/*
* Mesa 3-D graphics library
*
* Copyright (C) 1999-2007 Brian Paul All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*/
/*
* When the device driver doesn't implement triangle rasterization it
* can hook in _swrast_Triangle, which eventually calls one of these
* functions to draw triangles.
*/
#include "main/glheader.h"
#include "main/context.h"
#include "main/imports.h"
#include "main/macros.h"
#include "main/mtypes.h"
#include "main/state.h"
#include "main/samplerobj.h"
#include "main/stencil.h"
#include "main/teximage.h"
#include "program/prog_instruction.h"
#include "s_aatriangle.h"
#include "s_context.h"
#include "s_feedback.h"
#include "s_span.h"
#include "s_triangle.h"
/**
* Test if a triangle should be culled. Used for feedback and selection mode.
* \return GL_TRUE if the triangle is to be culled, GL_FALSE otherwise.
*/
GLboolean
_swrast_culltriangle( struct gl_context *ctx,
const SWvertex *v0,
const SWvertex *v1,
const SWvertex *v2 )
{
SWcontext *swrast = SWRAST_CONTEXT(ctx);
GLfloat ex = v1->attrib[VARYING_SLOT_POS][0] - v0->attrib[VARYING_SLOT_POS][0];
GLfloat ey = v1->attrib[VARYING_SLOT_POS][1] - v0->attrib[VARYING_SLOT_POS][1];
GLfloat fx = v2->attrib[VARYING_SLOT_POS][0] - v0->attrib[VARYING_SLOT_POS][0];
GLfloat fy = v2->attrib[VARYING_SLOT_POS][1] - v0->attrib[VARYING_SLOT_POS][1];
GLfloat c = ex*fy-ey*fx;
if (c * swrast->_BackfaceSign * swrast->_BackfaceCullSign <= 0.0F)
return GL_FALSE;
return GL_TRUE;
}
/*
* Render a flat-shaded RGBA triangle.
*/
#define NAME flat_rgba_triangle
#define INTERP_Z 1
#define SETUP_CODE \
assert(ctx->Texture._EnabledCoordUnits == 0);\
assert(ctx->Light.ShadeModel==GL_FLAT); \
span.interpMask |= SPAN_RGBA; \
span.red = ChanToFixed(v2->color[0]); \
span.green = ChanToFixed(v2->color[1]); \
span.blue = ChanToFixed(v2->color[2]); \
span.alpha = ChanToFixed(v2->color[3]); \
span.redStep = 0; \
span.greenStep = 0; \
span.blueStep = 0; \
span.alphaStep = 0;
#define RENDER_SPAN( span ) _swrast_write_rgba_span(ctx, &span);
#include "s_tritemp.h"
/*
* Render a smooth-shaded RGBA triangle.
*/
#define NAME smooth_rgba_triangle
#define INTERP_Z 1
#define INTERP_RGB 1
#define INTERP_ALPHA 1
#define SETUP_CODE \
{ \
/* texturing must be off */ \
assert(ctx->Texture._EnabledCoordUnits == 0); \
assert(ctx->Light.ShadeModel==GL_SMOOTH); \
}
#define RENDER_SPAN( span ) _swrast_write_rgba_span(ctx, &span);
#include "s_tritemp.h"
/*
* Render an RGB, GL_DECAL, textured triangle.
* Interpolate S,T only w/out mipmapping or perspective correction.
*
* No fog. No depth testing.
*/
#define NAME simple_textured_triangle
#define INTERP_INT_TEX 1
#define S_SCALE twidth
#define T_SCALE theight
#define SETUP_CODE \
struct gl_renderbuffer *rb = ctx->DrawBuffer->_ColorDrawBuffers[0]; \
const struct gl_texture_object *obj = \
ctx->Texture.Unit[0].CurrentTex[TEXTURE_2D_INDEX]; \
const struct gl_texture_image *texImg = \
_mesa_base_tex_image(obj); \
const struct swrast_texture_image *swImg = \
swrast_texture_image_const(texImg); \
const GLfloat twidth = (GLfloat) texImg->Width; \
const GLfloat theight = (GLfloat) texImg->Height; \
const GLint twidth_log2 = texImg->WidthLog2; \
const GLubyte *texture = (const GLubyte *) swImg->ImageSlices[0]; \
const GLint smask = texImg->Width - 1; \
const GLint tmask = texImg->Height - 1; \
assert(texImg->TexFormat == MESA_FORMAT_BGR_UNORM8); \
if (!rb || !texture) { \
return; \
}
#define RENDER_SPAN( span ) \
GLuint i; \
GLubyte (*rgba)[4] = swrast->SpanArrays->rgba8; \
span.intTex[0] -= FIXED_HALF; /* off-by-one error? */ \
span.intTex[1] -= FIXED_HALF; \
for (i = 0; i < span.end; i++) { \
GLint s = FixedToInt(span.intTex[0]) & smask; \
GLint t = FixedToInt(span.intTex[1]) & tmask; \
GLint pos = (t << twidth_log2) + s; \
pos = pos + pos + pos; /* multiply by 3 */ \
rgba[i][RCOMP] = texture[pos+2]; \
rgba[i][GCOMP] = texture[pos+1]; \
rgba[i][BCOMP] = texture[pos+0]; \
rgba[i][ACOMP] = 0xff; \
span.intTex[0] += span.intTexStep[0]; \
span.intTex[1] += span.intTexStep[1]; \
} \
_swrast_put_row(ctx, rb, GL_UNSIGNED_BYTE, span.end, \
span.x, span.y, rgba, NULL);
#include "s_tritemp.h"
/*
* Render an RGB, GL_DECAL, textured triangle.
