//---------------------------------------------------------------------------------
//
// Little Color Management System
// Copyright (c) 1998-2016 Marti Maria Saguer
//
// Permission is hereby granted, free of charge, to any person obtaining
// a copy of this software and associated documentation files (the "Software"),
// to deal in the Software without restriction, including without limitation
// the rights to use, copy, modify, merge, publish, distribute, sublicense,
// and/or sell copies of the Software, and to permit persons to whom the Software
// is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
// THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
// LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
// OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
// WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
//
//---------------------------------------------------------------------------------
//
#include "lcms2_internal.h"
// This module incorporates several interpolation routines, for 1 to 8 channels on input and
// up to 65535 channels on output. The user may change those by using the interpolation plug-in
// Interpolation routines by default
static cmsInterpFunction DefaultInterpolatorsFactory(cmsUInt32Number nInputChannels, cmsUInt32Number nOutputChannels, cmsUInt32Number dwFlags);
// This is the default factory
_cmsInterpPluginChunkType _cmsInterpPluginChunk = { NULL };
// The interpolation plug-in memory chunk allocator/dup
void _cmsAllocInterpPluginChunk(struct _cmsContext_struct* ctx, const struct _cmsContext_struct* src)
{
void* from;
_cmsAssert(ctx != NULL);
if (src != NULL) {
from = src ->chunks[InterpPlugin];
}
else {
static _cmsInterpPluginChunkType InterpPluginChunk = { NULL };
from = &InterpPluginChunk;
}
_cmsAssert(from != NULL);
ctx ->chunks[InterpPlugin] = _cmsSubAllocDup(ctx ->MemPool, from, sizeof(_cmsInterpPluginChunkType));
}
// Main plug-in entry
cmsBool _cmsRegisterInterpPlugin(cmsContext ContextID, cmsPluginBase* Data)
{
cmsPluginInterpolation* Plugin = (cmsPluginInterpolation*) Data;
_cmsInterpPluginChunkType* ptr = (_cmsInterpPluginChunkType*) _cmsContextGetClientChunk(ContextID, InterpPlugin);
if (Data == NULL) {
ptr ->Interpolators = NULL;
return TRUE;
}
// Set replacement functions
ptr ->Interpolators = Plugin ->InterpolatorsFactory;
return TRUE;
}
// Set the interpolation method
cmsBool _cmsSetInterpolationRoutine(cmsContext ContextID, cmsInterpParams* p)
{
_cmsInterpPluginChunkType* ptr = (_cmsInterpPluginChunkType*) _cmsContextGetClientChunk(ContextID, InterpPlugin);
p ->Interpolation.Lerp16 = NULL;
// Invoke factory, possibly in the Plug-in
if (ptr ->Interpolators != NULL)
p ->Interpolation = ptr->Interpolators(p -> nInputs, p ->nOutputs, p ->dwFlags);
// If unsupported by the plug-in, go for the LittleCMS default.
// If happens only if an extern plug-in is being used
if (p ->Interpolation.Lerp16 == NULL)
p ->Interpolation = DefaultInterpolatorsFactory(p ->nInputs, p ->nOutputs, p ->dwFlags);
// Check for valid interpolator (we just check one member of the union)
if (p ->Interpolation.Lerp16 == NULL) {
return FALSE;
}
return TRUE;
}
// This function precalculates as many parameters as possible to speed up the interpolation.
cmsInterpParams* _cmsComputeInterpParamsEx(cmsContext ContextID,
const cmsUInt32Number nSamples[],
int InputChan, int OutputChan,
const void *Table,
cmsUInt32Number dwFlags)
{
cmsInterpParams* p;
int i;
// Check for maximum inputs
if (InputChan > MAX_INPUT_DIMENSIONS) {
cmsSignalError(ContextID, cmsERROR_RANGE, "Too many input channels (%d channels, max=%d)", InputChan, MAX_INPUT_DIMENSIONS);
return NULL;
}
// Creates an empty object
p = (cmsInterpParams*) _cmsMallocZero(ContextID, sizeof(cmsInterpParams));
if (p == NULL) return NULL;
// Keep original parameters
p -> dwFlags = dwFlags;
p -> nInputs = InputChan;
p -> nOutputs = OutputChan;
p ->Table = Table;
p ->ContextID = ContextID;
// Fill samples per input direction and domain (which is number of nodes minus one)
for (i=0; i < InputChan; i++) {
p -> nSamples[i] = nSamples[i];
p -> Domain[i] = nSamples[i] - 1;
}
// Compute factors to apply to each component to index the grid array
p -> opta[0] = p -> nOutputs;
for (i=1; i < InputChan; i++)
p ->opta[i] = p ->opta[i-1] * nSamples[InputChan-i];
if (!_cmsSetInterpolationRoutine(ContextID, p)) {
cmsSignalError(ContextID, cmsERROR_UNKNOWN_EXTENSION, "Unsupported interpolation (%d->%d channels)", InputChan, OutputChan);
_cmsFree(ContextID, p);
return NULL;
}
// All seems ok
return p;
}
// This one is a wrapper on the anterior, but assuming all directions have same number of nodes
cmsInterpParams* _cmsComputeInterpParams(cmsContext ContextID, int nSamples, int InputChan, int OutputChan, const void* Table, cmsUInt32Number dwFlags)
{
int i;
cmsUInt32Number Samples[MAX_INPUT_DIMENSIONS];
// Fill the auxiliary array
for (i=0; i < MAX_INPUT_DIMENSIONS; i++)
Samples[i] = nSamples;
// Call the extended function
return _cmsComputeInterpParamsEx(ContextID, Samples, InputChan, OutputChan, Table, dwFlags);
}
// Free all associated memory
void _cmsFreeInterpParams(cmsInterpParams* p)
{
if (p != NULL) _cmsFree(p ->ContextID, p);
}
// Inline fixed point interpolation
cmsINLINE cmsUInt16Number LinearInterp(cmsS15Fixed16Number a, cmsS15Fixed16Number l, cmsS15Fixed16Number h)
{
cmsUInt32Number dif = (cmsUInt32Number) (h - l) * a + 0x8000;
dif = (dif >> 16) + l;
return (cmsUInt16Number) (dif);
}
// Linear interpolation (Fixed-point optimized)
static
void LinLerp1D(register const cmsUInt16Number Value[],
register cmsUInt16Number Output[],
register const cmsInterpParams* p)
{
cmsUInt16Number y1, y0;
int cell0, rest;
int val3;
const cmsUInt16Number* LutTable = (cmsUInt16Number*) p ->Table;
// if last value...
