/*
* Copyright 2013 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
// This test only works with the GPU backend.
#include "gm.h"
#include "sk_tool_utils.h"
#include "GrContext.h"
#include "GrContextPriv.h"
#include "GrMemoryPool.h"
#include "GrOpFlushState.h"
#include "GrPathUtils.h"
#include "GrRecordingContext.h"
#include "GrRecordingContextPriv.h"
#include "GrRenderTargetContextPriv.h"
#include "SkColorPriv.h"
#include "SkGeometry.h"
#include "SkPoint3.h"
#include "SkPointPriv.h"
#include "effects/GrBezierEffect.h"
#include "ops/GrMeshDrawOp.h"
namespace skiagm {
class BezierTestOp : public GrMeshDrawOp {
public:
FixedFunctionFlags fixedFunctionFlags() const override { return FixedFunctionFlags::kNone; }
GrProcessorSet::Analysis finalize(const GrCaps& caps, const GrAppliedClip* clip,
GrFSAAType fsaaType, GrClampType clampType) override {
return fProcessorSet.finalize(
fColor, GrProcessorAnalysisCoverage::kSingleChannel, clip,
&GrUserStencilSettings::kUnused, fsaaType, caps, clampType, &fColor);
}
void visitProxies(const VisitProxyFunc& func, VisitorType) const override {
fProcessorSet.visitProxies(func);
}
protected:
BezierTestOp(sk_sp<const GrGeometryProcessor> gp, const SkRect& rect, const SkPMColor4f& color,
int32_t classID)
: INHERITED(classID)
, fRect(rect)
, fColor(color)
, fGeometryProcessor(std::move(gp))
, fProcessorSet(SkBlendMode::kSrc) {
this->setBounds(rect, HasAABloat::kYes, IsZeroArea::kNo);
}
void onExecute(GrOpFlushState* flushState, const SkRect& chainBounds) override {
flushState->executeDrawsAndUploadsForMeshDrawOp(
this, chainBounds, std::move(fProcessorSet));
}
sk_sp<const GrGeometryProcessor> gp() const { return fGeometryProcessor; }
const SkRect& rect() const { return fRect; }
const SkPMColor4f& color() const { return fColor; }
private:
SkRect fRect;
SkPMColor4f fColor;
sk_sp<const GrGeometryProcessor> fGeometryProcessor;
GrProcessorSet fProcessorSet;
typedef GrMeshDrawOp INHERITED;
};
/**
* This GM directly exercises effects that draw Bezier curves in the GPU backend.
*/
class BezierConicTestOp : public BezierTestOp {
public:
DEFINE_OP_CLASS_ID
const char* name() const override { return "BezierConicTestOp"; }
static std::unique_ptr<GrDrawOp> Make(GrRecordingContext* context,
sk_sp<const GrGeometryProcessor> gp,
const SkRect& rect,
const SkPMColor4f& color,
const SkMatrix& klm) {
GrOpMemoryPool* pool = context->priv().opMemoryPool();
return pool->allocate<BezierConicTestOp>(std::move(gp), rect, color, klm);
}
private:
friend class ::GrOpMemoryPool; // for ctor
BezierConicTestOp(sk_sp<const GrGeometryProcessor> gp, const SkRect& rect,
const SkPMColor4f& color, const SkMatrix& klm)
: INHERITED(std::move(gp), rect, color, ClassID()), fKLM(klm) {}
struct Vertex {
SkPoint fPosition;
float fKLM[4]; // The last value is ignored. The effect expects a vec4f.
};
void onPrepareDraws(Target* target) override {
SkASSERT(this->gp()->vertexStride() == sizeof(Vertex));
QuadHelper helper(target, sizeof(Vertex), 1);
Vertex* verts = reinterpret_cast<Vertex*>(helper.vertices());
if (!verts) {
return;
}
SkRect rect = this->rect();
SkPointPriv::SetRectTriStrip(&verts[0].fPosition, rect.fLeft, rect.fTop, rect.fRight,
rect.fBottom, sizeof(Vertex));
for (int v = 0; v < 4; ++v) {
SkPoint3 pt3 = {verts[v].fPosition.x(), verts[v].fPosition.y(), 1.f};
fKLM.mapHomogeneousPoints((SkPoint3* ) verts[v].fKLM, &pt3, 1);
}
helper.recordDraw(target, this->gp());
}
SkMatrix fKLM;
static constexpr int kVertsPerCubic = 4;
static constexpr int kIndicesPerCubic = 6;
typedef BezierTestOp INHERITED;
};
/**
* This GM directly exercises effects that draw Bezier curves in the GPU backend.
