/*
* Stack-less Just-In-Time compiler
*
* Copyright Zoltan Herczeg (hzmester@freemail.hu). All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification, are
* permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this list of
* conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice, this list
* of conditions and the following disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) AND CONTRIBUTORS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
* SHALL THE COPYRIGHT HOLDER(S) OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
* TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifdef __SOFTFP__
#define ARM_ABI_INFO " ABI:softfp"
#else
#define ARM_ABI_INFO " ABI:hardfp"
#endif
SLJIT_API_FUNC_ATTRIBUTE const char* sljit_get_platform_name(void)
{
#if (defined SLJIT_CONFIG_ARM_V7 && SLJIT_CONFIG_ARM_V7)
return "ARMv7" SLJIT_CPUINFO ARM_ABI_INFO;
#elif (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5)
return "ARMv5" SLJIT_CPUINFO ARM_ABI_INFO;
#else
#error "Internal error: Unknown ARM architecture"
#endif
}
/* Last register + 1. */
#define TMP_REG1 (SLJIT_NUMBER_OF_REGISTERS + 2)
#define TMP_REG2 (SLJIT_NUMBER_OF_REGISTERS + 3)
#define TMP_PC (SLJIT_NUMBER_OF_REGISTERS + 4)
#define TMP_FREG1 (SLJIT_NUMBER_OF_FLOAT_REGISTERS + 1)
#define TMP_FREG2 (SLJIT_NUMBER_OF_FLOAT_REGISTERS + 2)
/* In ARM instruction words.
Cache lines are usually 32 byte aligned. */
#define CONST_POOL_ALIGNMENT 8
#define CONST_POOL_EMPTY 0xffffffff
#define ALIGN_INSTRUCTION(ptr) \
(sljit_uw*)(((sljit_uw)(ptr) + (CONST_POOL_ALIGNMENT * sizeof(sljit_uw)) - 1) & ~((CONST_POOL_ALIGNMENT * sizeof(sljit_uw)) - 1))
#define MAX_DIFFERENCE(max_diff) \
(((max_diff) / (sljit_s32)sizeof(sljit_uw)) - (CONST_POOL_ALIGNMENT - 1))
/* See sljit_emit_enter and sljit_emit_op0 if you want to change them. */
static const sljit_u8 reg_map[SLJIT_NUMBER_OF_REGISTERS + 5] = {
0, 0, 1, 2, 3, 11, 10, 9, 8, 7, 6, 5, 4, 13, 12, 14, 15
};
static const sljit_u8 freg_map[SLJIT_NUMBER_OF_FLOAT_REGISTERS + 3] = {
0, 0, 1, 2, 3, 4, 5, 6, 7
};
#define RM(rm) (reg_map[rm])
#define RD(rd) (reg_map[rd] << 12)
#define RN(rn) (reg_map[rn] << 16)
/* --------------------------------------------------------------------- */
/* Instrucion forms */
/* --------------------------------------------------------------------- */
/* The instruction includes the AL condition.
INST_NAME - CONDITIONAL remove this flag. */
#define COND_MASK 0xf0000000
#define CONDITIONAL 0xe0000000
#define PUSH_POOL 0xff000000
#define ADC 0xe0a00000
#define ADD 0xe0800000
#define AND 0xe0000000
#define B 0xea000000
#define BIC 0xe1c00000
#define BL 0xeb000000
#define BLX 0xe12fff30
#define BX 0xe12fff10
#define CLZ 0xe16f0f10
#define CMN 0xe1600000
#define CMP 0xe1400000
#define BKPT 0xe1200070
#define EOR 0xe0200000
#define MOV 0xe1a00000
#define MUL 0xe0000090
#define MVN 0xe1e00000
#define NOP 0xe1a00000
#define ORR 0xe1800000
#define PUSH 0xe92d0000
#define POP 0xe8bd0000
#define RSB 0xe0600000
#define RSC 0xe0e00000
#define SBC 0xe0c00000
#define SMULL 0xe0c00090
#define SUB 0xe0400000
#define UMULL 0xe0800090
#define VABS_F32 0xeeb00ac0
#define VADD_F32 0xee300a00
#define VCMP_F32 0xeeb40a40
#define VCVT_F32_S32 0xeeb80ac0
#define VCVT_F64_F32 0xeeb70ac0
#define VCVT_S32_F32 0xeebd0ac0
#define VDIV_F32 0xee800a00
#define VMOV_F32 0xeeb00a40
#define VMOV 0xee000a10
#define VMOV2 0xec400a10
#define VMRS 0xeef1fa10
#define VMUL_F32 0xee200a00
#define VNEG_F32 0xeeb10a40
#define VSTR_F32 0xed000a00
#define VSUB_F32 0xee300a40
#if (defined SLJIT_CONFIG_ARM_V7 && SLJIT_CONFIG_ARM_V7)
/* Arm v7 specific instructions. */
#define MOVW 0xe3000000
#define MOVT 0xe3400000
#define SXTB 0xe6af0070
#define SXTH 0xe6bf0070
#define UXTB 0xe6ef0070
#define UXTH 0xe6ff0070
#endif
#if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5)
static sljit_s32 push_cpool(struct sljit_compiler *compiler)
{
/* Pushing the constant pool into the instruction stream. */
sljit_uw* inst;
sljit_uw* cpool_ptr;
sljit_uw* cpool_end;
sljit_s32 i;
/* The label could point the address after the constant pool. */
if (compiler->last_label && compiler->last_label->size == compiler->size)
compiler->last_label->size += compiler->cpool_fill + (CONST_POOL_ALIGNMENT - 1) + 1;
SLJIT_ASSERT(compiler->cpool_fill > 0 && compiler->cpool_fill <= CPOOL_SIZE);
inst = (sljit_uw*)ensure_buf(compiler, sizeof(sljit_uw));
FAIL_IF(!inst);
compiler->size++;
*inst = 0xff000000 | compiler->cpool_fill;
for (i = 0; i < CONST_POOL_ALIGNMENT - 1; i++) {
inst = (sljit_uw*)ensure_buf(compiler, sizeof(sljit_uw));
FAIL_IF(!inst);
compiler->size++;
*inst = 0;
}
cpool_ptr = compiler->cpool;
cpool_end = cpool_ptr + compiler->cpool_fill;
while (cpool_ptr < cpool_end) {
inst = (sljit_uw*)ensure_buf(compiler, sizeof(sljit_uw));
FAIL_IF(!inst);
compiler->size++;
*inst = *cpool_ptr++;
}
compiler->cpool_diff = CONST_POOL_EMPTY;
compiler->cpool_fill = 0;
return SLJIT_SUCCESS;
}
static sljit_s32 push_inst(struct sljit_compiler *compiler, sljit_uw inst)
{
sljit_uw* ptr;
if (SLJIT_UNLIKELY(compiler->cpool_diff != CONST_POOL_EMPTY && compiler->size - compiler->cpool_diff >= MAX_DIFFERENCE(4092)))
FAIL_IF(push_cpool(compiler));
ptr = (sljit_uw*)ensure_buf(compiler, sizeof(sljit_uw));
FAIL_IF(!ptr);
compiler->size++;
*ptr = inst;
return SLJIT_SUCCESS;
}
static sljit_s32 push_inst_with_literal(struct sljit_compiler *compiler, sljit_uw inst, sljit_uw literal)
{
sljit_uw* ptr;
sljit_uw cpool_index = CPOOL_SIZE;
sljit_uw* cpool_ptr;
sljit_uw* cpool_end;
sljit_u8* cpool_unique_ptr;
if (SLJIT_UNLIKELY(compiler->cpool_diff != CONST_POOL_EMPTY && compiler->size - compiler->cpool_diff >= MAX_DIFFERENCE(4092)))
FAIL_IF(push_cpool(compiler));
else if (compiler->cpool_fill > 0) {
cpool_ptr = compiler->cpool;
cpool_end = cpool_ptr + compiler->cpool_fill;
cpool_unique_ptr = compiler->cpool_unique;
do {
if ((*cpool_ptr == literal) && !(*cpool_unique_ptr)) {
cpool_index = cpool_ptr - compiler->cpool;
break;
}
cpool_ptr++;
cpool_unique_ptr++;
} while (cpool_ptr < cpool_end);
}
if (cpool_index == CPOOL_SIZE) {
/* Must allocate a new entry in the literal pool. */
if (compiler->cpool_fill < CPOOL_SIZE) {
cpool_index = compiler->cpool_fill;
compiler->cpool_fill++;
}
else {
FAIL_IF(push_cpool(compiler));
cpool_index = 0;
compiler->cpool_fill = 1;
}
}
SLJIT_ASSERT((inst & 0xfff) == 0);
ptr = (sljit_uw*)ensure_buf(compiler, sizeof(sljit_uw));
FAIL_IF(!ptr);
compiler->size++;
*ptr = inst | cpool_index;
compiler->cpool[cpool_index] = literal;
compiler->cpool_unique[cpool_index] = 0;
if (compiler->cpool_diff == CONST_POOL_EMPTY)
compiler->cpool_diff = compiler->size;
return SLJIT_SUCCESS;
}
static sljit_s32 push_inst_with_unique_literal(struct sljit_compiler *compiler, sljit_uw inst, sljit_uw literal)
{
sljit_uw* ptr;
if (SLJIT_UNLIKELY((compiler->cpool_diff != CONST_POOL_EMPTY && compiler->size - compiler->cpool_diff >= MAX_DIFFERENCE(4092)) || compiler->cpool_fill >= CPOOL_SIZE))
FAIL_IF(push_cpool(compiler));
SLJIT_ASSERT(compiler->cpool_fill < CPOOL_SIZE && (inst & 0xfff) == 0);
ptr = (sljit_uw*)ensure_buf(compiler, sizeof(sljit_uw));
FAIL_IF(!ptr);
compiler->size++;
*ptr = inst | compiler->cpool_fill;
compiler->cpool[compiler->cpool_fill] = literal;
compiler->cpool_unique[compiler->cpool_fill] = 1;
compiler->cpool_fill++;
if (compiler->cpool_diff == CONST_POOL_EMPTY)
compiler->cpool_diff = compiler->size;
return SLJIT_SUCCESS;
}
static SLJIT_INLINE sljit_s32 prepare_blx(struct sljit_compiler *compiler)
{
/* Place for at least two instruction (doesn't matter whether the first has a literal). */
if (SLJIT_UNLIKELY(compiler->cpool_diff != CONST_POOL_EMPTY && compiler->size - compiler->cpool_diff >= MAX_DIFFERENCE(4088)))
return push_cpool(compiler);
return SLJIT_SUCCESS;
}
static SLJIT_INLINE sljit_s32 emit_blx(struct sljit_compiler *compiler)
{
/* Must follow tightly the previous instruction (to be able to convert it to bl instruction). */
SLJIT_ASSERT(compiler->cpool_diff == CONST_POOL_EMPTY || compiler->size - compiler->cpool_diff < MAX_DIFFERENCE(4092));
SLJIT_ASSERT(reg_map[TMP_REG1] != 14);
return push_inst(compiler, BLX | RM(TMP_REG1));
}
static sljit_uw patch_pc_relative_loads(sljit_uw *last_pc_patch, sljit_uw *code_ptr, sljit_uw* const_pool, sljit_uw cpool_size)
{
sljit_uw diff;
sljit_uw ind;
sljit_uw counter = 0;
sljit_uw* clear_const_pool = const_pool;
sljit_uw* clear_const_pool_end = const_pool + cpool_size;
SLJIT_ASSERT(const_pool - code_ptr <= CONST_POOL_ALIGNMENT);
/* Set unused flag for all literals in the constant pool.
I.e.: unused literals can belong to branches, which can be encoded as B or BL.
