//
// Copyright 2016 Google Inc.
//
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//
#ifndef HS_GLSL_MACROS_ONCE
#define HS_GLSL_MACROS_ONCE
//
// Define the type based on key and val sizes
//
#if HS_KEY_WORDS == 1
#if HS_VAL_WORDS == 0
#define HS_KEY_TYPE uint
#endif
#elif HS_KEY_WORDS == 2 // FIXME -- might want to use uint2
#define HS_KEY_TYPE uint64_t // GL_ARB_gpu_shader_int64
#endif
//
// FYI, restrict shouldn't have any impact on these kernels and
// benchmarks appear to prove that true
//
#define HS_RESTRICT restrict
//
//
//
#define HS_GLSL_BINDING(n) \
layout( binding = n)
#define HS_GLSL_WORKGROUP_SIZE(x,y,z) \
layout( local_size_x = x, \
local_size_y = y, \
local_size_z = z) in
//
// KERNEL PROTOS
//
#define HS_BS_KERNEL_PROTO(slab_count,slab_count_ru_log2) \
HS_GLSL_SUBGROUP_SIZE() \
HS_GLSL_WORKGROUP_SIZE(HS_SLAB_THREADS*slab_count,1,1); \
HS_GLSL_BINDING(0) writeonly buffer Vout { HS_KEY_TYPE vout[]; }; \
HS_GLSL_BINDING(1) readonly buffer Vin { HS_KEY_TYPE vin[]; }; \
void main()
#define HS_BC_KERNEL_PROTO(slab_count,slab_count_log2) \
HS_GLSL_SUBGROUP_SIZE() \
HS_GLSL_WORKGROUP_SIZE(HS_SLAB_THREADS*slab_count,1,1); \
HS_GLSL_BINDING(0) buffer Vout { HS_KEY_TYPE vout[]; }; \
void main()
#define HS_FM_KERNEL_PROTO(s,r) \
HS_GLSL_SUBGROUP_SIZE() \
HS_GLSL_WORKGROUP_SIZE(HS_SLAB_THREADS,1,1); \
HS_GLSL_BINDING(0) buffer Vout { HS_KEY_TYPE vout[]; }; \
void main()
#define HS_HM_KERNEL_PROTO(s) \
HS_GLSL_SUBGROUP_SIZE() \
HS_GLSL_WORKGROUP_SIZE(HS_SLAB_THREADS,1,1); \
HS_GLSL_BINDING(0) buffer Vout { HS_KEY_TYPE vout[]; }; \
void main()
#define HS_TRANSPOSE_KERNEL_PROTO() \
HS_GLSL_SUBGROUP_SIZE() \
HS_GLSL_WORKGROUP_SIZE(HS_SLAB_THREADS,1,1); \
HS_GLSL_BINDING(0) buffer Vout { HS_KEY_TYPE vout[]; }; \
void main()
//
// BLOCK LOCAL MEMORY DECLARATION
//
#define HS_BLOCK_LOCAL_MEM_DECL(width,height) \
shared struct { \
HS_KEY_TYPE m[width * height]; \
} smem
//
// BLOCK BARRIER
//
#define HS_BLOCK_BARRIER() \
barrier()
//
// SHUFFLES
//
#if (HS_KEY_WORDS == 1)
#define HS_SHUFFLE_CAST_TO(v) v
#define HS_SHUFFLE_CAST_FROM(v) v
#elif (HS_KEY_WORDS == 2)
#define HS_SHUFFLE_CAST_TO(v) uint64BitsToDouble(v)
#define HS_SHUFFLE_CAST_FROM(v) doubleBitsToUint64(v)
#endif
#define HS_SUBGROUP_SHUFFLE(v,i) HS_SHUFFLE_CAST_FROM(subgroupShuffle(HS_SHUFFLE_CAST_TO(v),i))
#define HS_SUBGROUP_SHUFFLE_XOR(v,m) HS_SHUFFLE_CAST_FROM(subgroupShuffleXor(HS_SHUFFLE_CAST_TO(v),m))
#define HS_SUBGROUP_SHUFFLE_UP(v,d) HS_SHUFFLE_CAST_FROM(subgroupShuffleUp(HS_SHUFFLE_CAST_TO(v),d))
#define HS_SUBGROUP_SHUFFLE_DOWN(v,d) HS_SHUFFLE_CAST_FROM(subgroupShuffleDown(HS_SHUFFLE_CAST_TO(v),d))
//
// SLAB GLOBAL
//
#define HS_SLAB_GLOBAL_PREAMBLE() \
const uint gmem_idx = \
