/*
* Mesa 3-D graphics library
*
* Copyright (C) 1999-2008 Brian Paul All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors:
* Keith Whitwell <keithw@vmware.com> Brian Paul
*/
#include "main/imports.h"
#include "main/bufferobj.h"
#include "main/mtypes.h"
#include "main/samplerobj.h"
#include "main/state.h"
#include "main/stencil.h"
#include "main/teximage.h"
#include "program/prog_parameter.h"
#include "program/prog_statevars.h"
#include "swrast.h"
#include "s_blend.h"
#include "s_context.h"
#include "s_lines.h"
#include "s_points.h"
#include "s_span.h"
#include "s_texfetch.h"
#include "s_triangle.h"
#include "s_texfilter.h"
/**
* Recompute the value of swrast->_RasterMask, etc. according to
* the current context. The _RasterMask field can be easily tested by
* drivers to determine certain basic GL state (does the primitive need
* stenciling, logic-op, fog, etc?).
*/
static void
_swrast_update_rasterflags( struct gl_context *ctx )
{
SWcontext *swrast = SWRAST_CONTEXT(ctx);
GLbitfield rasterMask = 0;
GLuint i;
if (ctx->Color.AlphaEnabled) rasterMask |= ALPHATEST_BIT;
if (ctx->Color.BlendEnabled) rasterMask |= BLEND_BIT;
if (ctx->Depth.Test) rasterMask |= DEPTH_BIT;
if (swrast->_FogEnabled) rasterMask |= FOG_BIT;
if (ctx->Scissor.EnableFlags) rasterMask |= CLIP_BIT;
if (_mesa_stencil_is_enabled(ctx)) rasterMask |= STENCIL_BIT;
for (i = 0; i < ctx->Const.MaxDrawBuffers; i++) {
if (!ctx->Color.ColorMask[i][0] ||
!ctx->Color.ColorMask[i][1] ||
!ctx->Color.ColorMask[i][2] ||
!ctx->Color.ColorMask[i][3]) {
rasterMask |= MASKING_BIT;
break;
}
}
if (ctx->Color.ColorLogicOpEnabled) rasterMask |= LOGIC_OP_BIT;
if (ctx->Texture._MaxEnabledTexImageUnit >= 0) rasterMask |= TEXTURE_BIT;
if ( ctx->ViewportArray[0].X < 0
|| ctx->ViewportArray[0].X + ctx->ViewportArray[0].Width > (GLfloat) ctx->DrawBuffer->Width
|| ctx->ViewportArray[0].Y < 0
|| ctx->ViewportArray[0].Y + ctx->ViewportArray[0].Height > (GLfloat) ctx->DrawBuffer->Height) {
rasterMask |= CLIP_BIT;
}
if (ctx->Query.CurrentOcclusionObject)
rasterMask |= OCCLUSION_BIT;
/* If we're not drawing to exactly one color buffer set the
* MULTI_DRAW_BIT flag. Also set it if we're drawing to no
* buffers or the RGBA or CI mask disables all writes.
*/
if (ctx->DrawBuffer->_NumColorDrawBuffers != 1) {
/* more than one color buffer designated for writing (or zero buffers) */
rasterMask |= MULTI_DRAW_BIT;
}
for (i = 0; i < ctx->Const.MaxDrawBuffers; i++) {
if (ctx->Color.ColorMask[i][0] +
ctx->Color.ColorMask[i][1] +
ctx->Color.ColorMask[i][2] +
ctx->Color.ColorMask[i][3] == 0) {
rasterMask |= MULTI_DRAW_BIT; /* all RGBA channels disabled */
break;
}
}
if (_swrast_use_fragment_program(ctx)) {
rasterMask |= FRAGPROG_BIT;
}
if (_mesa_ati_fragment_shader_enabled(ctx)) {
rasterMask |= ATIFRAGSHADER_BIT;
}
#if CHAN_TYPE == GL_FLOAT
if (ctx->Color.ClampFragmentColor == GL_TRUE) {
rasterMask |= CLAMPING_BIT;
}
#endif
SWRAST_CONTEXT(ctx)->_RasterMask = rasterMask;
}
/**
* Examine polygon cull state to compute the _BackfaceCullSign field.