We can "compress" the constant pool by discarding these literals. */
while (clear_const_pool < clear_const_pool_end)
*clear_const_pool++ = (sljit_uw)(-1);
while (last_pc_patch < code_ptr) {
/* Data transfer instruction with Rn == r15. */
if ((*last_pc_patch & 0x0c0f0000) == 0x040f0000) {
diff = const_pool - last_pc_patch;
ind = (*last_pc_patch) & 0xfff;
/* Must be a load instruction with immediate offset. */
SLJIT_ASSERT(ind < cpool_size && !(*last_pc_patch & (1 << 25)) && (*last_pc_patch & (1 << 20)));
if ((sljit_s32)const_pool[ind] < 0) {
const_pool[ind] = counter;
ind = counter;
counter++;
}
else
ind = const_pool[ind];
SLJIT_ASSERT(diff >= 1);
if (diff >= 2 || ind > 0) {
diff = (diff + ind - 2) << 2;
SLJIT_ASSERT(diff <= 0xfff);
*last_pc_patch = (*last_pc_patch & ~0xfff) | diff;
}
else
*last_pc_patch = (*last_pc_patch & ~(0xfff | (1 << 23))) | 0x004;
}
last_pc_patch++;
}
return counter;
}
/* In some rare ocasions we may need future patches. The probability is close to 0 in practice. */
struct future_patch {
struct future_patch* next;
sljit_s32 index;
sljit_s32 value;
};
static sljit_s32 resolve_const_pool_index(struct sljit_compiler *compiler, struct future_patch **first_patch, sljit_uw cpool_current_index, sljit_uw *cpool_start_address, sljit_uw *buf_ptr)
{
sljit_s32 value;
struct future_patch *curr_patch, *prev_patch;
SLJIT_UNUSED_ARG(compiler);
/* Using the values generated by patch_pc_relative_loads. */
if (!*first_patch)
value = (sljit_s32)cpool_start_address[cpool_current_index];
else {
curr_patch = *first_patch;
prev_patch = NULL;
while (1) {
if (!curr_patch) {
value = (sljit_s32)cpool_start_address[cpool_current_index];
break;
}
if ((sljit_uw)curr_patch->index == cpool_current_index) {
value = curr_patch->value;
if (prev_patch)
prev_patch->next = curr_patch->next;
else
*first_patch = curr_patch->next;
SLJIT_FREE(curr_patch, compiler->allocator_data);
break;
}
prev_patch = curr_patch;
curr_patch = curr_patch->next;
}
}
if (value >= 0) {
if ((sljit_uw)value > cpool_current_index) {
curr_patch = (struct future_patch*)SLJIT_MALLOC(sizeof(struct future_patch), compiler->allocator_data);
if (!curr_patch) {
while (*first_patch) {
curr_patch = *first_patch;
*first_patch = (*first_patch)->next;
SLJIT_FREE(curr_patch, compiler->allocator_data);
}
return SLJIT_ERR_ALLOC_FAILED;
}
curr_patch->next = *first_patch;
curr_patch->index = value;
curr_patch->value = cpool_start_address[value];
*first_patch = curr_patch;
}
cpool_start_address[value] = *buf_ptr;
}
return SLJIT_SUCCESS;
}
#else
static sljit_s32 push_inst(struct sljit_compiler *compiler, sljit_uw inst)
{
sljit_uw* ptr;
ptr = (sljit_uw*)ensure_buf(compiler, sizeof(sljit_uw));
FAIL_IF(!ptr);
compiler->size++;
*ptr = inst;
return SLJIT_SUCCESS;
}
static SLJIT_INLINE sljit_s32 emit_imm(struct sljit_compiler *compiler, sljit_s32 reg, sljit_sw imm)
{
FAIL_IF(push_inst(compiler, MOVW | RD(reg) | ((imm << 4) & 0xf0000) | (imm & 0xfff)));
return push_inst(compiler, MOVT | RD(reg) | ((imm >> 12) & 0xf0000) | ((imm >> 16) & 0xfff));
}
#endif
static SLJIT_INLINE sljit_s32 detect_jump_type(struct sljit_jump *jump, sljit_uw *code_ptr, sljit_uw *code, sljit_sw executable_offset)
{
sljit_sw diff;
if (jump->flags & SLJIT_REWRITABLE_JUMP)
return 0;
#if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5)
if (jump->flags & IS_BL)
code_ptr--;
if (jump->flags & JUMP_ADDR)
diff = ((sljit_sw)jump->u.target - (sljit_sw)(code_ptr + 2) - executable_offset);
else {
SLJIT_ASSERT(jump->flags & JUMP_LABEL);
diff = ((sljit_sw)(code + jump->u.label->size) - (sljit_sw)(code_ptr + 2));
}
/* Branch to Thumb code has not been optimized yet. */
if (diff & 0x3)
return 0;
if (jump->flags & IS_BL) {
if (diff <= 0x01ffffff && diff >= -0x02000000) {
*code_ptr = (BL - CONDITIONAL) | (*(code_ptr + 1) & COND_MASK);
jump->flags |= PATCH_B;
return 1;
}
}
else {
if (diff <= 0x01ffffff && diff >= -0x02000000) {
*code_ptr = (B - CONDITIONAL) | (*code_ptr & COND_MASK);
jump->flags |= PATCH_B;
}
}
#else
if (jump->flags & JUMP_ADDR)
diff = ((sljit_sw)jump->u.target - (sljit_sw)code_ptr - executable_offset);
else {
SLJIT_ASSERT(jump->flags & JUMP_LABEL);
diff = ((sljit_sw)(code + jump->u.label->size) - (sljit_sw)code_ptr);
}
/* Branch to Thumb code has not been optimized yet. */
if (diff & 0x3)
return 0;
if (diff <= 0x01ffffff && diff >= -0x02000000) {
code_ptr -= 2;
*code_ptr = ((jump->flags & IS_BL) ? (BL - CONDITIONAL) : (B - CONDITIONAL)) | (code_ptr[2] & COND_MASK);
jump->flags |= PATCH_B;
return 1;
}
#endif
return 0;
}
static SLJIT_INLINE void inline_set_jump_addr(sljit_uw jump_ptr, sljit_sw executable_offset, sljit_uw new_addr, sljit_s32 flush_cache)
{
#if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5)
sljit_uw *ptr = (sljit_uw *)jump_ptr;
sljit_uw *inst = (sljit_uw *)ptr[0];
sljit_uw mov_pc = ptr[1];
sljit_s32 bl = (mov_pc & 0x0000f000) != RD(TMP_PC);
sljit_sw diff = (sljit_sw)(((sljit_sw)new_addr - (sljit_sw)(inst + 2) - executable_offset) >> 2);
if (diff <= 0x7fffff && diff >= -0x800000) {
/* Turn to branch. */
if (!bl) {
inst[0] = (mov_pc & COND_MASK) | (B - CONDITIONAL) | (diff & 0xffffff);
if (flush_cache) {
inst = (sljit_uw *)SLJIT_ADD_EXEC_OFFSET(inst, executable_offset);
SLJIT_CACHE_FLUSH(inst, inst + 1);
}
} else {
inst[0] = (mov_pc & COND_MASK) | (BL - CONDITIONAL) | (diff & 0xffffff);
inst[1] = NOP;
if (flush_cache) {
inst = (sljit_uw *)SLJIT_ADD_EXEC_OFFSET(inst, executable_offset);
SLJIT_CACHE_FLUSH(inst, inst + 2);
}
}
} else {
/* Get the position of the constant. */
if (mov_pc & (1 << 23))
ptr = inst + ((mov_pc & 0xfff) >> 2) + 2;
else
ptr = inst + 1;
if (*inst != mov_pc) {
inst[0] = mov_pc;
if (!bl) {
if (flush_cache) {
inst = (sljit_uw *)SLJIT_ADD_EXEC_OFFSET(inst, executable_offset);
SLJIT_CACHE_FLUSH(inst, inst + 1);
}
} else {
inst[1] = BLX | RM(TMP_REG1);
if (flush_cache) {
inst = (sljit_uw *)SLJIT_ADD_EXEC_OFFSET(inst, executable_offset);
SLJIT_CACHE_FLUSH(inst, inst + 2);
}
}
}
*ptr = new_addr;
}
#else
sljit_uw *inst = (sljit_uw*)jump_ptr;
SLJIT_ASSERT((inst[0] & 0xfff00000) == MOVW && (inst[1] & 0xfff00000) == MOVT);
inst[0] = MOVW | (inst[0] & 0xf000) | ((new_addr << 4) & 0xf0000) | (new_addr & 0xfff);
inst[1] = MOVT | (inst[1] & 0xf000) | ((new_addr >> 12) & 0xf0000) | ((new_addr >> 16) & 0xfff);
if (flush_cache) {
inst = (sljit_uw *)SLJIT_ADD_EXEC_OFFSET(inst, executable_offset);
SLJIT_CACHE_FLUSH(inst, inst + 2);
}
#endif
}
static sljit_uw get_imm(sljit_uw imm);
static SLJIT_INLINE void inline_set_const(sljit_uw addr, sljit_sw executable_offset, sljit_sw new_constant, sljit_s32 flush_cache)
{
#if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5)
sljit_uw *ptr = (sljit_uw*)addr;
sljit_uw *inst = (sljit_uw*)ptr[0];
sljit_uw ldr_literal = ptr[1];
sljit_uw src2;
src2 = get_imm(new_constant);
if (src2) {
*inst = 0xe3a00000 | (ldr_literal & 0xf000) | src2;
if (flush_cache) {
inst = (sljit_uw *)SLJIT_ADD_EXEC_OFFSET(inst, executable_offset);
SLJIT_CACHE_FLUSH(inst, inst + 1);
}
return;
}
src2 = get_imm(~new_constant);
if (src2) {
*inst = 0xe3e00000 | (ldr_literal & 0xf000) | src2;
if (flush_cache) {
inst = (sljit_uw *)SLJIT_ADD_EXEC_OFFSET(inst, executable_offset);
SLJIT_CACHE_FLUSH(inst, inst + 1);
}
return;
}
if (ldr_literal & (1 << 23))
ptr = inst + ((ldr_literal & 0xfff) >> 2) + 2;
else
ptr = inst + 1;
if (*inst != ldr_literal) {
*inst = ldr_literal;
if (flush_cache) {
inst = (sljit_uw *)SLJIT_ADD_EXEC_OFFSET(inst, executable_offset);
SLJIT_CACHE_FLUSH(inst, inst + 1);
}
}
*ptr = new_constant;
#else
sljit_uw *inst = (sljit_uw*)addr;
SLJIT_ASSERT((inst[0] & 0xfff00000) == MOVW && (inst[1] & 0xfff00000) == MOVT);
inst[0] = MOVW | (inst[0] & 0xf000) | ((new_constant << 4) & 0xf0000) | (new_constant & 0xfff);
inst[1] = MOVT | (inst[1] & 0xf000) | ((new_constant >> 12) & 0xf0000) | ((new_constant >> 16) & 0xfff);
if (flush_cache) {
inst = (sljit_uw *)SLJIT_ADD_EXEC_OFFSET(inst, executable_offset);
SLJIT_CACHE_FLUSH(inst, inst + 2);
}
#endif
}
SLJIT_API_FUNC_ATTRIBUTE void* sljit_generate_code(struct sljit_compiler *compiler)
{
struct sljit_memory_fragment *buf;
sljit_uw *code;
sljit_uw *code_ptr;
sljit_uw *buf_ptr;
sljit_uw *buf_end;
sljit_uw size;
sljit_uw word_count;
sljit_sw executable_offset;
sljit_sw jump_addr;
#if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5)
sljit_uw cpool_size;
sljit_uw cpool_skip_alignment;
sljit_uw cpool_current_index;
sljit_uw *cpool_start_address;
sljit_uw *last_pc_patch;
struct future_patch *first_patch;
#endif
struct sljit_label *label;
struct sljit_jump *jump;
struct sljit_const *const_;
CHECK_ERROR_PTR();
CHECK_PTR(check_sljit_generate_code(compiler));
reverse_buf(compiler);
/* Second code generation pass. */
#if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5)
size = compiler->size + (compiler->patches << 1);
if (compiler->cpool_fill > 0)
size += compiler->cpool_fill + CONST_POOL_ALIGNMENT - 1;
#else
size = compiler->size;
#endif
code = (sljit_uw*)SLJIT_MALLOC_EXEC(size * sizeof(sljit_uw));
PTR_FAIL_WITH_EXEC_IF(code);
buf = compiler->buf;
#if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5)
cpool_size = 0;
cpool_skip_alignment = 0;
cpool_current_index = 0;
cpool_start_address = NULL;
first_patch = NULL;
last_pc_patch = code;
#endif
code_ptr = code;
word_count = 0;
executable_offset = SLJIT_EXEC_OFFSET(code);
label = compiler->labels;
jump = compiler->jumps;
const_ = compiler->consts;
if (label && label->size == 0) {
