/*
* Stack-less Just-In-Time compiler
*
* Copyright Zoltan Herczeg (hzmester@freemail.hu). All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification, are
* permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this list of
* conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice, this list
* of conditions and the following disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) AND CONTRIBUTORS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
* SHALL THE COPYRIGHT HOLDER(S) OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
* TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/* x86 64-bit arch dependent functions. */
static sljit_s32 emit_load_imm64(struct sljit_compiler *compiler, sljit_s32 reg, sljit_sw imm)
{
sljit_u8 *inst;
inst = (sljit_u8*)ensure_buf(compiler, 1 + 2 + sizeof(sljit_sw));
FAIL_IF(!inst);
INC_SIZE(2 + sizeof(sljit_sw));
*inst++ = REX_W | ((reg_map[reg] <= 7) ? 0 : REX_B);
*inst++ = MOV_r_i32 + (reg_map[reg] & 0x7);
sljit_unaligned_store_sw(inst, imm);
return SLJIT_SUCCESS;
}
static sljit_u8* generate_far_jump_code(struct sljit_jump *jump, sljit_u8 *code_ptr, sljit_s32 type)
{
int short_addr = !(jump->flags & SLJIT_REWRITABLE_JUMP) && !(jump->flags & JUMP_LABEL) && (jump->u.target <= 0xffffffff);
/* The relative jump below specialized for this case. */
SLJIT_ASSERT(reg_map[TMP_REG2] >= 8);
if (type < SLJIT_JUMP) {
/* Invert type. */
*code_ptr++ = get_jump_code(type ^ 0x1) - 0x10;
*code_ptr++ = short_addr ? (6 + 3) : (10 + 3);
}
*code_ptr++ = short_addr ? REX_B : (REX_W | REX_B);
*code_ptr++ = MOV_r_i32 | reg_lmap[TMP_REG2];
jump->addr = (sljit_uw)code_ptr;
if (jump->flags & JUMP_LABEL)
jump->flags |= PATCH_MD;
else if (short_addr)
sljit_unaligned_store_s32(code_ptr, (sljit_s32)jump->u.target);
else
sljit_unaligned_store_sw(code_ptr, jump->u.target);
code_ptr += short_addr ? sizeof(sljit_s32) : sizeof(sljit_sw);
*code_ptr++ = REX_B;
*code_ptr++ = GROUP_FF;
*code_ptr++ = MOD_REG | (type >= SLJIT_FAST_CALL ? CALL_rm : JMP_rm) | reg_lmap[TMP_REG2];
return code_ptr;
}
SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_enter(struct sljit_compiler *compiler,
sljit_s32 options, sljit_s32 arg_types, sljit_s32 scratches, sljit_s32 saveds,
sljit_s32 fscratches, sljit_s32 fsaveds, sljit_s32 local_size)
{
sljit_s32 args, i, tmp, size, saved_register_size;
sljit_u8 *inst;
CHECK_ERROR();
CHECK(check_sljit_emit_enter(compiler, options, arg_types, scratches, saveds, fscratches, fsaveds, local_size));
set_emit_enter(compiler, options, arg_types, scratches, saveds, fscratches, fsaveds, local_size);
compiler->mode32 = 0;
#ifdef _WIN64
/* Two/four register slots for parameters plus space for xmm6 register if needed. */
if (fscratches >= 6 || fsaveds >= 1)