*/
class BezierConicEffects : public GpuGM {
public:
BezierConicEffects() {
this->setBGColor(0xFFFFFFFF);
}
protected:
SkString onShortName() override {
return SkString("bezier_conic_effects");
}
SkISize onISize() override {
return SkISize::Make(800, 800);
}
void onDraw(GrContext* context, GrRenderTargetContext* renderTargetContext,
SkCanvas* canvas) override {
struct Vertex {
SkPoint fPosition;
float fKLM[4]; // The last value is ignored. The effect expects a vec4f.
};
constexpr int kNumConics = 10;
SkRandom rand;
// Mult by 3 for each edge effect type
int numCols = SkScalarCeilToInt(SkScalarSqrt(SkIntToScalar(kNumConics*3)));
int numRows = SkScalarCeilToInt(SkIntToScalar(kNumConics*3) / numCols);
SkScalar w = SkIntToScalar(renderTargetContext->width()) / numCols;
SkScalar h = SkIntToScalar(renderTargetContext->height()) / numRows;
int row = 0;
int col = 0;
SkPMColor4f color = SkPMColor4f::FromBytes_RGBA(0xff000000);
for (int i = 0; i < kNumConics; ++i) {
SkPoint baseControlPts[] = {
{rand.nextRangeF(0.f, w), rand.nextRangeF(0.f, h)},
{rand.nextRangeF(0.f, w), rand.nextRangeF(0.f, h)},
{rand.nextRangeF(0.f, w), rand.nextRangeF(0.f, h)}
};
SkScalar weight = rand.nextRangeF(0.f, 2.f);
for(int edgeType = 0; edgeType < kGrClipEdgeTypeCnt; ++edgeType) {
sk_sp<GrGeometryProcessor> gp;
GrClipEdgeType et = (GrClipEdgeType)edgeType;
gp = GrConicEffect::Make(color, SkMatrix::I(), et, *context->priv().caps(),
SkMatrix::I(), false);
if (!gp) {
continue;
}
SkScalar x = col * w;
SkScalar y = row * h;
SkPoint controlPts[] = {
{x + baseControlPts[0].fX, y + baseControlPts[0].fY},
{x + baseControlPts[1].fX, y + baseControlPts[1].fY},
{x + baseControlPts[2].fX, y + baseControlPts[2].fY}
};
SkConic dst[4];
SkMatrix klm;
int cnt = chop_conic(controlPts, dst, weight);
GrPathUtils::getConicKLM(controlPts, weight, &klm);
SkPaint ctrlPtPaint;
ctrlPtPaint.setColor(rand.nextU() | 0xFF000000);
for (int i = 0; i < 3; ++i) {
canvas->drawCircle(controlPts[i], 6.f, ctrlPtPaint);
}
SkPaint polyPaint;
polyPaint.setColor(0xffA0A0A0);
polyPaint.setStrokeWidth(0);
polyPaint.setStyle(SkPaint::kStroke_Style);
canvas->drawPoints(SkCanvas::kPolygon_PointMode, 3, controlPts, polyPaint);
SkPaint choppedPtPaint;
choppedPtPaint.setColor(~ctrlPtPaint.getColor() | 0xFF000000);
for (int c = 0; c < cnt; ++c) {
SkPoint* pts = dst[c].fPts;
for (int i = 0; i < 3; ++i) {
canvas->drawCircle(pts[i], 3.f, choppedPtPaint);
}
SkRect bounds;
//SkPoint bPts[] = {{0.f, 0.f}, {800.f, 800.f}};
//bounds.set(bPts, 2);
bounds.set(pts, 3);
SkPaint boundsPaint;
boundsPaint.setColor(0xff808080);
boundsPaint.setStrokeWidth(0);
boundsPaint.setStyle(SkPaint::kStroke_Style);
canvas->drawRect(bounds, boundsPaint);
std::unique_ptr<GrDrawOp> op = BezierConicTestOp::Make(context, gp, bounds,
color, klm);
renderTargetContext->priv().testingOnly_addDrawOp(std::move(op));
}
++col;
if (numCols == col) {
col = 0;
++row;
}
}
}
}
private:
// Uses the max curvature function for quads to estimate
// where to chop the conic. If the max curvature is not
// found along the curve segment it will return 1 and
// dst[0] is the original conic. If it returns 2 the dst[0]
// and dst[1] are the two new conics.