label->addr = (sljit_uw)SLJIT_ADD_EXEC_OFFSET(code, executable_offset);
label = label->next;
}
do {
buf_ptr = (sljit_uw*)buf->memory;
buf_end = buf_ptr + (buf->used_size >> 2);
do {
word_count++;
#if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5)
if (cpool_size > 0) {
if (cpool_skip_alignment > 0) {
buf_ptr++;
cpool_skip_alignment--;
}
else {
if (SLJIT_UNLIKELY(resolve_const_pool_index(compiler, &first_patch, cpool_current_index, cpool_start_address, buf_ptr))) {
SLJIT_FREE_EXEC(code);
compiler->error = SLJIT_ERR_ALLOC_FAILED;
return NULL;
}
buf_ptr++;
if (++cpool_current_index >= cpool_size) {
SLJIT_ASSERT(!first_patch);
cpool_size = 0;
if (label && label->size == word_count) {
/* Points after the current instruction. */
label->addr = (sljit_uw)SLJIT_ADD_EXEC_OFFSET(code_ptr, executable_offset);
label->size = code_ptr - code;
label = label->next;
}
}
}
}
else if ((*buf_ptr & 0xff000000) != PUSH_POOL) {
#endif
*code_ptr = *buf_ptr++;
/* These structures are ordered by their address. */
SLJIT_ASSERT(!label || label->size >= word_count);
SLJIT_ASSERT(!jump || jump->addr >= word_count);
SLJIT_ASSERT(!const_ || const_->addr >= word_count);
if (jump && jump->addr == word_count) {
#if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5)
if (detect_jump_type(jump, code_ptr, code, executable_offset))
code_ptr--;
jump->addr = (sljit_uw)code_ptr;
#else
jump->addr = (sljit_uw)(code_ptr - 2);
if (detect_jump_type(jump, code_ptr, code, executable_offset))
code_ptr -= 2;
#endif
jump = jump->next;
}
if (label && label->size == word_count) {
/* code_ptr can be affected above. */
label->addr = (sljit_uw)SLJIT_ADD_EXEC_OFFSET(code_ptr + 1, executable_offset);
label->size = (code_ptr + 1) - code;
label = label->next;
}
if (const_ && const_->addr == word_count) {
#if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5)
const_->addr = (sljit_uw)code_ptr;
#else
const_->addr = (sljit_uw)(code_ptr - 1);
#endif
const_ = const_->next;
}
code_ptr++;
#if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5)
}
else {
/* Fortunately, no need to shift. */
cpool_size = *buf_ptr++ & ~PUSH_POOL;
SLJIT_ASSERT(cpool_size > 0);
cpool_start_address = ALIGN_INSTRUCTION(code_ptr + 1);
cpool_current_index = patch_pc_relative_loads(last_pc_patch, code_ptr, cpool_start_address, cpool_size);
if (cpool_current_index > 0) {
/* Unconditional branch. */
*code_ptr = B | (((cpool_start_address - code_ptr) + cpool_current_index - 2) & ~PUSH_POOL);
code_ptr = cpool_start_address + cpool_current_index;
}
cpool_skip_alignment = CONST_POOL_ALIGNMENT - 1;
cpool_current_index = 0;
last_pc_patch = code_ptr;
}
#endif
} while (buf_ptr < buf_end);
buf = buf->next;
} while (buf);
SLJIT_ASSERT(!label);
SLJIT_ASSERT(!jump);
SLJIT_ASSERT(!const_);
#if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5)
SLJIT_ASSERT(cpool_size == 0);
if (compiler->cpool_fill > 0) {
cpool_start_address = ALIGN_INSTRUCTION(code_ptr);
cpool_current_index = patch_pc_relative_loads(last_pc_patch, code_ptr, cpool_start_address, compiler->cpool_fill);
if (cpool_current_index > 0)
code_ptr = cpool_start_address + cpool_current_index;
buf_ptr = compiler->cpool;
buf_end = buf_ptr + compiler->cpool_fill;
cpool_current_index = 0;
while (buf_ptr < buf_end) {
if (SLJIT_UNLIKELY(resolve_const_pool_index(compiler, &first_patch, cpool_current_index, cpool_start_address, buf_ptr))) {
SLJIT_FREE_EXEC(code);
compiler->error = SLJIT_ERR_ALLOC_FAILED;
return NULL;
}
buf_ptr++;
cpool_current_index++;
}
SLJIT_ASSERT(!first_patch);
}
#endif
jump = compiler->jumps;
while (jump) {
buf_ptr = (sljit_uw *)jump->addr;
if (jump->flags & PATCH_B) {
jump_addr = (sljit_sw)SLJIT_ADD_EXEC_OFFSET(buf_ptr + 2, executable_offset);
if (!(jump->flags & JUMP_ADDR)) {
SLJIT_ASSERT(jump->flags & JUMP_LABEL);
SLJIT_ASSERT(((sljit_sw)jump->u.label->addr - jump_addr) <= 0x01ffffff && ((sljit_sw)jump->u.label->addr - jump_addr) >= -0x02000000);
*buf_ptr |= (((sljit_sw)jump->u.label->addr - jump_addr) >> 2) & 0x00ffffff;
}
else {
SLJIT_ASSERT(((sljit_sw)jump->u.target - jump_addr) <= 0x01ffffff && ((sljit_sw)jump->u.target - jump_addr) >= -0x02000000);
*buf_ptr |= (((sljit_sw)jump->u.target - jump_addr) >> 2) & 0x00ffffff;
}
}
else if (jump->flags & SLJIT_REWRITABLE_JUMP) {
#if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5)
jump->addr = (sljit_uw)code_ptr;
code_ptr[0] = (sljit_uw)buf_ptr;
code_ptr[1] = *buf_ptr;
inline_set_jump_addr((sljit_uw)code_ptr, executable_offset, (jump->flags & JUMP_LABEL) ? jump->u.label->addr : jump->u.target, 0);
code_ptr += 2;
#else
inline_set_jump_addr((sljit_uw)buf_ptr, executable_offset, (jump->flags & JUMP_LABEL) ? jump->u.label->addr : jump->u.target, 0);
#endif
}
else {
#if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5)
if (jump->flags & IS_BL)
buf_ptr--;
if (*buf_ptr & (1 << 23))
buf_ptr += ((*buf_ptr & 0xfff) >> 2) + 2;
else
buf_ptr += 1;
*buf_ptr = (jump->flags & JUMP_LABEL) ? jump->u.label->addr : jump->u.target;
#else
inline_set_jump_addr((sljit_uw)buf_ptr, executable_offset, (jump->flags & JUMP_LABEL) ? jump->u.label->addr : jump->u.target, 0);
#endif
}
jump = jump->next;
}
#if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5)
const_ = compiler->consts;
while (const_) {
buf_ptr = (sljit_uw*)const_->addr;
const_->addr = (sljit_uw)code_ptr;
code_ptr[0] = (sljit_uw)buf_ptr;
code_ptr[1] = *buf_ptr;
if (*buf_ptr & (1 << 23))
buf_ptr += ((*buf_ptr & 0xfff) >> 2) + 2;
else
buf_ptr += 1;
/* Set the value again (can be a simple constant). */
inline_set_const((sljit_uw)code_ptr, executable_offset, *buf_ptr, 0);
code_ptr += 2;
const_ = const_->next;
}
#endif
SLJIT_ASSERT(code_ptr - code <= (sljit_s32)size);
compiler->error = SLJIT_ERR_COMPILED;
compiler->executable_offset = executable_offset;
compiler->executable_size = (code_ptr - code) * sizeof(sljit_uw);
code = (sljit_uw *)SLJIT_ADD_EXEC_OFFSET(code, executable_offset);
code_ptr = (sljit_uw *)SLJIT_ADD_EXEC_OFFSET(code_ptr, executable_offset);
SLJIT_CACHE_FLUSH(code, code_ptr);
return code;
}
SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_has_cpu_feature(sljit_s32 feature_type)
{
switch (feature_type) {
case SLJIT_HAS_FPU:
#ifdef SLJIT_IS_FPU_AVAILABLE
return SLJIT_IS_FPU_AVAILABLE;
#else
/* Available by default. */
return 1;
#endif
case SLJIT_HAS_CLZ:
case SLJIT_HAS_CMOV:
return 1;
default:
return 0;
}
}
/* --------------------------------------------------------------------- */
/* Entry, exit */
/* --------------------------------------------------------------------- */
/* Creates an index in data_transfer_insts array. */
#define WORD_SIZE 0x00
#define BYTE_SIZE 0x01
#define HALF_SIZE 0x02
#define PRELOAD 0x03
#define SIGNED 0x04
#define LOAD_DATA 0x08
/* Flag bits for emit_op. */
#define ALLOW_IMM 0x10
#define ALLOW_INV_IMM 0x20
#define ALLOW_ANY_IMM (ALLOW_IMM | ALLOW_INV_IMM)
/* s/l - store/load (1 bit)
u/s - signed/unsigned (1 bit)
w/b/h/N - word/byte/half/NOT allowed (2 bit)
Storing signed and unsigned values are the same operations. */
static const sljit_uw data_transfer_insts[16] = {
/* s u w */ 0xe5000000 /* str */,
/* s u b */ 0xe5400000 /* strb */,
/* s u h */ 0xe10000b0 /* strh */,
/* s u N */ 0x00000000 /* not allowed */,
/* s s w */ 0xe5000000 /* str */,
/* s s b */ 0xe5400000 /* strb */,
/* s s h */ 0xe10000b0 /* strh */,
/* s s N */ 0x00000000 /* not allowed */,
/* l u w */ 0xe5100000 /* ldr */,
/* l u b */ 0xe5500000 /* ldrb */,
/* l u h */ 0xe11000b0 /* ldrh */,
/* l u p */ 0xf5500000 /* preload */,
/* l s w */ 0xe5100000 /* ldr */,
/* l s b */ 0xe11000d0 /* ldrsb */,
/* l s h */ 0xe11000f0 /* ldrsh */,
/* l s N */ 0x00000000 /* not allowed */,
};
#define EMIT_DATA_TRANSFER(type, add, target_reg, base_reg, arg) \
(data_transfer_insts[(type) & 0xf] | ((add) << 23) | RD(target_reg) | RN(base_reg) | (arg))
/* Normal ldr/str instruction.
Type2: ldrsb, ldrh, ldrsh */
#define IS_TYPE1_TRANSFER(type) \
(data_transfer_insts[(type) & 0xf] & 0x04000000)
#define TYPE2_TRANSFER_IMM(imm) \
(((imm) & 0xf) | (((imm) & 0xf0) << 4) | (1 << 22))
static sljit_s32 emit_op(struct sljit_compiler *compiler, sljit_s32 op, sljit_s32 inp_flags,
sljit_s32 dst, sljit_sw dstw,
sljit_s32 src1, sljit_sw src1w,
sljit_s32 src2, sljit_sw src2w);
SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_enter(struct sljit_compiler *compiler,
sljit_s32 options, sljit_s32 arg_types, sljit_s32 scratches, sljit_s32 saveds,
sljit_s32 fscratches, sljit_s32 fsaveds, sljit_s32 local_size)
{
sljit_s32 args, size, i, tmp;
sljit_uw push;
CHECK_ERROR();
CHECK(check_sljit_emit_enter(compiler, options, arg_types, scratches, saveds, fscratches, fsaveds, local_size));
set_emit_enter(compiler, options, arg_types, scratches, saveds, fscratches, fsaveds, local_size);
/* Push saved registers, temporary registers
stmdb sp!, {..., lr} */
push = PUSH | (1 << 14);
tmp = saveds < SLJIT_NUMBER_OF_SAVED_REGISTERS ? (SLJIT_S0 + 1 - saveds) : SLJIT_FIRST_SAVED_REG;
for (i = SLJIT_S0; i >= tmp; i--)
push |= 1 << reg_map[i];
for (i = scratches; i >= SLJIT_FIRST_SAVED_REG; i--)
push |= 1 << reg_map[i];
FAIL_IF(push_inst(compiler, push));
/* Stack must be aligned to 8 bytes: */
size = GET_SAVED_REGISTERS_SIZE(scratches, saveds, 1);
local_size = ((size + local_size + 7) & ~7) - size;
compiler->local_size = local_size;
if (local_size > 0)
FAIL_IF(emit_op(compiler, SLJIT_SUB, ALLOW_IMM, SLJIT_SP, 0, SLJIT_SP, 0, SLJIT_IMM, local_size));
args = get_arg_count(arg_types);
if (args >= 1)
