/*
* Mesa 3-D graphics library
*
* Copyright (C) 1999-2008 Brian Paul All Rights Reserved.
* Copyright (C) 2009 VMware, Inc. All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*/
#include <stdio.h>
#include <inttypes.h> /* for PRId64 macro */
#include "glheader.h"
#include "imports.h"
#include "bufferobj.h"
#include "context.h"
#include "enable.h"
#include "enums.h"
#include "hash.h"
#include "image.h"
#include "macros.h"
#include "mtypes.h"
#include "varray.h"
#include "arrayobj.h"
#include "main/dispatch.h"
/** Used to do error checking for GL_EXT_vertex_array_bgra */
#define BGRA_OR_4 5
/** Used to indicate which GL datatypes are accepted by each of the
* glVertex/Color/Attrib/EtcPointer() functions.
*/
#define BOOL_BIT (1 << 0)
#define BYTE_BIT (1 << 1)
#define UNSIGNED_BYTE_BIT (1 << 2)
#define SHORT_BIT (1 << 3)
#define UNSIGNED_SHORT_BIT (1 << 4)
#define INT_BIT (1 << 5)
#define UNSIGNED_INT_BIT (1 << 6)
#define HALF_BIT (1 << 7)
#define FLOAT_BIT (1 << 8)
#define DOUBLE_BIT (1 << 9)
#define FIXED_ES_BIT (1 << 10)
#define FIXED_GL_BIT (1 << 11)
#define UNSIGNED_INT_2_10_10_10_REV_BIT (1 << 12)
#define INT_2_10_10_10_REV_BIT (1 << 13)
#define UNSIGNED_INT_10F_11F_11F_REV_BIT (1 << 14)
#define ALL_TYPE_BITS ((1 << 15) - 1)
#define ATTRIB_FORMAT_TYPES_MASK (BYTE_BIT | UNSIGNED_BYTE_BIT | \
SHORT_BIT | UNSIGNED_SHORT_BIT | \
INT_BIT | UNSIGNED_INT_BIT | \
HALF_BIT | FLOAT_BIT | DOUBLE_BIT | \
FIXED_GL_BIT | \
UNSIGNED_INT_2_10_10_10_REV_BIT | \
INT_2_10_10_10_REV_BIT | \
UNSIGNED_INT_10F_11F_11F_REV_BIT)
#define ATTRIB_IFORMAT_TYPES_MASK (BYTE_BIT | UNSIGNED_BYTE_BIT | \
SHORT_BIT | UNSIGNED_SHORT_BIT | \
INT_BIT | UNSIGNED_INT_BIT)
#define ATTRIB_LFORMAT_TYPES_MASK DOUBLE_BIT
/** Convert GL datatype enum into a <type>_BIT value seen above */
static GLbitfield
type_to_bit(const struct gl_context *ctx, GLenum type)
{
switch (type) {
case GL_BOOL:
return BOOL_BIT;
case GL_BYTE:
return BYTE_BIT;
case GL_UNSIGNED_BYTE:
return UNSIGNED_BYTE_BIT;
case GL_SHORT:
return SHORT_BIT;
case GL_UNSIGNED_SHORT:
return UNSIGNED_SHORT_BIT;
case GL_INT:
return INT_BIT;
case GL_UNSIGNED_INT:
return UNSIGNED_INT_BIT;
case GL_HALF_FLOAT:
case GL_HALF_FLOAT_OES:
if (ctx->Extensions.ARB_half_float_vertex)
return HALF_BIT;
else
return 0x0;
case GL_FLOAT:
return FLOAT_BIT;
case GL_DOUBLE:
return DOUBLE_BIT;
case GL_FIXED:
return _mesa_is_desktop_gl(ctx) ? FIXED_GL_BIT : FIXED_ES_BIT;
case GL_UNSIGNED_INT_2_10_10_10_REV:
return UNSIGNED_INT_2_10_10_10_REV_BIT;
case GL_INT_2_10_10_10_REV:
return INT_2_10_10_10_REV_BIT;
case GL_UNSIGNED_INT_10F_11F_11F_REV:
return UNSIGNED_INT_10F_11F_11F_REV_BIT;
default:
return 0;
}
}
/**
* Sets the BufferBindingIndex field for the vertex attribute given by
* attribIndex.
*/
static void
vertex_attrib_binding(struct gl_context *ctx,
struct gl_vertex_array_object *vao,
GLuint attribIndex,
GLuint bindingIndex)
{
struct gl_array_attributes *array = &vao->VertexAttrib[attribIndex];
if (array->BufferBindingIndex != bindingIndex) {
const GLbitfield array_bit = VERT_BIT(attribIndex);
if (_mesa_is_bufferobj(vao->BufferBinding[bindingIndex].BufferObj))
vao->VertexAttribBufferMask |= array_bit;
FLUSH_VERTICES(ctx, _NEW_ARRAY);
vao->BufferBinding[array->BufferBindingIndex]._BoundArrays &= ~array_bit;
vao->BufferBinding[bindingIndex]._BoundArrays |= array_bit;
array->BufferBindingIndex = bindingIndex;
vao->NewArrays |= array_bit;
}
}
/**
* Binds a buffer object to the vertex buffer binding point given by index,
* and sets the Offset and Stride fields.
*/
void
_mesa_bind_vertex_buffer(struct gl_context *ctx,
struct gl_vertex_array_object *vao,
GLuint index,
struct gl_buffer_object *vbo,
GLintptr offset, GLsizei stride)
{
struct gl_vertex_buffer_binding *binding = &vao->BufferBinding[index];
if (binding->BufferObj != vbo ||
binding->Offset != offset ||
binding->Stride != stride) {
FLUSH_VERTICES(ctx, _NEW_ARRAY);
_mesa_reference_buffer_object(ctx, &binding->BufferObj, vbo);
binding->Offset = offset;
binding->Stride = stride;
if (!_mesa_is_bufferobj(vbo))
vao->VertexAttribBufferMask &= ~binding->_BoundArrays;
else
vao->VertexAttribBufferMask |= binding->_BoundArrays;
vao->NewArrays |= binding->_BoundArrays;
}
}
/**
* Sets the InstanceDivisor field in the vertex buffer binding point
* given by bindingIndex.
*/
static void
vertex_binding_divisor(struct gl_context *ctx,
struct gl_vertex_array_object *vao,
GLuint bindingIndex,
GLuint divisor)
{
struct gl_vertex_buffer_binding *binding =
&vao->BufferBinding[bindingIndex];
if (binding->InstanceDivisor != divisor) {
FLUSH_VERTICES(ctx, _NEW_ARRAY);
binding->InstanceDivisor = divisor;
vao->NewArrays |= binding->_BoundArrays;
}
}
/**
* Examine the API profile and extensions to determine which types are legal
* for vertex arrays. This is called once from update_array_format().
*/
static GLbitfield
get_legal_types_mask(const struct gl_context *ctx)
{
GLbitfield legalTypesMask = ALL_TYPE_BITS;
if (_mesa_is_gles(ctx)) {
legalTypesMask &= ~(FIXED_GL_BIT |
DOUBLE_BIT |
UNSIGNED_INT_10F_11F_11F_REV_BIT);
/* GL_INT and GL_UNSIGNED_INT data is not allowed in OpenGL ES until
* 3.0. The 2_10_10_10 types are added in OpenGL ES 3.0 or
* GL_OES_vertex_type_10_10_10_2. GL_HALF_FLOAT data is not allowed
* until 3.0 or with the GL_OES_vertex_half float extension, which isn't
* quite as trivial as we'd like because it uses a different enum value
* for GL_HALF_FLOAT_OES.
*/
if (ctx->Version < 30) {
legalTypesMask &= ~(UNSIGNED_INT_BIT |
INT_BIT |
UNSIGNED_INT_2_10_10_10_REV_BIT |
INT_2_10_10_10_REV_BIT);
if (!_mesa_has_OES_vertex_half_float(ctx))
legalTypesMask &= ~HALF_BIT;
}
}
else {
legalTypesMask &= ~FIXED_ES_BIT;
if (!ctx->Extensions.ARB_ES2_compatibility)
legalTypesMask &= ~FIXED_GL_BIT;
if (!ctx->Extensions.ARB_vertex_type_2_10_10_10_rev)
legalTypesMask &= ~(UNSIGNED_INT_2_10_10_10_REV_BIT |
INT_2_10_10_10_REV_BIT);
if (!ctx->Extensions.ARB_vertex_type_10f_11f_11f_rev)
legalTypesMask &= ~UNSIGNED_INT_10F_11F_11F_REV_BIT;
}
return legalTypesMask;
}
static GLenum
get_array_format(const struct gl_context *ctx, GLint sizeMax, GLint *size)
{
GLenum format = GL_RGBA;
/* Do size parameter checking.
* If sizeMax = BGRA_OR_4 it means that size = GL_BGRA is legal and
* must be handled specially.
*/
if (ctx->Extensions.EXT_vertex_array_bgra && sizeMax == BGRA_OR_4 &&
*size == GL_BGRA) {
format = GL_BGRA;
*size = 4;
}
return format;
}
/**
* \param attrib The index of the attribute array
* \param size Components per element (1, 2, 3 or 4)
* \param type Datatype of each component (GL_FLOAT, GL_INT, etc)
* \param format Either GL_RGBA or GL_BGRA.
* \param normalized Whether integer types are converted to floats in [-1, 1]
* \param integer Integer-valued values (will not be normalized to [-1, 1])
* \param doubles Double values not reduced to floats
* \param relativeOffset Offset of the first element relative to the binding
* offset.
* \param flush_verties Should \c FLUSH_VERTICES be invoked before updating
* state?
*/
void
_mesa_update_array_format(struct gl_context *ctx,
struct gl_vertex_array_object *vao,
GLuint attrib, GLint size, GLenum type,
GLenum format, GLboolean normalized,
GLboolean integer, GLboolean doubles,
GLuint relativeOffset)
{
struct gl_array_attributes *const array = &vao->VertexAttrib[attrib];
GLint elementSize;
assert(size <= 4);
elementSize = _mesa_bytes_per_vertex_attrib(size, type);
assert(elementSize != -1);
array->Size = size;
array->Type = type;
array->Format = format;
array->Normalized = normalized;
array->Integer = integer;
array->Doubles = doubles;
array->RelativeOffset = relativeOffset;
array->_ElementSize = elementSize;
vao->NewArrays |= VERT_BIT(attrib);
ctx->NewState |= _NEW_ARRAY;
}
/**
* Does error checking of the format in an attrib array.
*
* Called by *Pointer() and VertexAttrib*Format().