compiler->locals_offset = 6 * sizeof(sljit_sw);
else
compiler->locals_offset = ((scratches > 2) ? 4 : 2) * sizeof(sljit_sw);
#endif
/* Including the return address saved by the call instruction. */
saved_register_size = GET_SAVED_REGISTERS_SIZE(scratches, saveds, 1);
tmp = saveds < SLJIT_NUMBER_OF_SAVED_REGISTERS ? (SLJIT_S0 + 1 - saveds) : SLJIT_FIRST_SAVED_REG;
for (i = SLJIT_S0; i >= tmp; i--) {
size = reg_map[i] >= 8 ? 2 : 1;
inst = (sljit_u8*)ensure_buf(compiler, 1 + size);
FAIL_IF(!inst);
INC_SIZE(size);
if (reg_map[i] >= 8)
*inst++ = REX_B;
PUSH_REG(reg_lmap[i]);
}
for (i = scratches; i >= SLJIT_FIRST_SAVED_REG; i--) {
size = reg_map[i] >= 8 ? 2 : 1;
inst = (sljit_u8*)ensure_buf(compiler, 1 + size);
FAIL_IF(!inst);
INC_SIZE(size);
if (reg_map[i] >= 8)
*inst++ = REX_B;
PUSH_REG(reg_lmap[i]);
}
args = get_arg_count(arg_types);
if (args > 0) {
size = args * 3;
inst = (sljit_u8*)ensure_buf(compiler, 1 + size);
FAIL_IF(!inst);
INC_SIZE(size);
#ifndef _WIN64
if (args > 0) {
inst[0] = REX_W;
inst[1] = MOV_r_rm;
inst[2] = MOD_REG | (reg_map[SLJIT_S0] << 3) | 0x7 /* rdi */;
inst += 3;
}
if (args > 1) {
inst[0] = REX_W | REX_R;
inst[1] = MOV_r_rm;
inst[2] = MOD_REG | (reg_lmap[SLJIT_S1] << 3) | 0x6 /* rsi */;
inst += 3;
}
if (args > 2) {
inst[0] = REX_W | REX_R;
inst[1] = MOV_r_rm;
inst[2] = MOD_REG | (reg_lmap[SLJIT_S2] << 3) | 0x2 /* rdx */;
}
#else
if (args > 0) {
inst[0] = REX_W;
inst[1] = MOV_r_rm;
inst[2] = MOD_REG | (reg_map[SLJIT_S0] << 3) | 0x1 /* rcx */;
inst += 3;
}
if (args > 1) {
inst[0] = REX_W;
inst[1] = MOV_r_rm;
inst[2] = MOD_REG | (reg_map[SLJIT_S1] << 3) | 0x2 /* rdx */;
inst += 3;
}
if (args > 2) {
inst[0] = REX_W | REX_B;
inst[1] = MOV_r_rm;
inst[2] = MOD_REG | (reg_map[SLJIT_S2] << 3) | 0x0 /* r8 */;
}
#endif
}
local_size = ((local_size + SLJIT_LOCALS_OFFSET + saved_register_size + 15) & ~15) - saved_register_size;
compiler->local_size = local_size;
#ifdef _WIN64
if (local_size > 0) {
if (local_size <= 4 * 4096) {
if (local_size > 4096)
EMIT_MOV(compiler, TMP_REG1, 0, SLJIT_MEM1(SLJIT_SP), -4096);
if (local_size > 2 * 4096)
EMIT_MOV(compiler, TMP_REG1, 0, SLJIT_MEM1(SLJIT_SP), -4096 * 2);
if (local_size > 3 * 4096)
EMIT_MOV(compiler, TMP_REG1, 0, SLJIT_MEM1(SLJIT_SP), -4096 * 3);
}
else {
EMIT_MOV(compiler, SLJIT_R0, 0, SLJIT_SP, 0);
EMIT_MOV(compiler, TMP_REG1, 0, SLJIT_IMM, (local_size - 1) >> 12);
SLJIT_ASSERT (reg_map[SLJIT_R0] == 0);
EMIT_MOV(compiler, TMP_REG2, 0, SLJIT_MEM1(SLJIT_R0), -4096);
FAIL_IF(emit_non_cum_binary(compiler, BINARY_OPCODE(SUB),
SLJIT_R0, 0, SLJIT_R0, 0, SLJIT_IMM, 4096));
FAIL_IF(emit_non_cum_binary(compiler, BINARY_OPCODE(SUB),
TMP_REG1, 0, TMP_REG1, 0, SLJIT_IMM, 1));
inst = (sljit_u8*)ensure_buf(compiler, 1 + 2);