* Interpolate S,T, GL_LESS depth test, w/out mipmapping or
* perspective correction.
* Depth buffer bits must be <= sizeof(DEFAULT_SOFTWARE_DEPTH_TYPE)
*
* No fog.
*/
#define NAME simple_z_textured_triangle
#define INTERP_Z 1
#define DEPTH_TYPE DEFAULT_SOFTWARE_DEPTH_TYPE
#define INTERP_INT_TEX 1
#define S_SCALE twidth
#define T_SCALE theight
#define SETUP_CODE \
struct gl_renderbuffer *rb = ctx->DrawBuffer->_ColorDrawBuffers[0]; \
const struct gl_texture_object *obj = \
ctx->Texture.Unit[0].CurrentTex[TEXTURE_2D_INDEX]; \
const struct gl_texture_image *texImg = \
_mesa_base_tex_image(obj); \
const struct swrast_texture_image *swImg = \
swrast_texture_image_const(texImg); \
const GLfloat twidth = (GLfloat) texImg->Width; \
const GLfloat theight = (GLfloat) texImg->Height; \
const GLint twidth_log2 = texImg->WidthLog2; \
const GLubyte *texture = (const GLubyte *) swImg->ImageSlices[0]; \
const GLint smask = texImg->Width - 1; \
const GLint tmask = texImg->Height - 1; \
assert(texImg->TexFormat == MESA_FORMAT_BGR_UNORM8); \
if (!rb || !texture) { \
return; \
}
#define RENDER_SPAN( span ) \
GLuint i; \
GLubyte (*rgba)[4] = swrast->SpanArrays->rgba8; \
GLubyte *mask = swrast->SpanArrays->mask; \
span.intTex[0] -= FIXED_HALF; /* off-by-one error? */ \
span.intTex[1] -= FIXED_HALF; \
for (i = 0; i < span.end; i++) { \
const GLuint z = FixedToDepth(span.z); \
if (z < zRow[i]) { \
GLint s = FixedToInt(span.intTex[0]) & smask; \
GLint t = FixedToInt(span.intTex[1]) & tmask; \
GLint pos = (t << twidth_log2) + s; \
pos = pos + pos + pos; /* multiply by 3 */ \
rgba[i][RCOMP] = texture[pos+2]; \
rgba[i][GCOMP] = texture[pos+1]; \
rgba[i][BCOMP] = texture[pos+0]; \
rgba[i][ACOMP] = 0xff; \
zRow[i] = z; \
mask[i] = 1; \
} \
else { \
mask[i] = 0; \
} \
span.intTex[0] += span.intTexStep[0]; \
span.intTex[1] += span.intTexStep[1]; \
span.z += span.zStep; \
} \
_swrast_put_row(ctx, rb, GL_UNSIGNED_BYTE, \
span.end, span.x, span.y, rgba, mask);
#include "s_tritemp.h"
#if CHAN_TYPE != GL_FLOAT
struct affine_info
{
GLenum filter;
GLenum format;
GLenum envmode;
GLint smask, tmask;
GLint twidth_log2;
const GLchan *texture;
GLfixed er, eg, eb, ea;
GLint tbytesline, tsize;
};
static inline GLint
ilerp(GLint t, GLint a, GLint b)
{
return a + ((t * (b - a)) >> FIXED_SHIFT);
}
static inline GLint
ilerp_2d(GLint ia, GLint ib, GLint v00, GLint v10, GLint v01, GLint v11)
{
const GLint temp0 = ilerp(ia, v00, v10);
const GLint temp1 = ilerp(ia, v01, v11);
return ilerp(ib, temp0, temp1);
}
/* This function can handle GL_NEAREST or GL_LINEAR sampling of 2D RGB or RGBA
* textures with GL_REPLACE, GL_MODULATE, GL_BLEND, GL_DECAL or GL_ADD
* texture env modes.
*/
static inline void
affine_span(struct gl_context *ctx, SWspan *span,
struct affine_info *info)
{
GLchan sample[4]; /* the filtered texture sample */
const GLuint texEnableSave = ctx->Texture._EnabledCoordUnits;
/* Instead of defining a function for each mode, a test is done
* between the outer and inner loops. This is to reduce code size
* and complexity. Observe that an optimizing compiler kills
* unused variables (for instance tf,sf,ti,si in case of GL_NEAREST).