*
* \param func Name of calling function used for error reporting
* \param attrib The index of the attribute array
* \param legalTypes Bitmask of *_BIT above indicating legal datatypes
* \param sizeMin Min allowable size value
* \param sizeMax Max allowable size value (may also be BGRA_OR_4)
* \param size Components per element (1, 2, 3 or 4)
* \param type Datatype of each component (GL_FLOAT, GL_INT, etc)
* \param normalized Whether integer types are converted to floats in [-1, 1]
* \param integer Integer-valued values (will not be normalized to [-1, 1])
* \param doubles Double values not reduced to floats
* \param relativeOffset Offset of the first element relative to the binding offset.
* \return bool True if validation is successful, False otherwise.
*/
static bool
validate_array_format(struct gl_context *ctx, const char *func,
struct gl_vertex_array_object *vao,
GLuint attrib, GLbitfield legalTypesMask,
GLint sizeMin, GLint sizeMax,
GLint size, GLenum type, GLboolean normalized,
GLboolean integer, GLboolean doubles,
GLuint relativeOffset, GLenum format)
{
GLbitfield typeBit;
/* at most, one of these bools can be true */
assert((int) normalized + (int) integer + (int) doubles <= 1);
if (ctx->Array.LegalTypesMask == 0 || ctx->Array.LegalTypesMaskAPI != ctx->API) {
/* Compute the LegalTypesMask only once, unless the context API has
* changed, in which case we want to compute it again. We can't do this
* in _mesa_init_varrays() below because extensions are not yet enabled
* at that point.
*/
ctx->Array.LegalTypesMask = get_legal_types_mask(ctx);
ctx->Array.LegalTypesMaskAPI = ctx->API;
}
legalTypesMask &= ctx->Array.LegalTypesMask;
if (_mesa_is_gles(ctx) && sizeMax == BGRA_OR_4) {
/* BGRA ordering is not supported in ES contexts.
*/
sizeMax = 4;
}
typeBit = type_to_bit(ctx, type);
if (typeBit == 0x0 || (typeBit & legalTypesMask) == 0x0) {
_mesa_error(ctx, GL_INVALID_ENUM, "%s(type = %s)",
func, _mesa_enum_to_string(type));
return false;
}
if (format == GL_BGRA) {
/* Page 298 of the PDF of the OpenGL 4.3 (Core Profile) spec says:
*
* "An INVALID_OPERATION error is generated under any of the following
* conditions:
* ...
* • size is BGRA and type is not UNSIGNED_BYTE, INT_2_10_10_10_REV
* or UNSIGNED_INT_2_10_10_10_REV;
* ...
* • size is BGRA and normalized is FALSE;"
*/
bool bgra_error = false;
if (ctx->Extensions.ARB_vertex_type_2_10_10_10_rev) {
if (type != GL_UNSIGNED_INT_2_10_10_10_REV &&
type != GL_INT_2_10_10_10_REV &&
type != GL_UNSIGNED_BYTE)
bgra_error = true;
} else if (type != GL_UNSIGNED_BYTE)
bgra_error = true;
if (bgra_error) {
_mesa_error(ctx, GL_INVALID_OPERATION, "%s(size=GL_BGRA and type=%s)",
func, _mesa_enum_to_string(type));
return false;
}
if (!normalized) {
_mesa_error(ctx, GL_INVALID_OPERATION,
"%s(size=GL_BGRA and normalized=GL_FALSE)", func);
return false;
}
}
else if (size < sizeMin || size > sizeMax || size > 4) {
_mesa_error(ctx, GL_INVALID_VALUE, "%s(size=%d)", func, size);
return false;
}
if (ctx->Extensions.ARB_vertex_type_2_10_10_10_rev &&
(type == GL_UNSIGNED_INT_2_10_10_10_REV ||
type == GL_INT_2_10_10_10_REV) && size != 4) {
_mesa_error(ctx, GL_INVALID_OPERATION, "%s(size=%d)", func, size);
return false;
}
/* The ARB_vertex_attrib_binding_spec says:
*
* An INVALID_VALUE error is generated if <relativeoffset> is larger than
* the value of MAX_VERTEX_ATTRIB_RELATIVE_OFFSET.
*/
if (relativeOffset > ctx->Const.MaxVertexAttribRelativeOffset) {
_mesa_error(ctx, GL_INVALID_VALUE,
"%s(relativeOffset=%d > "
"GL_MAX_VERTEX_ATTRIB_RELATIVE_OFFSET)",
func, relativeOffset);
return false;
}
if (ctx->Extensions.ARB_vertex_type_10f_11f_11f_rev &&
type == GL_UNSIGNED_INT_10F_11F_11F_REV && size != 3) {
_mesa_error(ctx, GL_INVALID_OPERATION, "%s(size=%d)", func, size);
return false;
}
return true;
}
/**
* Do error checking for glVertex/Color/TexCoord/...Pointer functions.
*
* \param func name of calling function used for error reporting
* \param attrib the attribute array index to update
* \param legalTypes bitmask of *_BIT above indicating legal datatypes
* \param sizeMin min allowable size value
* \param sizeMax max allowable size value (may also be BGRA_OR_4)
* \param size components per element (1, 2, 3 or 4)
* \param type datatype of each component (GL_FLOAT, GL_INT, etc)
* \param stride stride between elements, in elements
* \param normalized are integer types converted to floats in [-1, 1]?
* \param integer integer-valued values (will not be normalized to [-1,1])
* \param doubles Double values not reduced to floats
* \param ptr the address (or offset inside VBO) of the array data
*/
static void
validate_array(struct gl_context *ctx, const char *func,
GLuint attrib, GLbitfield legalTypesMask,
GLint sizeMin, GLint sizeMax,
GLint size, GLenum type, GLsizei stride,
GLboolean normalized, GLboolean integer, GLboolean doubles,
const GLvoid *ptr)
{
struct gl_vertex_array_object *vao = ctx->Array.VAO;
/* Page 407 (page 423 of the PDF) of the OpenGL 3.0 spec says:
*
* "Client vertex arrays - all vertex array attribute pointers must
* refer to buffer objects (section 2.9.2). The default vertex array
* object (the name zero) is also deprecated. Calling
* VertexAttribPointer when no buffer object or no vertex array object
* is bound will generate an INVALID_OPERATION error..."
*
* The check for VBOs is handled below.
*/
if (ctx->API == API_OPENGL_CORE && (vao == ctx->Array.DefaultVAO)) {
_mesa_error(ctx, GL_INVALID_OPERATION, "%s(no array object bound)",
func);
return;
}
if (stride < 0) {
_mesa_error( ctx, GL_INVALID_VALUE, "%s(stride=%d)", func, stride );
return;
}
if (ctx->API == API_OPENGL_CORE && ctx->Version >= 44 &&
stride > ctx->Const.MaxVertexAttribStride) {
_mesa_error(ctx, GL_INVALID_VALUE, "%s(stride=%d > "
"GL_MAX_VERTEX_ATTRIB_STRIDE)", func, stride);
return;
}
/* Page 29 (page 44 of the PDF) of the OpenGL 3.3 spec says:
*
* "An INVALID_OPERATION error is generated under any of the following
* conditions:
*
* ...
*
* * any of the *Pointer commands specifying the location and
* organization of vertex array data are called while zero is bound
* to the ARRAY_BUFFER buffer object binding point (see section
* 2.9.6), and the pointer argument is not NULL."
*/
if (ptr != NULL && vao != ctx->Array.DefaultVAO &&
!_mesa_is_bufferobj(ctx->Array.ArrayBufferObj)) {
_mesa_error(ctx, GL_INVALID_OPERATION, "%s(non-VBO array)", func);
return;
}
}
static bool
validate_array_and_format(struct gl_context *ctx, const char *func,
GLuint attrib, GLbitfield legalTypes,
GLint sizeMin, GLint sizeMax,
GLint size, GLenum type, GLsizei stride,
GLboolean normalized, GLboolean integer,
GLboolean doubles, GLenum format, const GLvoid *ptr,
struct gl_vertex_array_object *vao)
{
validate_array(ctx, func, attrib, legalTypes, sizeMin, sizeMax, size,
type, stride, normalized, integer, doubles, ptr);
return validate_array_format(ctx, func, vao, attrib, legalTypes, sizeMin,
sizeMax, size, type, normalized, integer,
doubles, 0, format);
}
/**
* Update state for glVertex/Color/TexCoord/...Pointer functions.
*
* \param attrib the attribute array index to update
* \param format Either GL_RGBA or GL_BGRA.
* \param sizeMax max allowable size value (may also be BGRA_OR_4)
* \param size components per element (1, 2, 3 or 4)
* \param type datatype of each component (GL_FLOAT, GL_INT, etc)
* \param stride stride between elements, in elements
* \param normalized are integer types converted to floats in [-1, 1]?
