawFunction;
};
using StartPipelineFn = void(*)(size_t,size_t,size_t,size_t, void** program);
StartPipelineFn build_pipeline(void**) const;
void unchecked_append(StockStage, void*);
// Used by old single-program void** style execution.
SkArenaAlloc* fAlloc;
StageList* fStages;
int fNumStages;
int fSlotsNeeded;
};
template <size_t bytes>
class SkRasterPipeline_ : public SkRasterPipeline {
public:
SkRasterPipeline_()
: SkRasterPipeline(&fBuiltinAlloc) {}
private:
SkSTArenaAlloc<bytes> fBuiltinAlloc;
};
#endif//SkRasterPipeline_DEFINED