* _BackfaceCullSign will be 0 if no culling, -1 if culling back-faces,
* and 1 if culling front-faces. The Polygon FrontFace state also
* factors in.
*/
static void
_swrast_update_polygon( struct gl_context *ctx )
{
GLfloat backface_sign;
if (ctx->Polygon.CullFlag) {
switch (ctx->Polygon.CullFaceMode) {
case GL_BACK:
backface_sign = -1.0F;
break;
case GL_FRONT:
backface_sign = 1.0F;
break;
case GL_FRONT_AND_BACK:
/* fallthrough */
default:
backface_sign = 0.0F;
}
}
else {
backface_sign = 0.0F;
}
SWRAST_CONTEXT(ctx)->_BackfaceCullSign = backface_sign;
/* This is for front/back-face determination, but not for culling */
SWRAST_CONTEXT(ctx)->_BackfaceSign
= (ctx->Polygon.FrontFace == GL_CW) ? -1.0F : 1.0F;
}
/**
* Update the _PreferPixelFog field to indicate if we need to compute
* fog blend factors (from the fog coords) per-fragment.
*/
static void
_swrast_update_fog_hint( struct gl_context *ctx )
{
SWcontext *swrast = SWRAST_CONTEXT(ctx);
swrast->_PreferPixelFog = (!swrast->AllowVertexFog ||
_swrast_use_fragment_program(ctx) ||
(ctx->Hint.Fog == GL_NICEST &&
swrast->AllowPixelFog));
}
/**
* Update the swrast->_TextureCombinePrimary flag.
*/
static void
_swrast_update_texture_env( struct gl_context *ctx )
{
SWcontext *swrast = SWRAST_CONTEXT(ctx);
GLuint i;
swrast->_TextureCombinePrimary = GL_FALSE;
for (i = 0; i < ctx->Const.MaxTextureUnits; i++) {
const struct gl_tex_env_combine_state *combine =
ctx->Texture.Unit[i]._CurrentCombine;
GLuint term;
for (term = 0; term < combine->_NumArgsRGB; term++) {
if (combine->SourceRGB[term] == GL_PRIMARY_COLOR) {
swrast->_TextureCombinePrimary = GL_TRUE;
return;
}
if (combine->SourceA[term] == GL_PRIMARY_COLOR) {
swrast->_TextureCombinePrimary = GL_TRUE;
return;
}
}
}
}
/**
* Determine if we can defer texturing/shading until after Z/stencil
* testing. This potentially allows us to skip texturing/shading for
* lots of fragments.
*/
static void
_swrast_update_deferred_texture(struct gl_context *ctx)
{
SWcontext *swrast = SWRAST_CONTEXT(ctx);
if (ctx->Color.AlphaEnabled) {
/* alpha test depends on post-texture/shader colors */
swrast->_DeferredTexture = GL_FALSE;
}
else {
GLboolean use_fprog = _swrast_use_fragment_program(ctx);
const struct gl_program *fprog = ctx->FragmentProgram._Current;
if (use_fprog &&
(fprog->info.outputs_written & (1 << FRAG_RESULT_DEPTH))) {
/* Z comes from fragment program/shader */
swrast->_DeferredTexture = GL_FALSE;
}
else if (use_fprog && fprog->info.fs.uses_discard) {
swrast->_DeferredTexture = GL_FALSE;
}
else if (ctx->Query.CurrentOcclusionObject) {
/* occlusion query depends on shader discard/kill results */
swrast->_DeferredTexture = GL_FALSE;
}
else {
swrast->_DeferredTexture = GL_TRUE;
}
}
}
/**
* Update swrast->_FogColor and swrast->_FogEnable values.
*/
static void
_swrast_update_fog_state( struct gl_context *ctx )
{
SWcontext *swrast = SWRAST_CONTEXT(ctx);
const struct gl_program *fp = ctx->FragmentProgram._Current;
assert(fp == NULL || fp->Target == GL_FRAGMENT_PROGRAM_ARB);
(void) fp; /* silence unused var warning */
/* determine if fog is needed, and if so, which fog mode */
swrast->_FogEnabled = (!_swrast_use_fragment_program(ctx) &&
ctx->Fog.Enabled);
}
/**
* Update state for running fragment programs. Basically, load the
* program parameters with current state values.