* \param integer integer-valued values (will not be normalized to [-1,1])
* \param doubles Double values not reduced to floats
* \param ptr the address (or offset inside VBO) of the array data
*/
static void
update_array(struct gl_context *ctx,
GLuint attrib, GLenum format,
GLint sizeMax,
GLint size, GLenum type, GLsizei stride,
GLboolean normalized, GLboolean integer, GLboolean doubles,
const GLvoid *ptr)
{
struct gl_vertex_array_object *vao = ctx->Array.VAO;
_mesa_update_array_format(ctx, vao, attrib, size, type, format,
normalized, integer, doubles, 0);
/* Reset the vertex attrib binding */
vertex_attrib_binding(ctx, vao, attrib, attrib);
/* The Stride and Ptr fields are not set by update_array_format() */
struct gl_array_attributes *array = &vao->VertexAttrib[attrib];
array->Stride = stride;
array->Ptr = ptr;
/* Update the vertex buffer binding */
GLsizei effectiveStride = stride != 0 ? stride : array->_ElementSize;
_mesa_bind_vertex_buffer(ctx, vao, attrib,
ctx->Array.ArrayBufferObj, (GLintptr) ptr,
effectiveStride);
}
void GLAPIENTRY
_mesa_VertexPointer_no_error(GLint size, GLenum type, GLsizei stride,
const GLvoid *ptr)
{
GET_CURRENT_CONTEXT(ctx);
FLUSH_VERTICES(ctx, 0);
update_array(ctx, VERT_ATTRIB_POS, GL_RGBA, 4, size, type, stride,
GL_FALSE, GL_FALSE, GL_FALSE, ptr);
}
void GLAPIENTRY
_mesa_VertexPointer(GLint size, GLenum type, GLsizei stride, const GLvoid *ptr)
{
GET_CURRENT_CONTEXT(ctx);
FLUSH_VERTICES(ctx, 0);
GLenum format = GL_RGBA;
GLbitfield legalTypes = (ctx->API == API_OPENGLES)
? (BYTE_BIT | SHORT_BIT | FLOAT_BIT | FIXED_ES_BIT)
: (SHORT_BIT | INT_BIT | FLOAT_BIT |
DOUBLE_BIT | HALF_BIT |
UNSIGNED_INT_2_10_10_10_REV_BIT |
INT_2_10_10_10_REV_BIT);
if (!validate_array_and_format(ctx, "glVertexPointer", VERT_ATTRIB_POS,
legalTypes, 2, 4, size, type, stride,
GL_FALSE, GL_FALSE, GL_FALSE, format,
ptr, ctx->Array.VAO))
return;
update_array(ctx, VERT_ATTRIB_POS, format, 4, size, type, stride,
GL_FALSE, GL_FALSE, GL_FALSE, ptr);
}
void GLAPIENTRY
_mesa_NormalPointer_no_error(GLenum type, GLsizei stride, const GLvoid *ptr )
{
GET_CURRENT_CONTEXT(ctx);
FLUSH_VERTICES(ctx, 0);
update_array(ctx, VERT_ATTRIB_NORMAL, GL_RGBA, 3, 3, type, stride, GL_TRUE,
GL_FALSE, GL_FALSE, ptr);
}
void GLAPIENTRY
_mesa_NormalPointer(GLenum type, GLsizei stride, const GLvoid *ptr )
{
GET_CURRENT_CONTEXT(ctx);
FLUSH_VERTICES(ctx, 0);
GLenum format = GL_RGBA;
const GLbitfield legalTypes = (ctx->API == API_OPENGLES)
? (BYTE_BIT | SHORT_BIT | FLOAT_BIT | FIXED_ES_BIT)
: (BYTE_BIT | SHORT_BIT | INT_BIT |
HALF_BIT | FLOAT_BIT | DOUBLE_BIT |
UNSIGNED_INT_2_10_10_10_REV_BIT |
INT_2_10_10_10_REV_BIT);
if (!validate_array_and_format(ctx, "glNormalPointer",
VERT_ATTRIB_NORMAL, legalTypes, 3, 3, 3,
type, stride, GL_TRUE, GL_FALSE,
GL_FALSE, format, ptr, ctx->Array.VAO))
return;
update_array(ctx, VERT_ATTRIB_NORMAL, format, 3, 3, type, stride, GL_TRUE,
GL_FALSE, GL_FALSE, ptr);
}
void GLAPIENTRY
_mesa_ColorPointer_no_error(GLint size, GLenum type, GLsizei stride,
const GLvoid *ptr)
{
GET_CURRENT_CONTEXT(ctx);
FLUSH_VERTICES(ctx, 0);
GLenum format = get_array_format(ctx, BGRA_OR_4, &size);
update_array(ctx, VERT_ATTRIB_COLOR0, format, BGRA_OR_4, size,
type, stride, GL_TRUE, GL_FALSE, GL_FALSE, ptr);
}
void GLAPIENTRY
_mesa_ColorPointer(GLint size, GLenum type, GLsizei stride, const GLvoid *ptr)
{
GET_CURRENT_CONTEXT(ctx);
const GLint sizeMin = (ctx->API == API_OPENGLES) ? 4 : 3;
FLUSH_VERTICES(ctx, 0);
GLenum format = get_array_format(ctx, BGRA_OR_4, &size);
const GLbitfield legalTypes = (ctx->API == API_OPENGLES)
? (UNSIGNED_BYTE_BIT | HALF_BIT | FLOAT_BIT | FIXED_ES_BIT)
: (BYTE_BIT | UNSIGNED_BYTE_BIT |
SHORT_BIT | UNSIGNED_SHORT_BIT |
INT_BIT | UNSIGNED_INT_BIT |
HALF_BIT | FLOAT_BIT | DOUBLE_BIT |
UNSIGNED_INT_2_10_10_10_REV_BIT |
INT_2_10_10_10_REV_BIT);
if (!validate_array_and_format(ctx, "glColorPointer",
VERT_ATTRIB_COLOR0, legalTypes, sizeMin,
BGRA_OR_4, size, type, stride, GL_TRUE,
GL_FALSE, GL_FALSE, format, ptr,
ctx->Array.VAO))
return;
update_array(ctx, VERT_ATTRIB_COLOR0, format, BGRA_OR_4, size,
type, stride, GL_TRUE, GL_FALSE, GL_FALSE, ptr);
}
void GLAPIENTRY
_mesa_FogCoordPointer_no_error(GLenum type, GLsizei stride, const GLvoid *ptr)
{
GET_CURRENT_CONTEXT(ctx);
FLUSH_VERTICES(ctx, 0);
update_array(ctx, VERT_ATTRIB_FOG, GL_RGBA, 1, 1, type, stride, GL_FALSE,
GL_FALSE, GL_FALSE, ptr);
}
void GLAPIENTRY
_mesa_FogCoordPointer(GLenum type, GLsizei stride, const GLvoid *ptr)
{
GET_CURRENT_CONTEXT(ctx);
FLUSH_VERTICES(ctx, 0);
GLenum format = GL_RGBA;
const GLbitfield legalTypes = (HALF_BIT | FLOAT_BIT | DOUBLE_BIT);
if (!validate_array_and_format(ctx, "glFogCoordPointer",
VERT_ATTRIB_FOG, legalTypes, 1, 1, 1,
type, stride, GL_FALSE, GL_FALSE,
GL_FALSE, format, ptr, ctx->Array.VAO))
return;
update_array(ctx, VERT_ATTRIB_FOG, format, 1, 1, type, stride, GL_FALSE,
GL_FALSE, GL_FALSE, ptr);
}
void GLAPIENTRY
_mesa_IndexPointer_no_error(GLenum type, GLsizei stride, const GLvoid *ptr)
{
GET_CURRENT_CONTEXT(ctx);
FLUSH_VERTICES(ctx, 0);
update_array(ctx, VERT_ATTRIB_COLOR_INDEX, GL_RGBA, 1, 1, type, stride,
GL_FALSE, GL_FALSE, GL_FALSE, ptr);
}
void GLAPIENTRY
_mesa_IndexPointer(GLenum type, GLsizei stride, const GLvoid *ptr)
{
GET_CURRENT_CONTEXT(ctx);
FLUSH_VERTICES(ctx, 0);
GLenum format = GL_RGBA;
const GLbitfield legalTypes = (UNSIGNED_BYTE_BIT | SHORT_BIT | INT_BIT |
FLOAT_BIT | DOUBLE_BIT);
if (!validate_array_and_format(ctx, "glIndexPointer",
VERT_ATTRIB_COLOR_INDEX,
legalTypes, 1, 1, 1, type, stride,
GL_FALSE, GL_FALSE, GL_FALSE, format,
ptr, ctx->Array.VAO))
return;
update_array(ctx, VERT_ATTRIB_COLOR_INDEX, format, 1, 1, type, stride,
GL_FALSE, GL_FALSE, GL_FALSE, ptr);
}
void GLAPIENTRY
_mesa_SecondaryColorPointer_no_error(GLint size, GLenum type,
GLsizei stride, const GLvoid *ptr)
{
GET_CURRENT_CONTEXT(ctx);
FLUSH_VERTICES(ctx, 0);
GLenum format = get_array_format(ctx, BGRA_OR_4, &size);
update_array(ctx, VERT_ATTRIB_COLOR1, format, BGRA_OR_4, size, type,
stride, GL_TRUE, GL_FALSE, GL_FALSE, ptr);
}
void GLAPIENTRY
_mesa_SecondaryColorPointer(GLint size, GLenum type,
GLsizei stride, const GLvoid *ptr)
{
GET_CURRENT_CONTEXT(ctx);
FLUSH_VERTICES(ctx, 0);
GLenum format = get_array_format(ctx, BGRA_OR_4, &size);
const GLbitfield legalTypes = (BYTE_BIT | UNSIGNED_BYTE_BIT |
SHORT_BIT | UNSIGNED_SHORT_BIT |
INT_BIT | UNSIGNED_INT_BIT |
HALF_BIT | FLOAT_BIT | DOUBLE_BIT |
UNSIGNED_INT_2_10_10_10_REV_BIT |
INT_2_10_10_10_REV_BIT);
if (!validate_array_and_format(ctx, "glSecondaryColorPointer",
VERT_ATTRIB_COLOR1, legalTypes, 3,
BGRA_OR_4, size, type, stride,
GL_TRUE, GL_FALSE, GL_FALSE, format, ptr,
ctx->Array.VAO))
return;
update_array(ctx, VERT_ATTRIB_COLOR1, format, BGRA_OR_4, size, type,
stride, GL_TRUE, GL_FALSE, GL_FALSE, ptr);
}
void GLAPIENTRY
_mesa_TexCoordPointer_no_error(GLint size, GLenum type, GLsizei stride,
const GLvoid *ptr)
{
GET_CURRENT_CONTEXT(ctx);
const GLuint unit = ctx->Array.ActiveTexture;
FLUSH_VERTICES(ctx, 0);
update_array(ctx, VERT_ATTRIB_TEX(unit), GL_RGBA, 4, size, type,
stride, GL_FALSE, GL_FALSE, GL_FALSE, ptr);
}
void GLAPIENTRY
_mesa_TexCoordPointer(GLint size, GLenum type, GLsizei stride,
const GLvoid *ptr)
{
GET_CURRENT_CONTEXT(ctx);
const GLint sizeMin = (ctx->API == API_OPENGLES) ? 2 : 1;
const GLuint unit = ctx->Array.ActiveTexture;
FLUSH_VERTICES(ctx, 0);
GLenum format = GL_RGBA;
const GLbitfield legalTypes = (ctx->API == API_OPENGLES)
? (BYTE_BIT | SHORT_BIT | FLOAT_BIT | FIXED_ES_BIT)
: (SHORT_BIT | INT_BIT |
HALF_BIT | FLOAT_BIT | DOUBLE_BIT |
