/**************************************************************************
*
* Copyright 2007 VMware, Inc.
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sub license, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice (including the
* next paragraph) shall be included in all copies or substantial portions
* of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
* IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
* ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
**************************************************************************/
/*
* Authors:
* Brian Paul
*/
#include "main/imports.h"
#include "main/image.h"
#include "main/bufferobj.h"
#include "main/blit.h"
#include "main/format_pack.h"
#include "main/framebuffer.h"
#include "main/macros.h"
#include "main/mtypes.h"
#include "main/pack.h"
#include "main/pbo.h"
#include "main/readpix.h"
#include "main/state.h"
#include "main/texformat.h"
#include "main/teximage.h"
#include "main/texstore.h"
#include "main/glformats.h"
#include "program/program.h"
#include "program/prog_print.h"
#include "program/prog_instruction.h"
#include "st_atom.h"
#include "st_atom_constbuf.h"
#include "st_cb_bitmap.h"
#include "st_cb_drawpixels.h"
#include "st_cb_readpixels.h"
#include "st_cb_fbo.h"
#include "st_context.h"
#include "st_debug.h"
#include "st_draw.h"
#include "st_format.h"
#include "st_program.h"
#include "st_sampler_view.h"
#include "st_scissor.h"
#include "st_texture.h"
#include "pipe/p_context.h"
#include "pipe/p_defines.h"
#include "tgsi/tgsi_ureg.h"
#include "util/u_format.h"
#include "util/u_inlines.h"
#include "util/u_math.h"
#include "util/u_tile.h"
#include "cso_cache/cso_context.h"
/**
* We have a simple glDrawPixels cache to try to optimize the case where the
* same image is drawn over and over again. It basically works as follows:
*
* 1. After we construct a texture map with the image and draw it, we do
* not discard the texture. We keep it around, plus we note the
* glDrawPixels width, height, format, etc. parameters and keep a copy
* of the image in a malloc'd buffer.
*
* 2. On the next glDrawPixels we check if the parameters match the previous
* call. If those match, we check if the image matches the previous image
* via a memcmp() call. If everything matches, we re-use the previous
* texture, thereby avoiding the cost creating a new texture and copying
* the image to it.
*
* The effectiveness of this cache depends upon:
* 1. If the memcmp() finds a difference, it happens relatively quickly.
Hopefully, not just the last pixels differ!
* 2. If the memcmp() finds no difference, doing that check is faster than
* creating and loading a texture.
*
* Notes:
* 1. We don't support any pixel unpacking parameters.
* 2. We don't try to cache images in Pixel Buffer Objects.
* 3. Instead of saving the whole image, perhaps some sort of reliable
* checksum function could be used instead.
*/
#define USE_DRAWPIXELS_CACHE 1
/**
* Create fragment program that does a TEX() instruction to get a Z and/or
* stencil value value, then writes to FRAG_RESULT_DEPTH/FRAG_RESULT_STENCIL.
* Used for glDrawPixels(GL_DEPTH_COMPONENT / GL_STENCIL_INDEX).
* Pass fragment color through as-is.
*
* \return CSO of the fragment shader.
*/
static void *
get_drawpix_z_stencil_program(struct st_context *st,
GLboolean write_depth,
GLboolean write_stencil)
{
struct ureg_program *ureg;
struct ureg_src depth_sampler, stencil_sampler;
struct ureg_src texcoord, color;
struct ureg_dst out_color, out_depth, out_stencil;
const GLuint shaderIndex = write_depth * 2 + write_stencil;
void *cso;
assert(shaderIndex < ARRAY_SIZE(st->drawpix.zs_shaders));
if (st->drawpix.zs_shaders[shaderIndex]) {
/* already have the proper shader */
return st->drawpix.zs_shaders[shaderIndex];
}
ureg = ureg_create(PIPE_SHADER_FRAGMENT);
if (ureg == NULL)
return NULL;
ureg_property(ureg, TGSI_PROPERTY_FS_COLOR0_WRITES_ALL_CBUFS, TRUE);
if (write_depth) {
color = ureg_DECL_fs_input(ureg, TGSI_SEMANTIC_COLOR, 0,
TGSI_INTERPOLATE_COLOR);
out_color = ureg_DECL_output(ureg, TGSI_SEMANTIC_COLOR, 0);
depth_sampler = ureg_DECL_sampler(ureg, 0);
ureg_DECL_sampler_view(ureg, 0, TGSI_TEXTURE_2D,
TGSI_RETURN_TYPE_FLOAT,
TGSI_RETURN_TYPE_FLOAT,
TGSI_RETURN_TYPE_FLOAT,
TGSI_RETURN_TYPE_FLOAT);
out_depth = ureg_DECL_output(ureg, TGSI_SEMANTIC_POSITION, 0);
}
if (write_stencil) {
stencil_sampler = ureg_DECL_sampler(ureg, 1);
ureg_DECL_sampler_view(ureg, 1, TGSI_TEXTURE_2D,
TGSI_RETURN_TYPE_UINT,
TGSI_RETURN_TYPE_UINT,
TGSI_RETURN_TYPE_UINT,
TGSI_RETURN_TYPE_UINT);
out_stencil = ureg_DECL_output(ureg, TGSI_SEMANTIC_STENCIL, 0);
}
texcoord = ureg_DECL_fs_input(ureg,
st->needs_texcoord_semantic ?
TGSI_SEMANTIC_TEXCOORD :
TGSI_SEMANTIC_GENERIC,
0, TGSI_INTERPOLATE_LINEAR);
if (write_depth) {
ureg_TEX(ureg, ureg_writemask(out_depth, TGSI_WRITEMASK_Z),
TGSI_TEXTURE_2D, texcoord, depth_sampler);
ureg_MOV(ureg, out_color, color);
}
if (write_stencil)
ureg_TEX(ureg, ureg_writemask(out_stencil, TGSI_WRITEMASK_Y),
TGSI_TEXTURE_2D, texcoord, stencil_sampler);
ureg_END(ureg);
cso = ureg_create_shader_and_destroy(ureg, st->pipe);
/* save the new shader */
st->drawpix.zs_shaders[shaderIndex] = cso;
return cso;
}
/**
* Create a simple vertex shader that just passes through the
* vertex position and texcoord (and optionally, color).
*/
static void *
make_passthrough_vertex_shader(struct st_context *st,
GLboolean passColor)
{
const unsigned texcoord_semantic = st->needs_texcoord_semantic ?
TGSI_SEMANTIC_TEXCOORD : TGSI_SEMANTIC_GENERIC;
if (!st->drawpix.vert_shaders[passColor]) {
struct ureg_program *ureg = ureg_create( PIPE_SHADER_VERTEX );
if (ureg == NULL)
return NULL;
/* MOV result.pos, vertex.pos; */
ureg_MOV(ureg,
ureg_DECL_output( ureg, TGSI_SEMANTIC_POSITION, 0 ),
ureg_DECL_vs_input( ureg, 0 ));
if (passColor) {
/* MOV result.color0, vertex.attr[1]; */
ureg_MOV(ureg,
ureg_DECL_output( ureg, TGSI_SEMANTIC_COLOR, 0 ),
ureg_DECL_vs_input( ureg, 1 ));
}
/* MOV result.texcoord0, vertex.attr[2]; */
ureg_MOV(ureg,
ureg_DECL_output( ureg, texcoord_semantic, 0 ),
ureg_DECL_vs_input( ureg, 2 ));
ureg_END( ureg );
st->drawpix.vert_shaders[passColor] =
ureg_create_shader_and_destroy( ureg, st->pipe );
}
return st->drawpix.vert_shaders[passColor];
}
/**
* Return a texture internalFormat for drawing/copying an image
* of the given format and type.