*/
#define NEAREST_RGB \
sample[RCOMP] = tex00[2]; \
sample[GCOMP] = tex00[1]; \
sample[BCOMP] = tex00[0]; \
sample[ACOMP] = CHAN_MAX;
#define LINEAR_RGB \
sample[RCOMP] = ilerp_2d(sf, tf, tex00[2], tex01[2], tex10[2], tex11[2]);\
sample[GCOMP] = ilerp_2d(sf, tf, tex00[1], tex01[1], tex10[1], tex11[1]);\
sample[BCOMP] = ilerp_2d(sf, tf, tex00[0], tex01[0], tex10[0], tex11[0]);\
sample[ACOMP] = CHAN_MAX;
#define NEAREST_RGBA \
sample[RCOMP] = tex00[3]; \
sample[GCOMP] = tex00[2]; \
sample[BCOMP] = tex00[1]; \
sample[ACOMP] = tex00[0];
#define LINEAR_RGBA \
sample[RCOMP] = ilerp_2d(sf, tf, tex00[3], tex01[3], tex10[3], tex11[3]);\
sample[GCOMP] = ilerp_2d(sf, tf, tex00[2], tex01[2], tex10[2], tex11[2]);\
sample[BCOMP] = ilerp_2d(sf, tf, tex00[1], tex01[1], tex10[1], tex11[1]);\
sample[ACOMP] = ilerp_2d(sf, tf, tex00[0], tex01[0], tex10[0], tex11[0])
#define MODULATE \
dest[RCOMP] = span->red * (sample[RCOMP] + 1u) >> (FIXED_SHIFT + 8); \
dest[GCOMP] = span->green * (sample[GCOMP] + 1u) >> (FIXED_SHIFT + 8); \
dest[BCOMP] = span->blue * (sample[BCOMP] + 1u) >> (FIXED_SHIFT + 8); \
dest[ACOMP] = span->alpha * (sample[ACOMP] + 1u) >> (FIXED_SHIFT + 8)
#define DECAL \
dest[RCOMP] = ((CHAN_MAX - sample[ACOMP]) * span->red + \
((sample[ACOMP] + 1) * sample[RCOMP] << FIXED_SHIFT)) \
>> (FIXED_SHIFT + 8); \
dest[GCOMP] = ((CHAN_MAX - sample[ACOMP]) * span->green + \
((sample[ACOMP] + 1) * sample[GCOMP] << FIXED_SHIFT)) \
>> (FIXED_SHIFT + 8); \
dest[BCOMP] = ((CHAN_MAX - sample[ACOMP]) * span->blue + \
((sample[ACOMP] + 1) * sample[BCOMP] << FIXED_SHIFT)) \
>> (FIXED_SHIFT + 8); \
dest[ACOMP] = FixedToInt(span->alpha)
#define BLEND \
dest[RCOMP] = ((CHAN_MAX - sample[RCOMP]) * span->red \
+ (sample[RCOMP] + 1) * info->er) >> (FIXED_SHIFT + 8); \
dest[GCOMP] = ((CHAN_MAX - sample[GCOMP]) * span->green \
+ (sample[GCOMP] + 1) * info->eg) >> (FIXED_SHIFT + 8); \
dest[BCOMP] = ((CHAN_MAX - sample[BCOMP]) * span->blue \
+ (sample[BCOMP] + 1) * info->eb) >> (FIXED_SHIFT + 8); \
dest[ACOMP] = span->alpha * (sample[ACOMP] + 1) >> (FIXED_SHIFT + 8)
#define REPLACE COPY_CHAN4(dest, sample)
#define ADD \
{ \
GLint rSum = FixedToInt(span->red) + (GLint) sample[RCOMP]; \
GLint gSum = FixedToInt(span->green) + (GLint) sample[GCOMP]; \
GLint bSum = FixedToInt(span->blue) + (GLint) sample[BCOMP]; \
dest[RCOMP] = MIN2(rSum, CHAN_MAX); \
dest[GCOMP] = MIN2(gSum, CHAN_MAX); \
dest[BCOMP] = MIN2(bSum, CHAN_MAX); \
dest[ACOMP] = span->alpha * (sample[ACOMP] + 1) >> (FIXED_SHIFT + 8); \
}
/* shortcuts */
#define NEAREST_RGB_REPLACE \
NEAREST_RGB; \
dest[0] = sample[0]; \
dest[1] = sample[1]; \
dest[2] = sample[2]; \
dest[3] = FixedToInt(span->alpha);
#define NEAREST_RGBA_REPLACE \
dest[RCOMP] = tex00[3]; \
dest[GCOMP] = tex00[2]; \
dest[BCOMP] = tex00[1]; \
dest[ACOMP] = tex00[0]
#define SPAN_NEAREST(DO_TEX, COMPS) \
for (i = 0; i < span->end; i++) { \
/* Isn't it necessary to use FixedFloor below?? */ \
GLint s = FixedToInt(span->intTex[0]) & info->smask; \
GLint t = FixedToInt(span->intTex[1]) & info->tmask; \
GLint pos = (t << info->twidth_log2) + s; \
const GLchan *tex00 = info->texture + COMPS * pos; \
DO_TEX; \
span->red += span->redStep; \
span->green += span->greenStep; \
span->blue += span->blueStep; \
span->alpha += span->alphaStep; \
span->intTex[0] += span->intTexStep[0]; \
span->intTex[1] += span->intTexStep[1]; \
dest += 4; \
}
#define SPAN_LINEAR(DO_TEX, COMPS) \
for (i = 0; i < span->end; i++) { \
/* Isn't it necessary to use FixedFloor below?? */ \
const GLint s = FixedToInt(span->intTex[0]) & info->smask; \
const GLint t = FixedToInt(span->intTex[1]) & info->tmask; \
const GLfixed sf = span->intTex[0] & FIXED_FRAC_MASK; \
const GLfixed tf = span->intTex[1] & FIXED_FRAC_MASK; \
const GLint pos = (t << info->twidth_log2) + s; \
const GLchan *tex00 = info->texture + COMPS * pos; \
const GLchan *tex10 = tex00 + info->tbytesline; \
const GLchan *tex01 = tex00 + COMPS; \
const GLchan *tex11 = tex10 + COMPS; \
if (t == info->tmask) { \
tex10 -= info->tsize; \
tex11 -= info->tsize; \
} \
if (s == info->smask) { \
tex01 -= info->tbytesline; \
tex11 -= info->tbytesline; \
} \
DO_TEX; \
span->red += span->redStep; \
span->green += span->greenStep; \
span->blue += span->blueStep; \
span->alpha += span->alphaStep; \
span->intTex[0] += span->intTexStep[0]; \
span->intTex[1] += span->intTexStep[1]; \
dest += 4; \
}
GLuint i;
GLchan *dest = span->array->rgba[0];
/* Disable tex units so they're not re-applied in swrast_write_rgba_span */
ctx->Texture._EnabledCoordUnits = 0x0;
span->intTex[0] -= FIXED_HALF;