int split_conic(const SkPoint src[3], SkConic dst[2], const SkScalar weight) {
SkScalar t = SkFindQuadMaxCurvature(src);
if (t == 0 || t == 1) {
if (dst) {
dst[0].set(src, weight);
}
return 1;
} else {
if (dst) {
SkConic conic;
conic.set(src, weight);
if (!conic.chopAt(t, dst)) {
dst[0].set(src, weight);
return 1;
}
}
return 2;
}
}
// Calls split_conic on the entire conic and then once more on each subsection.
// Most cases will result in either 1 conic (chop point is not within t range)
// or 3 points (split once and then one subsection is split again).
int chop_conic(const SkPoint src[3], SkConic dst[4], const SkScalar weight) {
SkConic dstTemp[2];
int conicCnt = split_conic(src, dstTemp, weight);
if (2 == conicCnt) {
int conicCnt2 = split_conic(dstTemp[0].fPts, dst, dstTemp[0].fW);
conicCnt = conicCnt2 + split_conic(dstTemp[1].fPts, &dst[conicCnt2], dstTemp[1].fW);
} else {
dst[0] = dstTemp[0];
}
return conicCnt;
}
typedef GM INHERITED;
};
//////////////////////////////////////////////////////////////////////////////
class BezierQuadTestOp : public BezierTestOp {
public:
DEFINE_OP_CLASS_ID
const char* name() const override { return "BezierQuadTestOp"; }
static std::unique_ptr<GrDrawOp> Make(GrContext* context,
sk_sp<const GrGeometryProcessor> gp,
const SkRect& rect,
const SkPMColor4f& color,
const GrPathUtils::QuadUVMatrix& devToUV) {
GrOpMemoryPool* pool = context->priv().opMemoryPool();
return pool->allocate<BezierQuadTestOp>(std::move(gp), rect, color, devToUV);
}
private:
friend class ::GrOpMemoryPool; // for ctor
BezierQuadTestOp(sk_sp<const GrGeometryProcessor> gp, const SkRect& rect,
const SkPMColor4f& color, const GrPathUtils::QuadUVMatrix& devToUV)
: INHERITED(std::move(gp), rect, color, ClassID()), fDevToUV(devToUV) {}
struct Vertex {
SkPoint fPosition;
float fKLM[4]; // The last value is ignored. The effect expects a vec4f.
};
void onPrepareDraws(Target* target) override {
SkASSERT(this->gp()->vertexStride() == sizeof(Vertex));
QuadHelper helper(target, sizeof(Vertex), 1);
Vertex* verts = reinterpret_cast<Vertex*>(helper.vertices());
if (!verts) {
return;
}
SkRect rect = this->rect();
SkPointPriv::SetRectTriStrip(&verts[0].fPosition, rect, sizeof(Vertex));
fDevToUV.apply(verts, 4, sizeof(Vertex), sizeof(SkPoint));
helper.recordDraw(target, this->gp());
}
GrPathUtils::QuadUVMatrix fDevToUV;
static constexpr int kVertsPerCubic = 4;
static constexpr int kIndicesPerCubic = 6;
typedef BezierTestOp INHERITED;
};
/**
* This GM directly exercises effects that draw Bezier quad curves in the GPU backend.