FAIL_IF(!inst);
INC_SIZE(2);
inst[0] = JNE_i8;
inst[1] = (sljit_s8) -19;
}
EMIT_MOV(compiler, TMP_REG1, 0, SLJIT_MEM1(SLJIT_SP), -local_size);
}
#endif
if (local_size > 0) {
FAIL_IF(emit_non_cum_binary(compiler, BINARY_OPCODE(SUB),
SLJIT_SP, 0, SLJIT_SP, 0, SLJIT_IMM, local_size));
}
#ifdef _WIN64
/* Save xmm6 register: movaps [rsp + 0x20], xmm6 */
if (fscratches >= 6 || fsaveds >= 1) {
inst = (sljit_u8*)ensure_buf(compiler, 1 + 5);
FAIL_IF(!inst);
INC_SIZE(5);
*inst++ = GROUP_0F;
sljit_unaligned_store_s32(inst, 0x20247429);
}
#endif
return SLJIT_SUCCESS;
}
SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_set_context(struct sljit_compiler *compiler,
sljit_s32 options, sljit_s32 arg_types, sljit_s32 scratches, sljit_s32 saveds,
sljit_s32 fscratches, sljit_s32 fsaveds, sljit_s32 local_size)
{
sljit_s32 saved_register_size;
CHECK_ERROR();
CHECK(check_sljit_set_context(compiler, options, arg_types, scratches, saveds, fscratches, fsaveds, local_size));
set_set_context(compiler, options, arg_types, scratches, saveds, fscratches, fsaveds, local_size);
#ifdef _WIN64
/* Two/four register slots for parameters plus space for xmm6 register if needed. */
if (fscratches >= 6 || fsaveds >= 1)
compiler->locals_offset = 6 * sizeof(sljit_sw);
else
compiler->locals_offset = ((scratches > 2) ? 4 : 2) * sizeof(sljit_sw);
#endif
/* Including the return address saved by the call instruction. */
saved_register_size = GET_SAVED_REGISTERS_SIZE(scratches, saveds, 1);
compiler->local_size = ((local_size + SLJIT_LOCALS_OFFSET + saved_register_size + 15) & ~15) - saved_register_size;
return SLJIT_SUCCESS;
}
SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_return(struct sljit_compiler *compiler, sljit_s32 op, sljit_s32 src, sljit_sw srcw)
{
sljit_s32 i, tmp, size;
sljit_u8 *inst;
CHECK_ERROR();
CHECK(check_sljit_emit_return(compiler, op, src, srcw));
FAIL_IF(emit_mov_before_return(compiler, op, src, srcw));
#ifdef _WIN64
/* Restore xmm6 register: movaps xmm6, [rsp + 0x20] */
if (compiler->fscratches >= 6 || compiler->fsaveds >= 1) {
inst = (sljit_u8*)ensure_buf(compiler, 1 + 5);
FAIL_IF(!inst);
INC_SIZE(5);
*inst++ = GROUP_0F;
sljit_unaligned_store_s32(inst, 0x20247428);
}
#endif
if (compiler->local_size > 0) {
if (compiler->local_size <= 127) {
inst = (sljit_u8*)ensure_buf(compiler, 1 + 4);
FAIL_IF(!inst);
INC_SIZE(4);
*inst++ = REX_W;
*inst++ = GROUP_BINARY_83;
*inst++ = MOD_REG | ADD | 4;
*inst = compiler->local_size;
}
else {
inst = (sljit_u8*)ensure_buf(compiler, 1 + 7);
FAIL_IF(!inst);
INC_SIZE(7);
*inst++ = REX_W;
*inst++ = GROUP_BINARY_81;
*inst++ = MOD_REG | ADD | 4;
sljit_unaligned_store_s32(inst, compiler->local_size);
}
}
tmp = compiler->scratches;