(gl_GlobalInvocationID.x & ~(HS_SLAB_THREADS-1)) * \
HS_SLAB_HEIGHT + \
(gl_LocalInvocationID.x & (HS_SLAB_THREADS-1))
#define HS_SLAB_GLOBAL_LOAD(extent,row_idx) \
extent[gmem_idx + HS_SLAB_THREADS * row_idx]
#define HS_SLAB_GLOBAL_STORE(row_idx,reg) \
vout[gmem_idx + HS_SLAB_THREADS * row_idx] = reg
//
// SLAB LOCAL
//
#define HS_SLAB_LOCAL_L(offset) \
smem.m[smem_l_idx + (offset)]
#define HS_SLAB_LOCAL_R(offset) \
smem.m[smem_r_idx + (offset)]
//
// SLAB LOCAL VERTICAL LOADS
//
#define HS_BX_LOCAL_V(offset) \
smem.m[gl_LocalInvocationID.x + (offset)]
//
// BLOCK SORT MERGE HORIZONTAL
//
#define HS_BS_MERGE_H_PREAMBLE(slab_count) \
const uint smem_l_idx = \
HS_SUBGROUP_ID() * (HS_SLAB_THREADS * slab_count) + \
HS_SUBGROUP_LANE_ID(); \
const uint smem_r_idx = \
(HS_SUBGROUP_ID() ^ 1) * (HS_SLAB_THREADS * slab_count) + \
(HS_SUBGROUP_LANE_ID() ^ (HS_SLAB_THREADS - 1))
//
// BLOCK CLEAN MERGE HORIZONTAL
//
#define HS_BC_MERGE_H_PREAMBLE(slab_count) \
const uint gmem_l_idx = \
(gl_GlobalInvocationID.x & ~(HS_SLAB_THREADS * slab_count -1)) \
* HS_SLAB_HEIGHT + gl_LocalInvocationID.x; \
const uint smem_l_idx = \
HS_SUBGROUP_ID() * (HS_SLAB_THREADS * slab_count) + \
HS_SUBGROUP_LANE_ID()
#define HS_BC_GLOBAL_LOAD_L(slab_idx) \
vout[gmem_l_idx + (HS_SLAB_THREADS * slab_idx)]
//
// SLAB FLIP AND HALF PREAMBLES
//
#if 0
#define HS_SLAB_FLIP_PREAMBLE(mask) \
const uint flip_lane_idx = HS_SUBGROUP_LANE_ID() ^ mask; \
const bool t_lt = HS_SUBGROUP_LANE_ID() < flip_lane_idx
#define HS_SLAB_HALF_PREAMBLE(mask) \
const uint half_lane_idx = HS_SUBGROUP_LANE_ID() ^ mask; \
const bool t_lt = HS_SUBGROUP_LANE_ID() < half_lane_idx
#else
#define HS_SLAB_FLIP_PREAMBLE(mask) \
const uint flip_lane_mask = mask; \
const bool t_lt = gl_LocalInvocationID.x < (gl_LocalInvocationID.x ^ mask)
#define HS_SLAB_HALF_PREAMBLE(mask) \
const uint half_lane_mask = mask; \
const bool t_lt = gl_LocalInvocationID.x < (gl_LocalInvocationID.x ^ mask)
#endif
//
// Inter-lane compare exchange
//
// best on 32-bit keys
#define HS_CMP_XCHG_V0(a,b) \
{ \
const HS_KEY_TYPE t = min(a,b); \
b = max(a,b); \
a = t; \
}
// good on Intel GEN 32-bit keys
#define HS_CMP_XCHG_V1(a,b) \
{ \
const HS_KEY_TYPE tmp = a; \
a = (a < b) ? a : b; \
b ^= a ^ tmp; \
}
// best on 64-bit keys
#define HS_CMP_XCHG_V2(a,b) \
if (a >= b) { \
const HS_KEY_TYPE t = a; \
a = b; \
b = t; \
}
// ok
#define HS_CMP_XCHG_V3(a,b) \
{ \
const bool ge = a >= b; \
const HS_KEY_TYPE t = a; \
a = ge ? b : a; \
b = ge ? t : b; \
}
//
// The flip/half comparisons rely on a "conditional min/max":
//
// - if the flag is false, return min(a,b)
// - otherwise, return max(a,b)
//
// What's a little surprising is that sequence (1) is faster than (2)
// for 32-bit keys.