if (Value[0] == 0xffff) {
Output[0] = LutTable[p -> Domain[0]];
return;
}
val3 = p -> Domain[0] * Value[0];
val3 = _cmsToFixedDomain(val3); // To fixed 15.16
cell0 = FIXED_TO_INT(val3); // Cell is 16 MSB bits
rest = FIXED_REST_TO_INT(val3); // Rest is 16 LSB bits
y0 = LutTable[cell0];
y1 = LutTable[cell0+1];
Output[0] = LinearInterp(rest, y0, y1);
}
// To prevent out of bounds indexing
cmsINLINE cmsFloat32Number fclamp(cmsFloat32Number v)
{
return ((v < 0.0f) || isnan(v)) ? 0.0f : (v > 1.0f ? 1.0f : v);
}
// Floating-point version of 1D interpolation
static
void LinLerp1Dfloat(const cmsFloat32Number Value[],
cmsFloat32Number Output[],
const cmsInterpParams* p)
{
cmsFloat32Number y1, y0;
cmsFloat32Number val2, rest;
int cell0, cell1;
const cmsFloat32Number* LutTable = (cmsFloat32Number*) p ->Table;
val2 = fclamp(Value[0]);
// if last value...
if (val2 == 1.0) {
Output[0] = LutTable[p -> Domain[0]];
return;
}
val2 *= p -> Domain[0];
cell0 = (int) floor(val2);
cell1 = (int) ceil(val2);
// Rest is 16 LSB bits
rest = val2 - cell0;
y0 = LutTable[cell0] ;
y1 = LutTable[cell1] ;
Output[0] = y0 + (y1 - y0) * rest;
}
// Eval gray LUT having only one input channel
static
void Eval1Input(register const cmsUInt16Number Input[],
register cmsUInt16Number Output[],
register const cmsInterpParams* p16)
{
cmsS15Fixed16Number fk;
cmsS15Fixed16Number k0, k1, rk, K0, K1;
int v;
cmsUInt32Number OutChan;
const cmsUInt16Number* LutTable = (cmsUInt16Number*) p16 -> Table;
v = Input[0] * p16 -> Domain[0];
fk = _cmsToFixedDomain(v);
k0 = FIXED_TO_INT(fk);
rk = (cmsUInt16Number) FIXED_REST_TO_INT(fk);
k1 = k0 + (Input[0] != 0xFFFFU ? 1 : 0);
K0 = p16 -> opta[0] * k0;
K1 = p16 -> opta[0] * k1;
for (OutChan=0; OutChan < p16->nOutputs; OutChan++) {
Output[OutChan] = LinearInterp(rk, LutTable[K0+OutChan], LutTable[K1+OutChan]);
}
}
// Eval gray LUT having only one input channel
static
void Eval1InputFloat(const cmsFloat32Number Value[],
cmsFloat32Number Output[],
const cmsInterpParams* p)
{
cmsFloat32Number y1, y0;
cmsFloat32Number val2, rest;
int cell0, cell1;
cmsUInt32Number OutChan;
const cmsFloat32Number* LutTable = (cmsFloat32Number*) p ->Table;
val2 = fclamp(Value[0]);
// if last value...
if (val2 == 1.0) {
Output[0] = LutTable[p -> Domain[0]];
return;
}
val2 *= p -> Domain[0];
cell0 = (int) floor(val2);
cell1 = (int) ceil(val2);
// Rest is 16 LSB bits
rest = val2 - cell0;
cell0 *= p -> opta[0];
cell1 *= p -> opta[0];
for (OutChan=0; OutChan < p->nOutputs; OutChan++) {
y0 = LutTable[cell0 + OutChan] ;
y1 = LutTable[cell1 + OutChan] ;
Output[OutChan] = y0 + (y1 - y0) * rest;
}
}
// Bilinear interpolation (16 bits) - cmsFloat32Number version
static
void BilinearInterpFloat(const cmsFloat32Number Input[],
cmsFloat32Number Output[],
const cmsInterpParams* p)
{
# define LERP(a,l,h) (cmsFloat32Number) ((l)+(((h)-(l))*(a)))
# define DENS(i,j) (LutTable[(i)+(j)+OutChan])
const cmsFloat32Number* LutTable = (cmsFloat32Number*) p ->Table;
cmsFloat32Number px, py;
int x0, y0,
X0, Y0, X1, Y1;
int TotalOut, OutChan;
cmsFloat32Number fx, fy,
d00, d01, d10, d11,
dx0, dx1,
dxy;
TotalOut = p -> nOutputs;
px = fclamp(Input[0]) * p->Domain[0];
py = fclamp(Input[1]) * p->Domain[1];
x0 = (int) _cmsQuickFloor(px); fx = px - (cmsFloat32Number) x0;
y0 = (int) _cmsQuickFloor(py); fy = py - (cmsFloat32Number) y0;
X0 = p -> opta[1] * x0;
X1 = X0 + (Input[0] >= 1.0 ? 0 : p->opta[1]);
Y0 = p -> opta[0] * y0;
Y1 = Y0 + (Input[1] >= 1.0 ? 0 : p->opta[0]);
for (OutChan = 0; OutChan < TotalOut; OutChan++) {
d00 = DENS(X0, Y0);
d01 = DENS(X0, Y1);
d10 = DENS(X1, Y0);
d11 = DENS(X1, Y1);
dx0 = LERP(fx, d00, d10);
dx1 = LERP(fx, d01, d11);
dxy = LERP(fy, dx0, dx1);
Output[OutChan] = dxy;
}
# undef LERP
# undef DENS
}
// Bilinear interpolation (16 bits) - optimized version
static
void BilinearInterp16(register const cmsUInt16Number Input[],
register cmsUInt16Number Output[],
register const cmsInterpParams* p)
{
#define DENS(i,j) (LutTable[(i)+(j)+OutChan])
#define LERP(a,l,h) (cmsUInt16Number) (l + ROUND_FIXED_TO_INT(((h-l)*a)))
const cmsUInt16Number* LutTable = (cmsUInt16Number*) p ->Table;
int OutChan, TotalOut;
cmsS15Fixed16Number fx, fy;
register int rx, ry;
int x0, y0;
