/*
* Copyright (C) 2018 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "src/profiling/memory/unwinding.h"
#include <sys/types.h>
#include <unistd.h>
#include <unwindstack/MachineArm.h>
#include <unwindstack/MachineArm64.h>
#include <unwindstack/MachineMips.h>
#include <unwindstack/MachineMips64.h>
#include <unwindstack/MachineX86.h>
#include <unwindstack/MachineX86_64.h>
#include <unwindstack/Maps.h>
#include <unwindstack/Memory.h>
#include <unwindstack/Regs.h>
#include <unwindstack/RegsArm.h>
#include <unwindstack/RegsArm64.h>
#include <unwindstack/RegsMips.h>
#include <unwindstack/RegsMips64.h>
#include <unwindstack/RegsX86.h>
#include <unwindstack/RegsX86_64.h>
#include <unwindstack/Unwinder.h>
#include <unwindstack/UserArm.h>
#include <unwindstack/UserArm64.h>
#include <unwindstack/UserMips.h>
#include <unwindstack/UserMips64.h>
#include <unwindstack/UserX86.h>
#include <unwindstack/UserX86_64.h>
#include <procinfo/process_map.h>
#include "perfetto/base/file_utils.h"
#include "perfetto/base/logging.h"
#include "perfetto/base/scoped_file.h"
#include "perfetto/base/string_utils.h"
#include "perfetto/base/task_runner.h"
#include "perfetto/base/thread_task_runner.h"
#include "src/profiling/memory/wire_protocol.h"
namespace perfetto {
namespace profiling {
namespace {
constexpr size_t kMaxFrames = 1000;
// We assume average ~300us per unwind. If we handle up to 1000 unwinds, this
// makes sure other tasks get to be run at least every 300ms if the unwinding
// saturates this thread.
constexpr size_t kUnwindBatchSize = 1000;
#pragma GCC diagnostic push
// We do not care about deterministic destructor order.
#pragma GCC diagnostic ignored "-Wglobal-constructors"
#pragma GCC diagnostic ignored "-Wexit-time-destructors"
static std::vector<std::string> kSkipMaps{"heapprofd_client.so"};
#pragma GCC diagnostic pop
std::unique_ptr<unwindstack::Regs> CreateFromRawData(unwindstack::ArchEnum arch,
void* raw_data) {
std::unique_ptr<unwindstack::Regs> ret;
// unwindstack::RegsX::Read returns a raw ptr which we are expected to free.
switch (arch) {
case unwindstack::ARCH_X86:
ret.reset(unwindstack::RegsX86::Read(raw_data));
break;
case unwindstack::ARCH_X86_64:
ret.reset(unwindstack::RegsX86_64::Read(raw_data));
break;
case unwindstack::ARCH_ARM:
ret.reset(unwindstack::RegsArm::Read(raw_data));
break;
case unwindstack::ARCH_ARM64:
ret.reset(unwindstack::RegsArm64::Read(raw_data));
break;
case unwindstack::ARCH_MIPS:
ret.reset(unwindstack::RegsMips::Read(raw_data));
break;
case unwindstack::ARCH_MIPS64:
ret.reset(unwindstack::RegsMips64::Read(raw_data));
break;
case unwindstack::ARCH_UNKNOWN:
ret.reset(nullptr);
break;
}
return ret;
}
// Behaves as a pread64, emulating it if not already exposed by the standard
// library. Safe to use on 32bit platforms for addresses with the top bit set.