//
// I suspect either a code generation problem or that the sequence
// maps well to the GEN instruction set.
//
// We mostly care about 64-bit keys and unsurprisingly sequence (2) is
// fastest for this wider type.
//
#define HS_LOGICAL_XOR() !=
// this is what you would normally use
#define HS_COND_MIN_MAX_V0(lt,a,b) ((a <= b) HS_LOGICAL_XOR() lt) ? b : a
// this seems to be faster for 32-bit keys on Intel GEN
#define HS_COND_MIN_MAX_V1(lt,a,b) (lt ? b : a) ^ ((a ^ b) & HS_LTE_TO_MASK(a,b))
//
// Conditional inter-subgroup flip/half compare exchange
//
#if 0
#define HS_CMP_FLIP(i,a,b) \
{ \
const HS_KEY_TYPE ta = HS_SUBGROUP_SHUFFLE(a,flip_lane_idx); \
const HS_KEY_TYPE tb = HS_SUBGROUP_SHUFFLE(b,flip_lane_idx); \
a = HS_COND_MIN_MAX(t_lt,a,tb); \
b = HS_COND_MIN_MAX(t_lt,b,ta); \
}
#define HS_CMP_HALF(i,a) \
{ \
const HS_KEY_TYPE ta = HS_SUBGROUP_SHUFFLE(a,half_lane_idx); \
a = HS_COND_MIN_MAX(t_lt,a,ta); \
}
#else
#define HS_CMP_FLIP(i,a,b) \
{ \
const HS_KEY_TYPE ta = HS_SUBGROUP_SHUFFLE_XOR(a,flip_lane_mask); \
const HS_KEY_TYPE tb = HS_SUBGROUP_SHUFFLE_XOR(b,flip_lane_mask); \
a = HS_COND_MIN_MAX(t_lt,a,tb); \
b = HS_COND_MIN_MAX(t_lt,b,ta); \
}
#define HS_CMP_HALF(i,a) \
{ \
const HS_KEY_TYPE ta = HS_SUBGROUP_SHUFFLE_XOR(a,half_lane_mask); \
a = HS_COND_MIN_MAX(t_lt,a,ta); \
}
#endif
//
// The device's comparison operator might return what we actually
// want. For example, it appears GEN 'cmp' returns {true:-1,false:0}.