*/
class BezierQuadEffects : public GpuGM {
public:
BezierQuadEffects() {
this->setBGColor(0xFFFFFFFF);
}
protected:
SkString onShortName() override {
return SkString("bezier_quad_effects");
}
SkISize onISize() override {
return SkISize::Make(800, 800);
}
void onDraw(GrContext* context, GrRenderTargetContext* renderTargetContext,
SkCanvas* canvas) override {
struct Vertex {
SkPoint fPosition;
float fUV[4]; // The last two values are ignored. The effect expects a vec4f.
};
constexpr int kNumQuads = 5;
SkRandom rand;
int numCols = SkScalarCeilToInt(SkScalarSqrt(SkIntToScalar(kNumQuads*3)));
int numRows = SkScalarCeilToInt(SkIntToScalar(kNumQuads*3) / numCols);
SkScalar w = SkIntToScalar(renderTargetContext->width()) / numCols;
SkScalar h = SkIntToScalar(renderTargetContext->height()) / numRows;
int row = 0;
int col = 0;
SkPMColor4f color = SkPMColor4f::FromBytes_RGBA(0xff000000);
for (int i = 0; i < kNumQuads; ++i) {
SkPoint baseControlPts[] = {
{rand.nextRangeF(0.f, w), rand.nextRangeF(0.f, h)},
{rand.nextRangeF(0.f, w), rand.nextRangeF(0.f, h)},
{rand.nextRangeF(0.f, w), rand.nextRangeF(0.f, h)}
};
for(int edgeType = 0; edgeType < kGrClipEdgeTypeCnt; ++edgeType) {
sk_sp<GrGeometryProcessor> gp;
GrClipEdgeType et = (GrClipEdgeType)edgeType;
gp = GrQuadEffect::Make(color, SkMatrix::I(), et, *context->priv().caps(),
SkMatrix::I(), false);
if (!gp) {
continue;
}
SkScalar x = col * w;
SkScalar y = row * h;
SkPoint controlPts[] = {
{x + baseControlPts[0].fX, y + baseControlPts[0].fY},
{x + baseControlPts[1].fX, y + baseControlPts[1].fY},
{x + baseControlPts[2].fX, y + baseControlPts[2].fY}
};
SkPoint chopped[5];
int cnt = SkChopQuadAtMaxCurvature(controlPts, chopped);
SkPaint ctrlPtPaint;
ctrlPtPaint.setColor(rand.nextU() | 0xFF000000);
for (int i = 0; i < 3; ++i) {
canvas->drawCircle(controlPts[i], 6.f, ctrlPtPaint);
}
SkPaint polyPaint;
polyPaint.setColor(0xffA0A0A0);
polyPaint.setStrokeWidth(0);
polyPaint.setStyle(SkPaint::kStroke_Style);
canvas->drawPoints(SkCanvas::kPolygon_PointMode, 3, controlPts, polyPaint);
SkPaint choppedPtPaint;
choppedPtPaint.setColor(~ctrlPtPaint.getColor() | 0xFF000000);
for (int c = 0; c < cnt; ++c) {
SkPoint* pts = chopped + 2 * c;
for (int i = 0; i < 3; ++i) {
canvas->drawCircle(pts[i], 3.f, choppedPtPaint);
}
SkRect bounds;
bounds.set(pts, 3);
SkPaint boundsPaint;
boundsPaint.setColor(0xff808080);
boundsPaint.setStrokeWidth(0);
boundsPaint.setStyle(SkPaint::kStroke_Style);
canvas->drawRect(bounds, boundsPaint);
GrPaint grPaint;
grPaint.setXPFactory(GrPorterDuffXPFactory::Get(SkBlendMode::kSrc));
GrPathUtils::QuadUVMatrix DevToUV(pts);
std::unique_ptr<GrDrawOp> op = BezierQuadTestOp::Make(context, gp,
bounds, color, DevToUV);
renderTargetContext->priv().testingOnly_addDrawOp(std::move(op));
}
++col;
if (numCols == col) {
col = 0;
++row;
}
}
}
}
private:
typedef GM INHERITED;
};
DEF_GM(return new BezierConicEffects;)
DEF_GM(return new BezierQuadEffects;)
}