register int X0, X1, Y0, Y1;
int d00, d01, d10, d11,
dx0, dx1,
dxy;
TotalOut = p -> nOutputs;
fx = _cmsToFixedDomain((int) Input[0] * p -> Domain[0]);
x0 = FIXED_TO_INT(fx);
rx = FIXED_REST_TO_INT(fx); // Rest in 0..1.0 domain
fy = _cmsToFixedDomain((int) Input[1] * p -> Domain[1]);
y0 = FIXED_TO_INT(fy);
ry = FIXED_REST_TO_INT(fy);
X0 = p -> opta[1] * x0;
X1 = X0 + (Input[0] == 0xFFFFU ? 0 : p->opta[1]);
Y0 = p -> opta[0] * y0;
Y1 = Y0 + (Input[1] == 0xFFFFU ? 0 : p->opta[0]);
for (OutChan = 0; OutChan < TotalOut; OutChan++) {
d00 = DENS(X0, Y0);
d01 = DENS(X0, Y1);
d10 = DENS(X1, Y0);
d11 = DENS(X1, Y1);
dx0 = LERP(rx, d00, d10);
dx1 = LERP(rx, d01, d11);
dxy = LERP(ry, dx0, dx1);
Output[OutChan] = (cmsUInt16Number) dxy;
}
# undef LERP
# undef DENS
}
// Trilinear interpolation (16 bits) - cmsFloat32Number version
static
void TrilinearInterpFloat(const cmsFloat32Number Input[],
cmsFloat32Number Output[],
const cmsInterpParams* p)
{
# define LERP(a,l,h) (cmsFloat32Number) ((l)+(((h)-(l))*(a)))
# define DENS(i,j,k) (LutTable[(i)+(j)+(k)+OutChan])
const cmsFloat32Number* LutTable = (cmsFloat32Number*) p ->Table;
cmsFloat32Number px, py, pz;
int x0, y0, z0,
X0, Y0, Z0, X1, Y1, Z1;
int TotalOut, OutChan;
cmsFloat32Number fx, fy, fz,
d000, d001, d010, d011,
d100, d101, d110, d111,
dx00, dx01, dx10, dx11,
dxy0, dxy1, dxyz;
TotalOut = p -> nOutputs;
// We need some clipping here
px = fclamp(Input[0]) * p->Domain[0];
py = fclamp(Input[1]) * p->Domain[1];
pz = fclamp(Input[2]) * p->Domain[2];
x0 = (int) _cmsQuickFloor(px); fx = px - (cmsFloat32Number) x0;
y0 = (int) _cmsQuickFloor(py); fy = py - (cmsFloat32Number) y0;
z0 = (int) _cmsQuickFloor(pz); fz = pz - (cmsFloat32Number) z0;
X0 = p -> opta[2] * x0;
X1 = X0 + (Input[0] >= 1.0 ? 0 : p->opta[2]);
Y0 = p -> opta[1] * y0;
Y1 = Y0 + (Input[1] >= 1.0 ? 0 : p->opta[1]);
Z0 = p -> opta[0] * z0;
Z1 = Z0 + (Input[2] >= 1.0 ? 0 : p->opta[0]);
for (OutChan = 0; OutChan < TotalOut; OutChan++) {
d000 = DENS(X0, Y0, Z0);
d001 = DENS(X0, Y0, Z1);
d010 = DENS(X0, Y1, Z0);
d011 = DENS(X0, Y1, Z1);
d100 = DENS(X1, Y0, Z0);
d101 = DENS(X1, Y0, Z1);
d110 = DENS(X1, Y1, Z0);
d111 = DENS(X1, Y1, Z1);
dx00 = LERP(fx, d000, d100);
dx01 = LERP(fx, d001, d101);
dx10 = LERP(fx, d010, d110);
dx11 = LERP(fx, d011, d111);
dxy0 = LERP(fy, dx00, dx10);
dxy1 = LERP(fy, dx01, dx11);
dxyz = LERP(fz, dxy0, dxy1);
Output[OutChan] = dxyz;
}
# undef LERP
# undef DENS
}
// Trilinear interpolation (16 bits) - optimized version
static
void TrilinearInterp16(register const cmsUInt16Number Input[],
register cmsUInt16Number Output[],
register const cmsInterpParams* p)
{
#define DENS(i,j,k) (LutTable[(i)+(j)+(k)+OutChan])
#define LERP(a,l,h) (cmsUInt16Number) (l + ROUND_FIXED_TO_INT(((h-l)*a)))
const cmsUInt16Number* LutTable = (cmsUInt16Number*) p ->Table;
int OutChan, TotalOut;
cmsS15Fixed16Number fx, fy, fz;
register int rx, ry, rz;
int x0, y0, z0;
register int X0, X1, Y0, Y1, Z0, Z1;
int d000, d001, d010, d011,
d100, d101, d110, d111,
dx00, dx01, dx10, dx11,
dxy0, dxy1, dxyz;
TotalOut = p -> nOutputs;
fx = _cmsToFixedDomain((int) Input[0] * p -> Domain[0]);
x0 = FIXED_TO_INT(fx);
rx = FIXED_REST_TO_INT(fx); // Rest in 0..1.0 domain
fy = _cmsToFixedDomain((int) Input[1] * p -> Domain[1]);
y0 = FIXED_TO_INT(fy);
ry = FIXED_REST_TO_INT(fy);
fz = _cmsToFixedDomain((int) Input[2] * p -> Domain[2]);
z0 = FIXED_TO_INT(fz);
rz = FIXED_REST_TO_INT(fz);
X0 = p -> opta[2] * x0;
X1 = X0 + (Input[0] == 0xFFFFU ? 0 : p->opta[2]);
Y0 = p -> opta[1] * y0;
Y1 = Y0 + (Input[1] == 0xFFFFU ? 0 : p->opta[1]);
Z0 = p -> opta[0] * z0;
Z1 = Z0 + (Input[2] == 0xFFFFU ? 0 : p->opta[0]);
for (OutChan = 0; OutChan < TotalOut; OutChan++) {
d000 = DENS(X0, Y0, Z0);
d001 = DENS(X0, Y0, Z1);
d010 = DENS(X0, Y1, Z0);
d011 = DENS(X0, Y1, Z1);
d100 = DENS(X1, Y0, Z0);
d101 = DENS(X1, Y0, Z1);
d110 = DENS(X1, Y1, Z0);
d111 = DENS(X1, Y1, Z1);
dx00 = LERP(rx, d000, d100);
dx01 = LERP(rx, d001, d101);
dx10 = LERP(rx, d010, d110);
dx11 = LERP(rx, d011, d111);
dxy0 = LERP(ry, dx00, dx10);
dxy1 = LERP(ry, dx01, dx11);
dxyz = LERP(rz, dxy0, dxy1);
Output[OutChan] = (cmsUInt16Number) dxyz;
}
# undef LERP
# undef DENS
}
// Tetrahedral interpolation, using Sakamoto algorithm.
