# -*- coding: utf-8 -*-
#
# Copyright 2011 Sybren A. Stüvel <sybren@stuvel.eu>
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tests prime functions."""
import unittest
from rsa._compat import range
import rsa.prime
import rsa.randnum
class PrimeTest(unittest.TestCase):
def test_is_prime(self):
"""Test some common primes."""
# Test some trivial numbers
self.assertFalse(rsa.prime.is_prime(-1))
self.assertFalse(rsa.prime.is_prime(0))
self.assertFalse(rsa.prime.is_prime(1))
self.assertTrue(rsa.prime.is_prime(2))
self.assertFalse(rsa.prime.is_prime(42))
self.assertTrue(rsa.prime.is_prime(41))
# Test some slightly larger numbers
self.assertEqual(
[907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997],
[x for x in range(901, 1000) if rsa.prime.is_prime(x)]
)
# Test around the 50th millionth known prime.
self.assertTrue(rsa.prime.is_prime(982451653))
self.assertFalse(rsa.prime.is_prime(982451653 * 961748941))
def test_miller_rabin_primality_testing(self):
"""Uses monkeypatching to ensure certain random numbers.
This allows us to predict/control the code path.
"""
randints = []
def fake_randint(maxvalue):
return randints.pop(0)
orig_randint = rsa.randnum.randint
rsa.randnum.randint = fake_randint
try:
# 'n is composite'
randints.append(2630484832) # causes the 'n is composite' case with n=3784949785
self.assertEqual(False, rsa.prime.miller_rabin_primality_testing(2787998641, 7))
self.assertEqual([], randints)
# 'Exit inner loop and continue with next witness'
randints.extend([
2119139098, # causes 'Exit inner loop and continue with next witness'
# the next witnesses for the above case:
3051067716, 3603501763, 3230895847, 3687808133, 3760099987, 4026931495, 3022471882,
])
self.assertEqual(True, rsa.prime.miller_rabin_primality_testing(2211417913,
len(randints)))
self.assertEqual([], randints)
finally:
rsa.randnum.randint = orig_randint
def test_mersenne_primes(self):
"""Tests first known Mersenne primes.
Mersenne primes are prime numbers that can be written in the form
`Mn = 2**n - 1` for some integer `n`. For the list of known Mersenne
primes, see:
https://en.wikipedia.org/wiki/Mersenne_prime#List_of_known_Mersenne_primes
"""
# List of known Mersenne exponents.
known_mersenne_exponents = [
2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521, 607, 1279,
2203, 2281, 4423,
]
# Test Mersenne primes.
for exp in known_mersenne_exponents:
self.assertTrue(rsa.prime.is_prime(2**exp - 1))
def test_get_primality_testing_rounds(self):
"""Test round calculation for primality testing."""
self.assertEqual(rsa.prime.get_primality_testing_rounds(1 << 63), 10)
self.assertEqual(rsa.prime.get_primality_testing_rounds(1 << 127), 10)
self.assertEqual(rsa.prime.get_primality_testing_rounds(1 << 255), 10)
self.assertEqual(rsa.prime.get_primality_testing_rounds(1 << 511), 7)
self.assertEqual(rsa.prime.get_primality_testing_rounds(1 << 767), 7)
self.assertEqual(rsa.prime.get_primality_testing_rounds(1 << 1023), 4)
self.assertEqual(rsa.prime.get_primality_testing_rounds(1 << 1279), 4)
self.assertEqual(rsa.prime.get_primality_testing_rounds(1 << 1535), 3)
self.assertEqual(rsa.prime.get_primality_testing_rounds(1 << 2047), 3)
self.assertEqual(rsa.prime.get_primality_testing_rounds(1 << 4095), 3)