*/
static GLenum
internal_format(struct gl_context *ctx, GLenum format, GLenum type)
{
switch (format) {
case GL_DEPTH_COMPONENT:
switch (type) {
case GL_UNSIGNED_SHORT:
return GL_DEPTH_COMPONENT16;
case GL_UNSIGNED_INT:
return GL_DEPTH_COMPONENT32;
case GL_FLOAT:
if (ctx->Extensions.ARB_depth_buffer_float)
return GL_DEPTH_COMPONENT32F;
else
return GL_DEPTH_COMPONENT;
default:
return GL_DEPTH_COMPONENT;
}
case GL_DEPTH_STENCIL:
switch (type) {
case GL_FLOAT_32_UNSIGNED_INT_24_8_REV:
return GL_DEPTH32F_STENCIL8;
case GL_UNSIGNED_INT_24_8:
default:
return GL_DEPTH24_STENCIL8;
}
case GL_STENCIL_INDEX:
return GL_STENCIL_INDEX;
default:
if (_mesa_is_enum_format_integer(format)) {
switch (type) {
case GL_BYTE:
return GL_RGBA8I;
case GL_UNSIGNED_BYTE:
return GL_RGBA8UI;
case GL_SHORT:
return GL_RGBA16I;
case GL_UNSIGNED_SHORT:
return GL_RGBA16UI;
case GL_INT:
return GL_RGBA32I;
case GL_UNSIGNED_INT:
return GL_RGBA32UI;
default:
assert(0 && "Unexpected type in internal_format()");
return GL_RGBA_INTEGER;
}
}
else {
switch (type) {
case GL_UNSIGNED_BYTE:
case GL_UNSIGNED_INT_8_8_8_8:
case GL_UNSIGNED_INT_8_8_8_8_REV:
default:
return GL_RGBA8;
case GL_UNSIGNED_BYTE_3_3_2:
case GL_UNSIGNED_BYTE_2_3_3_REV:
return GL_R3_G3_B2;
case GL_UNSIGNED_SHORT_4_4_4_4:
case GL_UNSIGNED_SHORT_4_4_4_4_REV:
return GL_RGBA4;
case GL_UNSIGNED_SHORT_5_6_5:
case GL_UNSIGNED_SHORT_5_6_5_REV:
return GL_RGB565;
case GL_UNSIGNED_SHORT_5_5_5_1:
case GL_UNSIGNED_SHORT_1_5_5_5_REV:
return GL_RGB5_A1;
case GL_UNSIGNED_INT_10_10_10_2:
case GL_UNSIGNED_INT_2_10_10_10_REV:
return GL_RGB10_A2;
case GL_UNSIGNED_SHORT:
case GL_UNSIGNED_INT:
return GL_RGBA16;
case GL_BYTE:
return
ctx->Extensions.EXT_texture_snorm ? GL_RGBA8_SNORM : GL_RGBA8;
case GL_SHORT:
case GL_INT:
return
ctx->Extensions.EXT_texture_snorm ? GL_RGBA16_SNORM : GL_RGBA16;
case GL_HALF_FLOAT_ARB:
return
ctx->Extensions.ARB_texture_float ? GL_RGBA16F :
ctx->Extensions.EXT_texture_snorm ? GL_RGBA16_SNORM : GL_RGBA16;
case GL_FLOAT:
case GL_DOUBLE:
return
ctx->Extensions.ARB_texture_float ? GL_RGBA32F :
ctx->Extensions.EXT_texture_snorm ? GL_RGBA16_SNORM : GL_RGBA16;
case GL_UNSIGNED_INT_5_9_9_9_REV:
assert(ctx->Extensions.EXT_texture_shared_exponent);
return GL_RGB9_E5;
case GL_UNSIGNED_INT_10F_11F_11F_REV:
assert(ctx->Extensions.EXT_packed_float);
return GL_R11F_G11F_B10F;
}
}
}
}
/**
* Create a temporary texture to hold an image of the given size.
* If width, height are not POT and the driver only handles POT textures,
* allocate the next larger size of texture that is POT.
*/
static struct pipe_resource *
alloc_texture(struct st_context *st, GLsizei width, GLsizei height,
enum pipe_format texFormat, unsigned bind)
{
struct pipe_resource *pt;
pt = st_texture_create(st, st->internal_target, texFormat, 0,
width, height, 1, 1, 0, bind);
return pt;
}
/**
* Make texture containing an image for glDrawPixels image.
* If 'pixels' is NULL, leave the texture image data undefined.
*/
static struct pipe_resource *
make_texture(struct st_context *st,
GLsizei width, GLsizei height, GLenum format, GLenum type,
const struct gl_pixelstore_attrib *unpack,
const void *pixels)
{
struct gl_context *ctx = st->ctx;
struct pipe_context *pipe = st->pipe;
mesa_format mformat;
struct pipe_resource *pt = NULL;
enum pipe_format pipeFormat;
GLenum baseInternalFormat;
#if USE_DRAWPIXELS_CACHE
const GLint bpp = _mesa_bytes_per_pixel(format, type);
/* Check if the glDrawPixels() parameters and state matches the cache */
if (width == st->drawpix_cache.width &&
height == st->drawpix_cache.height &&
format == st->drawpix_cache.format &&
type == st->drawpix_cache.type &&
pixels == st->drawpix_cache.user_pointer &&
!_mesa_is_bufferobj(unpack->BufferObj) &&
(unpack->RowLength == 0 || unpack->RowLength == width) &&
unpack->SkipPixels == 0 &&
unpack->SkipRows == 0 &&
unpack->SwapBytes == GL_FALSE &&
st->drawpix_cache.image) {
assert(st->drawpix_cache.texture);
/* check if the pixel data is the same */
if (memcmp(pixels, st->drawpix_cache.image, width * height * bpp) == 0) {
/* OK, re-use the cached texture */
pipe_resource_reference(&pt, st->drawpix_cache.texture);
/* refcount of returned texture should be at least two here. One
* reference for the cache to hold on to, one for the caller (which
* it will release), and possibly more held by the driver.
*/
assert(pt->reference.count >= 2);
return pt;
}
}
/* discard the cached image and texture (if there is one) */
st->drawpix_cache.width = 0;
st->drawpix_cache.height = 0;
st->drawpix_cache.user_pointer = NULL;
if (st->drawpix_cache.image) {
free(st->drawpix_cache.image);
st->drawpix_cache.image = NULL;
}
pipe_resource_reference(&st->drawpix_cache.texture, NULL);
#endif
/* Choose a pixel format for the temp texture which will hold the
* image to draw.