#define DENS(i,j,k) (LutTable[(i)+(j)+(k)+OutChan])
static
void TetrahedralInterpFloat(const cmsFloat32Number Input[],
cmsFloat32Number Output[],
const cmsInterpParams* p)
{
const cmsFloat32Number* LutTable = (cmsFloat32Number*) p -> Table;
cmsFloat32Number px, py, pz;
int x0, y0, z0,
X0, Y0, Z0, X1, Y1, Z1;
cmsFloat32Number rx, ry, rz;
cmsFloat32Number c0, c1=0, c2=0, c3=0;
int OutChan, TotalOut;
TotalOut = p -> nOutputs;
// We need some clipping here
px = fclamp(Input[0]) * p->Domain[0];
py = fclamp(Input[1]) * p->Domain[1];
pz = fclamp(Input[2]) * p->Domain[2];
x0 = (int) _cmsQuickFloor(px); rx = (px - (cmsFloat32Number) x0);
y0 = (int) _cmsQuickFloor(py); ry = (py - (cmsFloat32Number) y0);
z0 = (int) _cmsQuickFloor(pz); rz = (pz - (cmsFloat32Number) z0);
X0 = p -> opta[2] * x0;
X1 = X0 + (Input[0] >= 1.0 ? 0 : p->opta[2]);
Y0 = p -> opta[1] * y0;
Y1 = Y0 + (Input[1] >= 1.0 ? 0 : p->opta[1]);
Z0 = p -> opta[0] * z0;
Z1 = Z0 + (Input[2] >= 1.0 ? 0 : p->opta[0]);
for (OutChan=0; OutChan < TotalOut; OutChan++) {
// These are the 6 Tetrahedral
c0 = DENS(X0, Y0, Z0);
if (rx >= ry && ry >= rz) {
c1 = DENS(X1, Y0, Z0) - c0;
c2 = DENS(X1, Y1, Z0) - DENS(X1, Y0, Z0);
c3 = DENS(X1, Y1, Z1) - DENS(X1, Y1, Z0);
}
else
if (rx >= rz && rz >= ry) {
c1 = DENS(X1, Y0, Z0) - c0;
c2 = DENS(X1, Y1, Z1) - DENS(X1, Y0, Z1);
c3 = DENS(X1, Y0, Z1) - DENS(X1, Y0, Z0);
}
else
if (rz >= rx && rx >= ry) {
c1 = DENS(X1, Y0, Z1) - DENS(X0, Y0, Z1);
c2 = DENS(X1, Y1, Z1) - DENS(X1, Y0, Z1);
c3 = DENS(X0, Y0, Z1) - c0;
}
else
if (ry >= rx && rx >= rz) {
c1 = DENS(X1, Y1, Z0) - DENS(X0, Y1, Z0);
c2 = DENS(X0, Y1, Z0) - c0;
c3 = DENS(X1, Y1, Z1) - DENS(X1, Y1, Z0);
}
else
if (ry >= rz && rz >= rx) {
c1 = DENS(X1, Y1, Z1) - DENS(X0, Y1, Z1);
c2 = DENS(X0, Y1, Z0) - c0;
c3 = DENS(X0, Y1, Z1) - DENS(X0, Y1, Z0);
}
else
if (rz >= ry && ry >= rx) {
c1 = DENS(X1, Y1, Z1) - DENS(X0, Y1, Z1);
c2 = DENS(X0, Y1, Z1) - DENS(X0, Y0, Z1);
c3 = DENS(X0, Y0, Z1) - c0;
}
else {
c1 = c2 = c3 = 0;
}
Output[OutChan] = c0 + c1 * rx + c2 * ry + c3 * rz;
}
}
#undef DENS
static
void TetrahedralInterp16(register const cmsUInt16Number Input[],
register cmsUInt16Number Output[],
register const cmsInterpParams* p)
{
const cmsUInt16Number* LutTable = (cmsUInt16Number*) p -> Table;
cmsS15Fixed16Number fx, fy, fz;
cmsS15Fixed16Number rx, ry, rz;
int x0, y0, z0;
cmsS15Fixed16Number c0, c1, c2, c3, Rest;
cmsS15Fixed16Number X0, X1, Y0, Y1, Z0, Z1;
cmsUInt32Number TotalOut = p -> nOutputs;
fx = _cmsToFixedDomain((int) Input[0] * p -> Domain[0]);
fy = _cmsToFixedDomain((int) Input[1] * p -> Domain[1]);
fz = _cmsToFixedDomain((int) Input[2] * p -> Domain[2]);
x0 = FIXED_TO_INT(fx);
y0 = FIXED_TO_INT(fy);
z0 = FIXED_TO_INT(fz);
rx = FIXED_REST_TO_INT(fx);
ry = FIXED_REST_TO_INT(fy);
rz = FIXED_REST_TO_INT(fz);
X0 = p -> opta[2] * x0;
X1 = (Input[0] == 0xFFFFU ? 0 : p->opta[2]);
Y0 = p -> opta[1] * y0;
Y1 = (Input[1] == 0xFFFFU ? 0 : p->opta[1]);
Z0 = p -> opta[0] * z0;
Z1 = (Input[2] == 0xFFFFU ? 0 : p->opta[0]);
LutTable = &LutTable[X0+Y0+Z0];
// Output should be computed as x = ROUND_FIXED_TO_INT(_cmsToFixedDomain(Rest))
// which expands as: x = (Rest + ((Rest+0x7fff)/0xFFFF) + 0x8000)>>16
// This can be replaced by: t = Rest+0x8001, x = (t + (t>>16))>>16
// at the cost of being off by one at 7fff and 17ffe.