//
#define HS_CMP_IS_ZERO_ONE
#ifdef HS_CMP_IS_ZERO_ONE
// OpenCL requires a {true: +1, false: 0} scalar result
// (a < b) -> { +1, 0 } -> NEGATE -> { 0, 0xFFFFFFFF }
#define HS_LTE_TO_MASK(a,b) (HS_KEY_TYPE)(-(a <= b))
#define HS_CMP_TO_MASK(a) (HS_KEY_TYPE)(-a)
#else
// However, OpenCL requires { -1, 0 } for vectors
// (a < b) -> { 0xFFFFFFFF, 0 }
#define HS_LTE_TO_MASK(a,b) (a <= b) // FIXME for uint64
#define HS_CMP_TO_MASK(a) (a)
#endif
//
// The "flip-merge" and "half-merge" preambles are very similar
//
// For now, we're only using the .y dimension for the span idx
//
#define HS_HM_PREAMBLE(half_span) \
const uint span_idx = gl_WorkGroupID.y; \
const uint span_stride = gl_NumWorkGroups.x * gl_WorkGroupSize.x; \
const uint span_size = span_stride * half_span * 2; \
const uint span_base = span_idx * span_size; \
const uint span_off = gl_GlobalInvocationID.x; \
const uint span_l = span_base + span_off
#define HS_FM_PREAMBLE(half_span) \
HS_HM_PREAMBLE(half_span); \
const uint span_r = span_base + span_stride * (half_span + 1) - span_off - 1
//
//
//
#define HS_XM_GLOBAL_L(stride_idx) \
vout[span_l + span_stride * stride_idx]
#define HS_XM_GLOBAL_LOAD_L(stride_idx) \
HS_XM_GLOBAL_L(stride_idx)
#define HS_XM_GLOBAL_STORE_L(stride_idx,reg) \
HS_XM_GLOBAL_L(stride_idx) = reg
#define HS_FM_GLOBAL_R(stride_idx) \
vout[span_r + span_stride * stride_idx]
#define HS_FM_GLOBAL_LOAD_R(stride_idx) \
HS_FM_GLOBAL_R(stride_idx)
#define HS_FM_GLOBAL_STORE_R(stride_idx,reg) \
HS_FM_GLOBAL_R(stride_idx) = reg
//
// This snarl of macros is for transposing a "slab" of sorted elements
// into linear order.
//
// This can occur as the last step in hs_sort() or via a custom kernel
// that inspects the slab and then transposes and stores it to memory.
//
// The slab format can be inspected more efficiently than a linear
// arrangement.
//
// The prime example is detecting when adjacent keys (in sort order)
// have differing high order bits ("key changes"). The index of each
// change is recorded to an auxilary array.
//
// A post-processing step like this needs to be able to navigate the
// slab and eventually transpose and store the slab in linear order.
//
#define HS_TRANSPOSE_REG(prefix,row) prefix##row
#define HS_TRANSPOSE_DECL(prefix,row) const HS_KEY_TYPE HS_TRANSPOSE_REG(prefix,row)
#define HS_TRANSPOSE_PRED(level) is_lo_##level
#define HS_TRANSPOSE_TMP_REG(prefix_curr,row_ll,row_ur) \
prefix_curr##row_ll##_##row_ur
#define HS_TRANSPOSE_TMP_DECL(prefix_curr,row_ll,row_ur) \
const HS_KEY_TYPE HS_TRANSPOSE_TMP_REG(prefix_curr,row_ll,row_ur)
#define HS_TRANSPOSE_STAGE(level) \
const bool HS_TRANSPOSE_PRED(level) = \
(HS_SUBGROUP_LANE_ID() & (1 << (level-1))) == 0;
#define HS_TRANSPOSE_BLEND(prefix_prev,prefix_curr,level,row_ll,row_ur) \
HS_TRANSPOSE_TMP_DECL(prefix_curr,row_ll,row_ur) = \
HS_SUBGROUP_SHUFFLE_XOR(HS_TRANSPOSE_PRED(level) ? \
HS_TRANSPOSE_REG(prefix_prev,row_ll) : \
HS_TRANSPOSE_REG(prefix_prev,row_ur), \
1<<(level-1)); \
\
HS_TRANSPOSE_DECL(prefix_curr,row_ll) = \
HS_TRANSPOSE_PRED(level) ? \
HS_TRANSPOSE_TMP_REG(prefix_curr,row_ll,row_ur) : \
HS_TRANSPOSE_REG(prefix_prev,row_ll); \
\
HS_TRANSPOSE_DECL(prefix_curr,row_ur) = \
HS_TRANSPOSE_PRED(level) ? \
HS_TRANSPOSE_REG(prefix_prev,row_ur) : \
HS_TRANSPOSE_TMP_REG(prefix_curr,row_ll,row_ur);
#define HS_TRANSPOSE_REMAP(prefix,row_from,row_to) \
vout[gmem_idx + ((row_to-1) << HS_SLAB_WIDTH_LOG2)] = \
HS_TRANSPOSE_REG(prefix,row_from);
//
//
//
#endif
//
//
//