/*
* Copyright 2018 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkCubicMap.h"
#include "SkNx.h"
//#define CUBICMAP_TRACK_MAX_ERROR
#ifdef CUBICMAP_TRACK_MAX_ERROR
#include "../../src/pathops/SkPathOpsCubic.h"
#endif
static float eval_poly3(float a, float b, float c, float d, float t) {
return ((a * t + b) * t + c) * t + d;
}
static float eval_poly2(float a, float b, float c, float t) {
return (a * t + b) * t + c;
}
static float eval_poly1(float a, float b, float t) {
return a * t + b;
}
static float guess_nice_cubic_root(float A, float B, float C, float D) {
return -D;
}
#ifdef SK_DEBUG
static bool valid(float r) {
return r >= 0 && r <= 1;
}
#endif
static inline bool nearly_zero(SkScalar x) {
SkASSERT(x >= 0);
return x <= 0.0000000001f;
}
static inline bool delta_nearly_zero(float delta) {
return sk_float_abs(delta) <= 0.0001f;
}
#ifdef CUBICMAP_TRACK_MAX_ERROR
static int max_iters;
#endif
/*
* TODO: will this be faster if we algebraically compute the polynomials for the numer and denom
* rather than compute them in parts?
*/
static float solve_nice_cubic_halley(float A, float B, float C, float D) {
const int MAX_ITERS = 8;
const float A3 = 3 * A;
const float B2 = B + B;
float t = guess_nice_cubic_root(A, B, C, D);
int iters = 0;
for (; iters < MAX_ITERS; ++iters) {
float f = eval_poly3(A, B, C, D, t); // f = At^3 + Bt^2 + Ct + D
float fp = eval_poly2(A3, B2, C, t); // f' = 3At^2 + 2Bt + C
float fpp = eval_poly1(A3 + A3, B2, t); // f'' = 6At + 2B
float numer = 2 * fp * f;
if (numer == 0) {
break;
}
float denom = 2 * fp * fp - f * fpp;
float delta = numer / denom;
// SkDebugf("[%d] delta %g t %g\n", iters, delta, t);
if (delta_nearly_zero(delta)) {
break;
}
float new_t = t - delta;
SkASSERT(valid(new_t));
t = new_t;
}
SkASSERT(valid(t));
#ifdef CUBICMAP_TRACK_MAX_ERROR
if (iters > max_iters) {
max_iters = iters;
SkDebugf("max_iters %d\n", max_iters);
}
#endif
return t;
}
// At the moment, this technique does not appear to be better (i.e. faster at same precision)
// but the code is left here (at least for a while) to document the attempt.
static float solve_nice_cubic_householder(float A, float B, float C, float D) {
const int MAX_ITERS = 8;
const float A3 = 3 * A;
const float B2 = B + B;
float t = guess_nice_cubic_root(A, B, C, D);
int iters = 0;
for (; iters < MAX_ITERS; ++iters) {
float f = eval_poly3(A, B, C, D, t); // f = At^3 + Bt^2 + Ct + D
float fp = eval_poly2(A3, B2, C, t); // f' = 3At^2 + 2Bt + C
float fpp = eval_poly1(A3 + A3, B2, t); // f'' = 6At + 2B
float fppp = A3 + A3; // f''' = 6A
float f2 = f * f;
float fp2 = fp * fp;
// float numer = 6 * f * fp * fp - 3 * f * f * fpp;
// float denom = 6 * fp * fp * fp - 6 * f * fp * fpp + f * f * fppp;
float numer = 6 * f * fp2 - 3 * f2 * fpp;
if (numer == 0) {
break;
}
float denom = 6 * (fp2 * fp - f * fp * fpp) + f2 * fppp;
float delta = numer / denom;
// SkDebugf("[%d] delta %g t %g\n", iters, delta, t);
if (delta_nearly_zero(delta)) {
break;
}
float new_t = t - delta;
SkASSERT(valid(new_t));
t = new_t;
}
SkASSERT(valid(t));
#ifdef CUBICMAP_TRACK_MAX_ERROR
if (iters > max_iters) {
max_iters = iters;
SkDebugf("max_iters %d\n", max_iters);
}
#endif
return t;
}
#ifdef CUBICMAP_TRACK_MAX_ERROR
static float compute_slow(float A, float B, float C, float x) {
double roots[3];
SkDEBUGCODE(int count =) SkDCubic::RootsValidT(A, B, C, -x, roots);
SkASSERT(count == 1);
return (float)roots[0];
}
static float max_err;
#endif
static float compute_t_from_x(float A, float B, float C, float x) {
#ifdef CUBICMAP_TRACK_MAX_ERROR
float answer = compute_slow(A, B, C, x);
#endif
float answer2 = true ?
solve_nice_cubic_halley(A, B, C, -x) :
solve_nice_cubic_householder(A, B, C, -x);
#ifdef CUBICMAP_TRACK_MAX_ERROR
float err = sk_float_abs(answer - answer2);
if (err > max_err) {
max_err = err;
SkDebugf("max error %g\n", max_err);
}
#endif
return answer2;
}
float SkCubicMap::computeYFromX(float x) const {
x = SkScalarPin(x, 0, 1);
if (nearly_zero(x) || nearly_zero(1 - x)) {
return x;
}
if (fType == kLine_Type) {
return x;
}
float t;
if (fType == kCubeRoot_Type) {
t = sk_float_pow(x / fCoeff[0].fX, 1.0f / 3);
} else {
t = compute_t_from_x(fCoeff[0].fX, fCoeff[1].fX, fCoeff[2].fX, x);
}
float a = fCoeff[0].fY;
float b = fCoeff[1].fY;
float c = fCoeff[2].fY;
float y = ((a * t + b) * t + c) * t;
SkASSERT(y >= 0);
return std::min(y, 1.0f);
}
static inline bool coeff_nearly_zero(float delta) {
return sk_float_abs(delta) <= 0.0000001f;
}
SkCubicMap::SkCubicMap(SkPoint p1, SkPoint p2) {
Sk2s s1 = Sk2s::Load(&p1) * 3;
Sk2s s2 = Sk2s::Load(&p2) * 3;
s1 = Sk2s::Min(Sk2s::Max(s1, 0), 3);
s2 = Sk2s::Min(Sk2s::Max(s2, 0), 3);
(Sk2s(1) + s1 - s2).store(&fCoeff[0]);
(s2 - s1 - s1).store(&fCoeff[1]);
s1.store(&fCoeff[2]);
fType = kSolver_Type;
if (SkScalarNearlyEqual(p1.fX, p1.fY) && SkScalarNearlyEqual(p2.fX, p2.fY)) {
fType = kLine_Type;
} else if (coeff_nearly_zero(fCoeff[1].fX) && coeff_nearly_zero(fCoeff[2].fX)) {
fType = kCubeRoot_Type;
}
}
SkPoint SkCubicMap::computeFromT(float t) const {
Sk2s a = Sk2s::Load(&fCoeff[0]);
Sk2s b = Sk2s::Load(&fCoeff[1]);
Sk2s c = Sk2s::Load(&fCoeff[2]);
SkPoint result;
(((a * t + b) * t + c) * t).store(&result);
return result;
}