if (rx >= ry) {
if (ry >= rz) {
Y1 += X1;
Z1 += Y1;
for (; TotalOut; TotalOut--) {
c1 = LutTable[X1];
c2 = LutTable[Y1];
c3 = LutTable[Z1];
c0 = *LutTable++;
c3 -= c2;
c2 -= c1;
c1 -= c0;
Rest = c1 * rx + c2 * ry + c3 * rz + 0x8001;
*Output++ = (cmsUInt16Number) c0 + ((Rest + (Rest>>16))>>16);
}
} else if (rz >= rx) {
X1 += Z1;
Y1 += X1;
for (; TotalOut; TotalOut--) {
c1 = LutTable[X1];
c2 = LutTable[Y1];
c3 = LutTable[Z1];
c0 = *LutTable++;
c2 -= c1;
c1 -= c3;
c3 -= c0;
Rest = c1 * rx + c2 * ry + c3 * rz + 0x8001;
*Output++ = (cmsUInt16Number) c0 + ((Rest + (Rest>>16))>>16);
}
} else {
Z1 += X1;
Y1 += Z1;
for (; TotalOut; TotalOut--) {
c1 = LutTable[X1];
c2 = LutTable[Y1];
c3 = LutTable[Z1];
c0 = *LutTable++;
c2 -= c3;
c3 -= c1;
c1 -= c0;
Rest = c1 * rx + c2 * ry + c3 * rz + 0x8001;
*Output++ = (cmsUInt16Number) c0 + ((Rest + (Rest>>16))>>16);
}
}
} else {
if (rx >= rz) {
X1 += Y1;
Z1 += X1;
for (; TotalOut; TotalOut--) {
c1 = LutTable[X1];
c2 = LutTable[Y1];
c3 = LutTable[Z1];
c0 = *LutTable++;
c3 -= c1;
c1 -= c2;
c2 -= c0;
Rest = c1 * rx + c2 * ry + c3 * rz + 0x8001;
*Output++ = (cmsUInt16Number) c0 + ((Rest + (Rest>>16))>>16);
}
} else if (ry >= rz) {
Z1 += Y1;
X1 += Z1;
for (; TotalOut; TotalOut--) {
c1 = LutTable[X1];
c2 = LutTable[Y1];
c3 = LutTable[Z1];
c0 = *LutTable++;
c1 -= c3;
c3 -= c2;
c2 -= c0;
Rest = c1 * rx + c2 * ry + c3 * rz + 0x8001;
*Output++ = (cmsUInt16Number) c0 + ((Rest + (Rest>>16))>>16);
}
} else {
Y1 += Z1;
X1 += Y1;
for (; TotalOut; TotalOut--) {
c1 = LutTable[X1];
c2 = LutTable[Y1];
c3 = LutTable[Z1];
c0 = *LutTable++;
c1 -= c2;
c2 -= c3;
c3 -= c0;
Rest = c1 * rx + c2 * ry + c3 * rz + 0x8001;
*Output++ = (cmsUInt16Number) c0 + ((Rest + (Rest>>16))>>16);
}
}
}
}
#define DENS(i,j,k) (LutTable[(i)+(j)+(k)+OutChan])
static
void Eval4Inputs(register const cmsUInt16Number Input[],
register cmsUInt16Number Output[],
register const cmsInterpParams* p16)
{
const cmsUInt16Number* LutTable;
cmsS15Fixed16Number fk;
cmsS15Fixed16Number k0, rk;
int K0, K1;
cmsS15Fixed16Number fx, fy, fz;
cmsS15Fixed16Number rx, ry, rz;
int x0, y0, z0;
cmsS15Fixed16Number X0, X1, Y0, Y1, Z0, Z1;
cmsUInt32Number i;
cmsS15Fixed16Number c0, c1, c2, c3, Rest;
cmsUInt32Number OutChan;
cmsUInt16Number Tmp1[MAX_STAGE_CHANNELS], Tmp2[MAX_STAGE_CHANNELS];
fk = _cmsToFixedDomain((int) Input[0] * p16 -> Domain[0]);
fx = _cmsToFixedDomain((int) Input[1] * p16 -> Domain[1]);
fy = _cmsToFixedDomain((int) Input[2] * p16 -> Domain[2]);
fz = _cmsToFixedDomain((int) Input[3] * p16 -> Domain[3]);
k0 = FIXED_TO_INT(fk);
x0 = FIXED_TO_INT(fx);
y0 = FIXED_TO_INT(fy);
z0 = FIXED_TO_INT(fz);
rk = FIXED_REST_TO_INT(fk);
rx = FIXED_REST_TO_INT(fx);
ry = FIXED_REST_TO_INT(fy);
rz = FIXED_REST_TO_INT(fz);
K0 = p16 -> opta[3] * k0;
K1 = K0 + (Input[0] == 0xFFFFU ? 0 : p16->opta[3]);
X0 = p16 -> opta[2] * x0;
X1 = X0 + (Input[1] == 0xFFFFU ? 0 : p16->opta[2]);
Y0 = p16 -> opta[1] * y0;
Y1 = Y0 + (Input[2] == 0xFFFFU ? 0 : p16->opta[1]);
Z0 = p16 -> opta[0] * z0;
Z1 = Z0 + (Input[3] == 0xFFFFU ? 0 : p16->opta[0]);
LutTable = (cmsUInt16Number*) p16 -> Table;
LutTable += K0;
for (OutChan=0; OutChan < p16 -> nOutputs; OutChan++) {
c0 = DENS(X0, Y0, Z0);
if (rx >= ry && ry >= rz) {
c1 = DENS(X1, Y0, Z0) - c0;
c2 = DENS(X1, Y1, Z0) - DENS(X1, Y0, Z0);
c3 = DENS(X1, Y1, Z1) - DENS(X1, Y1, Z0);
}
else
if (rx >= rz && rz >= ry) {
c1 = DENS(X1, Y0, Z0) - c0;
c2 = DENS(X1, Y1, Z1) - DENS(X1, Y0, Z1);
c3 = DENS(X1, Y0, Z1) - DENS(X1, Y0, Z0);
}
else
if (rz >= rx && rx >= ry) {
c1 = DENS(X1, Y0, Z1) - DENS(X0, Y0, Z1);
c2 = DENS(X1, Y1, Z1) - DENS(X1, Y0, Z1);
c3 = DENS(X0, Y0, Z1) - c0;
}
else
if (ry >= rx && rx >= rz) {
c1 = DENS(X1, Y1, Z0) - DENS(X0, Y1, Z0);
c2 = DENS(X0, Y1, Z0) - c0;
c3 = DENS(X1, Y1, Z1) - DENS(X1, Y1, Z0);
}
else
if (ry >= rz && rz >= rx) {
c1 = DENS(X1, Y1, Z1) - DENS(X0, Y1, Z1);
c2 = DENS(X0, Y1, Z0) - c0;
c3 = DENS(X0, Y1, Z1) - DENS(X0, Y1, Z0);
}
else