for (i = SLJIT_FIRST_SAVED_REG; i <= tmp; i++) {
size = reg_map[i] >= 8 ? 2 : 1;
inst = (sljit_u8*)ensure_buf(compiler, 1 + size);
FAIL_IF(!inst);
INC_SIZE(size);
if (reg_map[i] >= 8)
*inst++ = REX_B;
POP_REG(reg_lmap[i]);
}
tmp = compiler->saveds < SLJIT_NUMBER_OF_SAVED_REGISTERS ? (SLJIT_S0 + 1 - compiler->saveds) : SLJIT_FIRST_SAVED_REG;
for (i = tmp; i <= SLJIT_S0; i++) {
size = reg_map[i] >= 8 ? 2 : 1;
inst = (sljit_u8*)ensure_buf(compiler, 1 + size);
FAIL_IF(!inst);
INC_SIZE(size);
if (reg_map[i] >= 8)
*inst++ = REX_B;
POP_REG(reg_lmap[i]);
}
inst = (sljit_u8*)ensure_buf(compiler, 1 + 1);
FAIL_IF(!inst);
INC_SIZE(1);
RET();
return SLJIT_SUCCESS;
}
/* --------------------------------------------------------------------- */
/* Operators */
/* --------------------------------------------------------------------- */
static sljit_s32 emit_do_imm32(struct sljit_compiler *compiler, sljit_u8 rex, sljit_u8 opcode, sljit_sw imm)
{
sljit_u8 *inst;
sljit_s32 length = 1 + (rex ? 1 : 0) + sizeof(sljit_s32);
inst = (sljit_u8*)ensure_buf(compiler, 1 + length);
FAIL_IF(!inst);
INC_SIZE(length);
if (rex)
*inst++ = rex;
*inst++ = opcode;
sljit_unaligned_store_s32(inst, imm);
return SLJIT_SUCCESS;
}
static sljit_u8* emit_x86_instruction(struct sljit_compiler *compiler, sljit_s32 size,
/* The register or immediate operand. */
sljit_s32 a, sljit_sw imma,
/* The general operand (not immediate). */
sljit_s32 b, sljit_sw immb)
{
sljit_u8 *inst;
sljit_u8 *buf_ptr;
sljit_u8 rex = 0;
sljit_s32 flags = size & ~0xf;
sljit_s32 inst_size;
/* The immediate operand must be 32 bit. */
SLJIT_ASSERT(!(a & SLJIT_IMM) || compiler->mode32 || IS_HALFWORD(imma));
/* Both cannot be switched on. */
SLJIT_ASSERT((flags & (EX86_BIN_INS | EX86_SHIFT_INS)) != (EX86_BIN_INS | EX86_SHIFT_INS));
/* Size flags not allowed for typed instructions. */
SLJIT_ASSERT(!(flags & (EX86_BIN_INS | EX86_SHIFT_INS)) || (flags & (EX86_BYTE_ARG | EX86_HALF_ARG)) == 0);
/* Both size flags cannot be switched on. */
SLJIT_ASSERT((flags & (EX86_BYTE_ARG | EX86_HALF_ARG)) != (EX86_BYTE_ARG | EX86_HALF_ARG));
/* SSE2 and immediate is not possible. */
SLJIT_ASSERT(!(a & SLJIT_IMM) || !(flags & EX86_SSE2));
SLJIT_ASSERT((flags & (EX86_PREF_F2 | EX86_PREF_F3)) != (EX86_PREF_F2 | EX86_PREF_F3)
&& (flags & (EX86_PREF_F2 | EX86_PREF_66)) != (EX86_PREF_F2 | EX86_PREF_66)
&& (flags & (EX86_PREF_F3 | EX86_PREF_66)) != (EX86_PREF_F3 | EX86_PREF_66));
size &= 0xf;
inst_size = size;
if (!compiler->mode32 && !(flags & EX86_NO_REXW))
rex |= REX_W;
else if (flags & EX86_REX)
rex |= REX;
if (flags & (EX86_PREF_F2 | EX86_PREF_F3))
inst_size++;
if (flags & EX86_PREF_66)
inst_size++;
/* Calculate size of b. */
inst_size += 1; /* mod r/m byte. */
if (b & SLJIT_MEM) {