*/
static void
_swrast_update_fragment_program(struct gl_context *ctx, GLbitfield newState)
{
if (!_swrast_use_fragment_program(ctx))
return;
_mesa_load_state_parameters(ctx,
ctx->FragmentProgram._Current->Parameters);
}
/**
* See if we can do early diffuse+specular (primary+secondary) color
* add per vertex instead of per-fragment.
*/
static void
_swrast_update_specular_vertex_add(struct gl_context *ctx)
{
SWcontext *swrast = SWRAST_CONTEXT(ctx);
GLboolean separateSpecular = ctx->Fog.ColorSumEnabled ||
(ctx->Light.Enabled &&
ctx->Light.Model.ColorControl == GL_SEPARATE_SPECULAR_COLOR);
swrast->SpecularVertexAdd = (separateSpecular
&& ctx->Texture._MaxEnabledTexImageUnit == -1
&& !_swrast_use_fragment_program(ctx)
&& !_mesa_ati_fragment_shader_enabled(ctx));
}
#define _SWRAST_NEW_DERIVED (_SWRAST_NEW_RASTERMASK | \
_NEW_PROGRAM_CONSTANTS | \
_NEW_TEXTURE | \
_NEW_HINT | \
_NEW_POLYGON )
/* State referenced by _swrast_choose_triangle, _swrast_choose_line.
*/
#define _SWRAST_NEW_TRIANGLE (_SWRAST_NEW_DERIVED | \
_NEW_RENDERMODE| \
_NEW_POLYGON| \
_NEW_DEPTH| \
_NEW_STENCIL| \
_NEW_COLOR| \
_NEW_TEXTURE| \
_SWRAST_NEW_RASTERMASK| \
_NEW_LIGHT| \
_NEW_FOG | \
_MESA_NEW_SEPARATE_SPECULAR)
#define _SWRAST_NEW_LINE (_SWRAST_NEW_DERIVED | \
_NEW_RENDERMODE| \
_NEW_LINE| \
_NEW_TEXTURE| \
_NEW_LIGHT| \
_NEW_FOG| \
_NEW_DEPTH | \
_MESA_NEW_SEPARATE_SPECULAR)
#define _SWRAST_NEW_POINT (_SWRAST_NEW_DERIVED | \
_NEW_RENDERMODE | \
_NEW_POINT | \
_NEW_TEXTURE | \
_NEW_LIGHT | \
_NEW_FOG | \
_MESA_NEW_SEPARATE_SPECULAR)
#define _SWRAST_NEW_TEXTURE_SAMPLE_FUNC _NEW_TEXTURE
#define _SWRAST_NEW_TEXTURE_ENV_MODE _NEW_TEXTURE
#define _SWRAST_NEW_BLEND_FUNC _NEW_COLOR
/**
* Stub for swrast->Triangle to select a true triangle function
* after a state change.
*/
static void
_swrast_validate_triangle( struct gl_context *ctx,
const SWvertex *v0,
const SWvertex *v1,
const SWvertex *v2 )
{
SWcontext *swrast = SWRAST_CONTEXT(ctx);
_swrast_validate_derived( ctx );
swrast->choose_triangle( ctx );
assert(swrast->Triangle);
if (swrast->SpecularVertexAdd) {
/* separate specular color, but no texture */
swrast->SpecTriangle = swrast->Triangle;
swrast->Triangle = _swrast_add_spec_terms_triangle;
}
swrast->Triangle( ctx, v0, v1, v2 );
}
/**
* Called via swrast->Line. Examine current GL state and choose a software
* line routine. Then call it.
*/
static void
_swrast_validate_line( struct gl_context *ctx, const SWvertex *v0, const SWvertex *v1 )
{
SWcontext *swrast = SWRAST_CONTEXT(ctx);
_swrast_validate_derived( ctx );
swrast->choose_line( ctx );
assert(swrast->Line);
if (swrast->SpecularVertexAdd) {
swrast->SpecLine = swrast->Line;
swrast->Line = _swrast_add_spec_terms_line;
}
swrast->Line( ctx, v0, v1 );
}
/**
* Called via swrast->Point. Examine current GL state and choose a software
* point routine. Then call it.