if (rz >= ry && ry >= rx) {
c1 = DENS(X1, Y1, Z1) - DENS(X0, Y1, Z1);
c2 = DENS(X0, Y1, Z1) - DENS(X0, Y0, Z1);
c3 = DENS(X0, Y0, Z1) - c0;
}
else {
c1 = c2 = c3 = 0;
}
Rest = c1 * rx + c2 * ry + c3 * rz;
Tmp1[OutChan] = (cmsUInt16Number) ( c0 + ROUND_FIXED_TO_INT(_cmsToFixedDomain(Rest)));
}
LutTable = (cmsUInt16Number*) p16 -> Table;
LutTable += K1;
for (OutChan=0; OutChan < p16 -> nOutputs; OutChan++) {
c0 = DENS(X0, Y0, Z0);
if (rx >= ry && ry >= rz) {
c1 = DENS(X1, Y0, Z0) - c0;
c2 = DENS(X1, Y1, Z0) - DENS(X1, Y0, Z0);
c3 = DENS(X1, Y1, Z1) - DENS(X1, Y1, Z0);
}
else
if (rx >= rz && rz >= ry) {
c1 = DENS(X1, Y0, Z0) - c0;
c2 = DENS(X1, Y1, Z1) - DENS(X1, Y0, Z1);
c3 = DENS(X1, Y0, Z1) - DENS(X1, Y0, Z0);
}
else
if (rz >= rx && rx >= ry) {
c1 = DENS(X1, Y0, Z1) - DENS(X0, Y0, Z1);
c2 = DENS(X1, Y1, Z1) - DENS(X1, Y0, Z1);
c3 = DENS(X0, Y0, Z1) - c0;
}
else
if (ry >= rx && rx >= rz) {
c1 = DENS(X1, Y1, Z0) - DENS(X0, Y1, Z0);
c2 = DENS(X0, Y1, Z0) - c0;
c3 = DENS(X1, Y1, Z1) - DENS(X1, Y1, Z0);
}
else
if (ry >= rz && rz >= rx) {
c1 = DENS(X1, Y1, Z1) - DENS(X0, Y1, Z1);
c2 = DENS(X0, Y1, Z0) - c0;
c3 = DENS(X0, Y1, Z1) - DENS(X0, Y1, Z0);
}
else
if (rz >= ry && ry >= rx) {
c1 = DENS(X1, Y1, Z1) - DENS(X0, Y1, Z1);
c2 = DENS(X0, Y1, Z1) - DENS(X0, Y0, Z1);
c3 = DENS(X0, Y0, Z1) - c0;
}
else {
c1 = c2 = c3 = 0;
}
Rest = c1 * rx + c2 * ry + c3 * rz;
Tmp2[OutChan] = (cmsUInt16Number) (c0 + ROUND_FIXED_TO_INT(_cmsToFixedDomain(Rest)));
}
for (i=0; i < p16 -> nOutputs; i++) {
Output[i] = LinearInterp(rk, Tmp1[i], Tmp2[i]);
}
}
#undef DENS
// For more that 3 inputs (i.e., CMYK)
// evaluate two 3-dimensional interpolations and then linearly interpolate between them.
static
void Eval4InputsFloat(const cmsFloat32Number Input[],
cmsFloat32Number Output[],
const cmsInterpParams* p)
{
const cmsFloat32Number* LutTable = (cmsFloat32Number*) p -> Table;
cmsFloat32Number rest;
cmsFloat32Number pk;
int k0, K0, K1;
const cmsFloat32Number* T;
cmsUInt32Number i;
cmsFloat32Number Tmp1[MAX_STAGE_CHANNELS], Tmp2[MAX_STAGE_CHANNELS];
cmsInterpParams p1;
pk = fclamp(Input[0]) * p->Domain[0];
k0 = _cmsQuickFloor(pk);
rest = pk - (cmsFloat32Number) k0;
K0 = p -> opta[3] * k0;
K1 = K0 + (Input[0] >= 1.0 ? 0 : p->opta[3]);
p1 = *p;
memmove(&p1.Domain[0], &p ->Domain[1], 3*sizeof(cmsUInt32Number));
T = LutTable + K0;
p1.Table = T;
TetrahedralInterpFloat(Input + 1, Tmp1, &p1);
T = LutTable + K1;
p1.Table = T;
TetrahedralInterpFloat(Input + 1, Tmp2, &p1);
for (i=0; i < p -> nOutputs; i++)
{
cmsFloat32Number y0 = Tmp1[i];
cmsFloat32Number y1 = Tmp2[i];
Output[i] = y0 + (y1 - y0) * rest;
}
}
static
void Eval5Inputs(register const cmsUInt16Number Input[],
register cmsUInt16Number Output[],
register const cmsInterpParams* p16)
{
const cmsUInt16Number* LutTable = (cmsUInt16Number*) p16 -> Table;
cmsS15Fixed16Number fk;
cmsS15Fixed16Number k0, rk;
int K0, K1;
const cmsUInt16Number* T;
cmsUInt32Number i;
cmsUInt16Number Tmp1[MAX_STAGE_CHANNELS], Tmp2[MAX_STAGE_CHANNELS];
cmsInterpParams p1;
fk = _cmsToFixedDomain((cmsS15Fixed16Number) Input[0] * p16 -> Domain[0]);
k0 = FIXED_TO_INT(fk);
rk = FIXED_REST_TO_INT(fk);
K0 = p16 -> opta[4] * k0;
K1 = p16 -> opta[4] * (k0 + (Input[0] != 0xFFFFU ? 1 : 0));
p1 = *p16;
memmove(&p1.Domain[0], &p16 ->Domain[1], 4*sizeof(cmsUInt32Number));
T = LutTable + K0;
p1.Table = T;
Eval4Inputs(Input + 1, Tmp1, &p1);
T = LutTable + K1;
p1.Table = T;
Eval4Inputs(Input + 1, Tmp2, &p1);
for (i=0; i < p16 -> nOutputs; i++) {
Output[i] = LinearInterp(rk, Tmp1[i], Tmp2[i]);
}
}
static
void Eval5InputsFloat(const cmsFloat32Number Input[],
cmsFloat32Number Output[],
const cmsInterpParams* p)
{
const cmsFloat32Number* LutTable = (cmsFloat32Number*) p -> Table;
cmsFloat32Number rest;
cmsFloat32Number pk;
int k0, K0, K1;
const cmsFloat32Number* T;
cmsUInt32Number i;
cmsFloat32Number Tmp1[MAX_STAGE_CHANNELS], Tmp2[MAX_STAGE_CHANNELS];
cmsInterpParams p1;
pk = fclamp(Input[0]) * p->Domain[0];