UNSIGNED_INT_2_10_10_10_REV_BIT |
INT_2_10_10_10_REV_BIT);
if (!validate_array_and_format(ctx, "glTexCoordPointer",
VERT_ATTRIB_TEX(unit), legalTypes,
sizeMin, 4, size, type, stride,
GL_FALSE, GL_FALSE, GL_FALSE, format, ptr,
ctx->Array.VAO))
return;
update_array(ctx, VERT_ATTRIB_TEX(unit), format, 4, size, type,
stride, GL_FALSE, GL_FALSE, GL_FALSE, ptr);
}
void GLAPIENTRY
_mesa_EdgeFlagPointer_no_error(GLsizei stride, const GLvoid *ptr)
{
/* this is the same type that glEdgeFlag uses */
const GLboolean integer = GL_FALSE;
GET_CURRENT_CONTEXT(ctx);
FLUSH_VERTICES(ctx, 0);
update_array(ctx, VERT_ATTRIB_EDGEFLAG, GL_RGBA, 1, 1, GL_UNSIGNED_BYTE,
stride, GL_FALSE, integer, GL_FALSE, ptr);
}
void GLAPIENTRY
_mesa_EdgeFlagPointer(GLsizei stride, const GLvoid *ptr)
{
/* this is the same type that glEdgeFlag uses */
const GLboolean integer = GL_FALSE;
GET_CURRENT_CONTEXT(ctx);
FLUSH_VERTICES(ctx, 0);
GLenum format = GL_RGBA;
const GLbitfield legalTypes = UNSIGNED_BYTE_BIT;
if (!validate_array_and_format(ctx, "glEdgeFlagPointer",
VERT_ATTRIB_EDGEFLAG, legalTypes,
1, 1, 1, GL_UNSIGNED_BYTE, stride,
GL_FALSE, integer, GL_FALSE, format, ptr,
ctx->Array.VAO))
return;
update_array(ctx, VERT_ATTRIB_EDGEFLAG, format, 1, 1, GL_UNSIGNED_BYTE,
stride, GL_FALSE, integer, GL_FALSE, ptr);
}
void GLAPIENTRY
_mesa_PointSizePointerOES_no_error(GLenum type, GLsizei stride,
const GLvoid *ptr)
{
GET_CURRENT_CONTEXT(ctx);
FLUSH_VERTICES(ctx, 0);
update_array(ctx, VERT_ATTRIB_POINT_SIZE, GL_RGBA, 1, 1, type, stride,
GL_FALSE, GL_FALSE, GL_FALSE, ptr);
}
void GLAPIENTRY
_mesa_PointSizePointerOES(GLenum type, GLsizei stride, const GLvoid *ptr)
{
GET_CURRENT_CONTEXT(ctx);
FLUSH_VERTICES(ctx, 0);
GLenum format = GL_RGBA;
if (ctx->API != API_OPENGLES) {
_mesa_error(ctx, GL_INVALID_OPERATION,
"glPointSizePointer(ES 1.x only)");
return;
}
const GLbitfield legalTypes = (FLOAT_BIT | FIXED_ES_BIT);
if (!validate_array_and_format(ctx, "glPointSizePointer",
VERT_ATTRIB_POINT_SIZE, legalTypes,
1, 1, 1, type, stride, GL_FALSE, GL_FALSE,
GL_FALSE, format, ptr, ctx->Array.VAO))
return;
update_array(ctx, VERT_ATTRIB_POINT_SIZE, format, 1, 1, type, stride,
GL_FALSE, GL_FALSE, GL_FALSE, ptr);
}
void GLAPIENTRY
_mesa_VertexAttribPointer_no_error(GLuint index, GLint size, GLenum type,
GLboolean normalized,
GLsizei stride, const GLvoid *ptr)
{
GET_CURRENT_CONTEXT(ctx);
GLenum format = get_array_format(ctx, BGRA_OR_4, &size);
update_array(ctx, VERT_ATTRIB_GENERIC(index), format, BGRA_OR_4,
size, type, stride, normalized, GL_FALSE, GL_FALSE, ptr);
}
/**
* Set a generic vertex attribute array.
* Note that these arrays DO NOT alias the conventional GL vertex arrays
* (position, normal, color, fog, texcoord, etc).
*/
void GLAPIENTRY
_mesa_VertexAttribPointer(GLuint index, GLint size, GLenum type,
GLboolean normalized,
GLsizei stride, const GLvoid *ptr)
{
GET_CURRENT_CONTEXT(ctx);
GLenum format = get_array_format(ctx, BGRA_OR_4, &size);
if (index >= ctx->Const.Program[MESA_SHADER_VERTEX].MaxAttribs) {
_mesa_error(ctx, GL_INVALID_VALUE, "glVertexAttribPointerARB(idx)");
return;
}
const GLbitfield legalTypes = (BYTE_BIT | UNSIGNED_BYTE_BIT |
SHORT_BIT | UNSIGNED_SHORT_BIT |
INT_BIT | UNSIGNED_INT_BIT |
HALF_BIT | FLOAT_BIT | DOUBLE_BIT |
FIXED_ES_BIT | FIXED_GL_BIT |
UNSIGNED_INT_2_10_10_10_REV_BIT |
INT_2_10_10_10_REV_BIT |
UNSIGNED_INT_10F_11F_11F_REV_BIT);
if (!validate_array_and_format(ctx, "glVertexAttribPointer",
VERT_ATTRIB_GENERIC(index), legalTypes,
1, BGRA_OR_4, size, type, stride,
normalized, GL_FALSE, GL_FALSE, format,
ptr, ctx->Array.VAO))
return;
update_array(ctx, VERT_ATTRIB_GENERIC(index), format, BGRA_OR_4,
size, type, stride, normalized, GL_FALSE, GL_FALSE, ptr);
}
void GLAPIENTRY
_mesa_VertexAttribIPointer_no_error(GLuint index, GLint size, GLenum type,
GLsizei stride, const GLvoid *ptr)
{
const GLboolean normalized = GL_FALSE;
const GLboolean integer = GL_TRUE;
GET_CURRENT_CONTEXT(ctx);
update_array(ctx, VERT_ATTRIB_GENERIC(index), GL_RGBA, 4, size, type,
stride, normalized, integer, GL_FALSE, ptr);
}
/**
* GL_EXT_gpu_shader4 / GL 3.0.
* Set an integer-valued vertex attribute array.
* Note that these arrays DO NOT alias the conventional GL vertex arrays
* (position, normal, color, fog, texcoord, etc).
*/
void GLAPIENTRY
_mesa_VertexAttribIPointer(GLuint index, GLint size, GLenum type,
GLsizei stride, const GLvoid *ptr)
{
const GLboolean normalized = GL_FALSE;
const GLboolean integer = GL_TRUE;
GET_CURRENT_CONTEXT(ctx);
GLenum format = GL_RGBA;
if (index >= ctx->Const.Program[MESA_SHADER_VERTEX].MaxAttribs) {
_mesa_error(ctx, GL_INVALID_VALUE, "glVertexAttribIPointer(index)");
return;
}
const GLbitfield legalTypes = (BYTE_BIT | UNSIGNED_BYTE_BIT |
SHORT_BIT | UNSIGNED_SHORT_BIT |
INT_BIT | UNSIGNED_INT_BIT);
if (!validate_array_and_format(ctx, "glVertexAttribIPointer",
VERT_ATTRIB_GENERIC(index), legalTypes,
1, 4, size, type, stride,
normalized, integer, GL_FALSE, format,
ptr, ctx->Array.VAO))
return;
update_array(ctx, VERT_ATTRIB_GENERIC(index), format, 4, size, type,
stride, normalized, integer, GL_FALSE, ptr);
}
void GLAPIENTRY
_mesa_VertexAttribLPointer_no_error(GLuint index, GLint size, GLenum type,
GLsizei stride, const GLvoid *ptr)
{
GET_CURRENT_CONTEXT(ctx);
update_array(ctx, VERT_ATTRIB_GENERIC(index), GL_RGBA, 4, size, type,
stride, GL_FALSE, GL_FALSE, GL_TRUE, ptr);
}
void GLAPIENTRY
_mesa_VertexAttribLPointer(GLuint index, GLint size, GLenum type,
GLsizei stride, const GLvoid *ptr)
{
GET_CURRENT_CONTEXT(ctx);
GLenum format = GL_RGBA;
if (index >= ctx->Const.Program[MESA_SHADER_VERTEX].MaxAttribs) {
_mesa_error(ctx, GL_INVALID_VALUE, "glVertexAttribLPointer(index)");
return;
}
const GLbitfield legalTypes = DOUBLE_BIT;
if (!validate_array_and_format(ctx, "glVertexAttribLPointer",
VERT_ATTRIB_GENERIC(index), legalTypes,
1, 4, size, type, stride,
GL_FALSE, GL_FALSE, GL_TRUE, format,
ptr, ctx->Array.VAO))
return;
update_array(ctx, VERT_ATTRIB_GENERIC(index), format, 4, size, type,
stride, GL_FALSE, GL_FALSE, GL_TRUE, ptr);
}
void
_mesa_enable_vertex_array_attrib(struct gl_context *ctx,
struct gl_vertex_array_object *vao,
unsigned attrib)
{
assert(attrib < ARRAY_SIZE(vao->VertexAttrib));
if (!vao->VertexAttrib[attrib].Enabled) {
/* was disabled, now being enabled */
FLUSH_VERTICES(ctx, _NEW_ARRAY);
vao->VertexAttrib[attrib].Enabled = GL_TRUE;
vao->_Enabled |= VERT_BIT(attrib);
vao->NewArrays |= VERT_BIT(attrib);
}
}
static void
enable_vertex_array_attrib(struct gl_context *ctx,
struct gl_vertex_array_object *vao,
GLuint index,
const char *func)
{
if (index >= ctx->Const.Program[MESA_SHADER_VERTEX].MaxAttribs) {
_mesa_error(ctx, GL_INVALID_VALUE, "%s(index)", func);
return;
}
_mesa_enable_vertex_array_attrib(ctx, vao, VERT_ATTRIB_GENERIC(index));
}
void GLAPIENTRY
_mesa_EnableVertexAttribArray(GLuint index)
{
GET_CURRENT_CONTEXT(ctx);
enable_vertex_array_attrib(ctx, ctx->Array.VAO, index,
"glEnableVertexAttribArray");
}
void GLAPIENTRY
_mesa_EnableVertexAttribArray_no_error(GLuint index)
{
GET_CURRENT_CONTEXT(ctx);
_mesa_enable_vertex_array_attrib(ctx, ctx->Array.VAO,
VERT_ATTRIB_GENERIC(index));
}
void GLAPIENTRY
_mesa_EnableVertexArrayAttrib(GLuint vaobj, GLuint index)
{
GET_CURRENT_CONTEXT(ctx);
struct gl_vertex_array_object *vao;
/* The ARB_direct_state_access specification says:
*
* "An INVALID_OPERATION error is generated by EnableVertexArrayAttrib
* and DisableVertexArrayAttrib if <vaobj> is not
* [compatibility profile: zero or] the name of an existing vertex
* array object."