span->intTex[1] -= FIXED_HALF;
switch (info->filter) {
case GL_NEAREST:
switch (info->format) {
case MESA_FORMAT_BGR_UNORM8:
switch (info->envmode) {
case GL_MODULATE:
SPAN_NEAREST(NEAREST_RGB;MODULATE,3);
break;
case GL_DECAL:
case GL_REPLACE:
SPAN_NEAREST(NEAREST_RGB_REPLACE,3);
break;
case GL_BLEND:
SPAN_NEAREST(NEAREST_RGB;BLEND,3);
break;
case GL_ADD:
SPAN_NEAREST(NEAREST_RGB;ADD,3);
break;
default:
_mesa_problem(ctx, "bad tex env mode in SPAN_LINEAR");
return;
}
break;
case MESA_FORMAT_A8B8G8R8_UNORM:
switch(info->envmode) {
case GL_MODULATE:
SPAN_NEAREST(NEAREST_RGBA;MODULATE,4);
break;
case GL_DECAL:
SPAN_NEAREST(NEAREST_RGBA;DECAL,4);
break;
case GL_BLEND:
SPAN_NEAREST(NEAREST_RGBA;BLEND,4);
break;
case GL_ADD:
SPAN_NEAREST(NEAREST_RGBA;ADD,4);
break;
case GL_REPLACE:
SPAN_NEAREST(NEAREST_RGBA_REPLACE,4);
break;
default:
_mesa_problem(ctx, "bad tex env mode (2) in SPAN_LINEAR");
return;
}
break;
}
break;
case GL_LINEAR:
span->intTex[0] -= FIXED_HALF;
span->intTex[1] -= FIXED_HALF;
switch (info->format) {
case MESA_FORMAT_BGR_UNORM8:
switch (info->envmode) {
case GL_MODULATE:
SPAN_LINEAR(LINEAR_RGB;MODULATE,3);
break;
case GL_DECAL:
case GL_REPLACE:
SPAN_LINEAR(LINEAR_RGB;REPLACE,3);
break;
case GL_BLEND:
SPAN_LINEAR(LINEAR_RGB;BLEND,3);
break;
case GL_ADD:
SPAN_LINEAR(LINEAR_RGB;ADD,3);
break;
default:
_mesa_problem(ctx, "bad tex env mode (3) in SPAN_LINEAR");
return;
}
break;
case MESA_FORMAT_A8B8G8R8_UNORM:
switch (info->envmode) {
case GL_MODULATE:
SPAN_LINEAR(LINEAR_RGBA;MODULATE,4);
break;
case GL_DECAL:
SPAN_LINEAR(LINEAR_RGBA;DECAL,4);
break;
case GL_BLEND:
SPAN_LINEAR(LINEAR_RGBA;BLEND,4);
break;
case GL_ADD:
SPAN_LINEAR(LINEAR_RGBA;ADD,4);
break;
case GL_REPLACE:
SPAN_LINEAR(LINEAR_RGBA;REPLACE,4);
break;
default:
_mesa_problem(ctx, "bad tex env mode (4) in SPAN_LINEAR");
return;
}
break;
}
break;
}
span->interpMask &= ~SPAN_RGBA;
assert(span->arrayMask & SPAN_RGBA);
_swrast_write_rgba_span(ctx, span);
/* re-enable texture units */
ctx->Texture._EnabledCoordUnits = texEnableSave;
#undef SPAN_NEAREST
#undef SPAN_LINEAR
}
/*
* Render an RGB/RGBA textured triangle without perspective correction.
*/
#define NAME affine_textured_triangle
#define INTERP_Z 1
#define INTERP_RGB 1
#define INTERP_ALPHA 1
#define INTERP_INT_TEX 1
#define S_SCALE twidth
#define T_SCALE theight
#define SETUP_CODE \
struct affine_info info; \
struct gl_texture_unit *unit = ctx->Texture.Unit+0; \
const struct gl_texture_object *obj = \
ctx->Texture.Unit[0].CurrentTex[TEXTURE_2D_INDEX]; \
const struct gl_texture_image *texImg = \
_mesa_base_tex_image(obj); \
const struct swrast_texture_image *swImg = \
swrast_texture_image_const(texImg); \
const GLfloat twidth = (GLfloat) texImg->Width; \
const GLfloat theight = (GLfloat) texImg->Height; \
info.texture = (const GLchan *) swImg->ImageSlices[0]; \
info.twidth_log2 = texImg->WidthLog2; \
info.smask = texImg->Width - 1; \
info.tmask = texImg->Height - 1; \
info.format = texImg->TexFormat; \
info.filter = obj->Sampler.MinFilter; \
info.envmode = unit->EnvMode; \
info.er = 0; \
info.eg = 0; \
info.eb = 0; \
span.arrayMask |= SPAN_RGBA; \
\
if (info.envmode == GL_BLEND) { \
/* potential off-by-one error here? (1.0f -> 2048 -> 0) */ \
info.er = FloatToFixed(unit->EnvColor[RCOMP] * CHAN_MAXF); \
info.eg = FloatToFixed(unit->EnvColor[GCOMP] * CHAN_MAXF); \
info.eb = FloatToFixed(unit->EnvColor[BCOMP] * CHAN_MAXF); \
info.ea = FloatToFixed(unit->EnvColor[ACOMP] * CHAN_MAXF); \
} \
if (!info.texture) { \
/* this shouldn't happen */ \
return; \
} \
\
switch (info.format) { \
case MESA_FORMAT_BGR_UNORM8: \
info.tbytesline = texImg->Width * 3; \
break; \
case MESA_FORMAT_A8B8G8R8_UNORM: \
info.tbytesline = texImg->Width * 4; \
break; \
default: \
_mesa_problem(NULL, "Bad texture format in affine_texture_triangle");\
return; \
} \
info.tsize = texImg->Height * info.tbytesline;
#define RENDER_SPAN( span ) affine_span(ctx, &span, &info);
#include "s_tritemp.h"
struct persp_info
{
GLenum filter;
GLenum format;
GLenum envmode;
GLint smask, tmask;
GLint twidth_log2;
const GLchan *texture;
GLfixed er, eg, eb, ea; /* texture env color */
GLint tbytesline, tsize;
};
static inline void
fast_persp_span(struct gl_context *ctx, SWspan *span,
struct persp_info *info)
{
GLchan sample[4]; /* the filtered texture sample */
/* Instead of defining a function for each mode, a test is done
* between the outer and inner loops. This is to reduce code size
* and complexity. Observe that an optimizing compiler kills
* unused variables (for instance tf,sf,ti,si in case of GL_NEAREST).