k0 = _cmsQuickFloor(pk);
rest = pk - (cmsFloat32Number) k0;
K0 = p -> opta[4] * k0;
K1 = K0 + (Input[0] >= 1.0 ? 0 : p->opta[4]);
p1 = *p;
memmove(&p1.Domain[0], &p ->Domain[1], 4*sizeof(cmsUInt32Number));
T = LutTable + K0;
p1.Table = T;
Eval4InputsFloat(Input + 1, Tmp1, &p1);
T = LutTable + K1;
p1.Table = T;
Eval4InputsFloat(Input + 1, Tmp2, &p1);
for (i=0; i < p -> nOutputs; i++) {
cmsFloat32Number y0 = Tmp1[i];
cmsFloat32Number y1 = Tmp2[i];
Output[i] = y0 + (y1 - y0) * rest;
}
}
static
void Eval6Inputs(register const cmsUInt16Number Input[],
register cmsUInt16Number Output[],
register const cmsInterpParams* p16)
{
const cmsUInt16Number* LutTable = (cmsUInt16Number*) p16 -> Table;
cmsS15Fixed16Number fk;
cmsS15Fixed16Number k0, rk;
int K0, K1;
const cmsUInt16Number* T;
cmsUInt32Number i;
cmsUInt16Number Tmp1[MAX_STAGE_CHANNELS], Tmp2[MAX_STAGE_CHANNELS];
cmsInterpParams p1;
fk = _cmsToFixedDomain((cmsS15Fixed16Number) Input[0] * p16 -> Domain[0]);
k0 = FIXED_TO_INT(fk);
rk = FIXED_REST_TO_INT(fk);
K0 = p16 -> opta[5] * k0;
K1 = p16 -> opta[5] * (k0 + (Input[0] != 0xFFFFU ? 1 : 0));
p1 = *p16;
memmove(&p1.Domain[0], &p16 ->Domain[1], 5*sizeof(cmsUInt32Number));
T = LutTable + K0;
p1.Table = T;
Eval5Inputs(Input + 1, Tmp1, &p1);
T = LutTable + K1;
p1.Table = T;
Eval5Inputs(Input + 1, Tmp2, &p1);
for (i=0; i < p16 -> nOutputs; i++) {
Output[i] = LinearInterp(rk, Tmp1[i], Tmp2[i]);
}
}
static
void Eval6InputsFloat(const cmsFloat32Number Input[],
cmsFloat32Number Output[],
const cmsInterpParams* p)
{
const cmsFloat32Number* LutTable = (cmsFloat32Number*) p -> Table;
cmsFloat32Number rest;
cmsFloat32Number pk;
int k0, K0, K1;
const cmsFloat32Number* T;
cmsUInt32Number i;
cmsFloat32Number Tmp1[MAX_STAGE_CHANNELS], Tmp2[MAX_STAGE_CHANNELS];
cmsInterpParams p1;
pk = fclamp(Input[0]) * p->Domain[0];
k0 = _cmsQuickFloor(pk);
rest = pk - (cmsFloat32Number) k0;
K0 = p -> opta[5] * k0;
K1 = K0 + (Input[0] >= 1.0 ? 0 : p->opta[5]);
p1 = *p;
memmove(&p1.Domain[0], &p ->Domain[1], 5*sizeof(cmsUInt32Number));
T = LutTable + K0;
p1.Table = T;
Eval5InputsFloat(Input + 1, Tmp1, &p1);
T = LutTable + K1;
p1.Table = T;
Eval5InputsFloat(Input + 1, Tmp2, &p1);
for (i=0; i < p -> nOutputs; i++) {
cmsFloat32Number y0 = Tmp1[i];
cmsFloat32Number y1 = Tmp2[i];
Output[i] = y0 + (y1 - y0) * rest;
}
}
static
void Eval7Inputs(register const cmsUInt16Number Input[],
register cmsUInt16Number Output[],
register const cmsInterpParams* p16)
{
const cmsUInt16Number* LutTable = (cmsUInt16Number*) p16 -> Table;
cmsS15Fixed16Number fk;
cmsS15Fixed16Number k0, rk;
int K0, K1;
const cmsUInt16Number* T;
cmsUInt32Number i;
cmsUInt16Number Tmp1[MAX_STAGE_CHANNELS], Tmp2[MAX_STAGE_CHANNELS];
cmsInterpParams p1;
fk = _cmsToFixedDomain((cmsS15Fixed16Number) Input[0] * p16 -> Domain[0]);
k0 = FIXED_TO_INT(fk);
rk = FIXED_REST_TO_INT(fk);
K0 = p16 -> opta[6] * k0;
K1 = p16 -> opta[6] * (k0 + (Input[0] != 0xFFFFU ? 1 : 0));
p1 = *p16;
memmove(&p1.Domain[0], &p16 ->Domain[1], 6*sizeof(cmsUInt32Number));
T = LutTable + K0;
p1.Table = T;
Eval6Inputs(Input + 1, Tmp1, &p1);
T = LutTable + K1;
p1.Table = T;
Eval6Inputs(Input + 1, Tmp2, &p1);
for (i=0; i < p16 -> nOutputs; i++) {
Output[i] = LinearInterp(rk, Tmp1[i], Tmp2[i]);
}
}
static
void Eval7InputsFloat(const cmsFloat32Number Input[],
cmsFloat32Number Output[],
const cmsInterpParams* p)
{
const cmsFloat32Number* LutTable = (cmsFloat32Number*) p -> Table;
cmsFloat32Number rest;
cmsFloat32Number pk;
int k0, K0, K1;
const cmsFloat32Number* T;
cmsUInt32Number i;
cmsFloat32Number Tmp1[MAX_STAGE_CHANNELS], Tmp2[MAX_STAGE_CHANNELS];
cmsInterpParams p1;
pk = fclamp(Input[0]) * p->Domain[0];
k0 = _cmsQuickFloor(pk);
rest = pk - (cmsFloat32Number) k0;
K0 = p -> opta[6] * k0;
K1 = K0 + (Input[0] >= 1.0 ? 0 : p->opta[6]);
p1 = *p;
memmove(&p1.Domain[0], &p ->Domain[1], 6*sizeof(cmsUInt32Number));
T = LutTable + K0;
p1.Table = T;