// Clobbers the |fd| seek position if emulating.
ssize_t ReadAtOffsetClobberSeekPos(int fd,
void* buf,
size_t count,
uint64_t addr) {
#ifdef __BIONIC__
return pread64(fd, buf, count, static_cast<off64_t>(addr));
#else
if (lseek64(fd, static_cast<off64_t>(addr), SEEK_SET) == -1)
return -1;
return read(fd, buf, count);
#endif
}
} // namespace
StackOverlayMemory::StackOverlayMemory(std::shared_ptr<unwindstack::Memory> mem,
uint64_t sp,
uint8_t* stack,
size_t size)
: mem_(std::move(mem)), sp_(sp), stack_end_(sp + size), stack_(stack) {}
size_t StackOverlayMemory::Read(uint64_t addr, void* dst, size_t size) {
if (addr >= sp_ && addr + size <= stack_end_ && addr + size > sp_) {
size_t offset = static_cast<size_t>(addr - sp_);
memcpy(dst, stack_ + offset, size);
return size;
}
return mem_->Read(addr, dst, size);
}
FDMemory::FDMemory(base::ScopedFile mem_fd) : mem_fd_(std::move(mem_fd)) {}
size_t FDMemory::Read(uint64_t addr, void* dst, size_t size) {
ssize_t rd = ReadAtOffsetClobberSeekPos(*mem_fd_, dst, size, addr);
if (rd == -1) {
PERFETTO_DPLOG("read of %zu at offset %" PRIu64, size, addr);
return 0;
}
return static_cast<size_t>(rd);
}
FileDescriptorMaps::FileDescriptorMaps(base::ScopedFile fd)
: fd_(std::move(fd)) {}
bool FileDescriptorMaps::Parse() {
// If the process has already exited, lseek or ReadFileDescriptor will
// return false.
if (lseek(*fd_, 0, SEEK_SET) == -1)
return false;
std::string content;
if (!base::ReadFileDescriptor(*fd_, &content))
return false;
return android::procinfo::ReadMapFileContent(
&content[0], [&](uint64_t start, uint64_t end, uint16_t flags,
uint64_t pgoff, ino_t, const char* name) {
// Mark a device map in /dev/ and not in /dev/ashmem/ specially.
if (strncmp(name, "/dev/", 5) == 0 &&
strncmp(name + 5, "ashmem/", 7) != 0) {
flags |= unwindstack::MAPS_FLAGS_DEVICE_MAP;
}
unwindstack::MapInfo* prev_map =
maps_.empty() ? nullptr : maps_.back().get();
maps_.emplace_back(
new unwindstack::MapInfo(prev_map, start, end, pgoff, flags, name));
});
}
void FileDescriptorMaps::Reset() {
maps_.clear();
}
bool DoUnwind(WireMessage* msg, UnwindingMetadata* metadata, AllocRecord* out) {
AllocMetadata* alloc_metadata = msg->alloc_header;
std::unique_ptr<unwindstack::Regs> regs(
CreateFromRawData(alloc_metadata->arch, alloc_metadata->register_data));
if (regs == nullptr) {
PERFETTO_DLOG("Unable to construct unwindstack::Regs");
unwindstack::FrameData frame_data{};
frame_data.function_name = "ERROR READING REGISTERS";
frame_data.map_name = "ERROR";
out->frames.emplace_back(frame_data, "");
out->error = true;
return false;
}
uint8_t* stack = reinterpret_cast<uint8_t*>(msg->payload);
std::shared_ptr<unwindstack::Memory> mems =
std::make_shared<StackOverlayMemory>(metadata->fd_mem,
alloc_metadata->stack_pointer, stack,
msg->payload_size);
unwindstack::Unwinder unwinder(kMaxFrames, &metadata->maps, regs.get(), mems);
#if PERFETTO_BUILDFLAG(PERFETTO_ANDROID_BUILD)
unwinder.SetJitDebug(metadata->jit_debug.get(), regs->Arch());
unwinder.SetDexFiles(metadata->dex_files.get(), regs->Arch());
#endif
// Surpress incorrect "variable may be uninitialized" error for if condition
// after this loop. error_code = LastErrorCode gets run at least once.