*/
pipeFormat = st_choose_matching_format(st, PIPE_BIND_SAMPLER_VIEW,
format, type, unpack->SwapBytes);
if (pipeFormat == PIPE_FORMAT_NONE) {
/* Use the generic approach. */
GLenum intFormat = internal_format(ctx, format, type);
pipeFormat = st_choose_format(st, intFormat, format, type,
st->internal_target, 0,
PIPE_BIND_SAMPLER_VIEW, FALSE);
assert(pipeFormat != PIPE_FORMAT_NONE);
}
mformat = st_pipe_format_to_mesa_format(pipeFormat);
baseInternalFormat = _mesa_get_format_base_format(mformat);
pixels = _mesa_map_pbo_source(ctx, unpack, pixels);
if (!pixels)
return NULL;
/* alloc temporary texture */
pt = alloc_texture(st, width, height, pipeFormat, PIPE_BIND_SAMPLER_VIEW);
if (!pt) {
_mesa_unmap_pbo_source(ctx, unpack);
return NULL;
}
{
struct pipe_transfer *transfer;
GLubyte *dest;
const GLbitfield imageTransferStateSave = ctx->_ImageTransferState;
/* we'll do pixel transfer in a fragment shader */
ctx->_ImageTransferState = 0x0;
/* map texture transfer */
dest = pipe_transfer_map(pipe, pt, 0, 0,
PIPE_TRANSFER_WRITE, 0, 0,
width, height, &transfer);
/* Put image into texture transfer.
* Note that the image is actually going to be upside down in
* the texture. We deal with that with texcoords.
*/
if ((format == GL_RGBA || format == GL_BGRA)
&& type == GL_UNSIGNED_BYTE) {
/* Use a memcpy-based texstore to avoid software pixel swizzling.
* We'll do the necessary swizzling with the pipe_sampler_view to
* give much better performance.
* XXX in the future, expand this to accomodate more format and
* type combinations.
*/
_mesa_memcpy_texture(ctx, 2,
mformat, /* mesa_format */
transfer->stride, /* dstRowStride, bytes */
&dest, /* destSlices */
width, height, 1, /* size */
format, type, /* src format/type */
pixels, /* data source */
unpack);
}
else {
bool MAYBE_UNUSED success;
success = _mesa_texstore(ctx, 2, /* dims */
baseInternalFormat, /* baseInternalFormat */
mformat, /* mesa_format */
transfer->stride, /* dstRowStride, bytes */
&dest, /* destSlices */
width, height, 1, /* size */
format, type, /* src format/type */
pixels, /* data source */
unpack);
assert(success);
}
/* unmap */
pipe_transfer_unmap(pipe, transfer);
/* restore */
ctx->_ImageTransferState = imageTransferStateSave;
}
_mesa_unmap_pbo_source(ctx, unpack);
#if USE_DRAWPIXELS_CACHE
/* Save the glDrawPixels parameter and image in the cache */
if ((unpack->RowLength == 0 || unpack->RowLength == width) &&
unpack->SkipPixels == 0 &&
unpack->SkipRows == 0) {
st->drawpix_cache.width = width;
st->drawpix_cache.height = height;
st->drawpix_cache.format = format;
st->drawpix_cache.type = type;
st->drawpix_cache.user_pointer = pixels;
assert(!st->drawpix_cache.image);
st->drawpix_cache.image = malloc(width * height * bpp);
if (st->drawpix_cache.image) {
memcpy(st->drawpix_cache.image, pixels, width * height * bpp);
pipe_resource_reference(&st->drawpix_cache.texture, pt);
}
else {
/* out of memory, free/disable cached texture */
st->drawpix_cache.width = 0;
st->drawpix_cache.height = 0;
pipe_resource_reference(&st->drawpix_cache.texture, NULL);
}
}
#endif
return pt;
}
static void
draw_textured_quad(struct gl_context *ctx, GLint x, GLint y, GLfloat z,
GLsizei width, GLsizei height,
GLfloat zoomX, GLfloat zoomY,
struct pipe_sampler_view **sv,
int num_sampler_view,
void *driver_vp,
void *driver_fp,
struct st_fp_variant *fpv,
const GLfloat *color,
GLboolean invertTex,
GLboolean write_depth, GLboolean write_stencil)
{
struct st_context *st = st_context(ctx);
struct pipe_context *pipe = st->pipe;
struct cso_context *cso = st->cso_context;
const unsigned fb_width = _mesa_geometric_width(ctx->DrawBuffer);
const unsigned fb_height = _mesa_geometric_height(ctx->DrawBuffer);
GLfloat x0, y0, x1, y1;
GLsizei MAYBE_UNUSED maxSize;
boolean normalized = sv[0]->texture->target == PIPE_TEXTURE_2D;
unsigned cso_state_mask;
assert(sv[0]->texture->target == st->internal_target);
/* limit checks */
/* XXX if DrawPixels image is larger than max texture size, break
* it up into chunks.
*/
maxSize = 1 << (pipe->screen->get_param(pipe->screen,
PIPE_CAP_MAX_TEXTURE_2D_LEVELS) - 1);
assert(width <= maxSize);
assert(height <= maxSize);
cso_state_mask = (CSO_BIT_RASTERIZER |
CSO_BIT_VIEWPORT |
CSO_BIT_FRAGMENT_SAMPLERS |
CSO_BIT_FRAGMENT_SAMPLER_VIEWS |
CSO_BIT_STREAM_OUTPUTS |
CSO_BIT_VERTEX_ELEMENTS |
CSO_BIT_AUX_VERTEX_BUFFER_SLOT |
CSO_BITS_ALL_SHADERS);
if (write_stencil) {
cso_state_mask |= (CSO_BIT_DEPTH_STENCIL_ALPHA |
CSO_BIT_BLEND);
}
cso_save_state(cso, cso_state_mask);
/* rasterizer state: just scissor */
{
struct pipe_rasterizer_state rasterizer;
memset(&rasterizer, 0, sizeof(rasterizer));
rasterizer.clamp_fragment_color = !st->clamp_frag_color_in_shader &&
ctx->Color._ClampFragmentColor;
rasterizer.half_pixel_center = 1;
rasterizer.bottom_edge_rule = 1;
rasterizer.depth_clip = !ctx->Transform.DepthClamp;
rasterizer.scissor = ctx->Scissor.EnableFlags;
cso_set_rasterizer(cso, &rasterizer);
}
if (write_stencil) {
/* Stencil writing bypasses the normal fragment pipeline to
* disable color writing and set stencil test to always pass.