*/
#define SPAN_NEAREST(DO_TEX,COMP) \
for (i = 0; i < span->end; i++) { \
GLdouble invQ = tex_coord[2] ? \
(1.0 / tex_coord[2]) : 1.0; \
GLfloat s_tmp = (GLfloat) (tex_coord[0] * invQ); \
GLfloat t_tmp = (GLfloat) (tex_coord[1] * invQ); \
GLint s = IFLOOR(s_tmp) & info->smask; \
GLint t = IFLOOR(t_tmp) & info->tmask; \
GLint pos = (t << info->twidth_log2) + s; \
const GLchan *tex00 = info->texture + COMP * pos; \
DO_TEX; \
span->red += span->redStep; \
span->green += span->greenStep; \
span->blue += span->blueStep; \
span->alpha += span->alphaStep; \
tex_coord[0] += tex_step[0]; \
tex_coord[1] += tex_step[1]; \
tex_coord[2] += tex_step[2]; \
dest += 4; \
}
#define SPAN_LINEAR(DO_TEX,COMP) \
for (i = 0; i < span->end; i++) { \
GLdouble invQ = tex_coord[2] ? \
(1.0 / tex_coord[2]) : 1.0; \
const GLfloat s_tmp = (GLfloat) (tex_coord[0] * invQ); \
const GLfloat t_tmp = (GLfloat) (tex_coord[1] * invQ); \
const GLfixed s_fix = FloatToFixed(s_tmp) - FIXED_HALF; \
const GLfixed t_fix = FloatToFixed(t_tmp) - FIXED_HALF; \
const GLint s = FixedToInt(FixedFloor(s_fix)) & info->smask; \
const GLint t = FixedToInt(FixedFloor(t_fix)) & info->tmask; \
const GLfixed sf = s_fix & FIXED_FRAC_MASK; \
const GLfixed tf = t_fix & FIXED_FRAC_MASK; \
const GLint pos = (t << info->twidth_log2) + s; \
const GLchan *tex00 = info->texture + COMP * pos; \
const GLchan *tex10 = tex00 + info->tbytesline; \
const GLchan *tex01 = tex00 + COMP; \
const GLchan *tex11 = tex10 + COMP; \
if (t == info->tmask) { \
tex10 -= info->tsize; \
tex11 -= info->tsize; \
} \
if (s == info->smask) { \
tex01 -= info->tbytesline; \
tex11 -= info->tbytesline; \
} \
DO_TEX; \
span->red += span->redStep; \
span->green += span->greenStep; \
span->blue += span->blueStep; \
span->alpha += span->alphaStep; \
tex_coord[0] += tex_step[0]; \
tex_coord[1] += tex_step[1]; \
tex_coord[2] += tex_step[2]; \
dest += 4; \
}
GLuint i;
GLfloat tex_coord[3], tex_step[3];
GLchan *dest = span->array->rgba[0];
const GLuint texEnableSave = ctx->Texture._EnabledCoordUnits;
ctx->Texture._EnabledCoordUnits = 0;
tex_coord[0] = span->attrStart[VARYING_SLOT_TEX0][0] * (info->smask + 1);
tex_step[0] = span->attrStepX[VARYING_SLOT_TEX0][0] * (info->smask + 1);
tex_coord[1] = span->attrStart[VARYING_SLOT_TEX0][1] * (info->tmask + 1);
tex_step[1] = span->attrStepX[VARYING_SLOT_TEX0][1] * (info->tmask + 1);
/* span->attrStart[VARYING_SLOT_TEX0][2] only if 3D-texturing, here only 2D */
tex_coord[2] = span->attrStart[VARYING_SLOT_TEX0][3];
tex_step[2] = span->attrStepX[VARYING_SLOT_TEX0][3];
switch (info->filter) {
case GL_NEAREST:
switch (info->format) {
case MESA_FORMAT_BGR_UNORM8:
switch (info->envmode) {
case GL_MODULATE:
SPAN_NEAREST(NEAREST_RGB;MODULATE,3);
break;
case GL_DECAL:
case GL_REPLACE:
SPAN_NEAREST(NEAREST_RGB_REPLACE,3);
break;
case GL_BLEND:
SPAN_NEAREST(NEAREST_RGB;BLEND,3);
break;
case GL_ADD:
SPAN_NEAREST(NEAREST_RGB;ADD,3);
break;
default:
_mesa_problem(ctx, "bad tex env mode (5) in SPAN_LINEAR");
return;
}
break;
case MESA_FORMAT_A8B8G8R8_UNORM:
switch(info->envmode) {
case GL_MODULATE:
SPAN_NEAREST(NEAREST_RGBA;MODULATE,4);
break;
case GL_DECAL:
SPAN_NEAREST(NEAREST_RGBA;DECAL,4);
break;
case GL_BLEND:
SPAN_NEAREST(NEAREST_RGBA;BLEND,4);