*/
vao = _mesa_lookup_vao_err(ctx, vaobj, "glEnableVertexArrayAttrib");
if (!vao)
return;
enable_vertex_array_attrib(ctx, vao, index, "glEnableVertexArrayAttrib");
}
void GLAPIENTRY
_mesa_EnableVertexArrayAttrib_no_error(GLuint vaobj, GLuint index)
{
GET_CURRENT_CONTEXT(ctx);
struct gl_vertex_array_object *vao = _mesa_lookup_vao(ctx, vaobj);
_mesa_enable_vertex_array_attrib(ctx, vao, VERT_ATTRIB_GENERIC(index));
}
static void
disable_vertex_array_attrib(struct gl_context *ctx,
struct gl_vertex_array_object *vao,
GLuint index)
{
assert(VERT_ATTRIB_GENERIC(index) < ARRAY_SIZE(vao->VertexAttrib));
if (vao->VertexAttrib[VERT_ATTRIB_GENERIC(index)].Enabled) {
/* was enabled, now being disabled */
FLUSH_VERTICES(ctx, _NEW_ARRAY);
vao->VertexAttrib[VERT_ATTRIB_GENERIC(index)].Enabled = GL_FALSE;
vao->_Enabled &= ~VERT_BIT_GENERIC(index);
vao->NewArrays |= VERT_BIT_GENERIC(index);
}
}
void GLAPIENTRY
_mesa_DisableVertexAttribArray(GLuint index)
{
GET_CURRENT_CONTEXT(ctx);
if (index >= ctx->Const.Program[MESA_SHADER_VERTEX].MaxAttribs) {
_mesa_error(ctx, GL_INVALID_VALUE, "glDisableVertexAttribArray(index)");
return;
}
disable_vertex_array_attrib(ctx, ctx->Array.VAO, index);
}
void GLAPIENTRY
_mesa_DisableVertexAttribArray_no_error(GLuint index)
{
GET_CURRENT_CONTEXT(ctx);
disable_vertex_array_attrib(ctx, ctx->Array.VAO, index);
}
void GLAPIENTRY
_mesa_DisableVertexArrayAttrib(GLuint vaobj, GLuint index)
{
GET_CURRENT_CONTEXT(ctx);
struct gl_vertex_array_object *vao;
/* The ARB_direct_state_access specification says:
*
* "An INVALID_OPERATION error is generated by EnableVertexArrayAttrib
* and DisableVertexArrayAttrib if <vaobj> is not
* [compatibility profile: zero or] the name of an existing vertex
* array object."
*/
vao = _mesa_lookup_vao_err(ctx, vaobj, "glDisableVertexArrayAttrib");
if (!vao)
return;
if (index >= ctx->Const.Program[MESA_SHADER_VERTEX].MaxAttribs) {
_mesa_error(ctx, GL_INVALID_VALUE, "glDisableVertexArrayAttrib(index)");
return;
}
disable_vertex_array_attrib(ctx, vao, index);
}
void GLAPIENTRY
_mesa_DisableVertexArrayAttrib_no_error(GLuint vaobj, GLuint index)
{
GET_CURRENT_CONTEXT(ctx);
struct gl_vertex_array_object *vao = _mesa_lookup_vao(ctx, vaobj);
disable_vertex_array_attrib(ctx, vao, index);
}
/**
* Return info for a vertex attribute array (no alias with legacy
* vertex attributes (pos, normal, color, etc)). This function does
* not handle the 4-element GL_CURRENT_VERTEX_ATTRIB_ARB query.
*/
static GLuint
get_vertex_array_attrib(struct gl_context *ctx,
const struct gl_vertex_array_object *vao,
GLuint index, GLenum pname,
const char *caller)
{
const struct gl_array_attributes *array;
if (index >= ctx->Const.Program[MESA_SHADER_VERTEX].MaxAttribs) {
_mesa_error(ctx, GL_INVALID_VALUE, "%s(index=%u)", caller, index);
return 0;
}
assert(VERT_ATTRIB_GENERIC(index) < ARRAY_SIZE(vao->VertexAttrib));
array = &vao->VertexAttrib[VERT_ATTRIB_GENERIC(index)];
switch (pname) {
case GL_VERTEX_ATTRIB_ARRAY_ENABLED_ARB:
return array->Enabled;
case GL_VERTEX_ATTRIB_ARRAY_SIZE_ARB:
return (array->Format == GL_BGRA) ? GL_BGRA : array->Size;
case GL_VERTEX_ATTRIB_ARRAY_STRIDE_ARB:
return array->Stride;
case GL_VERTEX_ATTRIB_ARRAY_TYPE_ARB:
return array->Type;
case GL_VERTEX_ATTRIB_ARRAY_NORMALIZED_ARB:
return array->Normalized;
case GL_VERTEX_ATTRIB_ARRAY_BUFFER_BINDING_ARB:
return vao->BufferBinding[array->BufferBindingIndex].BufferObj->Name;
case GL_VERTEX_ATTRIB_ARRAY_INTEGER:
if ((_mesa_is_desktop_gl(ctx)
&& (ctx->Version >= 30 || ctx->Extensions.EXT_gpu_shader4))
|| _mesa_is_gles3(ctx)) {
return array->Integer;
}
goto error;
case GL_VERTEX_ATTRIB_ARRAY_LONG:
if (_mesa_is_desktop_gl(ctx)) {
return array->Doubles;
}
goto error;
case GL_VERTEX_ATTRIB_ARRAY_DIVISOR_ARB:
if ((_mesa_is_desktop_gl(ctx) && ctx->Extensions.ARB_instanced_arrays)
|| _mesa_is_gles3(ctx)) {
return vao->BufferBinding[array->BufferBindingIndex].InstanceDivisor;
}
goto error;
case GL_VERTEX_ATTRIB_BINDING:
if (_mesa_is_desktop_gl(ctx) || _mesa_is_gles31(ctx)) {
return array->BufferBindingIndex - VERT_ATTRIB_GENERIC0;
}
goto error;
case GL_VERTEX_ATTRIB_RELATIVE_OFFSET:
if (_mesa_is_desktop_gl(ctx) || _mesa_is_gles31(ctx)) {
return array->RelativeOffset;
}
goto error;
default:
; /* fall-through */
}
error:
_mesa_error(ctx, GL_INVALID_ENUM, "%s(pname=0x%x)", caller, pname);
return 0;
}
static const GLfloat *
get_current_attrib(struct gl_context *ctx, GLuint index, const char *function)
{
if (index == 0) {
if (_mesa_attr_zero_aliases_vertex(ctx)) {
_mesa_error(ctx, GL_INVALID_OPERATION, "%s(index==0)", function);
return NULL;
}
}
else if (index >= ctx->Const.Program[MESA_SHADER_VERTEX].MaxAttribs) {
_mesa_error(ctx, GL_INVALID_VALUE,
"%s(index>=GL_MAX_VERTEX_ATTRIBS)", function);
return NULL;
}
assert(VERT_ATTRIB_GENERIC(index) <
ARRAY_SIZE(ctx->Array.VAO->VertexAttrib));
FLUSH_CURRENT(ctx, 0);
return ctx->Current.Attrib[VERT_ATTRIB_GENERIC(index)];
}
void GLAPIENTRY
_mesa_GetVertexAttribfv(GLuint index, GLenum pname, GLfloat *params)
{
GET_CURRENT_CONTEXT(ctx);
if (pname == GL_CURRENT_VERTEX_ATTRIB_ARB) {
const GLfloat *v = get_current_attrib(ctx, index, "glGetVertexAttribfv");
if (v != NULL) {
COPY_4V(params, v);
}
}
else {
params[0] = (GLfloat) get_vertex_array_attrib(ctx, ctx->Array.VAO,
index, pname,
"glGetVertexAttribfv");
}
}
void GLAPIENTRY
_mesa_GetVertexAttribdv(GLuint index, GLenum pname, GLdouble *params)
{
GET_CURRENT_CONTEXT(ctx);
if (pname == GL_CURRENT_VERTEX_ATTRIB_ARB) {
const GLfloat *v = get_current_attrib(ctx, index, "glGetVertexAttribdv");
if (v != NULL) {
params[0] = (GLdouble) v[0];
params[1] = (GLdouble) v[1];
params[2] = (GLdouble) v[2];
params[3] = (GLdouble) v[3];
}
}
else {
params[0] = (GLdouble) get_vertex_array_attrib(ctx, ctx->Array.VAO,
index, pname,
"glGetVertexAttribdv");
}
}
void GLAPIENTRY
_mesa_GetVertexAttribLdv(GLuint index, GLenum pname, GLdouble *params)
{
GET_CURRENT_CONTEXT(ctx);
if (pname == GL_CURRENT_VERTEX_ATTRIB_ARB) {
const GLdouble *v =
(const GLdouble *)get_current_attrib(ctx, index,
"glGetVertexAttribLdv");
if (v != NULL) {
params[0] = v[0];
params[1] = v[1];
params[2] = v[2];
params[3] = v[3];
}
}
else {
params[0] = (GLdouble) get_vertex_array_attrib(ctx, ctx->Array.VAO,
index, pname,
"glGetVertexAttribLdv");
}
}
void GLAPIENTRY
_mesa_GetVertexAttribiv(GLuint index, GLenum pname, GLint *params)
{
GET_CURRENT_CONTEXT(ctx);
if (pname == GL_CURRENT_VERTEX_ATTRIB_ARB) {
const GLfloat *v = get_current_attrib(ctx, index, "glGetVertexAttribiv");
if (v != NULL) {
/* XXX should floats in[0,1] be scaled to full int range? */
params[0] = (GLint) v[0];
params[1] = (GLint) v[1];
params[2] = (GLint) v[2];
params[3] = (GLint) v[3];
}
}
else {
params[0] = (GLint) get_vertex_array_attrib(ctx, ctx->Array.VAO,
index, pname,
"glGetVertexAttribiv");
}
}
void GLAPIENTRY
_mesa_GetVertexAttribLui64vARB(GLuint index, GLenum pname, GLuint64EXT *params)
{
GET_CURRENT_CONTEXT(ctx);
if (pname == GL_CURRENT_VERTEX_ATTRIB_ARB) {
const GLuint64 *v =
(const GLuint64 *)get_current_attrib(ctx, index,
"glGetVertexAttribLui64vARB");
if (v != NULL) {
params[0] = v[0];
params[1] = v[1];
params[2] = v[2];
params[3] = v[3];
}
}
else {
params[0] = (GLuint64) get_vertex_array_attrib(ctx, ctx->Array.VAO,
index, pname,
"glGetVertexAttribLui64vARB");
}
}
/** GL 3.0 */
void GLAPIENTRY
_mesa_GetVertexAttribIiv(GLuint index, GLenum pname, GLint *params)
{
GET_CURRENT_CONTEXT(ctx);
if (pname == GL_CURRENT_VERTEX_ATTRIB_ARB) {
const GLint *v = (const GLint *)
get_current_attrib(ctx, index, "glGetVertexAttribIiv");
if (v != NULL) {
COPY_4V(params, v);
}
}
else {
params[0] = (GLint) get_vertex_array_attrib(ctx, ctx->Array.VAO,
index, pname,
"glGetVertexAttribIiv");
}
}
/** GL 3.0 */
void GLAPIENTRY
_mesa_GetVertexAttribIuiv(GLuint index, GLenum pname, GLuint *params)
{
GET_CURRENT_CONTEXT(ctx);
if (pname == GL_CURRENT_VERTEX_ATTRIB_ARB) {
const GLuint *v = (const GLuint *)
get_current_attrib(ctx, index, "glGetVertexAttribIuiv");
if (v != NULL) {
COPY_4V(params, v);
}
}
else {
params[0] = get_vertex_array_attrib(ctx, ctx->Array.VAO,
index, pname,
"glGetVertexAttribIuiv");
}
}
void GLAPIENTRY
_mesa_GetVertexAttribPointerv(GLuint index, GLenum pname, GLvoid **pointer)
{
GET_CURRENT_CONTEXT(ctx);
if (index >= ctx->Const.Program[MESA_SHADER_VERTEX].MaxAttribs) {
_mesa_error(ctx, GL_INVALID_VALUE, "glGetVertexAttribPointerARB(index)");
return;
}
if (pname != GL_VERTEX_ATTRIB_ARRAY_POINTER_ARB) {
_mesa_error(ctx, GL_INVALID_ENUM, "glGetVertexAttribPointerARB(pname)");
return;
}
assert(VERT_ATTRIB_GENERIC(index) <
ARRAY_SIZE(ctx->Array.VAO->VertexAttrib));
*pointer = (GLvoid *)
ctx->Array.VAO->VertexAttrib[VERT_ATTRIB_GENERIC(index)].Ptr;
}
/** ARB_direct_state_access */
void GLAPIENTRY
_mesa_GetVertexArrayIndexediv(GLuint vaobj, GLuint index,
GLenum pname, GLint *params)
{
GET_CURRENT_CONTEXT(ctx);
struct gl_vertex_array_object *vao;
/* The ARB_direct_state_access specification says:
*
* "An INVALID_OPERATION error is generated if <vaobj> is not
* [compatibility profile: zero or] the name of an existing
* vertex array object."