FAIL_IF(push_inst(compiler, MOV | RD(SLJIT_S0) | RM(SLJIT_R0)));
if (args >= 2)
FAIL_IF(push_inst(compiler, MOV | RD(SLJIT_S1) | RM(SLJIT_R1)));
if (args >= 3)
FAIL_IF(push_inst(compiler, MOV | RD(SLJIT_S2) | RM(SLJIT_R2)));
return SLJIT_SUCCESS;
}
SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_set_context(struct sljit_compiler *compiler,
sljit_s32 options, sljit_s32 arg_types, sljit_s32 scratches, sljit_s32 saveds,
sljit_s32 fscratches, sljit_s32 fsaveds, sljit_s32 local_size)
{
sljit_s32 size;
CHECK_ERROR();
CHECK(check_sljit_set_context(compiler, options, arg_types, scratches, saveds, fscratches, fsaveds, local_size));
set_set_context(compiler, options, arg_types, scratches, saveds, fscratches, fsaveds, local_size);
size = GET_SAVED_REGISTERS_SIZE(scratches, saveds, 1);
compiler->local_size = ((size + local_size + 7) & ~7) - size;
return SLJIT_SUCCESS;
}
SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_return(struct sljit_compiler *compiler, sljit_s32 op, sljit_s32 src, sljit_sw srcw)
{
sljit_s32 i, tmp;
sljit_uw pop;
CHECK_ERROR();
CHECK(check_sljit_emit_return(compiler, op, src, srcw));
FAIL_IF(emit_mov_before_return(compiler, op, src, srcw));
if (compiler->local_size > 0)
FAIL_IF(emit_op(compiler, SLJIT_ADD, ALLOW_IMM, SLJIT_SP, 0, SLJIT_SP, 0, SLJIT_IMM, compiler->local_size));
/* Push saved registers, temporary registers
ldmia sp!, {..., pc} */
pop = POP | (1 << 15);
tmp = compiler->saveds < SLJIT_NUMBER_OF_SAVED_REGISTERS ? (SLJIT_S0 + 1 - compiler->saveds) : SLJIT_FIRST_SAVED_REG;
for (i = SLJIT_S0; i >= tmp; i--)
pop |= 1 << reg_map[i];
for (i = compiler->scratches; i >= SLJIT_FIRST_SAVED_REG; i--)
pop |= 1 << reg_map[i];
return push_inst(compiler, pop);
}
/* --------------------------------------------------------------------- */
/* Operators */
/* --------------------------------------------------------------------- */
/* flags: */
/* Arguments are swapped. */
#define ARGS_SWAPPED 0x01
/* Inverted immediate. */
#define INV_IMM 0x02
/* Source and destination is register. */
#define MOVE_REG_CONV 0x04
/* Unused return value. */
#define UNUSED_RETURN 0x08
/* SET_FLAGS must be (1 << 20) as it is also the value of S bit (can be used for optimization). */
#define SET_FLAGS (1 << 20)
/* dst: reg
src1: reg
src2: reg or imm (if allowed)
SRC2_IMM must be (1 << 25) as it is also the value of I bit (can be used for optimization). */
#define SRC2_IMM (1 << 25)
#define EMIT_SHIFT_INS_AND_RETURN(opcode) \
SLJIT_ASSERT(!(flags & INV_IMM) && !(src2 & SRC2_IMM)); \
if (compiler->shift_imm != 0x20) { \
SLJIT_ASSERT(src1 == TMP_REG1); \
SLJIT_ASSERT(!(flags & ARGS_SWAPPED)); \
\
if (compiler->shift_imm != 0) \
return push_inst(compiler, MOV | (flags & SET_FLAGS) | \
RD(dst) | (compiler->shift_imm << 7) | (opcode << 5) | RM(src2)); \
return push_inst(compiler, MOV | (flags & SET_FLAGS) | RD(dst) | RM(src2)); \
} \
return push_inst(compiler, MOV | (flags & SET_FLAGS) | RD(dst) | \
(reg_map[(flags & ARGS_SWAPPED) ? src1 : src2] << 8) | (opcode << 5) | 0x10 | RM((flags & ARGS_SWAPPED) ? src2 : src1));
static SLJIT_INLINE sljit_s32 emit_single_op(struct sljit_compiler *compiler, sljit_s32 op, sljit_s32 flags,
sljit_s32 dst, sljit_s32 src1, sljit_s32 src2)
{
switch (GET_OPCODE(op)) {
case SLJIT_MOV:
SLJIT_ASSERT(src1 == TMP_REG1 && !(flags & ARGS_SWAPPED));
if (dst != src2) {
if (src2 & SRC2_IMM) {
return push_inst(compiler, ((flags & INV_IMM) ? MVN : MOV) | RD(dst) | src2);
}
return push_inst(compiler, MOV | RD(dst) | RM(src2));
}
return SLJIT_SUCCESS;
case SLJIT_MOV_U8:
case SLJIT_MOV_S8:
SLJIT_ASSERT(src1 == TMP_REG1 && !(flags & ARGS_SWAPPED));
if (flags & MOVE_REG_CONV) {
#if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5)
if (op == SLJIT_MOV_U8)
return push_inst(compiler, AND | RD(dst) | RN(src2) | SRC2_IMM | 0xff);
FAIL_IF(push_inst(compiler, MOV | RD(dst) | (24 << 7) | RM(src2)));
return push_inst(compiler, MOV | RD(dst) | (24 << 7) | (op == SLJIT_MOV_U8 ? 0x20 : 0x40) | RM(dst));
#else
return push_inst(compiler, (op == SLJIT_MOV_U8 ? UXTB : SXTB) | RD(dst) | RM(src2));
#endif
}
else if (dst != src2) {
SLJIT_ASSERT(src2 & SRC2_IMM);
return push_inst(compiler, ((flags & INV_IMM) ? MVN : MOV) | RD(dst) | src2);
}
return SLJIT_SUCCESS;
case SLJIT_MOV_U16:
case SLJIT_MOV_S16:
SLJIT_ASSERT(src1 == TMP_REG1 && !(flags & ARGS_SWAPPED));
if (flags & MOVE_REG_CONV) {
#if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5)
FAIL_IF(push_inst(compiler, MOV | RD(dst) | (16 << 7) | RM(src2)));
return push_inst(compiler, MOV | RD(dst) | (16 << 7) | (op == SLJIT_MOV_U16 ? 0x20 : 0x40) | RM(dst));
#else
return push_inst(compiler, (op == SLJIT_MOV_U16 ? UXTH : SXTH) | RD(dst) | RM(src2));
#endif
}
else if (dst != src2) {
SLJIT_ASSERT(src2 & SRC2_IMM);
return push_inst(compiler, ((flags & INV_IMM) ? MVN : MOV) | RD(dst) | src2);
}
return SLJIT_SUCCESS;
case SLJIT_NOT:
if (src2 & SRC2_IMM) {
return push_inst(compiler, ((flags & INV_IMM) ? MOV : MVN) | (flags & SET_FLAGS) | RD(dst) | src2);
}
return push_inst(compiler, MVN | (flags & SET_FLAGS) | RD(dst) | RM(src2));
case SLJIT_CLZ:
SLJIT_ASSERT(!(flags & INV_IMM));
SLJIT_ASSERT(!(src2 & SRC2_IMM));
FAIL_IF(push_inst(compiler, CLZ | RD(dst) | RM(src2)));
return SLJIT_SUCCESS;
case SLJIT_ADD:
SLJIT_ASSERT(!(flags & INV_IMM));
if ((flags & (UNUSED_RETURN | SET_FLAGS)) == (UNUSED_RETURN | SET_FLAGS) && !(flags & ARGS_SWAPPED))
return push_inst(compiler, CMN | SET_FLAGS | RN(src1) | ((src2 & SRC2_IMM) ? src2 : RM(src2)));
return push_inst(compiler, ADD | (flags & SET_FLAGS) | RD(dst) | RN(src1) | ((src2 & SRC2_IMM) ? src2 : RM(src2)));
case SLJIT_ADDC:
SLJIT_ASSERT(!(flags & INV_IMM));
return push_inst(compiler, ADC | (flags & SET_FLAGS) | RD(dst) | RN(src1) | ((src2 & SRC2_IMM) ? src2 : RM(src2)));
case SLJIT_SUB:
SLJIT_ASSERT(!(flags & INV_IMM));
if ((flags & (UNUSED_RETURN | SET_FLAGS)) == (UNUSED_RETURN | SET_FLAGS) && !(flags & ARGS_SWAPPED))
return push_inst(compiler, CMP | SET_FLAGS | RN(src1) | ((src2 & SRC2_IMM) ? src2 : RM(src2)));
return push_inst(compiler, (!(flags & ARGS_SWAPPED) ? SUB : RSB) | (flags & SET_FLAGS)
| RD(dst) | RN(src1) | ((src2 & SRC2_IMM) ? src2 : RM(src2)));
case SLJIT_SUBC:
SLJIT_ASSERT(!(flags & INV_IMM));
return push_inst(compiler, (!(flags & ARGS_SWAPPED) ? SBC : RSC) | (flags & SET_FLAGS)
| RD(dst) | RN(src1) | ((src2 & SRC2_IMM) ? src2 : RM(src2)));
case SLJIT_MUL:
SLJIT_ASSERT(!(flags & INV_IMM));
SLJIT_ASSERT(!(src2 & SRC2_IMM));
if (!HAS_FLAGS(op))
return push_inst(compiler, MUL | (reg_map[dst] << 16) | (reg_map[src2] << 8) | reg_map[src1]);
FAIL_IF(push_inst(compiler, SMULL | (reg_map[TMP_REG1] << 16) | (reg_map[dst] << 12) | (reg_map[src2] << 8) | reg_map[src1]));
/* cmp TMP_REG1, dst asr #31. */
return push_inst(compiler, CMP | SET_FLAGS | RN(TMP_REG1) | RM(dst) | 0xfc0);
case SLJIT_AND:
return push_inst(compiler, (!(flags & INV_IMM) ? AND : BIC) | (flags & SET_FLAGS)
| RD(dst) | RN(src1) | ((src2 & SRC2_IMM) ? src2 : RM(src2)));
case SLJIT_OR:
SLJIT_ASSERT(!(flags & INV_IMM));
return push_inst(compiler, ORR | (flags & SET_FLAGS) | RD(dst) | RN(src1) | ((src2 & SRC2_IMM) ? src2 : RM(src2)));
case SLJIT_XOR:
SLJIT_ASSERT(!(flags & INV_IMM));
return push_inst(compiler, EOR | (flags & SET_FLAGS) | RD(dst) | RN(src1) | ((src2 & SRC2_IMM) ? src2 : RM(src2)));
case SLJIT_SHL:
EMIT_SHIFT_INS_AND_RETURN(0);
case SLJIT_LSHR:
EMIT_SHIFT_INS_AND_RETURN(1);
case SLJIT_ASHR:
EMIT_SHIFT_INS_AND_RETURN(2);
}
SLJIT_UNREACHABLE();
return SLJIT_SUCCESS;
}
#undef EMIT_SHIFT_INS_AND_RETURN
/* Tests whether the immediate can be stored in the 12 bit imm field.
Returns with 0 if not possible. */
static sljit_uw get_imm(sljit_uw imm)
{
sljit_s32 rol;
if (imm <= 0xff)
return SRC2_IMM | imm;
if (!(imm & 0xff000000)) {
imm <<= 8;
rol = 8;
}
else {
imm = (imm << 24) | (imm >> 8);
rol = 0;
}
if (!(imm & 0xff000000)) {
imm <<= 8;
rol += 4;
}
if (!(imm & 0xf0000000)) {
imm <<= 4;
rol += 2;
}
if (!(imm & 0xc0000000)) {
imm <<= 2;
rol += 1;
}
if (!(imm & 0x00ffffff))
return SRC2_IMM | (imm >> 24) | (rol << 8);
else
return 0;
}
#if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5)
static sljit_s32 generate_int(struct sljit_compiler *compiler, sljit_s32 reg, sljit_uw imm, sljit_s32 positive)
{
sljit_uw mask;
sljit_uw imm1;
sljit_uw imm2;
sljit_s32 rol;
/* Step1: Search a zero byte (8 continous zero bit). */
mask = 0xff000000;
rol = 8;
while(1) {
if (!(imm & mask)) {
/* Rol imm by rol. */
imm = (imm << rol) | (imm >> (32 - rol));
/* Calculate arm rol. */
rol = 4 + (rol >> 1);
break;
}
rol += 2;
mask >>= 2;
if (mask & 0x3) {
/* rol by 8. */
imm = (imm << 8) | (imm >> 24);
mask = 0xff00;
rol = 24;
while (1) {
if (!(imm & mask)) {
/* Rol imm by rol. */
imm = (imm << rol) | (imm >> (32 - rol));
/* Calculate arm rol. */
rol = (rol >> 1) - 8;
break;
}
rol += 2;
mask >>= 2;
if (mask & 0x3)
return 0;
}
break;
}
}
/* The low 8 bit must be zero. */
SLJIT_ASSERT(!(imm & 0xff));
if (!(imm & 0xff000000)) {
imm1 = SRC2_IMM | ((imm >> 16) & 0xff) | (((rol + 4) & 0xf) << 8);
imm2 = SRC2_IMM | ((imm >> 8) & 0xff) | (((rol + 8) & 0xf) << 8);
}
else if (imm & 0xc0000000) {
imm1 = SRC2_IMM | ((imm >> 24) & 0xff) | ((rol & 0xf) << 8);
imm <<= 8;
rol += 4;
if (!(imm & 0xff000000)) {
imm <<= 8;
rol += 4;
}
if (!(imm & 0xf0000000)) {
imm <<= 4;
rol += 2;
}
if (!(imm & 0xc0000000)) {
imm <<= 2;
rol += 1;
}
if (!(imm & 0x00ffffff))
imm2 = SRC2_IMM | (imm >> 24) | ((rol & 0xf) << 8);
else
return 0;
}
else {
if (!(imm & 0xf0000000)) {