if (!(b & OFFS_REG_MASK)) {
if (NOT_HALFWORD(immb)) {
PTR_FAIL_IF(emit_load_imm64(compiler, TMP_REG2, immb));
immb = 0;
if (b & REG_MASK)
b |= TO_OFFS_REG(TMP_REG2);
else
b |= TMP_REG2;
}
else if (reg_lmap[b & REG_MASK] == 4)
b |= TO_OFFS_REG(SLJIT_SP);
}
if ((b & REG_MASK) == SLJIT_UNUSED)
inst_size += 1 + sizeof(sljit_s32); /* SIB byte required to avoid RIP based addressing. */
else {
if (reg_map[b & REG_MASK] >= 8)
rex |= REX_B;
if (immb != 0 && (!(b & OFFS_REG_MASK) || (b & OFFS_REG_MASK) == TO_OFFS_REG(SLJIT_SP))) {
/* Immediate operand. */
if (immb <= 127 && immb >= -128)
inst_size += sizeof(sljit_s8);
else
inst_size += sizeof(sljit_s32);
}
else if (reg_lmap[b & REG_MASK] == 5)
inst_size += sizeof(sljit_s8);
if ((b & OFFS_REG_MASK) != SLJIT_UNUSED) {
inst_size += 1; /* SIB byte. */
if (reg_map[OFFS_REG(b)] >= 8)
rex |= REX_X;
}
}
}
else if (!(flags & EX86_SSE2_OP2)) {
if (reg_map[b] >= 8)
rex |= REX_B;
}
else if (freg_map[b] >= 8)
rex |= REX_B;
if (a & SLJIT_IMM) {
if (flags & EX86_BIN_INS) {
if (imma <= 127 && imma >= -128) {
inst_size += 1;
flags |= EX86_BYTE_ARG;
} else
inst_size += 4;
}
else if (flags & EX86_SHIFT_INS) {
imma &= compiler->mode32 ? 0x1f : 0x3f;
if (imma != 1) {
inst_size ++;
flags |= EX86_BYTE_ARG;
}
} else if (flags & EX86_BYTE_ARG)
inst_size++;
else if (flags & EX86_HALF_ARG)
inst_size += sizeof(short);
else
inst_size += sizeof(sljit_s32);
}
else {
SLJIT_ASSERT(!(flags & EX86_SHIFT_INS) || a == SLJIT_PREF_SHIFT_REG);
/* reg_map[SLJIT_PREF_SHIFT_REG] is less than 8. */
if (!(flags & EX86_SSE2_OP1)) {
if (reg_map[a] >= 8)
rex |= REX_R;
}
else if (freg_map[a] >= 8)
rex |= REX_R;
}
if (rex)
inst_size++;
inst = (sljit_u8*)ensure_buf(compiler, 1 + inst_size);
PTR_FAIL_IF(!inst);
/* Encoding the byte. */
INC_SIZE(inst_size);
if (flags & EX86_PREF_F2)
*inst++ = 0xf2;
if (flags & EX86_PREF_F3)
*inst++ = 0xf3;
if (flags & EX86_PREF_66)
*inst++ = 0x66;
if (rex)
*inst++ = rex;
buf_ptr = inst + size;
/* Encode mod/rm byte. */
if (!(flags & EX86_SHIFT_INS)) {
if ((flags & EX86_BIN_INS) && (a & SLJIT_IMM))
*inst = (flags & EX86_BYTE_ARG) ? GROUP_BINARY_83 : GROUP_BINARY_81;
if (a & SLJIT_IMM)
*buf_ptr = 0;
else if (!(flags & EX86_SSE2_OP1))
*buf_ptr = reg_lmap[a] << 3;
else
*buf_ptr = freg_lmap[a] << 3;
}
else {
if (a & SLJIT_IMM) {
if (imma == 1)
*inst = GROUP_SHIFT_1;
else
*inst = GROUP_SHIFT_N;
} else
*inst = GROUP_SHIFT_CL;
*buf_ptr = 0;
}
if (!(b & SLJIT_MEM))
*buf_ptr++ |= MOD_REG + ((!(flags & EX86_SSE2_OP2)) ? reg_lmap[b] : freg_lmap[b]);
else if ((b & REG_MASK) != SLJIT_UNUSED) {
if ((b & OFFS_REG_MASK) == SLJIT_UNUSED || (b & OFFS_REG_MASK) == TO_OFFS_REG(SLJIT_SP)) {
if (immb != 0 || reg_lmap[b & REG_MASK] == 5) {
if (immb <= 127 && immb >= -128)
*buf_ptr |= 0x40;