*/
vao = _mesa_lookup_vao_err(ctx, vaobj, "glGetVertexArrayIndexediv");
if (!vao)
return;
/* The ARB_direct_state_access specification says:
*
* "For GetVertexArrayIndexediv, <pname> must be one of
* VERTEX_ATTRIB_ARRAY_ENABLED, VERTEX_ATTRIB_ARRAY_SIZE,
* VERTEX_ATTRIB_ARRAY_STRIDE, VERTEX_ATTRIB_ARRAY_TYPE,
* VERTEX_ATTRIB_ARRAY_NORMALIZED, VERTEX_ATTRIB_ARRAY_INTEGER,
* VERTEX_ATTRIB_ARRAY_LONG, VERTEX_ATTRIB_ARRAY_DIVISOR, or
* VERTEX_ATTRIB_RELATIVE_OFFSET."
*
* and:
*
* "Add GetVertexArrayIndexediv in 'Get Command' for
* VERTEX_ATTRIB_ARRAY_BUFFER_BINDING
* VERTEX_ATTRIB_BINDING,
* VERTEX_ATTRIB_RELATIVE_OFFSET,
* VERTEX_BINDING_OFFSET, and
* VERTEX_BINDING_STRIDE states"
*
* The only parameter name common to both lists is
* VERTEX_ATTRIB_RELATIVE_OFFSET. Also note that VERTEX_BINDING_BUFFER
* and VERTEX_BINDING_DIVISOR are missing from both lists. It seems
* pretty clear however that the intent is that it should be possible
* to query all vertex attrib and binding states that can be set with
* a DSA function.
*/
switch (pname) {
case GL_VERTEX_BINDING_OFFSET:
params[0] = vao->BufferBinding[VERT_ATTRIB_GENERIC(index)].Offset;
break;
case GL_VERTEX_BINDING_STRIDE:
params[0] = vao->BufferBinding[VERT_ATTRIB_GENERIC(index)].Stride;
break;
case GL_VERTEX_BINDING_DIVISOR:
params[0] = vao->BufferBinding[VERT_ATTRIB_GENERIC(index)].InstanceDivisor;
break;
case GL_VERTEX_BINDING_BUFFER:
params[0] = vao->BufferBinding[VERT_ATTRIB_GENERIC(index)].BufferObj->Name;
break;
default:
params[0] = get_vertex_array_attrib(ctx, vao, index, pname,
"glGetVertexArrayIndexediv");
break;
}
}
void GLAPIENTRY
_mesa_GetVertexArrayIndexed64iv(GLuint vaobj, GLuint index,
GLenum pname, GLint64 *params)
{
GET_CURRENT_CONTEXT(ctx);
struct gl_vertex_array_object *vao;
/* The ARB_direct_state_access specification says:
*
* "An INVALID_OPERATION error is generated if <vaobj> is not
* [compatibility profile: zero or] the name of an existing
* vertex array object."
*/
vao = _mesa_lookup_vao_err(ctx, vaobj, "glGetVertexArrayIndexed64iv");
if (!vao)
return;
/* The ARB_direct_state_access specification says:
*
* "For GetVertexArrayIndexed64iv, <pname> must be
* VERTEX_BINDING_OFFSET."
*
* and:
*
* "An INVALID_ENUM error is generated if <pname> is not one of
* the valid values listed above for the corresponding command."
*/
if (pname != GL_VERTEX_BINDING_OFFSET) {
_mesa_error(ctx, GL_INVALID_ENUM, "glGetVertexArrayIndexed64iv("
"pname != GL_VERTEX_BINDING_OFFSET)");
return;
}
/* The ARB_direct_state_access specification says:
*
* "An INVALID_VALUE error is generated if <index> is greater than
* or equal to the value of MAX_VERTEX_ATTRIBS."
*
* Since the index refers to a buffer binding in this case, the intended
* limit must be MAX_VERTEX_ATTRIB_BINDINGS. Both limits are currently
* required to be the same, so in practice this doesn't matter.
*/
if (index >= ctx->Const.MaxVertexAttribBindings) {
_mesa_error(ctx, GL_INVALID_VALUE, "glGetVertexArrayIndexed64iv(index"
"%d >= the value of GL_MAX_VERTEX_ATTRIB_BINDINGS (%d))",
index, ctx->Const.MaxVertexAttribBindings);
return;
}
params[0] = vao->BufferBinding[VERT_ATTRIB_GENERIC(index)].Offset;
}
void GLAPIENTRY
_mesa_VertexPointerEXT(GLint size, GLenum type, GLsizei stride,
GLsizei count, const GLvoid *ptr)
{
(void) count;
_mesa_VertexPointer(size, type, stride, ptr);
}
void GLAPIENTRY
_mesa_NormalPointerEXT(GLenum type, GLsizei stride, GLsizei count,
const GLvoid *ptr)
{
(void) count;
_mesa_NormalPointer(type, stride, ptr);
}
void GLAPIENTRY
_mesa_ColorPointerEXT(GLint size, GLenum type, GLsizei stride, GLsizei count,
const GLvoid *ptr)
{
(void) count;
_mesa_ColorPointer(size, type, stride, ptr);
}
void GLAPIENTRY
_mesa_IndexPointerEXT(GLenum type, GLsizei stride, GLsizei count,
const GLvoid *ptr)
{
(void) count;
_mesa_IndexPointer(type, stride, ptr);
}
void GLAPIENTRY
_mesa_TexCoordPointerEXT(GLint size, GLenum type, GLsizei stride,
GLsizei count, const GLvoid *ptr)
{
(void) count;
_mesa_TexCoordPointer(size, type, stride, ptr);
}
void GLAPIENTRY
_mesa_EdgeFlagPointerEXT(GLsizei stride, GLsizei count, const GLboolean *ptr)
{
(void) count;
_mesa_EdgeFlagPointer(stride, ptr);
}
void GLAPIENTRY
_mesa_InterleavedArrays(GLenum format, GLsizei stride, const GLvoid *pointer)
{
GET_CURRENT_CONTEXT(ctx);
GLboolean tflag, cflag, nflag; /* enable/disable flags */
GLint tcomps, ccomps, vcomps; /* components per texcoord, color, vertex */
GLenum ctype = 0; /* color type */
GLint coffset = 0, noffset = 0, voffset;/* color, normal, vertex offsets */
const GLint toffset = 0; /* always zero */
GLint defstride; /* default stride */
GLint c, f;
FLUSH_VERTICES(ctx, 0);
f = sizeof(GLfloat);
c = f * ((4 * sizeof(GLubyte) + (f - 1)) / f);
if (stride < 0) {
_mesa_error( ctx, GL_INVALID_VALUE, "glInterleavedArrays(stride)" );
return;
}
switch (format) {
case GL_V2F:
tflag = GL_FALSE; cflag = GL_FALSE; nflag = GL_FALSE;
tcomps = 0; ccomps = 0; vcomps = 2;
voffset = 0;
defstride = 2*f;
break;
case GL_V3F:
tflag = GL_FALSE; cflag = GL_FALSE; nflag = GL_FALSE;
tcomps = 0; ccomps = 0; vcomps = 3;
voffset = 0;
defstride = 3*f;
break;
case GL_C4UB_V2F:
tflag = GL_FALSE; cflag = GL_TRUE; nflag = GL_FALSE;
tcomps = 0; ccomps = 4; vcomps = 2;
ctype = GL_UNSIGNED_BYTE;
coffset = 0;
voffset = c;
defstride = c + 2*f;
break;
case GL_C4UB_V3F:
tflag = GL_FALSE; cflag = GL_TRUE; nflag = GL_FALSE;
tcomps = 0; ccomps = 4; vcomps = 3;
ctype = GL_UNSIGNED_BYTE;
coffset = 0;
voffset = c;
defstride = c + 3*f;
break;
case GL_C3F_V3F:
tflag = GL_FALSE; cflag = GL_TRUE; nflag = GL_FALSE;
tcomps = 0; ccomps = 3; vcomps = 3;
ctype = GL_FLOAT;
coffset = 0;
voffset = 3*f;
defstride = 6*f;
break;
case GL_N3F_V3F:
tflag = GL_FALSE; cflag = GL_FALSE; nflag = GL_TRUE;
tcomps = 0; ccomps = 0; vcomps = 3;
noffset = 0;
voffset = 3*f;
defstride = 6*f;
break;
case GL_C4F_N3F_V3F:
tflag = GL_FALSE; cflag = GL_TRUE; nflag = GL_TRUE;
tcomps = 0; ccomps = 4; vcomps = 3;
ctype = GL_FLOAT;
coffset = 0;
noffset = 4*f;
voffset = 7*f;
defstride = 10*f;
break;
case GL_T2F_V3F:
tflag = GL_TRUE; cflag = GL_FALSE; nflag = GL_FALSE;
tcomps = 2; ccomps = 0; vcomps = 3;
voffset = 2*f;
defstride = 5*f;
break;
case GL_T4F_V4F:
tflag = GL_TRUE; cflag = GL_FALSE; nflag = GL_FALSE;
tcomps = 4; ccomps = 0; vcomps = 4;
voffset = 4*f;
defstride = 8*f;
break;
case GL_T2F_C4UB_V3F:
tflag = GL_TRUE; cflag = GL_TRUE; nflag = GL_FALSE;
tcomps = 2; ccomps = 4; vcomps = 3;
ctype = GL_UNSIGNED_BYTE;
coffset = 2*f;
voffset = c+2*f;
defstride = c+5*f;
break;
case GL_T2F_C3F_V3F:
tflag = GL_TRUE; cflag = GL_TRUE; nflag = GL_FALSE;
tcomps = 2; ccomps = 3; vcomps = 3;
ctype = GL_FLOAT;
coffset = 2*f;
voffset = 5*f;
defstride = 8*f;
break;
case GL_T2F_N3F_V3F:
tflag = GL_TRUE; cflag = GL_FALSE; nflag = GL_TRUE;
tcomps = 2; ccomps = 0; vcomps = 3;
noffset = 2*f;
voffset = 5*f;
defstride = 8*f;
break;
case GL_T2F_C4F_N3F_V3F:
tflag = GL_TRUE; cflag = GL_TRUE; nflag = GL_TRUE;
tcomps = 2; ccomps = 4; vcomps = 3;
ctype = GL_FLOAT;
coffset = 2*f;
noffset = 6*f;
voffset = 9*f;
defstride = 12*f;
break;
case GL_T4F_C4F_N3F_V4F:
tflag = GL_TRUE; cflag = GL_TRUE; nflag = GL_TRUE;
tcomps = 4; ccomps = 4; vcomps = 4;
ctype = GL_FLOAT;
coffset = 4*f;
noffset = 8*f;
voffset = 11*f;
defstride = 15*f;
break;
default:
_mesa_error( ctx, GL_INVALID_ENUM, "glInterleavedArrays(format)" );
return;
}
if (stride==0) {
stride = defstride;
}
_mesa_DisableClientState( GL_EDGE_FLAG_ARRAY );
_mesa_DisableClientState( GL_INDEX_ARRAY );
/* XXX also disable secondary color and generic arrays? */
/* Texcoords */
if (tflag) {
_mesa_EnableClientState( GL_TEXTURE_COORD_ARRAY );
_mesa_TexCoordPointer( tcomps, GL_FLOAT, stride,
(GLubyte *) pointer + toffset );
}
else {
_mesa_DisableClientState( GL_TEXTURE_COORD_ARRAY );
}
/* Color */
if (cflag) {
_mesa_EnableClientState( GL_COLOR_ARRAY );
_mesa_ColorPointer( ccomps, ctype, stride,
(GLubyte *) pointer + coffset );
}
else {
_mesa_DisableClientState( GL_COLOR_ARRAY );
}
/* Normals */
if (nflag) {
_mesa_EnableClientState( GL_NORMAL_ARRAY );
_mesa_NormalPointer( GL_FLOAT, stride, (GLubyte *) pointer + noffset );
}
else {
_mesa_DisableClientState( GL_NORMAL_ARRAY );
}
/* Vertices */
_mesa_EnableClientState( GL_VERTEX_ARRAY );
_mesa_VertexPointer( vcomps, GL_FLOAT, stride,
(GLubyte *) pointer + voffset );
}
void GLAPIENTRY
_mesa_LockArraysEXT(GLint first, GLsizei count)
{
GET_CURRENT_CONTEXT(ctx);
FLUSH_VERTICES(ctx, 0);
if (MESA_VERBOSE & VERBOSE_API)
_mesa_debug(ctx, "glLockArrays %d %d\n", first, count);
if (first < 0) {
_mesa_error( ctx, GL_INVALID_VALUE, "glLockArraysEXT(first)" );
return;
}
if (count <= 0) {
_mesa_error( ctx, GL_INVALID_VALUE, "glLockArraysEXT(count)" );
return;
}
if (ctx->Array.LockCount != 0) {
_mesa_error( ctx, GL_INVALID_OPERATION, "glLockArraysEXT(reentry)" );
return;
}
ctx->Array.LockFirst = first;
ctx->Array.LockCount = count;
ctx->NewState |= _NEW_ARRAY;
}
void GLAPIENTRY
_mesa_UnlockArraysEXT( void )
{
GET_CURRENT_CONTEXT(ctx);
FLUSH_VERTICES(ctx, 0);
if (MESA_VERBOSE & VERBOSE_API)
_mesa_debug(ctx, "glUnlockArrays\n");
if (ctx->Array.LockCount == 0) {
_mesa_error( ctx, GL_INVALID_OPERATION, "glUnlockArraysEXT(reexit)" );
return;
}
ctx->Array.LockFirst = 0;
ctx->Array.LockCount = 0;
ctx->NewState |= _NEW_ARRAY;
}
/* GL_IBM_multimode_draw_arrays */
void GLAPIENTRY
_mesa_MultiModeDrawArraysIBM( const GLenum * mode, const GLint * first,
const GLsizei * count,
GLsizei primcount, GLint modestride )
{
GET_CURRENT_CONTEXT(ctx);
GLint i;
FLUSH_VERTICES(ctx, 0);
for ( i = 0 ; i < primcount ; i++ ) {
if ( count[i] > 0 ) {
GLenum m = *((GLenum *) ((GLubyte *) mode + i * modestride));
CALL_DrawArrays(ctx->CurrentServerDispatch, ( m, first[i], count[i] ));
}
}
}
/* GL_IBM_multimode_draw_arrays */
void GLAPIENTRY
_mesa_MultiModeDrawElementsIBM( const GLenum * mode, const GLsizei * count,
GLenum type, const GLvoid * const * indices,
GLsizei primcount, GLint modestride )
{
GET_CURRENT_CONTEXT(ctx);
GLint i;
FLUSH_VERTICES(ctx, 0);
/* XXX not sure about ARB_vertex_buffer_object handling here */
for ( i = 0 ; i < primcount ; i++ ) {
if ( count[i] > 0 ) {
GLenum m = *((GLenum *) ((GLubyte *) mode + i * modestride));
CALL_DrawElements(ctx->CurrentServerDispatch, ( m, count[i], type,
indices[i] ));
}
}
}
static void
primitive_restart_index(struct gl_context *ctx, GLuint index)
{
if (ctx->Array.RestartIndex != index) {
FLUSH_VERTICES(ctx, 0);
ctx->Array.RestartIndex = index;
}
}
/**
* GL_NV_primitive_restart and GL 3.1
*/
void GLAPIENTRY
_mesa_PrimitiveRestartIndex_no_error(GLuint index)
{
GET_CURRENT_CONTEXT(ctx);
primitive_restart_index(ctx, index);
}
void GLAPIENTRY
_mesa_PrimitiveRestartIndex(GLuint index)
{
GET_CURRENT_CONTEXT(ctx);
if (!ctx->Extensions.NV_primitive_restart && ctx->Version < 31) {
_mesa_error(ctx, GL_INVALID_OPERATION, "glPrimitiveRestartIndexNV()");
return;
}
primitive_restart_index(ctx, index);
}
void GLAPIENTRY
_mesa_VertexAttribDivisor_no_error(GLuint index, GLuint divisor)
{
GET_CURRENT_CONTEXT(ctx);
const GLuint genericIndex = VERT_ATTRIB_GENERIC(index);
struct gl_vertex_array_object * const vao = ctx->Array.VAO;
assert(genericIndex < ARRAY_SIZE(vao->VertexAttrib));
/* The ARB_vertex_attrib_binding spec says:
*
* "The command
*
* void VertexAttribDivisor(uint index, uint divisor);
*
* is equivalent to (assuming no errors are generated):
*
* VertexAttribBinding(index, index);
* VertexBindingDivisor(index, divisor);"
*/
vertex_attrib_binding(ctx, vao, genericIndex, genericIndex);
vertex_binding_divisor(ctx, vao, genericIndex, divisor);
}
/**
* See GL_ARB_instanced_arrays.
* Note that the instance divisor only applies to generic arrays, not
* the legacy vertex arrays.
*/
void GLAPIENTRY
_mesa_VertexAttribDivisor(GLuint index, GLuint divisor)
{
GET_CURRENT_CONTEXT(ctx);
const GLuint genericIndex = VERT_ATTRIB_GENERIC(index);
struct gl_vertex_array_object * const vao = ctx->Array.VAO;
if (!ctx->Extensions.ARB_instanced_arrays) {
_mesa_error(ctx, GL_INVALID_OPERATION, "glVertexAttribDivisor()");
return;
}
if (index >= ctx->Const.Program[MESA_SHADER_VERTEX].MaxAttribs) {
_mesa_error(ctx, GL_INVALID_VALUE,
"glVertexAttribDivisor(index = %u)", index);
return;
}
assert(genericIndex < ARRAY_SIZE(vao->VertexAttrib));
/* The ARB_vertex_attrib_binding spec says:
*
* "The command
*
* void VertexAttribDivisor(uint index, uint divisor);
*
* is equivalent to (assuming no errors are generated):
*
* VertexAttribBinding(index, index);
* VertexBindingDivisor(index, divisor);"
*/
vertex_attrib_binding(ctx, vao, genericIndex, genericIndex);
vertex_binding_divisor(ctx, vao, genericIndex, divisor);
}
static ALWAYS_INLINE void
vertex_array_vertex_buffer(struct gl_context *ctx,
struct gl_vertex_array_object *vao,
GLuint bindingIndex, GLuint buffer, GLintptr offset,
GLsizei stride, bool no_error, const char *func)
{
struct gl_buffer_object *vbo;
if (buffer ==
vao->BufferBinding[VERT_ATTRIB_GENERIC(bindingIndex)].BufferObj->Name) {
vbo = vao->BufferBinding[VERT_ATTRIB_GENERIC(bindingIndex)].BufferObj;
} else if (buffer != 0) {
vbo = _mesa_lookup_bufferobj(ctx, buffer);
if (!no_error && !vbo && _mesa_is_gles31(ctx)) {
_mesa_error(ctx, GL_INVALID_OPERATION, "%s(non-gen name)", func);
return;
}
/* From the GL_ARB_vertex_attrib_array spec:
*
* "[Core profile only:]
* An INVALID_OPERATION error is generated if buffer is not zero or a
* name returned from a previous call to GenBuffers, or if such a name
* has since been deleted with DeleteBuffers.