imm <<= 4;
rol += 2;
}
if (!(imm & 0xc0000000)) {
imm <<= 2;
rol += 1;
}
imm1 = SRC2_IMM | ((imm >> 24) & 0xff) | ((rol & 0xf) << 8);
imm <<= 8;
rol += 4;
if (!(imm & 0xf0000000)) {
imm <<= 4;
rol += 2;
}
if (!(imm & 0xc0000000)) {
imm <<= 2;
rol += 1;
}
if (!(imm & 0x00ffffff))
imm2 = SRC2_IMM | (imm >> 24) | ((rol & 0xf) << 8);
else
return 0;
}
FAIL_IF(push_inst(compiler, (positive ? MOV : MVN) | RD(reg) | imm1));
FAIL_IF(push_inst(compiler, (positive ? ORR : BIC) | RD(reg) | RN(reg) | imm2));
return 1;
}
#endif
static sljit_s32 load_immediate(struct sljit_compiler *compiler, sljit_s32 reg, sljit_uw imm)
{
sljit_uw tmp;
#if (defined SLJIT_CONFIG_ARM_V7 && SLJIT_CONFIG_ARM_V7)
if (!(imm & ~0xffff))
return push_inst(compiler, MOVW | RD(reg) | ((imm << 4) & 0xf0000) | (imm & 0xfff));
#endif
/* Create imm by 1 inst. */
tmp = get_imm(imm);
if (tmp)
return push_inst(compiler, MOV | RD(reg) | tmp);
tmp = get_imm(~imm);
if (tmp)
return push_inst(compiler, MVN | RD(reg) | tmp);
#if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5)
/* Create imm by 2 inst. */
FAIL_IF(generate_int(compiler, reg, imm, 1));
FAIL_IF(generate_int(compiler, reg, ~imm, 0));
/* Load integer. */
return push_inst_with_literal(compiler, EMIT_DATA_TRANSFER(WORD_SIZE | LOAD_DATA, 1, reg, TMP_PC, 0), imm);
#else
FAIL_IF(push_inst(compiler, MOVW | RD(reg) | ((imm << 4) & 0xf0000) | (imm & 0xfff)));
if (imm <= 0xffff)
return SLJIT_SUCCESS;
return push_inst(compiler, MOVT | RD(reg) | ((imm >> 12) & 0xf0000) | ((imm >> 16) & 0xfff));
#endif
}
static SLJIT_INLINE sljit_s32 emit_op_mem(struct sljit_compiler *compiler, sljit_s32 flags, sljit_s32 reg,
sljit_s32 arg, sljit_sw argw, sljit_s32 tmp_reg)
{
sljit_uw imm, offset_reg;
sljit_uw is_type1_transfer = IS_TYPE1_TRANSFER(flags);
SLJIT_ASSERT (arg & SLJIT_MEM);
SLJIT_ASSERT((arg & REG_MASK) != tmp_reg);
if ((arg & REG_MASK) == SLJIT_UNUSED) {
if (is_type1_transfer) {
FAIL_IF(load_immediate(compiler, tmp_reg, argw & ~0xfff));
argw &= 0xfff;
}
else {
FAIL_IF(load_immediate(compiler, tmp_reg, argw & ~0xff));
argw &= 0xff;
}
return push_inst(compiler, EMIT_DATA_TRANSFER(flags, 1, reg, tmp_reg,
is_type1_transfer ? argw : TYPE2_TRANSFER_IMM(argw)));
}
if (arg & OFFS_REG_MASK) {
offset_reg = OFFS_REG(arg);
arg &= REG_MASK;
argw &= 0x3;
if (argw != 0 && !is_type1_transfer) {
FAIL_IF(push_inst(compiler, ADD | RD(tmp_reg) | RN(arg) | RM(offset_reg) | (argw << 7)));
return push_inst(compiler, EMIT_DATA_TRANSFER(flags, 1, reg, tmp_reg, TYPE2_TRANSFER_IMM(0)));
}
/* Bit 25: RM is offset. */
return push_inst(compiler, EMIT_DATA_TRANSFER(flags, 1, reg, arg,
RM(offset_reg) | (is_type1_transfer ? (1 << 25) : 0) | (argw << 7)));
}
arg &= REG_MASK;
if (is_type1_transfer) {
if (argw > 0xfff) {
imm = get_imm(argw & ~0xfff);
if (imm) {
FAIL_IF(push_inst(compiler, ADD | RD(tmp_reg) | RN(arg) | imm));
argw = argw & 0xfff;
arg = tmp_reg;
}
}
else if (argw < -0xfff) {
imm = get_imm(-argw & ~0xfff);
if (imm) {
FAIL_IF(push_inst(compiler, SUB | RD(tmp_reg) | RN(arg) | imm));
argw = -(-argw & 0xfff);
arg = tmp_reg;
}
}
if (argw >= 0 && argw <= 0xfff)
return push_inst(compiler, EMIT_DATA_TRANSFER(flags, 1, reg, arg, argw));
if (argw < 0 && argw >= -0xfff)
return push_inst(compiler, EMIT_DATA_TRANSFER(flags, 0, reg, arg, -argw));
}
else {
if (argw > 0xff) {
imm = get_imm(argw & ~0xff);
if (imm) {
FAIL_IF(push_inst(compiler, ADD | RD(tmp_reg) | RN(arg) | imm));
argw = argw & 0xff;
arg = tmp_reg;
}
}
else if (argw < -0xff) {
imm = get_imm(-argw & ~0xff);
if (imm) {
FAIL_IF(push_inst(compiler, SUB | RD(tmp_reg) | RN(arg) | imm));
argw = -(-argw & 0xff);
arg = tmp_reg;
}
}
if (argw >= 0 && argw <= 0xff)
return push_inst(compiler, EMIT_DATA_TRANSFER(flags, 1, reg, arg, TYPE2_TRANSFER_IMM(argw)));
if (argw < 0 && argw >= -0xff) {
argw = -argw;
return push_inst(compiler, EMIT_DATA_TRANSFER(flags, 0, reg, arg, TYPE2_TRANSFER_IMM(argw)));
}
}
FAIL_IF(load_immediate(compiler, tmp_reg, argw));
return push_inst(compiler, EMIT_DATA_TRANSFER(flags, 1, reg, arg,
RM(tmp_reg) | (is_type1_transfer ? (1 << 25) : 0)));
}
static sljit_s32 emit_op(struct sljit_compiler *compiler, sljit_s32 op, sljit_s32 inp_flags,
sljit_s32 dst, sljit_sw dstw,
sljit_s32 src1, sljit_sw src1w,
sljit_s32 src2, sljit_sw src2w)
{
/* src1 is reg or TMP_REG1
src2 is reg, TMP_REG2, or imm
result goes to TMP_REG2, so put result can use TMP_REG1. */
/* We prefers register and simple consts. */
sljit_s32 dst_reg;
sljit_s32 src1_reg;
sljit_s32 src2_reg;
sljit_s32 flags = HAS_FLAGS(op) ? SET_FLAGS : 0;
/* Destination check. */
if (SLJIT_UNLIKELY(dst == SLJIT_UNUSED))
flags |= UNUSED_RETURN;
SLJIT_ASSERT(!(inp_flags & ALLOW_INV_IMM) || (inp_flags & ALLOW_IMM));
src2_reg = 0;
do {
if (!(inp_flags & ALLOW_IMM))
break;
if (src2 & SLJIT_IMM) {
src2_reg = get_imm(src2w);
if (src2_reg)
break;
if (inp_flags & ALLOW_INV_IMM) {
src2_reg = get_imm(~src2w);
if (src2_reg) {
flags |= INV_IMM;
break;
}
}
if (GET_OPCODE(op) == SLJIT_ADD) {
src2_reg = get_imm(-src2w);
if (src2_reg) {
op = SLJIT_SUB | GET_ALL_FLAGS(op);
break;
}
}
if (GET_OPCODE(op) == SLJIT_SUB) {
src2_reg = get_imm(-src2w);
if (src2_reg) {
op = SLJIT_ADD | GET_ALL_FLAGS(op);
break;
}
}
}
if (src1 & SLJIT_IMM) {
src2_reg = get_imm(src1w);
if (src2_reg) {
flags |= ARGS_SWAPPED;
src1 = src2;
src1w = src2w;
break;
}
if (inp_flags & ALLOW_INV_IMM) {
src2_reg = get_imm(~src1w);
if (src2_reg) {
flags |= ARGS_SWAPPED | INV_IMM;
src1 = src2;
src1w = src2w;
break;
}
}
if (GET_OPCODE(op) == SLJIT_ADD) {
src2_reg = get_imm(-src1w);
if (src2_reg) {
/* Note: add is commutative operation. */
src1 = src2;
src1w = src2w;
op = SLJIT_SUB | GET_ALL_FLAGS(op);
break;
}
}
}
} while(0);
/* Source 1. */
if (FAST_IS_REG(src1))
src1_reg = src1;
else if (src1 & SLJIT_MEM) {
FAIL_IF(emit_op_mem(compiler, inp_flags | LOAD_DATA, TMP_REG1, src1, src1w, TMP_REG1));
src1_reg = TMP_REG1;
}
else {
FAIL_IF(load_immediate(compiler, TMP_REG1, src1w));
src1_reg = TMP_REG1;
}
/* Destination. */
dst_reg = SLOW_IS_REG(dst) ? dst : TMP_REG2;
if (op <= SLJIT_MOV_P) {
if (dst & SLJIT_MEM) {
if (inp_flags & BYTE_SIZE)
inp_flags &= ~SIGNED;
if (FAST_IS_REG(src2))
return emit_op_mem(compiler, inp_flags, src2, dst, dstw, TMP_REG2);
}
if (FAST_IS_REG(src2) && dst_reg != TMP_REG2)
flags |= MOVE_REG_CONV;
}
/* Source 2. */
if (src2_reg == 0) {
src2_reg = (op <= SLJIT_MOV_P) ? dst_reg : TMP_REG2;
if (FAST_IS_REG(src2))
src2_reg = src2;
else if (src2 & SLJIT_MEM)
FAIL_IF(emit_op_mem(compiler, inp_flags | LOAD_DATA, src2_reg, src2, src2w, TMP_REG2));
else
FAIL_IF(load_immediate(compiler, src2_reg, src2w));
}
FAIL_IF(emit_single_op(compiler, op, flags, dst_reg, src1_reg, src2_reg));
if (!(dst & SLJIT_MEM))
return SLJIT_SUCCESS;
return emit_op_mem(compiler, inp_flags, dst_reg, dst, dstw, TMP_REG1);
}
#ifdef __cplusplus
extern "C" {
#endif
#if defined(__GNUC__)
extern unsigned int __aeabi_uidivmod(unsigned int numerator, unsigned int denominator);
extern int __aeabi_idivmod(int numerator, int denominator);
#else
#error "Software divmod functions are needed"
#endif
#ifdef __cplusplus
}
#endif
SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op0(struct sljit_compiler *compiler, sljit_s32 op)
{
sljit_sw saved_reg_list[3];
sljit_sw saved_reg_count;
CHECK_ERROR();
CHECK(check_sljit_emit_op0(compiler, op));
op = GET_OPCODE(op);
switch (op) {
case SLJIT_BREAKPOINT:
FAIL_IF(push_inst(compiler, BKPT));
break;
case SLJIT_NOP:
FAIL_IF(push_inst(compiler, NOP));
break;
case SLJIT_LMUL_UW:
case SLJIT_LMUL_SW:
return push_inst(compiler, (op == SLJIT_LMUL_UW ? UMULL : SMULL)
| (reg_map[SLJIT_R1] << 16)
| (reg_map[SLJIT_R0] << 12)
| (reg_map[SLJIT_R0] << 8)
| reg_map[SLJIT_R1]);
case SLJIT_DIVMOD_UW:
case SLJIT_DIVMOD_SW:
case SLJIT_DIV_UW:
case SLJIT_DIV_SW:
SLJIT_COMPILE_ASSERT((SLJIT_DIVMOD_UW & 0x2) == 0 && SLJIT_DIV_UW - 0x2 == SLJIT_DIVMOD_UW, bad_div_opcode_assignments);
SLJIT_ASSERT(reg_map[2] == 1 && reg_map[3] == 2 && reg_map[4] == 3);
saved_reg_count = 0;
if (compiler->scratches >= 4)
saved_reg_list[saved_reg_count++] = 3;
if (compiler->scratches >= 3)
saved_reg_list[saved_reg_count++] = 2;
if (op >= SLJIT_DIV_UW)
saved_reg_list[saved_reg_count++] = 1;
if (saved_reg_count > 0) {
FAIL_IF(push_inst(compiler, 0xe52d0000 | (saved_reg_count >= 3 ? 16 : 8)
| (saved_reg_list[0] << 12) /* str rX, [sp, #-8/-16]! */));
if (saved_reg_count >= 2) {
SLJIT_ASSERT(saved_reg_list[1] < 8);
FAIL_IF(push_inst(compiler, 0xe58d0004 | (saved_reg_list[1] << 12) /* str rX, [sp, #4] */));
}
if (saved_reg_count >= 3) {
SLJIT_ASSERT(saved_reg_list[2] < 8);
FAIL_IF(push_inst(compiler, 0xe58d0008 | (saved_reg_list[2] << 12) /* str rX, [sp, #8] */));
}
}
#if defined(__GNUC__)
FAIL_IF(sljit_emit_ijump(compiler, SLJIT_FAST_CALL, SLJIT_IMM,
((op | 0x2) == SLJIT_DIV_UW ? SLJIT_FUNC_OFFSET(__aeabi_uidivmod) : SLJIT_FUNC_OFFSET(__aeabi_idivmod))));
#else
#error "Software divmod functions are needed"
#endif
if (saved_reg_count > 0) {
if (saved_reg_count >= 3) {
SLJIT_ASSERT(saved_reg_list[2] < 8);
FAIL_IF(push_inst(compiler, 0xe59d0008 | (saved_reg_list[2] << 12) /* ldr rX, [sp, #8] */));
}
if (saved_reg_count >= 2) {
SLJIT_ASSERT(saved_reg_list[1] < 8);
FAIL_IF(push_inst(compiler, 0xe59d0004 | (saved_reg_list[1] << 12) /* ldr rX, [sp, #4] */));
}
return push_inst(compiler, 0xe49d0000 | (saved_reg_count >= 3 ? 16 : 8)
| (saved_reg_list[0] << 12) /* ldr rX, [sp], #8/16 */);
}
return SLJIT_SUCCESS;
}
return SLJIT_SUCCESS;
}
SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op1(struct sljit_compiler *compiler, sljit_s32 op,
sljit_s32 dst, sljit_sw dstw,
sljit_s32 src, sljit_sw srcw)
{
CHECK_ERROR();
CHECK(check_sljit_emit_op1(compiler, op, dst, dstw, src, srcw));
ADJUST_LOCAL_OFFSET(dst, dstw);
ADJUST_LOCAL_OFFSET(src, srcw);
if (dst == SLJIT_UNUSED && !HAS_FLAGS(op)) {
#if (defined SLJIT_CONFIG_ARM_V7 && SLJIT_CONFIG_ARM_V7)
if (op <= SLJIT_MOV_P && (src & SLJIT_MEM))
return emit_op_mem(compiler, PRELOAD | LOAD_DATA, TMP_PC, src, srcw, TMP_REG1);
#endif
return SLJIT_SUCCESS;
}
switch (GET_OPCODE(op)) {
case SLJIT_MOV:
case SLJIT_MOV_U32:
case SLJIT_MOV_S32:
case SLJIT_MOV_P:
return emit_op(compiler, SLJIT_MOV, ALLOW_ANY_IMM, dst, dstw, TMP_REG1, 0, src, srcw);
case SLJIT_MOV_U8:
return emit_op(compiler, SLJIT_MOV_U8, ALLOW_ANY_IMM | BYTE_SIZE, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (sljit_u8)srcw : srcw);
case SLJIT_MOV_S8:
return emit_op(compiler, SLJIT_MOV_S8, ALLOW_ANY_IMM | SIGNED | BYTE_SIZE, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (sljit_s8)srcw : srcw);
case SLJIT_MOV_U16:
return emit_op(compiler, SLJIT_MOV_U16, ALLOW_ANY_IMM | HALF_SIZE, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (sljit_u16)srcw : srcw);
case SLJIT_MOV_S16:
return emit_op(compiler, SLJIT_MOV_S16, ALLOW_ANY_IMM | SIGNED | HALF_SIZE, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (sljit_s16)srcw : srcw);
case SLJIT_NOT:
return emit_op(compiler, op, ALLOW_ANY_IMM, dst, dstw, TMP_REG1, 0, src, srcw);
case SLJIT_NEG:
#if (defined SLJIT_VERBOSE && SLJIT_VERBOSE) \
|| (defined SLJIT_ARGUMENT_CHECKS && SLJIT_ARGUMENT_CHECKS)
compiler->skip_checks = 1;
#endif
return sljit_emit_op2(compiler, SLJIT_SUB | GET_ALL_FLAGS(op), dst, dstw, SLJIT_IMM, 0, src, srcw);
case SLJIT_CLZ:
return emit_op(compiler, op, 0, dst, dstw, TMP_REG1, 0, src, srcw);
}
return SLJIT_SUCCESS;
}
SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op2(struct sljit_compiler *compiler, sljit_s32 op,
sljit_s32 dst, sljit_sw dstw,
sljit_s32 src1, sljit_sw src1w,
sljit_s32 src2, sljit_sw src2w)
{
CHECK_ERROR();
CHECK(check_sljit_emit_op2(compiler, op, dst, dstw, src1, src1w, src2, src2w));
ADJUST_LOCAL_OFFSET(dst, dstw);
ADJUST_LOCAL_OFFSET(src1, src1w);
ADJUST_LOCAL_OFFSET(src2, src2w);
if (dst == SLJIT_UNUSED && !HAS_FLAGS(op))
return SLJIT_SUCCESS;
switch (GET_OPCODE(op)) {
case SLJIT_ADD:
case SLJIT_ADDC:
case SLJIT_SUB:
case SLJIT_SUBC:
case SLJIT_OR:
case SLJIT_XOR:
return emit_op(compiler, op, ALLOW_IMM, dst, dstw, src1, src1w, src2, src2w);
case SLJIT_MUL:
return emit_op(compiler, op, 0, dst, dstw, src1, src1w, src2, src2w);
case SLJIT_AND:
return emit_op(compiler, op, ALLOW_ANY_IMM, dst, dstw, src1, src1w, src2, src2w);
case SLJIT_SHL:
case SLJIT_LSHR:
case SLJIT_ASHR:
if (src2 & SLJIT_IMM) {
compiler->shift_imm = src2w & 0x1f;
return emit_op(compiler, op, 0, dst, dstw, TMP_REG1, 0, src1, src1w);
}
else {
compiler->shift_imm = 0x20;
return emit_op(compiler, op, 0, dst, dstw, src1, src1w, src2, src2w);
}
}
return SLJIT_SUCCESS;
}
SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_get_register_index(sljit_s32 reg)
{
CHECK_REG_INDEX(check_sljit_get_register_index(reg));
return reg_map[reg];
}
SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_get_float_register_index(sljit_s32 reg)
{
CHECK_REG_INDEX(check_sljit_get_float_register_index(reg));
return (freg_map[reg] << 1);
}
SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op_custom(struct sljit_compiler *compiler,
void *instruction, sljit_s32 size)
{
CHECK_ERROR();
CHECK(check_sljit_emit_op_custom(compiler, instruction, size));
return push_inst(compiler, *(sljit_uw*)instruction);
}
/* --------------------------------------------------------------------- */
/* Floating point operators */
/* --------------------------------------------------------------------- */
#define FPU_LOAD (1 << 20)
#define EMIT_FPU_DATA_TRANSFER(inst, add, base, freg, offs) \
((inst) | ((add) << 23) | (reg_map[base] << 16) | (freg_map[freg] << 12) | (offs))
#define EMIT_FPU_OPERATION(opcode, mode, dst, src1, src2) \
((opcode) | (mode) | (freg_map[dst] << 12) | freg_map[src1] | (freg_map[src2] << 16))
static sljit_s32 emit_fop_mem(struct sljit_compiler *compiler, sljit_s32 flags, sljit_s32 reg, sljit_s32 arg, sljit_sw argw)
{
sljit_uw imm;
sljit_sw inst = VSTR_F32 | (flags & (SLJIT_F32_OP | FPU_LOAD));
SLJIT_ASSERT(arg & SLJIT_MEM);
arg &= ~SLJIT_MEM;
if (SLJIT_UNLIKELY(arg & OFFS_REG_MASK)) {
FAIL_IF(push_inst(compiler, ADD | RD(TMP_REG2) | RN(arg & REG_MASK) | RM(OFFS_REG(arg)) | ((argw & 0x3) << 7)));
arg = TMP_REG2;
argw = 0;
}
/* Fast loads and stores. */
if (arg) {
if (!(argw & ~0x3fc))
return push_inst(compiler, EMIT_FPU_DATA_TRANSFER(inst, 1, arg & REG_MASK, reg, argw >> 2));
if (!(-argw & ~0x3fc))
return push_inst(compiler, EMIT_FPU_DATA_TRANSFER(inst, 0, arg & REG_MASK, reg, (-argw) >> 2));
imm = get_imm(argw & ~0x3fc);
if (imm) {
FAIL_IF(push_inst(compiler, ADD | RD(TMP_REG2) | RN(arg & REG_MASK) | imm));
return push_inst(compiler, EMIT_FPU_DATA_TRANSFER(inst, 1, TMP_REG2, reg, (argw & 0x3fc) >> 2));
}
imm = get_imm(-argw & ~0x3fc);
if (imm) {
argw = -argw;
FAIL_IF(push_inst(compiler, SUB | RD(TMP_REG2) | RN(arg & REG_MASK) | imm));
return push_inst(compiler, EMIT_FPU_DATA_TRANSFER(inst, 0, TMP_REG2, reg, (argw & 0x3fc) >> 2));
}
}
if (arg) {
FAIL_IF(load_immediate(compiler, TMP_REG2, argw));
FAIL_IF(push_inst(compiler, ADD | RD(TMP_REG2) | RN(arg & REG_MASK) | RM(TMP_REG2)));
}
else
FAIL_IF(load_immediate(compiler, TMP_REG2, argw));
return push_inst(compiler, EMIT_FPU_DATA_TRANSFER(inst, 1, TMP_REG2, reg, 0));
}
static SLJIT_INLINE sljit_s32 sljit_emit_fop1_conv_sw_from_f64(struct sljit_compiler *compiler, sljit_s32 op,
sljit_s32 dst, sljit_sw dstw,
sljit_s32 src, sljit_sw srcw)
{
op ^= SLJIT_F32_OP;
if (src & SLJIT_MEM) {
FAIL_IF(emit_fop_mem(compiler, (op & SLJIT_F32_OP) | FPU_LOAD, TMP_FREG1, src, srcw));
src = TMP_FREG1;
}
FAIL_IF(push_inst(compiler, EMIT_FPU_OPERATION(VCVT_S32_F32, op & SLJIT_F32_OP, TMP_FREG1, src, 0)));
if (FAST_IS_REG(dst))
return push_inst(compiler, VMOV | (1 << 20) | RD(dst) | (freg_map[TMP_FREG1] << 16));
/* Store the integer value from a VFP register. */
return emit_fop_mem(compiler, 0, TMP_FREG1, dst, dstw);
}
static SLJIT_INLINE sljit_s32 sljit_emit_fop1_conv_f64_from_sw(struct sljit_compiler *compiler, sljit_s32 op,
sljit_s32 dst, sljit_sw dstw,
sljit_s32 src, sljit_sw srcw)
{
sljit_s32 dst_r = FAST_IS_REG(dst) ? dst : TMP_FREG1;
op ^= SLJIT_F32_OP;
if (FAST_IS_REG(src))
FAIL_IF(push_inst(compiler, VMOV | RD(src) | (freg_map[TMP_FREG1] << 16)));
else if (src & SLJIT_MEM) {
/* Load the integer value into a VFP register. */
FAIL_IF(emit_fop_mem(compiler, FPU_LOAD, TMP_FREG1, src, srcw));
}
else {
FAIL_IF(load_immediate(compiler, TMP_REG1, srcw));
FAIL_IF(push_inst(compiler, VMOV | RD(TMP_REG1) | (freg_map[TMP_FREG1] << 16)));
}
FAIL_IF(push_inst(compiler, EMIT_FPU_OPERATION(VCVT_F32_S32, op & SLJIT_F32_OP, dst_r, TMP_FREG1, 0)));
if (dst & SLJIT_MEM)
return emit_fop_mem(compiler, (op & SLJIT_F32_OP), TMP_FREG1, dst, dstw);
return SLJIT_SUCCESS;
}
static SLJIT_INLINE sljit_s32 sljit_emit_fop1_cmp(struct sljit_compiler *compiler, sljit_s32 op,
sljit_s32 src1, sljit_sw src1w,
sljit_s32 src2, sljit_sw src2w)
{
op ^= SLJIT_F32_OP;
if (src1 & SLJIT_MEM) {
FAIL_IF(emit_fop_mem(compiler, (op & SLJIT_F32_OP) | FPU_LOAD, TMP_FREG1, src1, src1w));
src1 = TMP_FREG1;
}
if (src2 & SLJIT_MEM) {
FAIL_IF(emit_fop_mem(compiler, (op & SLJIT_F32_OP) | FPU_LOAD, TMP_FREG2, src2, src2w));
src2 = TMP_FREG2;
}
FAIL_IF(push_inst(compiler, EMIT_FPU_OPERATION(VCMP_F32, op & SLJIT_F32_OP, src1, src2, 0)));
return push_inst(compiler, VMRS);
}
SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_fop1(struct sljit_compiler *compiler, sljit_s32 op,
sljit_s32 dst, sljit_sw dstw,
sljit_s32 src, sljit_sw srcw)
{
sljit_s32 dst_r;
CHECK_ERROR();
SLJIT_COMPILE_ASSERT((SLJIT_F32_OP == 0x100), float_transfer_bit_error);
SELECT_FOP1_OPERATION_WITH_CHECKS(compiler, op, dst, dstw, src, srcw);
dst_r = FAST_IS_REG(dst) ? dst : TMP_FREG1;
if (GET_OPCODE(op) != SLJIT_CONV_F64_FROM_F32)
op ^= SLJIT_F32_OP;
if (src & SLJIT_MEM) {
FAIL_IF(emit_fop_mem(compiler, (op & SLJIT_F32_OP) | FPU_LOAD, dst_r, src, srcw));
src = dst_r;
}
switch (GET_OPCODE(op)) {
case SLJIT_MOV_F64:
if (src != dst_r) {
if (dst_r != TMP_FREG1)
FAIL_IF(push_inst(compiler, EMIT_FPU_OPERATION(VMOV_F32, op & SLJIT_F32_OP, dst_r, src, 0)));
else
dst_r = src;
}
break;
case SLJIT_NEG_F64:
FAIL_IF(push_inst(compiler, EMIT_FPU_OPERATION(VNEG_F32, op & SLJIT_F32_OP, dst_r, src, 0)));
break;
case SLJIT_ABS_F64:
FAIL_IF(push_inst(compiler, EMIT_FPU_OPERATION(VABS_F32, op & SLJIT_F32_OP, dst_r, src, 0)));
break;
case SLJIT_CONV_F64_FROM_F32:
FAIL_IF(push_inst(compiler, EMIT_FPU_OPERATION(VCVT_F64_F32, op & SLJIT_F32_OP, dst_r, src, 0)));
op ^= SLJIT_F32_OP;
break;
}
if (dst & SLJIT_MEM)
return emit_fop_mem(compiler, (op & SLJIT_F32_OP), dst_r, dst, dstw);
return SLJIT_SUCCESS;
}
SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_fop2(struct sljit_compiler *compiler, sljit_s32 op,
sljit_s32 dst, sljit_sw dstw,
sljit_s32 src1, sljit_sw src1w,
sljit_s32 src2, sljit_sw src2w)
{
sljit_s32 dst_r;
CHECK_ERROR();
CHECK(check_sljit_emit_fop2(compiler, op, dst, dstw, src1, src1w, src2, src2w));
ADJUST_LOCAL_OFFSET(dst, dstw);
ADJUST_LOCAL_OFFSET(src1, src1w);
ADJUST_LOCAL_OFFSET(src2, src2w);
op ^= SLJIT_F32_OP;