*/
static void
_swrast_validate_point( struct gl_context *ctx, const SWvertex *v0 )
{
SWcontext *swrast = SWRAST_CONTEXT(ctx);
_swrast_validate_derived( ctx );
swrast->choose_point( ctx );
if (swrast->SpecularVertexAdd) {
swrast->SpecPoint = swrast->Point;
swrast->Point = _swrast_add_spec_terms_point;
}
swrast->Point( ctx, v0 );
}
/**
* Called via swrast->BlendFunc. Examine GL state to choose a blending
* function, then call it.
*/
static void
_swrast_validate_blend_func(struct gl_context *ctx, GLuint n, const GLubyte mask[],
GLvoid *src, const GLvoid *dst,
GLenum chanType )
{
SWcontext *swrast = SWRAST_CONTEXT(ctx);
_swrast_validate_derived( ctx ); /* why is this needed? */
_swrast_choose_blend_func( ctx, chanType );
swrast->BlendFunc( ctx, n, mask, src, dst, chanType );
}
static void
_swrast_sleep( struct gl_context *ctx, GLbitfield new_state )
{
(void) ctx; (void) new_state;
}
static void
_swrast_invalidate_state( struct gl_context *ctx, GLbitfield new_state )
{
SWcontext *swrast = SWRAST_CONTEXT(ctx);
GLuint i;
swrast->NewState |= new_state;
/* After 10 statechanges without any swrast functions being called,
* put the module to sleep.
*/
if (++swrast->StateChanges > 10) {
swrast->InvalidateState = _swrast_sleep;
swrast->NewState = ~0;
new_state = ~0;
}
if (new_state & swrast->InvalidateTriangleMask)
swrast->Triangle = _swrast_validate_triangle;
if (new_state & swrast->InvalidateLineMask)
swrast->Line = _swrast_validate_line;
if (new_state & swrast->InvalidatePointMask)
swrast->Point = _swrast_validate_point;
if (new_state & _SWRAST_NEW_BLEND_FUNC)
swrast->BlendFunc = _swrast_validate_blend_func;
if (new_state & _SWRAST_NEW_TEXTURE_SAMPLE_FUNC)
for (i = 0 ; i < ARRAY_SIZE(swrast->TextureSample); i++)
swrast->TextureSample[i] = NULL;
}
void
_swrast_update_texture_samplers(struct gl_context *ctx)
{
SWcontext *swrast = SWRAST_CONTEXT(ctx);
GLuint u;
if (!swrast)
return; /* pipe hack */
for (u = 0; u < ARRAY_SIZE(swrast->TextureSample); u++) {
struct gl_texture_object *tObj = ctx->Texture.Unit[u]._Current;
/* Note: If tObj is NULL, the sample function will be a simple
* function that just returns opaque black (0,0,0,1).
*/
_mesa_update_fetch_functions(ctx, u);
swrast->TextureSample[u] =
_swrast_choose_texture_sample_func(ctx, tObj,
_mesa_get_samplerobj(ctx, u));
}
}
/**
* Update swrast->_ActiveAttribs, swrast->_NumActiveAttribs,
* swrast->_ActiveAtttribMask.
*/
static void
_swrast_update_active_attribs(struct gl_context *ctx)
{
SWcontext *swrast = SWRAST_CONTEXT(ctx);
GLbitfield64 attribsMask;
/*
* Compute _ActiveAttribsMask = which fragment attributes are needed.