*/
struct pipe_depth_stencil_alpha_state dsa;
struct pipe_blend_state blend;
/* depth/stencil */
memset(&dsa, 0, sizeof(dsa));
dsa.stencil[0].enabled = 1;
dsa.stencil[0].func = PIPE_FUNC_ALWAYS;
dsa.stencil[0].writemask = ctx->Stencil.WriteMask[0] & 0xff;
dsa.stencil[0].zpass_op = PIPE_STENCIL_OP_REPLACE;
if (write_depth) {
/* writing depth+stencil: depth test always passes */
dsa.depth.enabled = 1;
dsa.depth.writemask = ctx->Depth.Mask;
dsa.depth.func = PIPE_FUNC_ALWAYS;
}
cso_set_depth_stencil_alpha(cso, &dsa);
/* blend (colormask) */
memset(&blend, 0, sizeof(blend));
cso_set_blend(cso, &blend);
}
/* fragment shader state: TEX lookup program */
cso_set_fragment_shader_handle(cso, driver_fp);
/* vertex shader state: position + texcoord pass-through */
cso_set_vertex_shader_handle(cso, driver_vp);
/* disable other shaders */
cso_set_tessctrl_shader_handle(cso, NULL);
cso_set_tesseval_shader_handle(cso, NULL);
cso_set_geometry_shader_handle(cso, NULL);
/* user samplers, plus the drawpix samplers */
{
struct pipe_sampler_state sampler;
memset(&sampler, 0, sizeof(sampler));
sampler.wrap_s = PIPE_TEX_WRAP_CLAMP;
sampler.wrap_t = PIPE_TEX_WRAP_CLAMP;
sampler.wrap_r = PIPE_TEX_WRAP_CLAMP;
sampler.min_img_filter = PIPE_TEX_FILTER_NEAREST;
sampler.min_mip_filter = PIPE_TEX_MIPFILTER_NONE;
sampler.mag_img_filter = PIPE_TEX_FILTER_NEAREST;
sampler.normalized_coords = normalized;
if (fpv) {
/* drawing a color image */
const struct pipe_sampler_state *samplers[PIPE_MAX_SAMPLERS];
uint num = MAX3(fpv->drawpix_sampler + 1,
fpv->pixelmap_sampler + 1,
st->state.num_samplers[PIPE_SHADER_FRAGMENT]);
uint i;
for (i = 0; i < st->state.num_samplers[PIPE_SHADER_FRAGMENT]; i++)
samplers[i] = &st->state.samplers[PIPE_SHADER_FRAGMENT][i];
samplers[fpv->drawpix_sampler] = &sampler;
if (sv[1])
samplers[fpv->pixelmap_sampler] = &sampler;
cso_set_samplers(cso, PIPE_SHADER_FRAGMENT, num, samplers);
} else {
/* drawing a depth/stencil image */
const struct pipe_sampler_state *samplers[2] = {&sampler, &sampler};
cso_set_samplers(cso, PIPE_SHADER_FRAGMENT, num_sampler_view, samplers);
}
}
/* user textures, plus the drawpix textures */
if (fpv) {
/* drawing a color image */
struct pipe_sampler_view *sampler_views[PIPE_MAX_SAMPLERS];
uint num = MAX3(fpv->drawpix_sampler + 1,
fpv->pixelmap_sampler + 1,
st->state.num_sampler_views[PIPE_SHADER_FRAGMENT]);
memcpy(sampler_views, st->state.sampler_views[PIPE_SHADER_FRAGMENT],
sizeof(sampler_views));
sampler_views[fpv->drawpix_sampler] = sv[0];
if (sv[1])
sampler_views[fpv->pixelmap_sampler] = sv[1];
cso_set_sampler_views(cso, PIPE_SHADER_FRAGMENT, num, sampler_views);
} else {
/* drawing a depth/stencil image */
cso_set_sampler_views(cso, PIPE_SHADER_FRAGMENT, num_sampler_view, sv);
}
/* viewport state: viewport matching window dims */
cso_set_viewport_dims(cso, fb_width, fb_height, TRUE);
cso_set_vertex_elements(cso, 3, st->util_velems);
cso_set_stream_outputs(cso, 0, NULL, NULL);
/* Compute Gallium window coords (y=0=top) with pixel zoom.
* Recall that these coords are transformed by the current
* vertex shader and viewport transformation.
*/
if (st_fb_orientation(ctx->DrawBuffer) == Y_0_BOTTOM) {
y = fb_height - (int) (y + height * ctx->Pixel.ZoomY);
invertTex = !invertTex;
}
x0 = (GLfloat) x;
x1 = x + width * ctx->Pixel.ZoomX;
y0 = (GLfloat) y;
y1 = y + height * ctx->Pixel.ZoomY;
/* convert Z from [0,1] to [-1,-1] to match viewport Z scale/bias */
z = z * 2.0f - 1.0f;
{
const float clip_x0 = x0 / (float) fb_width * 2.0f - 1.0f;
const float clip_y0 = y0 / (float) fb_height * 2.0f - 1.0f;
const float clip_x1 = x1 / (float) fb_width * 2.0f - 1.0f;
const float clip_y1 = y1 / (float) fb_height * 2.0f - 1.0f;
const float maxXcoord = normalized ?
((float) width / sv[0]->texture->width0) : (float) width;
const float maxYcoord = normalized
? ((float) height / sv[0]->texture->height0) : (float) height;
const float sLeft = 0.0f, sRight = maxXcoord;
const float tTop = invertTex ? maxYcoord : 0.0f;
const float tBot = invertTex ? 0.0f : maxYcoord;
if (!st_draw_quad(st, clip_x0, clip_y0, clip_x1, clip_y1, z,
sLeft, tBot, sRight, tTop, color, 0)) {
_mesa_error(ctx, GL_OUT_OF_MEMORY, "glDrawPixels");
}
}
/* restore state */
cso_restore_state(cso);
}
/**
* Software fallback to do glDrawPixels(GL_STENCIL_INDEX) when we
* can't use a fragment shader to write stencil values.
*/
static void
draw_stencil_pixels(struct gl_context *ctx, GLint x, GLint y,
GLsizei width, GLsizei height, GLenum format, GLenum type,
const struct gl_pixelstore_attrib *unpack,
const void *pixels)
{
struct st_context *st = st_context(ctx);
struct pipe_context *pipe = st->pipe;
struct st_renderbuffer *strb;
enum pipe_transfer_usage usage;
struct pipe_transfer *pt;
const GLboolean zoom = ctx->Pixel.ZoomX != 1.0 || ctx->Pixel.ZoomY != 1.0;
ubyte *stmap;
struct gl_pixelstore_attrib clippedUnpack = *unpack;
GLubyte *sValues;
GLuint *zValues;
if (!zoom) {
if (!_mesa_clip_drawpixels(ctx, &x, &y, &width, &height,
&clippedUnpack)) {
/* totally clipped */
return;
}
}
strb = st_renderbuffer(ctx->DrawBuffer->
Attachment[BUFFER_STENCIL].Renderbuffer);
if (st_fb_orientation(ctx->DrawBuffer) == Y_0_TOP) {
y = ctx->DrawBuffer->Height - y - height;
}
if (format == GL_STENCIL_INDEX &&
_mesa_is_format_packed_depth_stencil(strb->Base.Format)) {
/* writing stencil to a combined depth+stencil buffer */
usage = PIPE_TRANSFER_READ_WRITE;
}
else {
usage = PIPE_TRANSFER_WRITE;
}
stmap = pipe_transfer_map(pipe, strb->texture,
strb->surface->u.tex.level,
strb->surface->u.tex.first_layer,
usage, x, y,
width, height, &pt);
pixels = _mesa_map_pbo_source(ctx, &clippedUnpack, pixels);
assert(pixels);
sValues = malloc(width * sizeof(GLubyte));
zValues = malloc(width * sizeof(GLuint));
if (sValues && zValues) {
GLint row;
for (row = 0; row < height; row++) {
GLfloat *zValuesFloat = (GLfloat*)zValues;
GLenum destType = GL_UNSIGNED_BYTE;
const void *source = _mesa_image_address2d(&clippedUnpack, pixels,
width, height,
format, type,
row, 0);
_mesa_unpack_stencil_span(ctx, width, destType, sValues,
type, source, &clippedUnpack,
ctx->_ImageTransferState);
if (format == GL_DEPTH_STENCIL) {
GLenum ztype =
pt->resource->format == PIPE_FORMAT_Z32_FLOAT_S8X24_UINT ?