else
*buf_ptr |= 0x80;
}
if ((b & OFFS_REG_MASK) == SLJIT_UNUSED)
*buf_ptr++ |= reg_lmap[b & REG_MASK];
else {
*buf_ptr++ |= 0x04;
*buf_ptr++ = reg_lmap[b & REG_MASK] | (reg_lmap[OFFS_REG(b)] << 3);
}
if (immb != 0 || reg_lmap[b & REG_MASK] == 5) {
if (immb <= 127 && immb >= -128)
*buf_ptr++ = immb; /* 8 bit displacement. */
else {
sljit_unaligned_store_s32(buf_ptr, immb); /* 32 bit displacement. */
buf_ptr += sizeof(sljit_s32);
}
}
}
else {
if (reg_lmap[b & REG_MASK] == 5)
*buf_ptr |= 0x40;
*buf_ptr++ |= 0x04;
*buf_ptr++ = reg_lmap[b & REG_MASK] | (reg_lmap[OFFS_REG(b)] << 3) | (immb << 6);
if (reg_lmap[b & REG_MASK] == 5)
*buf_ptr++ = 0;
}
}
else {
*buf_ptr++ |= 0x04;
*buf_ptr++ = 0x25;
sljit_unaligned_store_s32(buf_ptr, immb); /* 32 bit displacement. */
buf_ptr += sizeof(sljit_s32);
}
if (a & SLJIT_IMM) {
if (flags & EX86_BYTE_ARG)
*buf_ptr = imma;
else if (flags & EX86_HALF_ARG)
sljit_unaligned_store_s16(buf_ptr, imma);
else if (!(flags & EX86_SHIFT_INS))
sljit_unaligned_store_s32(buf_ptr, imma);
}
return !(flags & EX86_SHIFT_INS) ? inst : (inst + 1);
}
/* --------------------------------------------------------------------- */
/* Call / return instructions */
/* --------------------------------------------------------------------- */
#ifndef _WIN64
static sljit_s32 call_with_args(struct sljit_compiler *compiler, sljit_s32 arg_types, sljit_s32 *src_ptr, sljit_sw srcw)
{
sljit_s32 src = src_ptr ? (*src_ptr) : 0;
sljit_s32 word_arg_count = 0;
SLJIT_ASSERT(reg_map[SLJIT_R1] == 6 && reg_map[SLJIT_R3] == 1 && reg_map[TMP_REG1] == 2);
compiler->mode32 = 0;
/* Remove return value. */
arg_types >>= SLJIT_DEF_SHIFT;
while (arg_types) {
if ((arg_types & SLJIT_DEF_MASK) < SLJIT_ARG_TYPE_F32)
word_arg_count++;
arg_types >>= SLJIT_DEF_SHIFT;
}
if (word_arg_count == 0)
return SLJIT_SUCCESS;
if (src & SLJIT_MEM) {
ADJUST_LOCAL_OFFSET(src, srcw);
EMIT_MOV(compiler, TMP_REG2, 0, src, srcw);
*src_ptr = TMP_REG2;
}
else if (src == SLJIT_R2 && word_arg_count >= SLJIT_R2)
*src_ptr = TMP_REG1;
if (word_arg_count >= 3)
EMIT_MOV(compiler, TMP_REG1, 0, SLJIT_R2, 0);
return emit_mov(compiler, SLJIT_R2, 0, SLJIT_R0, 0);
}
#else
static sljit_s32 call_with_args(struct sljit_compiler *compiler, sljit_s32 arg_types, sljit_s32 *src_ptr, sljit_sw srcw)
{
sljit_s32 src = src_ptr ? (*src_ptr) : 0;
sljit_s32 arg_count = 0;
sljit_s32 word_arg_count = 0;
sljit_s32 float_arg_count = 0;
sljit_s32 types = 0;
sljit_s32 data_trandfer = 0;
static sljit_u8 word_arg_regs[5] = { 0, SLJIT_R3, SLJIT_R1, SLJIT_R2, TMP_REG1 };
SLJIT_ASSERT(reg_map[SLJIT_R3] == 1 && reg_map[SLJIT_R1] == 2 && reg_map[SLJIT_R2] == 8 && reg_map[TMP_REG1] == 9);
compiler->mode32 = 0;
arg_types >>= SLJIT_DEF_SHIFT;
while (arg_types) {