*/
if (_swrast_use_fragment_program(ctx)) {
/* fragment program/shader */
attribsMask = ctx->FragmentProgram._Current->info.inputs_read;
attribsMask &= ~VARYING_BIT_POS; /* WPOS is always handled specially */
}
else if (_mesa_ati_fragment_shader_enabled(ctx)) {
attribsMask = VARYING_BIT_COL0 | VARYING_BIT_COL1 |
VARYING_BIT_FOGC | VARYING_BITS_TEX_ANY;
}
else {
/* fixed function */
attribsMask = 0x0;
#if CHAN_TYPE == GL_FLOAT
attribsMask |= VARYING_BIT_COL0;
#endif
if (ctx->Fog.ColorSumEnabled ||
(ctx->Light.Enabled &&
ctx->Light.Model.ColorControl == GL_SEPARATE_SPECULAR_COLOR)) {
attribsMask |= VARYING_BIT_COL1;
}
if (swrast->_FogEnabled)
attribsMask |= VARYING_BIT_FOGC;
attribsMask |= (ctx->Texture._EnabledCoordUnits << VARYING_SLOT_TEX0);
}
swrast->_ActiveAttribMask = attribsMask;
/* Update _ActiveAttribs[] list */
{
GLuint i, num = 0;
for (i = 0; i < VARYING_SLOT_MAX; i++) {
if (attribsMask & BITFIELD64_BIT(i)) {
swrast->_ActiveAttribs[num++] = i;
/* how should this attribute be interpolated? */
if (i == VARYING_SLOT_COL0 || i == VARYING_SLOT_COL1)
swrast->_InterpMode[i] = ctx->Light.ShadeModel;
else
swrast->_InterpMode[i] = GL_SMOOTH;
}
}
swrast->_NumActiveAttribs = num;
}
}
void
_swrast_validate_derived( struct gl_context *ctx )
{
SWcontext *swrast = SWRAST_CONTEXT(ctx);
if (swrast->NewState) {
if (swrast->NewState & _NEW_POLYGON)
_swrast_update_polygon( ctx );
if (swrast->NewState & (_NEW_HINT | _NEW_PROGRAM))
_swrast_update_fog_hint( ctx );
if (swrast->NewState & _SWRAST_NEW_TEXTURE_ENV_MODE)
_swrast_update_texture_env( ctx );
if (swrast->NewState & (_NEW_FOG | _NEW_PROGRAM))
_swrast_update_fog_state( ctx );
if (swrast->NewState & (_NEW_PROGRAM_CONSTANTS | _NEW_PROGRAM))
_swrast_update_fragment_program( ctx, swrast->NewState );
if (swrast->NewState & (_NEW_TEXTURE | _NEW_PROGRAM)) {
_swrast_update_texture_samplers( ctx );
}
if (swrast->NewState & (_NEW_COLOR | _NEW_PROGRAM))
_swrast_update_deferred_texture(ctx);
if (swrast->NewState & _SWRAST_NEW_RASTERMASK)
_swrast_update_rasterflags( ctx );
if (swrast->NewState & (_NEW_DEPTH |
_NEW_FOG |
_NEW_LIGHT |
_NEW_PROGRAM |
_NEW_TEXTURE))
_swrast_update_active_attribs(ctx);
if (swrast->NewState & (_NEW_FOG |
_NEW_PROGRAM |
_NEW_LIGHT |
_NEW_TEXTURE))
_swrast_update_specular_vertex_add(ctx);
swrast->NewState = 0;
swrast->StateChanges = 0;
swrast->InvalidateState = _swrast_invalidate_state;
}
}
#define SWRAST_DEBUG 0
/* Public entrypoints: See also s_bitmap.c, etc.