break;
case GL_ADD:
SPAN_NEAREST(NEAREST_RGBA;ADD,4);
break;
case GL_REPLACE:
SPAN_NEAREST(NEAREST_RGBA_REPLACE,4);
break;
default:
_mesa_problem(ctx, "bad tex env mode (6) in SPAN_LINEAR");
return;
}
break;
}
break;
case GL_LINEAR:
switch (info->format) {
case MESA_FORMAT_BGR_UNORM8:
switch (info->envmode) {
case GL_MODULATE:
SPAN_LINEAR(LINEAR_RGB;MODULATE,3);
break;
case GL_DECAL:
case GL_REPLACE:
SPAN_LINEAR(LINEAR_RGB;REPLACE,3);
break;
case GL_BLEND:
SPAN_LINEAR(LINEAR_RGB;BLEND,3);
break;
case GL_ADD:
SPAN_LINEAR(LINEAR_RGB;ADD,3);
break;
default:
_mesa_problem(ctx, "bad tex env mode (7) in SPAN_LINEAR");
return;
}
break;
case MESA_FORMAT_A8B8G8R8_UNORM:
switch (info->envmode) {
case GL_MODULATE:
SPAN_LINEAR(LINEAR_RGBA;MODULATE,4);
break;
case GL_DECAL:
SPAN_LINEAR(LINEAR_RGBA;DECAL,4);
break;
case GL_BLEND:
SPAN_LINEAR(LINEAR_RGBA;BLEND,4);
break;
case GL_ADD:
SPAN_LINEAR(LINEAR_RGBA;ADD,4);
break;
case GL_REPLACE:
SPAN_LINEAR(LINEAR_RGBA;REPLACE,4);
break;
default:
_mesa_problem(ctx, "bad tex env mode (8) in SPAN_LINEAR");
return;
}
break;
}
break;
}
assert(span->arrayMask & SPAN_RGBA);
_swrast_write_rgba_span(ctx, span);
#undef SPAN_NEAREST
#undef SPAN_LINEAR
/* restore state */
ctx->Texture._EnabledCoordUnits = texEnableSave;
}
/*
* Render an perspective corrected RGB/RGBA textured triangle.
* The Q (aka V in Mesa) coordinate must be zero such that the divide
* by interpolated Q/W comes out right.
*
*/
#define NAME persp_textured_triangle
#define INTERP_Z 1
#define INTERP_RGB 1
#define INTERP_ALPHA 1
#define INTERP_ATTRIBS 1
#define SETUP_CODE \
struct persp_info info; \
const struct gl_texture_unit *unit = ctx->Texture.Unit+0; \
const struct gl_texture_object *obj = \
ctx->Texture.Unit[0].CurrentTex[TEXTURE_2D_INDEX]; \
const struct gl_texture_image *texImg = \
_mesa_base_tex_image(obj); \
const struct swrast_texture_image *swImg = \
swrast_texture_image_const(texImg); \
info.texture = (const GLchan *) swImg->ImageSlices[0]; \
info.twidth_log2 = texImg->WidthLog2; \
info.smask = texImg->Width - 1; \
info.tmask = texImg->Height - 1; \
info.format = texImg->TexFormat; \
info.filter = obj->Sampler.MinFilter; \
info.envmode = unit->EnvMode; \
info.er = 0; \
info.eg = 0; \
info.eb = 0; \
\
if (info.envmode == GL_BLEND) { \
/* potential off-by-one error here? (1.0f -> 2048 -> 0) */ \
info.er = FloatToFixed(unit->EnvColor[RCOMP] * CHAN_MAXF); \
info.eg = FloatToFixed(unit->EnvColor[GCOMP] * CHAN_MAXF); \
info.eb = FloatToFixed(unit->EnvColor[BCOMP] * CHAN_MAXF); \
info.ea = FloatToFixed(unit->EnvColor[ACOMP] * CHAN_MAXF); \
} \
if (!info.texture) { \
/* this shouldn't happen */ \
return; \
} \
\
switch (info.format) { \
case MESA_FORMAT_BGR_UNORM8: \
info.tbytesline = texImg->Width * 3; \
break; \
case MESA_FORMAT_A8B8G8R8_UNORM: \
info.tbytesline = texImg->Width * 4; \
break; \
default: \
_mesa_problem(NULL, "Bad texture format in persp_textured_triangle");\
return; \
} \
info.tsize = texImg->Height * info.tbytesline;
#define RENDER_SPAN( span ) \
span.interpMask &= ~SPAN_RGBA; \
span.arrayMask |= SPAN_RGBA; \
fast_persp_span(ctx, &span, &info);
#include "s_tritemp.h"
#endif /*CHAN_TYPE != GL_FLOAT*/
/*
* Render an RGBA triangle with arbitrary attributes.