dst_r = FAST_IS_REG(dst) ? dst : TMP_FREG1;
if (src2 & SLJIT_MEM) {
FAIL_IF(emit_fop_mem(compiler, (op & SLJIT_F32_OP) | FPU_LOAD, TMP_FREG2, src2, src2w));
src2 = TMP_FREG2;
}
if (src1 & SLJIT_MEM) {
FAIL_IF(emit_fop_mem(compiler, (op & SLJIT_F32_OP) | FPU_LOAD, TMP_FREG1, src1, src1w));
src1 = TMP_FREG1;
}
switch (GET_OPCODE(op)) {
case SLJIT_ADD_F64:
FAIL_IF(push_inst(compiler, EMIT_FPU_OPERATION(VADD_F32, op & SLJIT_F32_OP, dst_r, src2, src1)));
break;
case SLJIT_SUB_F64:
FAIL_IF(push_inst(compiler, EMIT_FPU_OPERATION(VSUB_F32, op & SLJIT_F32_OP, dst_r, src2, src1)));
break;
case SLJIT_MUL_F64:
FAIL_IF(push_inst(compiler, EMIT_FPU_OPERATION(VMUL_F32, op & SLJIT_F32_OP, dst_r, src2, src1)));
break;
case SLJIT_DIV_F64:
FAIL_IF(push_inst(compiler, EMIT_FPU_OPERATION(VDIV_F32, op & SLJIT_F32_OP, dst_r, src2, src1)));
break;
}
if (dst_r == TMP_FREG1)
FAIL_IF(emit_fop_mem(compiler, (op & SLJIT_F32_OP), TMP_FREG1, dst, dstw));
return SLJIT_SUCCESS;
}
#undef FPU_LOAD
#undef EMIT_FPU_DATA_TRANSFER
/* --------------------------------------------------------------------- */
/* Other instructions */
/* --------------------------------------------------------------------- */
SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_fast_enter(struct sljit_compiler *compiler, sljit_s32 dst, sljit_sw dstw)
{
CHECK_ERROR();
CHECK(check_sljit_emit_fast_enter(compiler, dst, dstw));
ADJUST_LOCAL_OFFSET(dst, dstw);
SLJIT_ASSERT(reg_map[TMP_REG2] == 14);
if (FAST_IS_REG(dst))
return push_inst(compiler, MOV | RD(dst) | RM(TMP_REG2));
/* Memory. */
return emit_op_mem(compiler, WORD_SIZE, TMP_REG2, dst, dstw, TMP_REG1);
}
SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_fast_return(struct sljit_compiler *compiler, sljit_s32 src, sljit_sw srcw)
{
CHECK_ERROR();
CHECK(check_sljit_emit_fast_return(compiler, src, srcw));
ADJUST_LOCAL_OFFSET(src, srcw);
SLJIT_ASSERT(reg_map[TMP_REG2] == 14);
if (FAST_IS_REG(src))
FAIL_IF(push_inst(compiler, MOV | RD(TMP_REG2) | RM(src)));
else
FAIL_IF(emit_op_mem(compiler, WORD_SIZE | LOAD_DATA, TMP_REG2, src, srcw, TMP_REG1));
return push_inst(compiler, BX | RM(TMP_REG2));
}
/* --------------------------------------------------------------------- */
/* Conditional instructions */
/* --------------------------------------------------------------------- */
static sljit_uw get_cc(sljit_s32 type)
{
switch (type) {
case SLJIT_EQUAL:
case SLJIT_MUL_NOT_OVERFLOW:
case SLJIT_EQUAL_F64:
return 0x00000000;
case SLJIT_NOT_EQUAL:
case SLJIT_MUL_OVERFLOW:
case SLJIT_NOT_EQUAL_F64:
return 0x10000000;
case SLJIT_LESS:
case SLJIT_LESS_F64:
return 0x30000000;
case SLJIT_GREATER_EQUAL:
case SLJIT_GREATER_EQUAL_F64:
return 0x20000000;
case SLJIT_GREATER:
case SLJIT_GREATER_F64:
return 0x80000000;
case SLJIT_LESS_EQUAL:
case SLJIT_LESS_EQUAL_F64:
return 0x90000000;
case SLJIT_SIG_LESS:
return 0xb0000000;
case SLJIT_SIG_GREATER_EQUAL:
return 0xa0000000;
case SLJIT_SIG_GREATER:
return 0xc0000000;
case SLJIT_SIG_LESS_EQUAL:
return 0xd0000000;
case SLJIT_OVERFLOW:
case SLJIT_UNORDERED_F64:
return 0x60000000;
case SLJIT_NOT_OVERFLOW:
case SLJIT_ORDERED_F64:
return 0x70000000;
default:
SLJIT_ASSERT(type >= SLJIT_JUMP && type <= SLJIT_CALL_CDECL);
return 0xe0000000;
}
}
SLJIT_API_FUNC_ATTRIBUTE struct sljit_label* sljit_emit_label(struct sljit_compiler *compiler)
{
struct sljit_label *label;
CHECK_ERROR_PTR();
CHECK_PTR(check_sljit_emit_label(compiler));
if (compiler->last_label && compiler->last_label->size == compiler->size)
return compiler->last_label;
label = (struct sljit_label*)ensure_abuf(compiler, sizeof(struct sljit_label));
PTR_FAIL_IF(!label);
set_label(label, compiler);
return label;
}
SLJIT_API_FUNC_ATTRIBUTE struct sljit_jump* sljit_emit_jump(struct sljit_compiler *compiler, sljit_s32 type)
{
struct sljit_jump *jump;
CHECK_ERROR_PTR();
CHECK_PTR(check_sljit_emit_jump(compiler, type));
jump = (struct sljit_jump*)ensure_abuf(compiler, sizeof(struct sljit_jump));
PTR_FAIL_IF(!jump);
set_jump(jump, compiler, type & SLJIT_REWRITABLE_JUMP);
type &= 0xff;
SLJIT_ASSERT(reg_map[TMP_REG1] != 14);
#if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5)
if (type >= SLJIT_FAST_CALL)
PTR_FAIL_IF(prepare_blx(compiler));
PTR_FAIL_IF(push_inst_with_unique_literal(compiler, ((EMIT_DATA_TRANSFER(WORD_SIZE | LOAD_DATA, 1,
type <= SLJIT_JUMP ? TMP_PC : TMP_REG1, TMP_PC, 0)) & ~COND_MASK) | get_cc(type), 0));
if (jump->flags & SLJIT_REWRITABLE_JUMP) {
jump->addr = compiler->size;
compiler->patches++;
}
if (type >= SLJIT_FAST_CALL) {
jump->flags |= IS_BL;
PTR_FAIL_IF(emit_blx(compiler));
}
if (!(jump->flags & SLJIT_REWRITABLE_JUMP))
jump->addr = compiler->size;
#else
if (type >= SLJIT_FAST_CALL)
jump->flags |= IS_BL;
PTR_FAIL_IF(emit_imm(compiler, TMP_REG1, 0));
PTR_FAIL_IF(push_inst(compiler, (((type <= SLJIT_JUMP ? BX : BLX) | RM(TMP_REG1)) & ~COND_MASK) | get_cc(type)));
jump->addr = compiler->size;
#endif
return jump;
}
#ifdef __SOFTFP__
static sljit_s32 softfloat_call_with_args(struct sljit_compiler *compiler, sljit_s32 arg_types, sljit_s32 *src)
{
sljit_s32 stack_offset = 0;
sljit_s32 arg_count = 0;
sljit_s32 word_arg_offset = 0;
sljit_s32 float_arg_count = 0;
sljit_s32 types = 0;
sljit_s32 src_offset = 4 * sizeof(sljit_sw);
sljit_u8 offsets[4];
if (src && FAST_IS_REG(*src))
src_offset = reg_map[*src] * sizeof(sljit_sw);
arg_types >>= SLJIT_DEF_SHIFT;
while (arg_types) {
types = (types << SLJIT_DEF_SHIFT) | (arg_types & SLJIT_DEF_MASK);
switch (arg_types & SLJIT_DEF_MASK) {
case SLJIT_ARG_TYPE_F32:
offsets[arg_count] = (sljit_u8)stack_offset;
stack_offset += sizeof(sljit_f32);
arg_count++;
float_arg_count++;
break;
case SLJIT_ARG_TYPE_F64:
if (stack_offset & 0x7)
stack_offset += sizeof(sljit_sw);
offsets[arg_count] = (sljit_u8)stack_offset;
stack_offset += sizeof(sljit_f64);
arg_count++;
float_arg_count++;
break;
default:
offsets[arg_count] = (sljit_u8)stack_offset;
stack_offset += sizeof(sljit_sw);
arg_count++;
word_arg_offset += sizeof(sljit_sw);
break;
}
arg_types >>= SLJIT_DEF_SHIFT;
}
if (stack_offset > 16)
FAIL_IF(push_inst(compiler, SUB | RD(SLJIT_SP) | RN(SLJIT_SP) | SRC2_IMM | (((stack_offset - 16) + 0x7) & ~0x7)));
/* Process arguments in reversed direction. */
while (types) {
switch (types & SLJIT_DEF_MASK) {
case SLJIT_ARG_TYPE_F32:
arg_count--;
float_arg_count--;
stack_offset = offsets[arg_count];
if (stack_offset < 16) {
if (src_offset == stack_offset) {
FAIL_IF(push_inst(compiler, MOV | RD(TMP_REG1) | (src_offset >> 2)));
*src = TMP_REG1;
}
FAIL_IF(push_inst(compiler, VMOV | 0x100000 | (float_arg_count << 16) | (stack_offset << 10)));
} else
FAIL_IF(push_inst(compiler, VSTR_F32 | 0x800000 | RN(SLJIT_SP) | (float_arg_count << 12) | ((stack_offset - 16) >> 2)));
break;
case SLJIT_ARG_TYPE_F64:
arg_count--;
float_arg_count--;
stack_offset = offsets[arg_count];
SLJIT_ASSERT((stack_offset & 0x7) == 0);
if (stack_offset < 16) {
if (src_offset == stack_offset || src_offset == stack_offset + sizeof(sljit_sw)) {
FAIL_IF(push_inst(compiler, MOV | RD(TMP_REG1) | (src_offset >> 2)));
*src = TMP_REG1;
}
FAIL_IF(push_inst(compiler, VMOV2 | 0x100000 | (stack_offset << 10) | ((stack_offset + sizeof(sljit_sw)) << 14) | float_arg_count));
} else
FAIL_IF(push_inst(compiler, VSTR_F32 | 0x800100 | RN(SLJIT_SP) | (float_arg_count << 12) | ((stack_offset - 16) >> 2)));
break;
default:
arg_count--;
word_arg_offset -= sizeof(sljit_sw);
stack_offset = offsets[arg_count];
SLJIT_ASSERT(stack_offset >= word_arg_offset);
if (stack_offset != word_arg_offset) {
if (stack_offset < 16) {
if (src_offset == stack_offset) {
FAIL_IF(push_inst(compiler, MOV | RD(TMP_REG1) | (src_offset >> 2)));
*src = TMP_REG1;
}
else if (src_offset == word_arg_offset) {
*src = 1 + (stack_offset >> 2);
src_offset = stack_offset;
}
FAIL_IF(push_inst(compiler, MOV | (stack_offset << 10) | (word_arg_offset >> 2)));
} else
FAIL_IF(push_inst(compiler, data_transfer_insts[WORD_SIZE] | 0x800000 | RN(SLJIT_SP) | (word_arg_offset << 10) | (stack_offset - 16)));
}
break;
}
types >>= SLJIT_DEF_SHIFT;
}
return SLJIT_SUCCESS;
}
static sljit_s32 softfloat_post_call_with_args(struct sljit_compiler *compiler, sljit_s32 arg_types)
{
sljit_s32 stack_size = 0;
if ((arg_types & SLJIT_DEF_MASK) == SLJIT_ARG_TYPE_F32)
FAIL_IF(push_inst(compiler, VMOV | (0 << 16) | (0 << 12)));
if ((arg_types & SLJIT_DEF_MASK) == SLJIT_ARG_TYPE_F64)
FAIL_IF(push_inst(compiler, VMOV2 | (1 << 16) | (0 << 12) | 0));
arg_types >>= SLJIT_DEF_SHIFT;
while (arg_types) {
switch (arg_types & SLJIT_DEF_MASK) {
case SLJIT_ARG_TYPE_F32:
stack_size += sizeof(sljit_f32);
break;
case SLJIT_ARG_TYPE_F64:
if (stack_size & 0x7)
stack_size += sizeof(sljit_sw);
stack_size += sizeof(sljit_f64);
break;
default:
stack_size += sizeof(sljit_sw);
break;
}
arg_types >>= SLJIT_DEF_SHIFT;
}
if (stack_size <= 16)
return SLJIT_SUCCESS;
return push_inst(compiler, ADD | RD(SLJIT_SP) | RN(SLJIT_SP) | SRC2_IMM | (((stack_size - 16) + 0x7) & ~0x7));
}
#else /* !__SOFTFP__ */
static sljit_s32 hardfloat_call_with_args(struct sljit_compiler *compiler, sljit_s32 arg_types)
{
sljit_u32 remap = 0;
sljit_u32 offset = 0;
sljit_u32 new_offset, mask;
/* Remove return value. */
arg_types >>= SLJIT_DEF_SHIFT;
while (arg_types) {
if ((arg_types & SLJIT_DEF_MASK) == SLJIT_ARG_TYPE_F32) {
new_offset = 0;
mask = 1;
while (remap & mask) {
new_offset++;
mask <<= 1;
}
remap |= mask;
if (offset != new_offset)
FAIL_IF(push_inst(compiler, EMIT_FPU_OPERATION(VMOV_F32,