GL_FLOAT : GL_UNSIGNED_INT;
_mesa_unpack_depth_span(ctx, width, ztype, zValues,
(1 << 24) - 1, type, source,
&clippedUnpack);
}
if (zoom) {
_mesa_problem(ctx, "Gallium glDrawPixels(GL_STENCIL) with "
"zoom not complete");
}
{
GLint spanY;
if (st_fb_orientation(ctx->DrawBuffer) == Y_0_TOP) {
spanY = height - row - 1;
}
else {
spanY = row;
}
/* now pack the stencil (and Z) values in the dest format */
switch (pt->resource->format) {
case PIPE_FORMAT_S8_UINT:
{
ubyte *dest = stmap + spanY * pt->stride;
assert(usage == PIPE_TRANSFER_WRITE);
memcpy(dest, sValues, width);
}
break;
case PIPE_FORMAT_Z24_UNORM_S8_UINT:
if (format == GL_DEPTH_STENCIL) {
uint *dest = (uint *) (stmap + spanY * pt->stride);
GLint k;
assert(usage == PIPE_TRANSFER_WRITE);
for (k = 0; k < width; k++) {
dest[k] = zValues[k] | (sValues[k] << 24);
}
}
else {
uint *dest = (uint *) (stmap + spanY * pt->stride);
GLint k;
assert(usage == PIPE_TRANSFER_READ_WRITE);
for (k = 0; k < width; k++) {
dest[k] = (dest[k] & 0xffffff) | (sValues[k] << 24);
}
}
break;
case PIPE_FORMAT_S8_UINT_Z24_UNORM:
if (format == GL_DEPTH_STENCIL) {
uint *dest = (uint *) (stmap + spanY * pt->stride);
GLint k;
assert(usage == PIPE_TRANSFER_WRITE);
for (k = 0; k < width; k++) {
dest[k] = (zValues[k] << 8) | (sValues[k] & 0xff);
}
}
else {
uint *dest = (uint *) (stmap + spanY * pt->stride);
GLint k;
assert(usage == PIPE_TRANSFER_READ_WRITE);
for (k = 0; k < width; k++) {
dest[k] = (dest[k] & 0xffffff00) | (sValues[k] & 0xff);
}
}
break;
case PIPE_FORMAT_Z32_FLOAT_S8X24_UINT:
if (format == GL_DEPTH_STENCIL) {
uint *dest = (uint *) (stmap + spanY * pt->stride);
GLfloat *destf = (GLfloat*)dest;
GLint k;
assert(usage == PIPE_TRANSFER_WRITE);
for (k = 0; k < width; k++) {
destf[k*2] = zValuesFloat[k];
dest[k*2+1] = sValues[k] & 0xff;
}
}
else {
uint *dest = (uint *) (stmap + spanY * pt->stride);
GLint k;
assert(usage == PIPE_TRANSFER_READ_WRITE);
for (k = 0; k < width; k++) {
dest[k*2+1] = sValues[k] & 0xff;
}
}
break;
default:
assert(0);
}
}
}
}
else {
_mesa_error(ctx, GL_OUT_OF_MEMORY, "glDrawPixels()");
}
free(sValues);
free(zValues);
_mesa_unmap_pbo_source(ctx, &clippedUnpack);
/* unmap the stencil buffer */
pipe_transfer_unmap(pipe, pt);
}
/**
* Get fragment program variant for a glDrawPixels or glCopyPixels
* command for RGBA data.
*/
static struct st_fp_variant *
get_color_fp_variant(struct st_context *st)
{
struct gl_context *ctx = st->ctx;
struct st_fp_variant_key key;
struct st_fp_variant *fpv;
memset(&key, 0, sizeof(key));
key.st = st->has_shareable_shaders ? NULL : st;
key.drawpixels = 1;
key.scaleAndBias = (ctx->Pixel.RedBias != 0.0 ||
ctx->Pixel.RedScale != 1.0 ||
ctx->Pixel.GreenBias != 0.0 ||
ctx->Pixel.GreenScale != 1.0 ||
ctx->Pixel.BlueBias != 0.0 ||
ctx->Pixel.BlueScale != 1.0 ||
ctx->Pixel.AlphaBias != 0.0 ||
ctx->Pixel.AlphaScale != 1.0);
key.pixelMaps = ctx->Pixel.MapColorFlag;
key.clamp_color = st->clamp_frag_color_in_shader &&
ctx->Color._ClampFragmentColor;
fpv = st_get_fp_variant(st, st->fp, &key);
return fpv;
}
/**
* Clamp glDrawPixels width and height to the maximum texture size.
*/
static void
clamp_size(struct pipe_context *pipe, GLsizei *width, GLsizei *height,
struct gl_pixelstore_attrib *unpack)
{
const int maxSize =
1 << (pipe->screen->get_param(pipe->screen,
PIPE_CAP_MAX_TEXTURE_2D_LEVELS) - 1);
if (*width > maxSize) {
if (unpack->RowLength == 0)
unpack->RowLength = *width;
*width = maxSize;
}
if (*height > maxSize) {
*height = maxSize;
}
}
/**
* Search the array of 4 swizzle components for the named component and return
* its position.
*/
static unsigned
search_swizzle(const unsigned char swizzle[4], unsigned component)
{
unsigned i;
for (i = 0; i < 4; i++) {
if (swizzle[i] == component)
return i;
}
assert(!"search_swizzle() failed");
return 0;
}
/**
* Set the sampler view's swizzle terms. This is used to handle RGBA
* swizzling when the incoming image format isn't an exact match for
* the actual texture format. For example, if we have glDrawPixels(
* GL_RGBA, GL_UNSIGNED_BYTE) and we chose the texture format
* PIPE_FORMAT_B8G8R8A8 then we can do use the sampler view swizzle to
* avoid swizzling all the pixels in software in the texstore code.
*/
static void
setup_sampler_swizzle(struct pipe_sampler_view *sv, GLenum format, GLenum type)
{
if ((format == GL_RGBA || format == GL_BGRA) && type == GL_UNSIGNED_BYTE) {
const struct util_format_description *desc =
util_format_description(sv->texture->format);
unsigned c0, c1, c2, c3;
/* Every gallium driver supports at least one 32-bit packed RGBA format.
* We must have chosen one for (GL_RGBA, GL_UNSIGNED_BYTE).