*/
#define NAME general_triangle
#define INTERP_Z 1
#define INTERP_RGB 1
#define INTERP_ALPHA 1
#define INTERP_ATTRIBS 1
#define RENDER_SPAN( span ) _swrast_write_rgba_span(ctx, &span);
#include "s_tritemp.h"
/*
* Special tri function for occlusion testing
*/
#define NAME occlusion_zless_16_triangle
#define INTERP_Z 1
#define SETUP_CODE \
struct gl_renderbuffer *rb = \
ctx->DrawBuffer->Attachment[BUFFER_DEPTH].Renderbuffer; \
struct gl_query_object *q = ctx->Query.CurrentOcclusionObject; \
assert(ctx->Depth.Test); \
assert(!ctx->Depth.Mask); \
assert(ctx->Depth.Func == GL_LESS); \
assert(rb->Format == MESA_FORMAT_Z_UNORM16); \
if (!q) { \
return; \
}
#define RENDER_SPAN( span ) \
{ \
GLuint i; \
const GLushort *zRow = (const GLushort *) \
_swrast_pixel_address(rb, span.x, span.y); \
for (i = 0; i < span.end; i++) { \
GLuint z = FixedToDepth(span.z); \
if (z < zRow[i]) { \
q->Result++; \
} \
span.z += span.zStep; \
} \
}
#include "s_tritemp.h"
static void
nodraw_triangle( struct gl_context *ctx,
const SWvertex *v0,
const SWvertex *v1,
const SWvertex *v2 )
{
(void) (ctx && v0 && v1 && v2);
}
/*
* This is used when separate specular color is enabled, but not
* texturing. We add the specular color to the primary color,
* draw the triangle, then restore the original primary color.
* Inefficient, but seldom needed.
*/
void
_swrast_add_spec_terms_triangle(struct gl_context *ctx, const SWvertex *v0,
const SWvertex *v1, const SWvertex *v2)
{
SWvertex *ncv0 = (SWvertex *)v0; /* drop const qualifier */
SWvertex *ncv1 = (SWvertex *)v1;
SWvertex *ncv2 = (SWvertex *)v2;
GLfloat rSum, gSum, bSum;
GLchan cSave[3][4];
/* save original colors */
COPY_CHAN4( cSave[0], ncv0->color );
COPY_CHAN4( cSave[1], ncv1->color );
COPY_CHAN4( cSave[2], ncv2->color );
/* sum v0 */
rSum = CHAN_TO_FLOAT(ncv0->color[0]) + ncv0->attrib[VARYING_SLOT_COL1][0];
gSum = CHAN_TO_FLOAT(ncv0->color[1]) + ncv0->attrib[VARYING_SLOT_COL1][1];
bSum = CHAN_TO_FLOAT(ncv0->color[2]) + ncv0->attrib[VARYING_SLOT_COL1][2];
UNCLAMPED_FLOAT_TO_CHAN(ncv0->color[0], rSum);
UNCLAMPED_FLOAT_TO_CHAN(ncv0->color[1], gSum);
UNCLAMPED_FLOAT_TO_CHAN(ncv0->color[2], bSum);
/* sum v1 */
rSum = CHAN_TO_FLOAT(ncv1->color[0]) + ncv1->attrib[VARYING_SLOT_COL1][0];
gSum = CHAN_TO_FLOAT(ncv1->color[1]) + ncv1->attrib[VARYING_SLOT_COL1][1];
bSum = CHAN_TO_FLOAT(ncv1->color[2]) + ncv1->attrib[VARYING_SLOT_COL1][2];
UNCLAMPED_FLOAT_TO_CHAN(ncv1->color[0], rSum);
UNCLAMPED_FLOAT_TO_CHAN(ncv1->color[1], gSum);
UNCLAMPED_FLOAT_TO_CHAN(ncv1->color[2], bSum);
/* sum v2 */
rSum = CHAN_TO_FLOAT(ncv2->color[0]) + ncv2->attrib[VARYING_SLOT_COL1][0];
gSum = CHAN_TO_FLOAT(ncv2->color[1]) + ncv2->attrib[VARYING_SLOT_COL1][1];
bSum = CHAN_TO_FLOAT(ncv2->color[2]) + ncv2->attrib[VARYING_SLOT_COL1][2];
UNCLAMPED_FLOAT_TO_CHAN(ncv2->color[0], rSum);
UNCLAMPED_FLOAT_TO_CHAN(ncv2->color[1], gSum);
UNCLAMPED_FLOAT_TO_CHAN(ncv2->color[2], bSum);
/* draw */
SWRAST_CONTEXT(ctx)->SpecTriangle( ctx, ncv0, ncv1, ncv2 );
/* restore original colors */
COPY_CHAN4( ncv0->color, cSave[0] );
COPY_CHAN4( ncv1->color, cSave[1] );
COPY_CHAN4( ncv2->color, cSave[2] );
}
#ifdef DEBUG
/* record the current triangle function name */
const char *_mesa_triFuncName = NULL;
#define USE(triFunc) \
do { \
_mesa_triFuncName = #triFunc; \
/*printf("%s\n", _mesa_triFuncName);*/ \
swrast->Triangle = triFunc; \
} while (0)
#else
#define USE(triFunc) swrast->Triangle = triFunc;
#endif
/*
* Determine which triangle rendering function to use given the current
* rendering context.
*
* Please update the summary flag _SWRAST_NEW_TRIANGLE if you add or
* remove tests to this code.