Eval6InputsFloat(Input + 1, Tmp1, &p1);
T = LutTable + K1;
p1.Table = T;
Eval6InputsFloat(Input + 1, Tmp2, &p1);
for (i=0; i < p -> nOutputs; i++) {
cmsFloat32Number y0 = Tmp1[i];
cmsFloat32Number y1 = Tmp2[i];
Output[i] = y0 + (y1 - y0) * rest;
}
}
static
void Eval8Inputs(register const cmsUInt16Number Input[],
register cmsUInt16Number Output[],
register const cmsInterpParams* p16)
{
const cmsUInt16Number* LutTable = (cmsUInt16Number*) p16 -> Table;
cmsS15Fixed16Number fk;
cmsS15Fixed16Number k0, rk;
int K0, K1;
const cmsUInt16Number* T;
cmsUInt32Number i;
cmsUInt16Number Tmp1[MAX_STAGE_CHANNELS], Tmp2[MAX_STAGE_CHANNELS];
cmsInterpParams p1;
fk = _cmsToFixedDomain((cmsS15Fixed16Number) Input[0] * p16 -> Domain[0]);
k0 = FIXED_TO_INT(fk);
rk = FIXED_REST_TO_INT(fk);
K0 = p16 -> opta[7] * k0;
K1 = p16 -> opta[7] * (k0 + (Input[0] != 0xFFFFU ? 1 : 0));
p1 = *p16;
memmove(&p1.Domain[0], &p16 ->Domain[1], 7*sizeof(cmsUInt32Number));
T = LutTable + K0;
p1.Table = T;
Eval7Inputs(Input + 1, Tmp1, &p1);
T = LutTable + K1;
p1.Table = T;
Eval7Inputs(Input + 1, Tmp2, &p1);
for (i=0; i < p16 -> nOutputs; i++) {
Output[i] = LinearInterp(rk, Tmp1[i], Tmp2[i]);
}
}
static
void Eval8InputsFloat(const cmsFloat32Number Input[],
cmsFloat32Number Output[],
const cmsInterpParams* p)
{
const cmsFloat32Number* LutTable = (cmsFloat32Number*) p -> Table;
cmsFloat32Number rest;
cmsFloat32Number pk;
int k0, K0, K1;
const cmsFloat32Number* T;
cmsUInt32Number i;
cmsFloat32Number Tmp1[MAX_STAGE_CHANNELS], Tmp2[MAX_STAGE_CHANNELS];
cmsInterpParams p1;
pk = fclamp(Input[0]) * p->Domain[0];
k0 = _cmsQuickFloor(pk);
rest = pk - (cmsFloat32Number) k0;
K0 = p -> opta[7] * k0;
K1 = K0 + (Input[0] >= 1.0 ? 0 : p->opta[7]);
p1 = *p;
memmove(&p1.Domain[0], &p ->Domain[1], 7*sizeof(cmsUInt32Number));
T = LutTable + K0;
p1.Table = T;
Eval7InputsFloat(Input + 1, Tmp1, &p1);
T = LutTable + K1;
p1.Table = T;
Eval7InputsFloat(Input + 1, Tmp2, &p1);
for (i=0; i < p -> nOutputs; i++) {
cmsFloat32Number y0 = Tmp1[i];
cmsFloat32Number y1 = Tmp2[i];
Output[i] = y0 + (y1 - y0) * rest;
}
}
// The default factory
static
cmsInterpFunction DefaultInterpolatorsFactory(cmsUInt32Number nInputChannels, cmsUInt32Number nOutputChannels, cmsUInt32Number dwFlags)
{
cmsInterpFunction Interpolation;
cmsBool IsFloat = (dwFlags & CMS_LERP_FLAGS_FLOAT);
cmsBool IsTrilinear = (dwFlags & CMS_LERP_FLAGS_TRILINEAR);
memset(&Interpolation, 0, sizeof(Interpolation));
// Safety check
if (nInputChannels >= 4 && nOutputChannels >= MAX_STAGE_CHANNELS)
return Interpolation;
switch (nInputChannels) {
case 1: // Gray LUT / linear
if (nOutputChannels == 1) {
if (IsFloat)
Interpolation.LerpFloat = LinLerp1Dfloat;
else
Interpolation.Lerp16 = LinLerp1D;
}
else {
if (IsFloat)
Interpolation.LerpFloat = Eval1InputFloat;
else
Interpolation.Lerp16 = Eval1Input;
}
break;
case 2: // Duotone
if (IsFloat)
Interpolation.LerpFloat = BilinearInterpFloat;
else
Interpolation.Lerp16 = BilinearInterp16;
break;
case 3: // RGB et al
if (IsTrilinear) {
if (IsFloat)
Interpolation.LerpFloat = TrilinearInterpFloat;
else
Interpolation.Lerp16 = TrilinearInterp16;
}
else {
if (IsFloat)
Interpolation.LerpFloat = TetrahedralInterpFloat;
else {
Interpolation.Lerp16 = TetrahedralInterp16;
}
}
break;
case 4: // CMYK lut
if (IsFloat)
Interpolation.LerpFloat = Eval4InputsFloat;
else
Interpolation.Lerp16 = Eval4Inputs;
break;
case 5: // 5 Inks
if (IsFloat)
Interpolation.LerpFloat = Eval5InputsFloat;
else
Interpolation.Lerp16 = Eval5Inputs;
break;
case 6: // 6 Inks
if (IsFloat)
Interpolation.LerpFloat = Eval6InputsFloat;
else
Interpolation.Lerp16 = Eval6Inputs;
break;
case 7: // 7 inks
if (IsFloat)
Interpolation.LerpFloat = Eval7InputsFloat;
else
Interpolation.Lerp16 = Eval7Inputs;
break;
case 8: // 8 inks
if (IsFloat)
Interpolation.LerpFloat = Eval8InputsFloat;
else
Interpolation.Lerp16 = Eval8Inputs;
break;
break;
default:
Interpolation.Lerp16 = NULL;
}
return Interpolation;
}