types = (types << SLJIT_DEF_SHIFT) | (arg_types & SLJIT_DEF_MASK);
switch (arg_types & SLJIT_DEF_MASK) {
case SLJIT_ARG_TYPE_F32:
case SLJIT_ARG_TYPE_F64:
arg_count++;
float_arg_count++;
if (arg_count != float_arg_count)
data_trandfer = 1;
break;
default:
arg_count++;
word_arg_count++;
if (arg_count != word_arg_count || arg_count != word_arg_regs[arg_count]) {
data_trandfer = 1;
if (src == word_arg_regs[arg_count]) {
EMIT_MOV(compiler, TMP_REG2, 0, src, 0);
*src_ptr = TMP_REG2;
}
}
break;
}
arg_types >>= SLJIT_DEF_SHIFT;
}
if (!data_trandfer)
return SLJIT_SUCCESS;
if (src & SLJIT_MEM) {
ADJUST_LOCAL_OFFSET(src, srcw);
EMIT_MOV(compiler, TMP_REG2, 0, src, srcw);
*src_ptr = TMP_REG2;
}
while (types) {
switch (types & SLJIT_DEF_MASK) {
case SLJIT_ARG_TYPE_F32:
if (arg_count != float_arg_count)
FAIL_IF(emit_sse2_load(compiler, 1, arg_count, float_arg_count, 0));
arg_count--;
float_arg_count--;
break;
case SLJIT_ARG_TYPE_F64:
if (arg_count != float_arg_count)
FAIL_IF(emit_sse2_load(compiler, 0, arg_count, float_arg_count, 0));
arg_count--;
float_arg_count--;
break;
default:
if (arg_count != word_arg_count || arg_count != word_arg_regs[arg_count])
EMIT_MOV(compiler, word_arg_regs[arg_count], 0, word_arg_count, 0);
arg_count--;
word_arg_count--;
break;
}
types >>= SLJIT_DEF_SHIFT;
}
return SLJIT_SUCCESS;
}
#endif
SLJIT_API_FUNC_ATTRIBUTE struct sljit_jump* sljit_emit_call(struct sljit_compiler *compiler, sljit_s32 type,
sljit_s32 arg_types)
{
CHECK_ERROR_PTR();
CHECK_PTR(check_sljit_emit_call(compiler, type, arg_types));
PTR_FAIL_IF(call_with_args(compiler, arg_types, NULL, 0));
#if (defined SLJIT_VERBOSE && SLJIT_VERBOSE) \
|| (defined SLJIT_ARGUMENT_CHECKS && SLJIT_ARGUMENT_CHECKS)
compiler->skip_checks = 1;
#endif
return sljit_emit_jump(compiler, type);
}
SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_icall(struct sljit_compiler *compiler, sljit_s32 type,
sljit_s32 arg_types,
sljit_s32 src, sljit_sw srcw)
{
CHECK_ERROR();
CHECK(check_sljit_emit_icall(compiler, type, arg_types, src, srcw));
FAIL_IF(call_with_args(compiler, arg_types, &src, srcw));
#if (defined SLJIT_VERBOSE && SLJIT_VERBOSE) \
|| (defined SLJIT_ARGUMENT_CHECKS && SLJIT_ARGUMENT_CHECKS)
compiler->skip_checks = 1;
#endif
return sljit_emit_ijump(compiler, type, src, srcw);
}
SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_fast_enter(struct sljit_compiler *compiler, sljit_s32 dst, sljit_sw dstw)
{
sljit_u8 *inst;
CHECK_ERROR();
CHECK(check_sljit_emit_fast_enter(compiler, dst, dstw));
ADJUST_LOCAL_OFFSET(dst, dstw);
/* For UNUSED dst. Uncommon, but possible. */
if (dst == SLJIT_UNUSED)
dst = TMP_REG1;
if (FAST_IS_REG(dst)) {
if (reg_map[dst] < 8) {
inst = (sljit_u8*)ensure_buf(compiler, 1 + 1);