*/
void
_swrast_Quad( struct gl_context *ctx,
const SWvertex *v0, const SWvertex *v1,
const SWvertex *v2, const SWvertex *v3 )
{
if (SWRAST_DEBUG) {
_mesa_debug(ctx, "_swrast_Quad\n");
_swrast_print_vertex( ctx, v0 );
_swrast_print_vertex( ctx, v1 );
_swrast_print_vertex( ctx, v2 );
_swrast_print_vertex( ctx, v3 );
}
SWRAST_CONTEXT(ctx)->Triangle( ctx, v0, v1, v3 );
SWRAST_CONTEXT(ctx)->Triangle( ctx, v1, v2, v3 );
}
void
_swrast_Triangle( struct gl_context *ctx, const SWvertex *v0,
const SWvertex *v1, const SWvertex *v2 )
{
if (SWRAST_DEBUG) {
_mesa_debug(ctx, "_swrast_Triangle\n");
_swrast_print_vertex( ctx, v0 );
_swrast_print_vertex( ctx, v1 );
_swrast_print_vertex( ctx, v2 );
}
SWRAST_CONTEXT(ctx)->Triangle( ctx, v0, v1, v2 );
}
void
_swrast_Line( struct gl_context *ctx, const SWvertex *v0, const SWvertex *v1 )
{
if (SWRAST_DEBUG) {
_mesa_debug(ctx, "_swrast_Line\n");
_swrast_print_vertex( ctx, v0 );
_swrast_print_vertex( ctx, v1 );
}
SWRAST_CONTEXT(ctx)->Line( ctx, v0, v1 );
}
void
_swrast_Point( struct gl_context *ctx, const SWvertex *v0 )
{
if (SWRAST_DEBUG) {
_mesa_debug(ctx, "_swrast_Point\n");
_swrast_print_vertex( ctx, v0 );
}
SWRAST_CONTEXT(ctx)->Point( ctx, v0 );
}
void
_swrast_InvalidateState( struct gl_context *ctx, GLbitfield new_state )
{
if (SWRAST_DEBUG) {
_mesa_debug(ctx, "_swrast_InvalidateState\n");
}
SWRAST_CONTEXT(ctx)->InvalidateState( ctx, new_state );
}
void
_swrast_ResetLineStipple( struct gl_context *ctx )
{
if (SWRAST_DEBUG) {
_mesa_debug(ctx, "_swrast_ResetLineStipple\n");
}
SWRAST_CONTEXT(ctx)->StippleCounter = 0;
}
void
_swrast_SetFacing(struct gl_context *ctx, GLuint facing)
{
SWRAST_CONTEXT(ctx)->PointLineFacing = facing;
}
void
_swrast_allow_vertex_fog( struct gl_context *ctx, GLboolean value )
{
if (SWRAST_DEBUG) {
_mesa_debug(ctx, "_swrast_allow_vertex_fog %d\n", value);
}
SWRAST_CONTEXT(ctx)->InvalidateState( ctx, _NEW_HINT );
SWRAST_CONTEXT(ctx)->AllowVertexFog = value;
}
void
_swrast_allow_pixel_fog( struct gl_context *ctx, GLboolean value )
{
if (SWRAST_DEBUG) {
_mesa_debug(ctx, "_swrast_allow_pixel_fog %d\n", value);
}
SWRAST_CONTEXT(ctx)->InvalidateState( ctx, _NEW_HINT );
SWRAST_CONTEXT(ctx)->AllowPixelFog = value;
}
/**
* Initialize native program limits by copying the logical limits.
* See comments in init_program_limits() in context.c
*/
static void
init_program_native_limits(struct gl_program_constants *prog)
{
prog->MaxNativeInstructions = prog->MaxInstructions;
prog->MaxNativeAluInstructions = prog->MaxAluInstructions;
prog->MaxNativeTexInstructions = prog->MaxTexInstructions;
prog->MaxNativeTexIndirections = prog->MaxTexIndirections;
prog->MaxNativeAttribs = prog->MaxAttribs;
prog->MaxNativeTemps = prog->MaxTemps;
prog->MaxNativeAddressRegs = prog->MaxAddressRegs;
prog->MaxNativeParameters = prog->MaxParameters;
}
GLboolean
_swrast_CreateContext( struct gl_context *ctx )
{
GLuint i;
SWcontext *swrast = calloc(1, sizeof(SWcontext));
#ifdef _OPENMP
const GLuint maxThreads = omp_get_max_threads();
#else
const GLuint maxThreads = 1;
#endif