*/
assert(desc->block.bits == 32);
/* invert the format's swizzle to setup the sampler's swizzle */
if (format == GL_RGBA) {
c0 = PIPE_SWIZZLE_X;
c1 = PIPE_SWIZZLE_Y;
c2 = PIPE_SWIZZLE_Z;
c3 = PIPE_SWIZZLE_W;
}
else {
assert(format == GL_BGRA);
c0 = PIPE_SWIZZLE_Z;
c1 = PIPE_SWIZZLE_Y;
c2 = PIPE_SWIZZLE_X;
c3 = PIPE_SWIZZLE_W;
}
sv->swizzle_r = search_swizzle(desc->swizzle, c0);
sv->swizzle_g = search_swizzle(desc->swizzle, c1);
sv->swizzle_b = search_swizzle(desc->swizzle, c2);
sv->swizzle_a = search_swizzle(desc->swizzle, c3);
}
else {
/* use the default sampler swizzle */
}
}
/**
* Called via ctx->Driver.DrawPixels()
*/
static void
st_DrawPixels(struct gl_context *ctx, GLint x, GLint y,
GLsizei width, GLsizei height,
GLenum format, GLenum type,
const struct gl_pixelstore_attrib *unpack, const void *pixels)
{
void *driver_vp, *driver_fp;
struct st_context *st = st_context(ctx);
struct pipe_context *pipe = st->pipe;
GLboolean write_stencil = GL_FALSE, write_depth = GL_FALSE;
struct pipe_sampler_view *sv[2] = { NULL };
int num_sampler_view = 1;
struct gl_pixelstore_attrib clippedUnpack;
struct st_fp_variant *fpv = NULL;
struct pipe_resource *pt;
/* Mesa state should be up to date by now */
assert(ctx->NewState == 0x0);
_mesa_update_draw_buffer_bounds(ctx, ctx->DrawBuffer);
st_flush_bitmap_cache(st);
st_invalidate_readpix_cache(st);
st_validate_state(st, ST_PIPELINE_RENDER);
/* Limit the size of the glDrawPixels to the max texture size.
* Strictly speaking, that's not correct but since we don't handle
* larger images yet, this is better than crashing.
*/
clippedUnpack = *unpack;
unpack = &clippedUnpack;
clamp_size(st->pipe, &width, &height, &clippedUnpack);
if (format == GL_DEPTH_STENCIL)
write_stencil = write_depth = GL_TRUE;
else if (format == GL_STENCIL_INDEX)
write_stencil = GL_TRUE;
else if (format == GL_DEPTH_COMPONENT)
write_depth = GL_TRUE;
if (write_stencil &&
!pipe->screen->get_param(pipe->screen, PIPE_CAP_SHADER_STENCIL_EXPORT)) {
/* software fallback */
draw_stencil_pixels(ctx, x, y, width, height, format, type,
unpack, pixels);
return;
}
/*
* Get vertex/fragment shaders
*/
if (write_depth || write_stencil) {
driver_fp = get_drawpix_z_stencil_program(st, write_depth,
write_stencil);
driver_vp = make_passthrough_vertex_shader(st, GL_TRUE);
}
else {
fpv = get_color_fp_variant(st);
driver_fp = fpv->driver_shader;
driver_vp = make_passthrough_vertex_shader(st, GL_FALSE);
if (ctx->Pixel.MapColorFlag) {
pipe_sampler_view_reference(&sv[1],
st->pixel_xfer.pixelmap_sampler_view);
num_sampler_view++;
}
/* compiling a new fragment shader variant added new state constants
* into the constant buffer, we need to update them
*/
st_upload_constants(st, &st->fp->Base);
}
/* Put glDrawPixels image into a texture */
pt = make_texture(st, width, height, format, type, unpack, pixels);
if (!pt) {
_mesa_error(ctx, GL_OUT_OF_MEMORY, "glDrawPixels");
return;
}
/* create sampler view for the image */
sv[0] = st_create_texture_sampler_view(st->pipe, pt);
if (!sv[0]) {
_mesa_error(ctx, GL_OUT_OF_MEMORY, "glDrawPixels");
pipe_resource_reference(&pt, NULL);
return;
}
/* Set up the sampler view's swizzle */
setup_sampler_swizzle(sv[0], format, type);
/* Create a second sampler view to read stencil. The stencil is
* written using the shader stencil export functionality.
*/
if (write_stencil) {
enum pipe_format stencil_format =
util_format_stencil_only(pt->format);
/* we should not be doing pixel map/transfer (see above) */
assert(num_sampler_view == 1);
sv[1] = st_create_texture_sampler_view_format(st->pipe, pt,
stencil_format);
if (!sv[1]) {
_mesa_error(ctx, GL_OUT_OF_MEMORY, "glDrawPixels");
pipe_resource_reference(&pt, NULL);
pipe_sampler_view_reference(&sv[0], NULL);
return;
}
num_sampler_view++;
}
draw_textured_quad(ctx, x, y, ctx->Current.RasterPos[2],
width, height,
ctx->Pixel.ZoomX, ctx->Pixel.ZoomY,
sv,
num_sampler_view,
driver_vp,
driver_fp, fpv,
ctx->Current.RasterColor,
GL_FALSE, write_depth, write_stencil);
pipe_sampler_view_reference(&sv[0], NULL);
if (num_sampler_view > 1)
pipe_sampler_view_reference(&sv[1], NULL);
/* free the texture (but may persist in the cache) */
pipe_resource_reference(&pt, NULL);
}
/**
* Software fallback for glCopyPixels(GL_STENCIL).
*/
static void
copy_stencil_pixels(struct gl_context *ctx, GLint srcx, GLint srcy,
GLsizei width, GLsizei height,
GLint dstx, GLint dsty)
{
struct st_renderbuffer *rbDraw;
struct pipe_context *pipe = st_context(ctx)->pipe;
enum pipe_transfer_usage usage;
struct pipe_transfer *ptDraw;
ubyte *drawMap;
ubyte *buffer;
int i;
buffer = malloc(width * height * sizeof(ubyte));
if (!buffer) {
_mesa_error(ctx, GL_OUT_OF_MEMORY, "glCopyPixels(stencil)");
return;
}
/* Get the dest renderbuffer */
rbDraw = st_renderbuffer(ctx->DrawBuffer->
Attachment[BUFFER_STENCIL].Renderbuffer);
/* this will do stencil pixel transfer ops */
_mesa_readpixels(ctx, srcx, srcy, width, height,
GL_STENCIL_INDEX, GL_UNSIGNED_BYTE,
&ctx->DefaultPacking, buffer);
if (0) {
/* debug code: dump stencil values */
GLint row, col;
for (row = 0; row < height; row++) {
printf("%3d: ", row);
for (col = 0; col < width; col++) {
printf("%02x ", buffer[col + row * width]);
}
printf("\n");
}
}
if (_mesa_is_format_packed_depth_stencil(rbDraw->Base.Format))
usage = PIPE_TRANSFER_READ_WRITE;
else
usage = PIPE_TRANSFER_WRITE;
if (st_fb_orientation(ctx->DrawBuffer) == Y_0_TOP) {
dsty = rbDraw->Base.Height - dsty - height;
}
assert(util_format_get_blockwidth(rbDraw->texture->format) == 1);
assert(util_format_get_blockheight(rbDraw->texture->format) == 1);
/* map the stencil buffer */
drawMap = pipe_transfer_map(pipe,
rbDraw->texture,
rbDraw->surface->u.tex.level,
rbDraw->surface->u.tex.first_layer,
usage, dstx, dsty,
width, height, &ptDraw);
/* draw */
/* XXX PixelZoom not handled yet */
for (i = 0; i < height; i++) {
ubyte *dst;
const ubyte *src;
int y;
y = i;
if (st_fb_orientation(ctx->DrawBuffer) == Y_0_TOP) {
y = height - y - 1;
}
dst = drawMap + y * ptDraw->stride;
src = buffer + i * width;
_mesa_pack_ubyte_stencil_row(rbDraw->Base.Format, width, src, dst);
}
free(buffer);
/* unmap the stencil buffer */
pipe_transfer_unmap(pipe, ptDraw);
}
/**
* Return renderbuffer to use for reading color pixels for glCopyPixels
*/
static struct st_renderbuffer *
st_get_color_read_renderbuffer(struct gl_context *ctx)
{
struct gl_framebuffer *fb = ctx->ReadBuffer;
struct st_renderbuffer *strb =
st_renderbuffer(fb->_ColorReadBuffer);
return strb;
}
/**
* Try to do a glCopyPixels for simple cases with a blit by calling
* pipe->blit().
