"""
Some tests for the rsa/key.py file.
"""
import unittest
import rsa.key
import rsa.core
class BlindingTest(unittest.TestCase):
def test_blinding(self):
"""Test blinding and unblinding.
This is basically the doctest of the PrivateKey.blind method, but then
implemented as unittest to allow running on different Python versions.
"""
pk = rsa.key.PrivateKey(3727264081, 65537, 3349121513, 65063, 57287)
message = 12345
encrypted = rsa.core.encrypt_int(message, pk.e, pk.n)
blinded = pk.blind(encrypted, 4134431) # blind before decrypting
decrypted = rsa.core.decrypt_int(blinded, pk.d, pk.n)
unblinded = pk.unblind(decrypted, 4134431)
self.assertEqual(unblinded, message)
class KeyGenTest(unittest.TestCase):
def test_custom_exponent(self):
priv, pub = rsa.key.newkeys(16, exponent=3)
self.assertEqual(3, priv.e)
self.assertEqual(3, pub.e)
def test_default_exponent(self):
priv, pub = rsa.key.newkeys(16)
self.assertEqual(0x10001, priv.e)
self.assertEqual(0x10001, pub.e)
def test_exponents_coefficient_calculation(self):
pk = rsa.key.PrivateKey(3727264081, 65537, 3349121513, 65063, 57287)
self.assertEqual(pk.exp1, 55063)
self.assertEqual(pk.exp2, 10095)
self.assertEqual(pk.coef, 50797)
def test_custom_getprime_func(self):
# List of primes to test with, in order [p, q, p, q, ....]
# By starting with two of the same primes, we test that this is
# properly rejected.
primes = [64123, 64123, 64123, 50957, 39317, 33107]
def getprime(_):
return primes.pop(0)
# This exponent will cause two other primes to be generated.
exponent = 136407
(p, q, e, d) = rsa.key.gen_keys(64,
accurate=False,
getprime_func=getprime,
exponent=exponent)
self.assertEqual(39317, p)
self.assertEqual(33107, q)
class HashTest(unittest.TestCase):
"""Test hashing of keys"""
def test_hash_possible(self):
priv, pub = rsa.key.newkeys(16)
# This raises a TypeError when hashing isn't possible.
hash(priv)
hash(pub)