assert(ctx->Const.MaxViewportWidth <= SWRAST_MAX_WIDTH);
assert(ctx->Const.MaxViewportHeight <= SWRAST_MAX_WIDTH);
assert(ctx->Const.MaxRenderbufferSize <= SWRAST_MAX_WIDTH);
/* make sure largest texture image is <= SWRAST_MAX_WIDTH in size */
assert((1 << (ctx->Const.MaxTextureLevels - 1)) <= SWRAST_MAX_WIDTH);
assert((1 << (ctx->Const.MaxCubeTextureLevels - 1)) <= SWRAST_MAX_WIDTH);
assert((1 << (ctx->Const.Max3DTextureLevels - 1)) <= SWRAST_MAX_WIDTH);
assert(PROG_MAX_WIDTH == SWRAST_MAX_WIDTH);
if (SWRAST_DEBUG) {
_mesa_debug(ctx, "_swrast_CreateContext\n");
}
if (!swrast)
return GL_FALSE;
swrast->NewState = ~0;
swrast->choose_point = _swrast_choose_point;
swrast->choose_line = _swrast_choose_line;
swrast->choose_triangle = _swrast_choose_triangle;
swrast->InvalidatePointMask = _SWRAST_NEW_POINT;
swrast->InvalidateLineMask = _SWRAST_NEW_LINE;
swrast->InvalidateTriangleMask = _SWRAST_NEW_TRIANGLE;
swrast->Point = _swrast_validate_point;
swrast->Line = _swrast_validate_line;
swrast->Triangle = _swrast_validate_triangle;
swrast->InvalidateState = _swrast_sleep;
swrast->BlendFunc = _swrast_validate_blend_func;
swrast->AllowVertexFog = GL_TRUE;
swrast->AllowPixelFog = GL_TRUE;
swrast->Driver.SpanRenderStart = _swrast_span_render_start;
swrast->Driver.SpanRenderFinish = _swrast_span_render_finish;
for (i = 0; i < ARRAY_SIZE(swrast->TextureSample); i++)
swrast->TextureSample[i] = NULL;
/* SpanArrays is global and shared by all SWspan instances. However, when
* using multiple threads, it is necessary to have one SpanArrays instance
* per thread.
*/
swrast->SpanArrays = malloc(maxThreads * sizeof(SWspanarrays));
if (!swrast->SpanArrays) {
free(swrast);
return GL_FALSE;
}
for(i = 0; i < maxThreads; i++) {
swrast->SpanArrays[i].ChanType = CHAN_TYPE;
#if CHAN_TYPE == GL_UNSIGNED_BYTE
swrast->SpanArrays[i].rgba = swrast->SpanArrays[i].rgba8;
#elif CHAN_TYPE == GL_UNSIGNED_SHORT
swrast->SpanArrays[i].rgba = swrast->SpanArrays[i].rgba16;
#else
swrast->SpanArrays[i].rgba = swrast->SpanArrays[i].attribs[VARYING_SLOT_COL0];
#endif
}
/* init point span buffer */
swrast->PointSpan.primitive = GL_POINT;
swrast->PointSpan.end = 0;
swrast->PointSpan.facing = 0;
swrast->PointSpan.array = swrast->SpanArrays;
init_program_native_limits(&ctx->Const.Program[MESA_SHADER_VERTEX]);
init_program_native_limits(&ctx->Const.Program[MESA_SHADER_GEOMETRY]);
init_program_native_limits(&ctx->Const.Program[MESA_SHADER_FRAGMENT]);
ctx->swrast_context = swrast;
swrast->stencil_temp.buf1 = malloc(SWRAST_MAX_WIDTH * sizeof(GLubyte));
swrast->stencil_temp.buf2 = malloc(SWRAST_MAX_WIDTH * sizeof(GLubyte));
swrast->stencil_temp.buf3 = malloc(SWRAST_MAX_WIDTH * sizeof(GLubyte));
swrast->stencil_temp.buf4 = malloc(SWRAST_MAX_WIDTH * sizeof(GLubyte));
if (!swrast->stencil_temp.buf1 ||
!swrast->stencil_temp.buf2 ||
!swrast->stencil_temp.buf3 ||
!swrast->stencil_temp.buf4) {
_swrast_DestroyContext(ctx);
return GL_FALSE;
}
return GL_TRUE;
}
void
_swrast_DestroyContext( struct gl_context *ctx )
{
SWcontext *swrast = SWRAST_CONTEXT(ctx);
if (SWRAST_DEBUG) {
_mesa_debug(ctx, "_swrast_DestroyContext\n");