*
* We can do this when we're copying color pixels (depth/stencil
* eventually) with no pixel zoom, no pixel transfer ops, no
* per-fragment ops, and the src/dest regions don't overlap.
*/
static GLboolean
blit_copy_pixels(struct gl_context *ctx, GLint srcx, GLint srcy,
GLsizei width, GLsizei height,
GLint dstx, GLint dsty, GLenum type)
{
struct st_context *st = st_context(ctx);
struct pipe_context *pipe = st->pipe;
struct pipe_screen *screen = pipe->screen;
struct gl_pixelstore_attrib pack, unpack;
GLint readX, readY, readW, readH, drawX, drawY, drawW, drawH;
if (type == GL_COLOR &&
ctx->Pixel.ZoomX == 1.0 &&
ctx->Pixel.ZoomY == 1.0 &&
ctx->_ImageTransferState == 0x0 &&
!ctx->Color.BlendEnabled &&
!ctx->Color.AlphaEnabled &&
(!ctx->Color.ColorLogicOpEnabled || ctx->Color.LogicOp == GL_COPY) &&
!ctx->Depth.Test &&
!ctx->Fog.Enabled &&
!ctx->Stencil.Enabled &&
!ctx->FragmentProgram.Enabled &&
!ctx->VertexProgram.Enabled &&
!ctx->_Shader->CurrentProgram[MESA_SHADER_FRAGMENT] &&
!_mesa_ati_fragment_shader_enabled(ctx) &&
ctx->DrawBuffer->_NumColorDrawBuffers == 1 &&
!ctx->Query.CondRenderQuery &&
!ctx->Query.CurrentOcclusionObject) {
struct st_renderbuffer *rbRead, *rbDraw;
/*
* Clip the read region against the src buffer bounds.
* We'll still allocate a temporary buffer/texture for the original
* src region size but we'll only read the region which is on-screen.
* This may mean that we draw garbage pixels into the dest region, but
* that's expected.
*/
readX = srcx;
readY = srcy;
readW = width;
readH = height;
pack = ctx->DefaultPacking;
if (!_mesa_clip_readpixels(ctx, &readX, &readY, &readW, &readH, &pack))
return GL_TRUE; /* all done */
/* clip against dest buffer bounds and scissor box */
drawX = dstx + pack.SkipPixels;
drawY = dsty + pack.SkipRows;
unpack = pack;
if (!_mesa_clip_drawpixels(ctx, &drawX, &drawY, &readW, &readH, &unpack))
return GL_TRUE; /* all done */
readX = readX - pack.SkipPixels + unpack.SkipPixels;
readY = readY - pack.SkipRows + unpack.SkipRows;
drawW = readW;
drawH = readH;
rbRead = st_get_color_read_renderbuffer(ctx);
rbDraw = st_renderbuffer(ctx->DrawBuffer->_ColorDrawBuffers[0]);
/* Flip src/dst position depending on the orientation of buffers. */
if (st_fb_orientation(ctx->ReadBuffer) == Y_0_TOP) {
readY = rbRead->Base.Height - readY;
readH = -readH;
}
if (st_fb_orientation(ctx->DrawBuffer) == Y_0_TOP) {
/* We can't flip the destination for pipe->blit, so we only adjust
* its position and flip the source.
*/
drawY = rbDraw->Base.Height - drawY - drawH;
readY += readH;
readH = -readH;
}
if (rbRead != rbDraw ||
!_mesa_regions_overlap(readX, readY, readX + readW, readY + readH,
drawX, drawY, drawX + drawW, drawY + drawH)) {
struct pipe_blit_info blit;
memset(&blit, 0, sizeof(blit));
blit.src.resource = rbRead->texture;
blit.src.level = rbRead->surface->u.tex.level;
blit.src.format = rbRead->texture->format;
blit.src.box.x = readX;
blit.src.box.y = readY;
blit.src.box.z = rbRead->surface->u.tex.first_layer;
blit.src.box.width = readW;
blit.src.box.height = readH;
blit.src.box.depth = 1;
blit.dst.resource = rbDraw->texture;
blit.dst.level = rbDraw->surface->u.tex.level;
blit.dst.format = rbDraw->texture->format;
blit.dst.box.x = drawX;
blit.dst.box.y = drawY;
blit.dst.box.z = rbDraw->surface->u.tex.first_layer;
blit.dst.box.width = drawW;
blit.dst.box.height = drawH;
blit.dst.box.depth = 1;
blit.mask = PIPE_MASK_RGBA;
blit.filter = PIPE_TEX_FILTER_NEAREST;
if (ctx->DrawBuffer != ctx->WinSysDrawBuffer)
st_window_rectangles_to_blit(ctx, &blit);
if (screen->is_format_supported(screen, blit.src.format,
blit.src.resource->target,
blit.src.resource->nr_samples,
PIPE_BIND_SAMPLER_VIEW) &&
screen->is_format_supported(screen, blit.dst.format,
blit.dst.resource->target,
blit.dst.resource->nr_samples,
PIPE_BIND_RENDER_TARGET)) {
pipe->blit(pipe, &blit);
return GL_TRUE;
}
}
}
return GL_FALSE;
}
static void
st_CopyPixels(struct gl_context *ctx, GLint srcx, GLint srcy,
GLsizei width, GLsizei height,
GLint dstx, GLint dsty, GLenum type)
{
struct st_context *st = st_context(ctx);
struct pipe_context *pipe = st->pipe;
struct pipe_screen *screen = pipe->screen;
struct st_renderbuffer *rbRead;
void *driver_vp, *driver_fp;
struct pipe_resource *pt;
struct pipe_sampler_view *sv[2] = { NULL };
struct st_fp_variant *fpv = NULL;
int num_sampler_view = 1;
enum pipe_format srcFormat;
unsigned srcBind;
GLboolean invertTex = GL_FALSE;
GLint readX, readY, readW, readH;
struct gl_pixelstore_attrib pack = ctx->DefaultPacking;
_mesa_update_draw_buffer_bounds(ctx, ctx->DrawBuffer);
st_flush_bitmap_cache(st);
st_invalidate_readpix_cache(st);
st_validate_state(st, ST_PIPELINE_RENDER);
if (type == GL_DEPTH_STENCIL) {
/* XXX make this more efficient */
st_CopyPixels(ctx, srcx, srcy, width, height, dstx, dsty, GL_STENCIL);
st_CopyPixels(ctx, srcx, srcy, width, height, dstx, dsty, GL_DEPTH);
return;
}
if (type == GL_STENCIL) {
/* can't use texturing to do stencil */
copy_stencil_pixels(ctx, srcx, srcy, width, height, dstx, dsty);
return;
}
if (blit_copy_pixels(ctx, srcx, srcy, width, height, dstx, dsty, type))
return;
/*
* The subsequent code implements glCopyPixels by copying the source
* pixels into a temporary texture that's then applied to a textured quad.