uint8_t error_code = 0;
for (int attempt = 0; attempt < 2; ++attempt) {
if (attempt > 0) {
PERFETTO_DLOG("Reparsing maps");
metadata->ReparseMaps();
out->reparsed_map = true;
#if PERFETTO_BUILDFLAG(PERFETTO_ANDROID_BUILD)
unwinder.SetJitDebug(metadata->jit_debug.get(), regs->Arch());
unwinder.SetDexFiles(metadata->dex_files.get(), regs->Arch());
#endif
}
unwinder.Unwind(&kSkipMaps, nullptr);
error_code = unwinder.LastErrorCode();
if (error_code != unwindstack::ERROR_INVALID_MAP)
break;
}
std::vector<unwindstack::FrameData> frames = unwinder.ConsumeFrames();
for (unwindstack::FrameData& fd : frames) {
std::string build_id;
if (fd.map_name != "") {
unwindstack::MapInfo* map_info = metadata->maps.Find(fd.pc);
if (map_info)
build_id = map_info->GetBuildID();
}
out->frames.emplace_back(std::move(fd), std::move(build_id));
}
if (error_code != 0) {
PERFETTO_DLOG("Unwinding error %" PRIu8, error_code);
unwindstack::FrameData frame_data{};
frame_data.function_name = "ERROR " + std::to_string(error_code);
frame_data.map_name = "ERROR";
out->frames.emplace_back(frame_data, "");
out->error = true;
}
return true;
}
void UnwindingWorker::OnDisconnect(base::UnixSocket* self) {
// TODO(fmayer): Maybe try to drain shmem one last time.
auto it = client_data_.find(self->peer_pid());
if (it == client_data_.end()) {
PERFETTO_DFATAL("Disconnected unexpecter socket.");
return;
}
ClientData& client_data = it->second;
SharedRingBuffer& shmem = client_data.shmem;
// Currently, these stats are used to determine whether the application
// disconnected due to an error condition (i.e. buffer overflow) or
// volutarily. Because a buffer overflow leads to an immediate disconnect, we
// do not need these stats when heapprofd tears down the tracing session.
//
// TODO(fmayer): We should make it that normal disconnects also go through
// this code path, so we can write other stats to the result. This will also
// allow us to free the bookkeeping data earlier for processes that exit
// during the session. See TODO in
// HeapprofdProducer::HandleSocketDisconnected.
SharedRingBuffer::Stats stats = {};
{
auto lock = shmem.AcquireLock(ScopedSpinlock::Mode::Try);
if (lock.locked())
stats = shmem.GetStats(lock);
else
PERFETTO_ELOG("Failed to log shmem to get stats.");
}
DataSourceInstanceID ds_id = client_data.data_source_instance_id;
pid_t peer_pid = self->peer_pid();
client_data_.erase(it);
// The erase invalidates the self pointer.
self = nullptr;
delegate_->PostSocketDisconnected(ds_id, peer_pid, stats);
}
void UnwindingWorker::OnDataAvailable(base::UnixSocket* self) {
// Drain buffer to clear the notification.
char recv_buf[kUnwindBatchSize];
self->Receive(recv_buf, sizeof(recv_buf));
HandleUnwindBatch(self->peer_pid());
}
void UnwindingWorker::HandleUnwindBatch(pid_t peer_pid) {
auto it = client_data_.find(peer_pid);
if (it == client_data_.end()) {
// This can happen if the client disconnected before the buffer was fully
// handled.
PERFETTO_DLOG("Unexpected data.");
return;
}
ClientData& client_data = it->second;
SharedRingBuffer& shmem = client_data.shmem;
SharedRingBuffer::Buffer buf;
size_t i;
bool repost_task = false;
for (i = 0; i < kUnwindBatchSize; ++i) {
uint64_t reparses_before = client_data.metadata.reparses;
// TODO(fmayer): Allow spinlock acquisition to fail and repost Task if it
// did.
buf = shmem.BeginRead();
if (!buf)
break;
HandleBuffer(buf, &client_data.metadata,
client_data.data_source_instance_id,
client_data.sock->peer_pid(), delegate_);
shmem.EndRead(std::move(buf));
// Reparsing takes time, so process the rest in a new batch to avoid timing
// out.