}
free( swrast->SpanArrays );
free( swrast->ZoomedArrays );
free( swrast->TexelBuffer );
free(swrast->stencil_temp.buf1);
free(swrast->stencil_temp.buf2);
free(swrast->stencil_temp.buf3);
free(swrast->stencil_temp.buf4);
free( swrast );
ctx->swrast_context = 0;
}
struct swrast_device_driver *
_swrast_GetDeviceDriverReference( struct gl_context *ctx )
{
SWcontext *swrast = SWRAST_CONTEXT(ctx);
return &swrast->Driver;
}
void
_swrast_flush( struct gl_context *ctx )
{
SWcontext *swrast = SWRAST_CONTEXT(ctx);
/* flush any pending fragments from rendering points */
if (swrast->PointSpan.end > 0) {
_swrast_write_rgba_span(ctx, &(swrast->PointSpan));
swrast->PointSpan.end = 0;
}
}
void
_swrast_render_primitive( struct gl_context *ctx, GLenum prim )
{
SWcontext *swrast = SWRAST_CONTEXT(ctx);
if (swrast->Primitive == GL_POINTS && prim != GL_POINTS) {
_swrast_flush(ctx);
}
swrast->Primitive = prim;
}
/** called via swrast->Driver.SpanRenderStart() */
void
_swrast_span_render_start(struct gl_context *ctx)
{
_swrast_map_textures(ctx);
_swrast_map_renderbuffers(ctx);
}
/** called via swrast->Driver.SpanRenderFinish() */
void
_swrast_span_render_finish(struct gl_context *ctx)
{
_swrast_unmap_textures(ctx);
_swrast_unmap_renderbuffers(ctx);
}
void
_swrast_render_start( struct gl_context *ctx )
{
SWcontext *swrast = SWRAST_CONTEXT(ctx);
if (swrast->Driver.SpanRenderStart)
swrast->Driver.SpanRenderStart( ctx );
swrast->PointSpan.end = 0;
}
void
_swrast_render_finish( struct gl_context *ctx )
{
SWcontext *swrast = SWRAST_CONTEXT(ctx);
struct gl_query_object *query = ctx->Query.CurrentOcclusionObject;
_swrast_flush(ctx);
if (swrast->Driver.SpanRenderFinish)
swrast->Driver.SpanRenderFinish( ctx );
if (query && (query->Target == GL_ANY_SAMPLES_PASSED ||
query->Target == GL_ANY_SAMPLES_PASSED_CONSERVATIVE))
query->Result = !!query->Result;
}
#define SWRAST_DEBUG_VERTICES 0
void
_swrast_print_vertex( struct gl_context *ctx, const SWvertex *v )
{
GLuint i;
if (SWRAST_DEBUG_VERTICES) {
_mesa_debug(ctx, "win %f %f %f %f\n",
v->attrib[VARYING_SLOT_POS][0],
v->attrib[VARYING_SLOT_POS][1],
v->attrib[VARYING_SLOT_POS][2],
v->attrib[VARYING_SLOT_POS][3]);
for (i = 0 ; i < ctx->Const.MaxTextureCoordUnits ; i++)
if (ctx->Texture.Unit[i]._Current)
_mesa_debug(ctx, "texcoord[%d] %f %f %f %f\n", i,
v->attrib[VARYING_SLOT_TEX0 + i][0],
v->attrib[VARYING_SLOT_TEX0 + i][1],
v->attrib[VARYING_SLOT_TEX0 + i][2],
v->attrib[VARYING_SLOT_TEX0 + i][3]);
#if CHAN_TYPE == GL_FLOAT
_mesa_debug(ctx, "color %f %f %f %f\n",
v->color[0], v->color[1], v->color[2], v->color[3]);
#else
_mesa_debug(ctx, "color %d %d %d %d\n",
v->color[0], v->color[1], v->color[2], v->color[3]);
#endif
_mesa_debug(ctx, "spec %g %g %g %g\n",
v->attrib[VARYING_SLOT_COL1][0],
v->attrib[VARYING_SLOT_COL1][1],
v->attrib[VARYING_SLOT_COL1][2],
v->attrib[VARYING_SLOT_COL1][3]);
_mesa_debug(ctx, "fog %f\n", v->attrib[VARYING_SLOT_FOGC][0]);
_mesa_debug(ctx, "index %f\n", v->attrib[VARYING_SLOT_CI][0]);
_mesa_debug(ctx, "pointsize %f\n", v->pointSize);
_mesa_debug(ctx, "\n");
}
}