* When we draw the textured quad, all the usual per-fragment operations
* are handled.
*/
/*
* Get vertex/fragment shaders
*/
if (type == GL_COLOR) {
fpv = get_color_fp_variant(st);
rbRead = st_get_color_read_renderbuffer(ctx);
driver_fp = fpv->driver_shader;
driver_vp = make_passthrough_vertex_shader(st, GL_FALSE);
if (ctx->Pixel.MapColorFlag) {
pipe_sampler_view_reference(&sv[1],
st->pixel_xfer.pixelmap_sampler_view);
num_sampler_view++;
}
/* compiling a new fragment shader variant added new state constants
* into the constant buffer, we need to update them
*/
st_upload_constants(st, &st->fp->Base);
}
else {
assert(type == GL_DEPTH);
rbRead = st_renderbuffer(ctx->ReadBuffer->
Attachment[BUFFER_DEPTH].Renderbuffer);
driver_fp = get_drawpix_z_stencil_program(st, GL_TRUE, GL_FALSE);
driver_vp = make_passthrough_vertex_shader(st, GL_TRUE);
}
/* Choose the format for the temporary texture. */
srcFormat = rbRead->texture->format;
srcBind = PIPE_BIND_SAMPLER_VIEW |
(type == GL_COLOR ? PIPE_BIND_RENDER_TARGET : PIPE_BIND_DEPTH_STENCIL);
if (!screen->is_format_supported(screen, srcFormat, st->internal_target, 0,
srcBind)) {
/* srcFormat is non-renderable. Find a compatible renderable format. */
if (type == GL_DEPTH) {
srcFormat = st_choose_format(st, GL_DEPTH_COMPONENT, GL_NONE,
GL_NONE, st->internal_target, 0,
srcBind, FALSE);
}
else {
assert(type == GL_COLOR);
if (util_format_is_float(srcFormat)) {
srcFormat = st_choose_format(st, GL_RGBA32F, GL_NONE,
GL_NONE, st->internal_target, 0,
srcBind, FALSE);
}
else if (util_format_is_pure_sint(srcFormat)) {
srcFormat = st_choose_format(st, GL_RGBA32I, GL_NONE,
GL_NONE, st->internal_target, 0,
srcBind, FALSE);
}
else if (util_format_is_pure_uint(srcFormat)) {
srcFormat = st_choose_format(st, GL_RGBA32UI, GL_NONE,
GL_NONE, st->internal_target, 0,
srcBind, FALSE);
}
else if (util_format_is_snorm(srcFormat)) {
srcFormat = st_choose_format(st, GL_RGBA16_SNORM, GL_NONE,
GL_NONE, st->internal_target, 0,
srcBind, FALSE);
}
else {
srcFormat = st_choose_format(st, GL_RGBA, GL_NONE,
GL_NONE, st->internal_target, 0,
srcBind, FALSE);
}
}
if (srcFormat == PIPE_FORMAT_NONE) {
assert(0 && "cannot choose a format for src of CopyPixels");
return;
}
}
/* Invert src region if needed */
if (st_fb_orientation(ctx->ReadBuffer) == Y_0_TOP) {
srcy = ctx->ReadBuffer->Height - srcy - height;
invertTex = !invertTex;
}
/* Clip the read region against the src buffer bounds.
* We'll still allocate a temporary buffer/texture for the original
* src region size but we'll only read the region which is on-screen.
* This may mean that we draw garbage pixels into the dest region, but
* that's expected.
*/
readX = srcx;
readY = srcy;
readW = width;
readH = height;
if (!_mesa_clip_readpixels(ctx, &readX, &readY, &readW, &readH, &pack)) {
/* The source region is completely out of bounds. Do nothing.
* The GL spec says "Results of copies from outside the window,
* or from regions of the window that are not exposed, are
* hardware dependent and undefined."
*/
return;
}
readW = MAX2(0, readW);
readH = MAX2(0, readH);
/* Allocate the temporary texture. */
pt = alloc_texture(st, width, height, srcFormat, srcBind);
if (!pt)
return;
sv[0] = st_create_texture_sampler_view(st->pipe, pt);
if (!sv[0]) {
pipe_resource_reference(&pt, NULL);
return;
}
/* Copy the src region to the temporary texture. */
{
struct pipe_blit_info blit;
memset(&blit, 0, sizeof(blit));
blit.src.resource = rbRead->texture;
blit.src.level = rbRead->surface->u.tex.level;
blit.src.format = rbRead->texture->format;
blit.src.box.x = readX;
blit.src.box.y = readY;
blit.src.box.z = rbRead->surface->u.tex.first_layer;
blit.src.box.width = readW;
blit.src.box.height = readH;
blit.src.box.depth = 1;
blit.dst.resource = pt;
blit.dst.level = 0;
blit.dst.format = pt->format;
blit.dst.box.x = pack.SkipPixels;
blit.dst.box.y = pack.SkipRows;
blit.dst.box.z = 0;
blit.dst.box.width = readW;
blit.dst.box.height = readH;
blit.dst.box.depth = 1;
blit.mask = util_format_get_mask(pt->format) & ~PIPE_MASK_S;
blit.filter = PIPE_TEX_FILTER_NEAREST;
pipe->blit(pipe, &blit);
}
/* OK, the texture 'pt' contains the src image/pixels. Now draw a
* textured quad with that texture.
*/
draw_textured_quad(ctx, dstx, dsty, ctx->Current.RasterPos[2],
width, height, ctx->Pixel.ZoomX, ctx->Pixel.ZoomY,
sv,
num_sampler_view,
driver_vp,
driver_fp, fpv,
ctx->Current.Attrib[VERT_ATTRIB_COLOR0],
invertTex, GL_FALSE, GL_FALSE);
pipe_resource_reference(&pt, NULL);
pipe_sampler_view_reference(&sv[0], NULL);
}
void st_init_drawpixels_functions(struct dd_function_table *functions)
{
functions->DrawPixels = st_DrawPixels;
functions->CopyPixels = st_CopyPixels;
}
void
st_destroy_drawpix(struct st_context *st)
{
GLuint i;
for (i = 0; i < ARRAY_SIZE(st->drawpix.zs_shaders); i++) {
if (st->drawpix.zs_shaders[i])
cso_delete_fragment_shader(st->cso_context,
st->drawpix.zs_shaders[i]);
}
if (st->drawpix.vert_shaders[0])
cso_delete_vertex_shader(st->cso_context, st->drawpix.vert_shaders[0]);
if (st->drawpix.vert_shaders[1])
cso_delete_vertex_shader(st->cso_context, st->drawpix.vert_shaders[1]);
}