*/
void
_swrast_choose_triangle( struct gl_context *ctx )
{
SWcontext *swrast = SWRAST_CONTEXT(ctx);
if (ctx->Polygon.CullFlag &&
ctx->Polygon.CullFaceMode == GL_FRONT_AND_BACK) {
USE(nodraw_triangle);
return;
}
if (ctx->RenderMode==GL_RENDER) {
struct gl_renderbuffer *depthRb =
ctx->DrawBuffer->Attachment[BUFFER_DEPTH].Renderbuffer;
if (ctx->Polygon.SmoothFlag) {
_swrast_set_aa_triangle_function(ctx);
assert(swrast->Triangle);
return;
}
/* special case for occlusion testing */
if (ctx->Query.CurrentOcclusionObject &&
ctx->Depth.Test &&
ctx->Depth.Mask == GL_FALSE &&
ctx->Depth.Func == GL_LESS &&
!_mesa_stencil_is_enabled(ctx) &&
depthRb &&
depthRb->Format == MESA_FORMAT_Z_UNORM16) {
if (ctx->Color.ColorMask[0][0] == 0 &&
ctx->Color.ColorMask[0][1] == 0 &&
ctx->Color.ColorMask[0][2] == 0 &&
ctx->Color.ColorMask[0][3] == 0) {
USE(occlusion_zless_16_triangle);
return;
}
}
/*
* XXX should examine swrast->_ActiveAttribMask to determine what
* needs to be interpolated.
*/
if (ctx->Texture._EnabledCoordUnits ||
_swrast_use_fragment_program(ctx) ||
_mesa_ati_fragment_shader_enabled(ctx) ||
_mesa_need_secondary_color(ctx) ||
swrast->_FogEnabled) {
/* Ugh, we do a _lot_ of tests to pick the best textured tri func */
const struct gl_texture_object *texObj2D;
const struct gl_sampler_object *samp;
const struct gl_texture_image *texImg;
const struct swrast_texture_image *swImg;
GLenum minFilter, magFilter, envMode;
mesa_format format;
texObj2D = ctx->Texture.Unit[0].CurrentTex[TEXTURE_2D_INDEX];
if (ctx->Texture.Unit[0].Sampler)
samp = ctx->Texture.Unit[0].Sampler;
else if (texObj2D)
samp = &texObj2D->Sampler;
else
samp = NULL;
texImg = texObj2D ? _mesa_base_tex_image(texObj2D) : NULL;
swImg = swrast_texture_image_const(texImg);
format = texImg ? texImg->TexFormat : MESA_FORMAT_NONE;
minFilter = texObj2D ? samp->MinFilter : GL_NONE;
magFilter = texObj2D ? samp->MagFilter : GL_NONE;
envMode = ctx->Texture.Unit[0].EnvMode;
/* First see if we can use an optimized 2-D texture function */
if (ctx->Texture._EnabledCoordUnits == 0x1
&& !_swrast_use_fragment_program(ctx)
&& !_mesa_ati_fragment_shader_enabled(ctx)
&& ctx->Texture._MaxEnabledTexImageUnit == 0
&& ctx->Texture.Unit[0]._Current->Target == GL_TEXTURE_2D
&& samp->WrapS == GL_REPEAT
&& samp->WrapT == GL_REPEAT
&& texObj2D->_Swizzle == SWIZZLE_NOOP
&& swImg->_IsPowerOfTwo
&& texImg->Border == 0
&& (_mesa_format_row_stride(format, texImg->Width) ==
swImg->RowStride)
&& (format == MESA_FORMAT_BGR_UNORM8 || format == MESA_FORMAT_A8B8G8R8_UNORM)
&& minFilter == magFilter
&& ctx->Light.Model.ColorControl == GL_SINGLE_COLOR
&& !swrast->_FogEnabled
&& ctx->Texture.Unit[0].EnvMode != GL_COMBINE_EXT
&& ctx->Texture.Unit[0].EnvMode != GL_COMBINE4_NV) {
if (ctx->Hint.PerspectiveCorrection==GL_FASTEST) {
if (minFilter == GL_NEAREST
&& format == MESA_FORMAT_BGR_UNORM8
&& (envMode == GL_REPLACE || envMode == GL_DECAL)
&& ((swrast->_RasterMask == (DEPTH_BIT | TEXTURE_BIT)
&& ctx->Depth.Func == GL_LESS
&& ctx->Depth.Mask == GL_TRUE)
|| swrast->_RasterMask == TEXTURE_BIT)
&& ctx->Polygon.StippleFlag == GL_FALSE
&& ctx->DrawBuffer->Visual.depthBits <= 16) {
if (swrast->_RasterMask == (DEPTH_BIT | TEXTURE_BIT)) {
USE(simple_z_textured_triangle);
}
else {
USE(simple_textured_triangle);
}
}
else {
#if CHAN_BITS != 8
USE(general_triangle);
#else
if (format == MESA_FORMAT_A8B8G8R8_UNORM && !_mesa_little_endian()) {
/* We only handle RGBA8888 correctly on little endian
* in the optimized code above.
*/
USE(general_triangle);
}
else {
USE(affine_textured_triangle);
}
#endif
}
}
else {
#if CHAN_BITS != 8
USE(general_triangle);
#else
USE(persp_textured_triangle);
#endif
}
}
else {
/* general case textured triangles */
USE(general_triangle);
}
}
else {
assert(!swrast->_FogEnabled);
assert(!_mesa_need_secondary_color(ctx));
if (ctx->Light.ShadeModel==GL_SMOOTH) {
/* smooth shaded, no texturing, stippled or some raster ops */
#if CHAN_BITS != 8
USE(general_triangle);
#else
USE(smooth_rgba_triangle);
#endif
}
else {
/* flat shaded, no texturing, stippled or some raster ops */
#if CHAN_BITS != 8
USE(general_triangle);
#else
USE(flat_rgba_triangle);
#endif
}
}
}
else if (ctx->RenderMode==GL_FEEDBACK) {
USE(_swrast_feedback_triangle);
}
else {
/* GL_SELECT mode */
USE(_swrast_select_triangle);
}
}