FAIL_IF(!inst);
INC_SIZE(1);
POP_REG(reg_lmap[dst]);
return SLJIT_SUCCESS;
}
inst = (sljit_u8*)ensure_buf(compiler, 1 + 2);
FAIL_IF(!inst);
INC_SIZE(2);
*inst++ = REX_B;
POP_REG(reg_lmap[dst]);
return SLJIT_SUCCESS;
}
/* REX_W is not necessary (src is not immediate). */
compiler->mode32 = 1;
inst = emit_x86_instruction(compiler, 1, 0, 0, dst, dstw);
FAIL_IF(!inst);
*inst++ = POP_rm;
return SLJIT_SUCCESS;
}
SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_fast_return(struct sljit_compiler *compiler, sljit_s32 src, sljit_sw srcw)
{
sljit_u8 *inst;
CHECK_ERROR();
CHECK(check_sljit_emit_fast_return(compiler, src, srcw));
ADJUST_LOCAL_OFFSET(src, srcw);
if (FAST_IS_REG(src)) {
if (reg_map[src] < 8) {
inst = (sljit_u8*)ensure_buf(compiler, 1 + 1 + 1);
FAIL_IF(!inst);
INC_SIZE(1 + 1);
PUSH_REG(reg_lmap[src]);
}
else {
inst = (sljit_u8*)ensure_buf(compiler, 1 + 2 + 1);
FAIL_IF(!inst);
INC_SIZE(2 + 1);
*inst++ = REX_B;
PUSH_REG(reg_lmap[src]);
}
}
else {
/* REX_W is not necessary (src is not immediate). */
compiler->mode32 = 1;
inst = emit_x86_instruction(compiler, 1, 0, 0, src, srcw);
FAIL_IF(!inst);
*inst++ = GROUP_FF;
*inst |= PUSH_rm;
inst = (sljit_u8*)ensure_buf(compiler, 1 + 1);
FAIL_IF(!inst);
INC_SIZE(1);
}
RET();
return SLJIT_SUCCESS;
}
/* --------------------------------------------------------------------- */
/* Extend input */
/* --------------------------------------------------------------------- */
static sljit_s32 emit_mov_int(struct sljit_compiler *compiler, sljit_s32 sign,
sljit_s32 dst, sljit_sw dstw,
sljit_s32 src, sljit_sw srcw)
{
sljit_u8* inst;
sljit_s32 dst_r;
compiler->mode32 = 0;
if (dst == SLJIT_UNUSED && !(src & SLJIT_MEM))
return SLJIT_SUCCESS; /* Empty instruction. */
if (src & SLJIT_IMM) {
if (FAST_IS_REG(dst)) {
if (sign || ((sljit_uw)srcw <= 0x7fffffff)) {
inst = emit_x86_instruction(compiler, 1, SLJIT_IMM, (sljit_sw)(sljit_s32)srcw, dst, dstw);
FAIL_IF(!inst);
*inst = MOV_rm_i32;
return SLJIT_SUCCESS;
}
return emit_load_imm64(compiler, dst, srcw);
}
compiler->mode32 = 1;
inst = emit_x86_instruction(compiler, 1, SLJIT_IMM, (sljit_sw)(sljit_s32)srcw, dst, dstw);
FAIL_IF(!inst);
*inst = MOV_rm_i32;
compiler->mode32 = 0;
return SLJIT_SUCCESS;
}
dst_r = FAST_IS_REG(dst) ? dst : TMP_REG1;
if ((dst & SLJIT_MEM) && FAST_IS_REG(src))
dst_r = src;
else {
if (sign) {
inst = emit_x86_instruction(compiler, 1, dst_r, 0, src, srcw);
FAIL_IF(!inst);
*inst++ = MOVSXD_r_rm;
} else {
compiler->mode32 = 1;
FAIL_IF(emit_mov(compiler, dst_r, 0, src, srcw));
compiler->mode32 = 0;
}
}
if (dst & SLJIT_MEM) {
compiler->mode32 = 1;
inst = emit_x86_instruction(compiler, 1, dst_r, 0, dst, dstw);
FAIL_IF(!inst);
*inst = MOV_rm_r;
compiler->mode32 = 0;
}
return SLJIT_SUCCESS;
}