0, (new_offset >> 1) + 1, (offset >> 1) + 1, 0) | ((new_offset & 0x1) ? 0x400000 : 0)));
offset += 2;
}
else if ((arg_types & SLJIT_DEF_MASK) == SLJIT_ARG_TYPE_F64) {
new_offset = 0;
mask = 3;
while (remap & mask) {
new_offset += 2;
mask <<= 2;
}
remap |= mask;
if (offset != new_offset)
FAIL_IF(push_inst(compiler, EMIT_FPU_OPERATION(VMOV_F32, SLJIT_F32_OP, (new_offset >> 1) + 1, (offset >> 1) + 1, 0)));
offset += 2;
}
arg_types >>= SLJIT_DEF_SHIFT;
}
return SLJIT_SUCCESS;
}
#endif /* __SOFTFP__ */
#undef EMIT_FPU_OPERATION
SLJIT_API_FUNC_ATTRIBUTE struct sljit_jump* sljit_emit_call(struct sljit_compiler *compiler, sljit_s32 type,
sljit_s32 arg_types)
{
#ifdef __SOFTFP__
struct sljit_jump *jump;
#endif
CHECK_ERROR_PTR();
CHECK_PTR(check_sljit_emit_call(compiler, type, arg_types));
#ifdef __SOFTFP__
PTR_FAIL_IF(softfloat_call_with_args(compiler, arg_types, NULL));
#if (defined SLJIT_VERBOSE && SLJIT_VERBOSE) \
|| (defined SLJIT_ARGUMENT_CHECKS && SLJIT_ARGUMENT_CHECKS)
compiler->skip_checks = 1;
#endif
jump = sljit_emit_jump(compiler, type);
PTR_FAIL_IF(jump == NULL);
PTR_FAIL_IF(softfloat_post_call_with_args(compiler, arg_types));
return jump;
#else /* !__SOFTFP__ */
PTR_FAIL_IF(hardfloat_call_with_args(compiler, arg_types));
#if (defined SLJIT_VERBOSE && SLJIT_VERBOSE) \
|| (defined SLJIT_ARGUMENT_CHECKS && SLJIT_ARGUMENT_CHECKS)
compiler->skip_checks = 1;
#endif
return sljit_emit_jump(compiler, type);
#endif /* __SOFTFP__ */
}
SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_ijump(struct sljit_compiler *compiler, sljit_s32 type, sljit_s32 src, sljit_sw srcw)
{
struct sljit_jump *jump;
CHECK_ERROR();
CHECK(check_sljit_emit_ijump(compiler, type, src, srcw));
ADJUST_LOCAL_OFFSET(src, srcw);
SLJIT_ASSERT(reg_map[TMP_REG1] != 14);
if (!(src & SLJIT_IMM)) {
if (FAST_IS_REG(src)) {
SLJIT_ASSERT(reg_map[src] != 14);
return push_inst(compiler, (type <= SLJIT_JUMP ? BX : BLX) | RM(src));
}
SLJIT_ASSERT(src & SLJIT_MEM);
FAIL_IF(emit_op_mem(compiler, WORD_SIZE | LOAD_DATA, TMP_REG1, src, srcw, TMP_REG1));
return push_inst(compiler, (type <= SLJIT_JUMP ? BX : BLX) | RM(TMP_REG1));
}
/* These jumps are converted to jump/call instructions when possible. */
jump = (struct sljit_jump*)ensure_abuf(compiler, sizeof(struct sljit_jump));
FAIL_IF(!jump);
set_jump(jump, compiler, JUMP_ADDR | ((type >= SLJIT_FAST_CALL) ? IS_BL : 0));
jump->u.target = srcw;
#if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5)
if (type >= SLJIT_FAST_CALL)
FAIL_IF(prepare_blx(compiler));
FAIL_IF(push_inst_with_unique_literal(compiler, EMIT_DATA_TRANSFER(WORD_SIZE | LOAD_DATA, 1, type <= SLJIT_JUMP ? TMP_PC : TMP_REG1, TMP_PC, 0), 0));
if (type >= SLJIT_FAST_CALL)
FAIL_IF(emit_blx(compiler));
#else
FAIL_IF(emit_imm(compiler, TMP_REG1, 0));
FAIL_IF(push_inst(compiler, (type <= SLJIT_JUMP ? BX : BLX) | RM(TMP_REG1)));
#endif
jump->addr = compiler->size;
return SLJIT_SUCCESS;
}
SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_icall(struct sljit_compiler *compiler, sljit_s32 type,
sljit_s32 arg_types,
sljit_s32 src, sljit_sw srcw)
{
CHECK_ERROR();
CHECK(check_sljit_emit_icall(compiler, type, arg_types, src, srcw));
#ifdef __SOFTFP__
if (src & SLJIT_MEM) {
FAIL_IF(emit_op_mem(compiler, WORD_SIZE | LOAD_DATA, TMP_REG1, src, srcw, TMP_REG1));
src = TMP_REG1;
}
FAIL_IF(softfloat_call_with_args(compiler, arg_types, &src));
#if (defined SLJIT_VERBOSE && SLJIT_VERBOSE) \
|| (defined SLJIT_ARGUMENT_CHECKS && SLJIT_ARGUMENT_CHECKS)
compiler->skip_checks = 1;
#endif
FAIL_IF(sljit_emit_ijump(compiler, type, src, srcw));
return softfloat_post_call_with_args(compiler, arg_types);
#else /* !__SOFTFP__ */
FAIL_IF(hardfloat_call_with_args(compiler, arg_types));
#if (defined SLJIT_VERBOSE && SLJIT_VERBOSE) \
|| (defined SLJIT_ARGUMENT_CHECKS && SLJIT_ARGUMENT_CHECKS)
compiler->skip_checks = 1;
#endif
return sljit_emit_ijump(compiler, type, src, srcw);
#endif /* __SOFTFP__ */
}
SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op_flags(struct sljit_compiler *compiler, sljit_s32 op,
sljit_s32 dst, sljit_sw dstw,
sljit_s32 type)
{
sljit_s32 dst_reg, flags = GET_ALL_FLAGS(op);
sljit_uw cc, ins;
CHECK_ERROR();
CHECK(check_sljit_emit_op_flags(compiler, op, dst, dstw, type));
ADJUST_LOCAL_OFFSET(dst, dstw);
op = GET_OPCODE(op);
cc = get_cc(type & 0xff);
dst_reg = FAST_IS_REG(dst) ? dst : TMP_REG1;
if (op < SLJIT_ADD) {
FAIL_IF(push_inst(compiler, MOV | RD(dst_reg) | SRC2_IMM | 0));
FAIL_IF(push_inst(compiler, ((MOV | RD(dst_reg) | SRC2_IMM | 1) & ~COND_MASK) | cc));
if (dst & SLJIT_MEM)
return emit_op_mem(compiler, WORD_SIZE, TMP_REG1, dst, dstw, TMP_REG2);
return SLJIT_SUCCESS;
}
ins = (op == SLJIT_AND ? AND : (op == SLJIT_OR ? ORR : EOR));
if (dst & SLJIT_MEM)
FAIL_IF(emit_op_mem(compiler, WORD_SIZE | LOAD_DATA, TMP_REG1, dst, dstw, TMP_REG2));
FAIL_IF(push_inst(compiler, ((ins | RD(dst_reg) | RN(dst_reg) | SRC2_IMM | 1) & ~COND_MASK) | cc));
if (op == SLJIT_AND)
FAIL_IF(push_inst(compiler, ((ins | RD(dst_reg) | RN(dst_reg) | SRC2_IMM | 0) & ~COND_MASK) | (cc ^ 0x10000000)));
if (dst & SLJIT_MEM)
FAIL_IF(emit_op_mem(compiler, WORD_SIZE, TMP_REG1, dst, dstw, TMP_REG2));
if (flags & SLJIT_SET_Z)
return push_inst(compiler, MOV | SET_FLAGS | RD(TMP_REG2) | RM(dst_reg));
return SLJIT_SUCCESS;
}
SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_cmov(struct sljit_compiler *compiler, sljit_s32 type,
sljit_s32 dst_reg,
sljit_s32 src, sljit_sw srcw)
{
sljit_uw cc, tmp;
CHECK_ERROR();
CHECK(check_sljit_emit_cmov(compiler, type, dst_reg, src, srcw));
dst_reg &= ~SLJIT_I32_OP;
cc = get_cc(type & 0xff);
if (SLJIT_UNLIKELY(src & SLJIT_IMM)) {
tmp = get_imm(srcw);
if (tmp)
return push_inst(compiler, ((MOV | RD(dst_reg) | tmp) & ~COND_MASK) | cc);
tmp = get_imm(~srcw);
if (tmp)
return push_inst(compiler, ((MVN | RD(dst_reg) | tmp) & ~COND_MASK) | cc);
#if (defined SLJIT_CONFIG_ARM_V7 && SLJIT_CONFIG_ARM_V7)
tmp = (sljit_uw) srcw;
FAIL_IF(push_inst(compiler, (MOVW & ~COND_MASK) | cc | RD(dst_reg) | ((tmp << 4) & 0xf0000) | (tmp & 0xfff)));
if (tmp <= 0xffff)
return SLJIT_SUCCESS;
return push_inst(compiler, (MOVT & ~COND_MASK) | cc | RD(dst_reg) | ((tmp >> 12) & 0xf0000) | ((tmp >> 16) & 0xfff));
#else
FAIL_IF(load_immediate(compiler, TMP_REG1, srcw));
src = TMP_REG1;
#endif
}
return push_inst(compiler, ((MOV | RD(dst_reg) | RM(src)) & ~COND_MASK) | cc);
}
SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_mem(struct sljit_compiler *compiler, sljit_s32 type,
sljit_s32 reg,
sljit_s32 mem, sljit_sw memw)
{
sljit_s32 flags;
sljit_uw is_type1_transfer, inst;
CHECK_ERROR();
CHECK(check_sljit_emit_mem(compiler, type, reg, mem, memw));
is_type1_transfer = 1;
switch (type & 0xff) {
case SLJIT_MOV:
case SLJIT_MOV_U32:
case SLJIT_MOV_S32:
case SLJIT_MOV_P:
flags = WORD_SIZE;
break;
case SLJIT_MOV_U8:
flags = BYTE_SIZE;
break;
case SLJIT_MOV_S8:
if (!(type & SLJIT_MEM_STORE))
is_type1_transfer = 0;
flags = BYTE_SIZE | SIGNED;
break;
case SLJIT_MOV_U16:
is_type1_transfer = 0;
flags = HALF_SIZE;
break;
case SLJIT_MOV_S16:
is_type1_transfer = 0;
flags = HALF_SIZE | SIGNED;
break;
default:
SLJIT_UNREACHABLE();
flags = WORD_SIZE;
break;
}
if (!(type & SLJIT_MEM_STORE))
flags |= LOAD_DATA;
SLJIT_ASSERT(is_type1_transfer == !!IS_TYPE1_TRANSFER(flags));
if (SLJIT_UNLIKELY(mem & OFFS_REG_MASK)) {
if (!is_type1_transfer && memw != 0)
return SLJIT_ERR_UNSUPPORTED;
}
else {
if (is_type1_transfer) {
if (memw > 4095 && memw < -4095)
return SLJIT_ERR_UNSUPPORTED;
}
else {
if (memw > 255 && memw < -255)
return SLJIT_ERR_UNSUPPORTED;
}
}
if (type & SLJIT_MEM_SUPP)
return SLJIT_SUCCESS;
if (SLJIT_UNLIKELY(mem & OFFS_REG_MASK)) {
memw &= 0x3;
inst = EMIT_DATA_TRANSFER(flags, 1, reg, mem & REG_MASK, RM(OFFS_REG(mem)) | (memw << 7));
if (is_type1_transfer)
inst |= (1 << 25);
if (type & SLJIT_MEM_PRE)
inst |= (1 << 21);
else
inst ^= (1 << 24);
return push_inst(compiler, inst);
}
inst = EMIT_DATA_TRANSFER(flags, 0, reg, mem & REG_MASK, 0);
if (type & SLJIT_MEM_PRE)
inst |= (1 << 21);
else
inst ^= (1 << 24);
if (is_type1_transfer) {
if (memw >= 0)
inst |= (1 << 23);
else
memw = -memw;
return push_inst(compiler, inst | memw);
}
if (memw >= 0)
inst |= (1 << 23);
else
memw = -memw;
return push_inst(compiler, inst | TYPE2_TRANSFER_IMM(memw));
}
SLJIT_API_FUNC_ATTRIBUTE struct sljit_const* sljit_emit_const(struct sljit_compiler *compiler, sljit_s32 dst, sljit_sw dstw, sljit_sw init_value)
{
struct sljit_const *const_;
sljit_s32 reg;
CHECK_ERROR_PTR();
CHECK_PTR(check_sljit_emit_const(compiler, dst, dstw, init_value));
ADJUST_LOCAL_OFFSET(dst, dstw);
const_ = (struct sljit_const*)ensure_abuf(compiler, sizeof(struct sljit_const));
PTR_FAIL_IF(!const_);
reg = SLOW_IS_REG(dst) ? dst : TMP_REG2;
#if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5)
PTR_FAIL_IF(push_inst_with_unique_literal(compiler, EMIT_DATA_TRANSFER(WORD_SIZE | LOAD_DATA, 1, reg, TMP_PC, 0), init_value));
compiler->patches++;
#else
PTR_FAIL_IF(emit_imm(compiler, reg, init_value));
#endif
set_const(const_, compiler);
if (dst & SLJIT_MEM)
PTR_FAIL_IF(emit_op_mem(compiler, WORD_SIZE, TMP_REG2, dst, dstw, TMP_REG1));
return const_;
}
SLJIT_API_FUNC_ATTRIBUTE void sljit_set_jump_addr(sljit_uw addr, sljit_uw new_target, sljit_sw executable_offset)
{
inline_set_jump_addr(addr, executable_offset, new_target, 1);
}
SLJIT_API_FUNC_ATTRIBUTE void sljit_set_const(sljit_uw addr, sljit_sw new_constant, sljit_sw executable_offset)
{
inline_set_const(addr, executable_offset, new_constant, 1);
}