// TODO(fmayer): Do not special case blocking mode.
if (client_data.client_config.block_client &&
reparses_before < client_data.metadata.reparses) {
repost_task = true;
break;
}
}
// Always repost if we have gone through the whole batch.
if (i == kUnwindBatchSize)
repost_task = true;
if (repost_task) {
thread_task_runner_.get()->PostTask(
[this, peer_pid] { HandleUnwindBatch(peer_pid); });
}
}
// static
void UnwindingWorker::HandleBuffer(const SharedRingBuffer::Buffer& buf,
UnwindingMetadata* unwinding_metadata,
DataSourceInstanceID data_source_instance_id,
pid_t peer_pid,
Delegate* delegate) {
WireMessage msg;
// TODO(fmayer): standardise on char* or uint8_t*.
// char* has stronger guarantees regarding aliasing.
// see https://timsong-cpp.github.io/cppwp/n3337/basic.lval#10.8
if (!ReceiveWireMessage(reinterpret_cast<char*>(buf.data), buf.size, &msg)) {
PERFETTO_DFATAL("Failed to receive wire message.");
return;
}
if (msg.record_type == RecordType::Malloc) {
AllocRecord rec;
rec.alloc_metadata = *msg.alloc_header;
rec.pid = peer_pid;
rec.data_source_instance_id = data_source_instance_id;
auto start_time_us = base::GetWallTimeNs() / 1000;
DoUnwind(&msg, unwinding_metadata, &rec);
rec.unwinding_time_us = static_cast<uint64_t>(
((base::GetWallTimeNs() / 1000) - start_time_us).count());
delegate->PostAllocRecord(std::move(rec));
} else if (msg.record_type == RecordType::Free) {
FreeRecord rec;
rec.pid = peer_pid;
rec.data_source_instance_id = data_source_instance_id;
// We need to copy this, so we can return the memory to the shmem buffer.
memcpy(&rec.free_batch, msg.free_header, sizeof(*msg.free_header));
delegate->PostFreeRecord(std::move(rec));
} else {
PERFETTO_DFATAL("Invalid record type.");
}
}
void UnwindingWorker::PostHandoffSocket(HandoffData handoff_data) {
// Even with C++14, this cannot be moved, as std::function has to be
// copyable, which HandoffData is not.
HandoffData* raw_data = new HandoffData(std::move(handoff_data));
// We do not need to use a WeakPtr here because the task runner will not
// outlive its UnwindingWorker.
thread_task_runner_.get()->PostTask([this, raw_data] {
HandoffData data = std::move(*raw_data);
delete raw_data;
HandleHandoffSocket(std::move(data));
});
}
void UnwindingWorker::HandleHandoffSocket(HandoffData handoff_data) {
auto sock = base::UnixSocket::AdoptConnected(
handoff_data.sock.ReleaseFd(), this, this->thread_task_runner_.get(),
base::SockType::kStream);
pid_t peer_pid = sock->peer_pid();
UnwindingMetadata metadata(peer_pid,
std::move(handoff_data.fds[kHandshakeMaps]),
std::move(handoff_data.fds[kHandshakeMem]));
ClientData client_data{
handoff_data.data_source_instance_id,
std::move(sock),
std::move(metadata),
std::move(handoff_data.shmem),
std::move(handoff_data.client_config),
};
client_data_.emplace(peer_pid, std::move(client_data));
}
void UnwindingWorker::PostDisconnectSocket(pid_t pid) {
// We do not need to use a WeakPtr here because the task runner will not
// outlive its UnwindingWorker.
thread_task_runner_.get()->PostTask(
[this, pid] { HandleDisconnectSocket(pid); });
}
void UnwindingWorker::HandleDisconnectSocket(pid_t pid) {
client_data_.erase(pid);
}
UnwindingWorker::Delegate::~Delegate() = default;
} // namespace profiling
} // namespace perfetto