*
* Otherwise, we fall back to the same compat profile behavior as other
* object references (automatically gen it).
*/
if (!_mesa_handle_bind_buffer_gen(ctx, buffer, &vbo, func))
return;
} else {
/* The ARB_vertex_attrib_binding spec says:
*
* "If <buffer> is zero, any buffer object attached to this
* bindpoint is detached."
*/
vbo = ctx->Shared->NullBufferObj;
}
_mesa_bind_vertex_buffer(ctx, vao, VERT_ATTRIB_GENERIC(bindingIndex),
vbo, offset, stride);
}
/**
* GL_ARB_vertex_attrib_binding
*/
static void
vertex_array_vertex_buffer_err(struct gl_context *ctx,
struct gl_vertex_array_object *vao,
GLuint bindingIndex, GLuint buffer,
GLintptr offset, GLsizei stride,
const char *func)
{
ASSERT_OUTSIDE_BEGIN_END(ctx);
/* The ARB_vertex_attrib_binding spec says:
*
* "An INVALID_VALUE error is generated if <bindingindex> is greater than
* the value of MAX_VERTEX_ATTRIB_BINDINGS."
*/
if (bindingIndex >= ctx->Const.MaxVertexAttribBindings) {
_mesa_error(ctx, GL_INVALID_VALUE,
"%s(bindingindex=%u > "
"GL_MAX_VERTEX_ATTRIB_BINDINGS)",
func, bindingIndex);
return;
}
/* The ARB_vertex_attrib_binding spec says:
*
* "The error INVALID_VALUE is generated if <stride> or <offset>
* are negative."
*/
if (offset < 0) {
_mesa_error(ctx, GL_INVALID_VALUE,
"%s(offset=%" PRId64 " < 0)",
func, (int64_t) offset);
return;
}
if (stride < 0) {
_mesa_error(ctx, GL_INVALID_VALUE,
"%s(stride=%d < 0)", func, stride);
return;
}
if (((ctx->API == API_OPENGL_CORE && ctx->Version >= 44) || _mesa_is_gles31(ctx)) &&
stride > ctx->Const.MaxVertexAttribStride) {
_mesa_error(ctx, GL_INVALID_VALUE, "%s(stride=%d > "
"GL_MAX_VERTEX_ATTRIB_STRIDE)", func, stride);
return;
}
vertex_array_vertex_buffer(ctx, vao, bindingIndex, buffer, offset,
stride, false, func);
}
void GLAPIENTRY
_mesa_BindVertexBuffer_no_error(GLuint bindingIndex, GLuint buffer,
GLintptr offset, GLsizei stride)
{
GET_CURRENT_CONTEXT(ctx);
vertex_array_vertex_buffer(ctx, ctx->Array.VAO, bindingIndex,
buffer, offset, stride, true,
"glBindVertexBuffer");
}
void GLAPIENTRY
_mesa_BindVertexBuffer(GLuint bindingIndex, GLuint buffer, GLintptr offset,
GLsizei stride)
{
GET_CURRENT_CONTEXT(ctx);
/* The ARB_vertex_attrib_binding spec says:
*
* "An INVALID_OPERATION error is generated if no vertex array object
* is bound."
*/
if ((ctx->API == API_OPENGL_CORE || _mesa_is_gles31(ctx)) &&
ctx->Array.VAO == ctx->Array.DefaultVAO) {
_mesa_error(ctx, GL_INVALID_OPERATION,
"glBindVertexBuffer(No array object bound)");
return;
}
vertex_array_vertex_buffer_err(ctx, ctx->Array.VAO, bindingIndex,
buffer, offset, stride,
"glBindVertexBuffer");
}
void GLAPIENTRY
_mesa_VertexArrayVertexBuffer_no_error(GLuint vaobj, GLuint bindingIndex,
GLuint buffer, GLintptr offset,
GLsizei stride)
{
GET_CURRENT_CONTEXT(ctx);
struct gl_vertex_array_object *vao = _mesa_lookup_vao(ctx, vaobj);
vertex_array_vertex_buffer(ctx, vao, bindingIndex, buffer, offset,
stride, true, "glVertexArrayVertexBuffer");
}
void GLAPIENTRY
_mesa_VertexArrayVertexBuffer(GLuint vaobj, GLuint bindingIndex, GLuint buffer,
GLintptr offset, GLsizei stride)
{
GET_CURRENT_CONTEXT(ctx);
struct gl_vertex_array_object *vao;
/* The ARB_direct_state_access specification says:
*
* "An INVALID_OPERATION error is generated by VertexArrayVertexBuffer
* if <vaobj> is not [compatibility profile: zero or] the name of an
* existing vertex array object."
*/
vao = _mesa_lookup_vao_err(ctx, vaobj, "glVertexArrayVertexBuffer");
if (!vao)
return;
vertex_array_vertex_buffer_err(ctx, vao, bindingIndex, buffer, offset,
stride, "glVertexArrayVertexBuffer");
}
static ALWAYS_INLINE void
vertex_array_vertex_buffers(struct gl_context *ctx,
struct gl_vertex_array_object *vao,
GLuint first, GLsizei count, const GLuint *buffers,
const GLintptr *offsets, const GLsizei *strides,
bool no_error, const char *func)
{
GLint i;
if (!buffers) {
/**
* The ARB_multi_bind spec says:
*
* "If <buffers> is NULL, each affected vertex buffer binding point
* from <first> through <first>+<count>-1 will be reset to have no
* bound buffer object. In this case, the offsets and strides
* associated with the binding points are set to default values,
* ignoring <offsets> and <strides>."
*/
struct gl_buffer_object *vbo = ctx->Shared->NullBufferObj;
for (i = 0; i < count; i++)
_mesa_bind_vertex_buffer(ctx, vao, VERT_ATTRIB_GENERIC(first + i),
vbo, 0, 16);
return;
}
/* Note that the error semantics for multi-bind commands differ from
* those of other GL commands.
*
* The Issues section in the ARB_multi_bind spec says:
*
* "(11) Typically, OpenGL specifies that if an error is generated by
* a command, that command has no effect. This is somewhat
* unfortunate for multi-bind commands, because it would require
* a first pass to scan the entire list of bound objects for
* errors and then a second pass to actually perform the
* bindings. Should we have different error semantics?
*
* RESOLVED: Yes. In this specification, when the parameters for
* one of the <count> binding points are invalid, that binding
* point is not updated and an error will be generated. However,
* other binding points in the same command will be updated if
* their parameters are valid and no other error occurs."
*/
_mesa_HashLockMutex(ctx->Shared->BufferObjects);
for (i = 0; i < count; i++) {
struct gl_buffer_object *vbo;
if (!no_error) {
/* The ARB_multi_bind spec says:
*
* "An INVALID_VALUE error is generated if any value in
* <offsets> or <strides> is negative (per binding)."
*/
if (offsets[i] < 0) {
_mesa_error(ctx, GL_INVALID_VALUE,
"%s(offsets[%u]=%" PRId64 " < 0)",
func, i, (int64_t) offsets[i]);
continue;
}
if (strides[i] < 0) {
_mesa_error(ctx, GL_INVALID_VALUE,
"%s(strides[%u]=%d < 0)",
func, i, strides[i]);
continue;
}
if (ctx->API == API_OPENGL_CORE && ctx->Version >= 44 &&
strides[i] > ctx->Const.MaxVertexAttribStride) {
_mesa_error(ctx, GL_INVALID_VALUE,
"%s(strides[%u]=%d > "
"GL_MAX_VERTEX_ATTRIB_STRIDE)", func, i, strides[i]);
continue;
}
}
if (buffers[i]) {
struct gl_vertex_buffer_binding *binding =
&vao->BufferBinding[VERT_ATTRIB_GENERIC(first + i)];
if (buffers[i] == binding->BufferObj->Name)
vbo = binding->BufferObj;
else
vbo = _mesa_multi_bind_lookup_bufferobj(ctx, buffers, i, func);
if (!vbo)
continue;
} else {
vbo = ctx->Shared->NullBufferObj;
}
_mesa_bind_vertex_buffer(ctx, vao, VERT_ATTRIB_GENERIC(first + i),
vbo, offsets[i], strides[i]);
}
_mesa_HashUnlockMutex(ctx->Shared->BufferObjects);
}
static void
vertex_array_vertex_buffers_err(struct gl_context *ctx,
struct gl_vertex_array_object *vao,
GLuint first, GLsizei count,
const GLuint *buffers, const GLintptr *offsets,
const GLsizei *strides, const char *func)
{
ASSERT_OUTSIDE_BEGIN_END(ctx);
/* The ARB_multi_bind spec says:
*
* "An INVALID_OPERATION error is generated if <first> + <count>
* is greater than the value of MAX_VERTEX_ATTRIB_BINDINGS."
*/
if (first + count > ctx->Const.MaxVertexAttribBindings) {
_mesa_error(ctx, GL_INVALID_OPERATION,
"%s(first=%u + count=%d > the value of "
"GL_MAX_VERTEX_ATTRIB_BINDINGS=%u)",
func, first, count, ctx->Const.MaxVertexAttribBindings);
return;
}
vertex_array_vertex_buffers(ctx, vao, first, count, buffers, offsets,
strides, false, func);
}
void GLAPIENTRY
_mesa_BindVertexBuffers_no_error(GLuint first, GLsizei count,
const GLuint *buffers, const GLintptr *offsets,
const GLsizei *strides)
{
GET_CURRENT_CONTEXT(ctx);
vertex_array_vertex_buffers(ctx, ctx->Array.VAO, first, count,
buffers, offsets, strides, true,
"glBindVertexBuffers");
}
void GLAPIENTRY
_mesa_BindVertexBuffers(GLuint first, GLsizei count, const GLuint *buffers,
const GLintptr *offsets, const GLsizei *strides)
{
GET_CURRENT_CONTEXT(ctx);
/* The ARB_vertex_attrib_binding spec says:
*
* "An INVALID_OPERATION error is generated if no
* vertex array object is bound."
*/
if (ctx->API == API_OPENGL_CORE &&
ctx->Array.VAO == ctx->Array.DefaultVAO) {
_mesa_error(ctx, GL_INVALID_OPERATION,
"glBindVertexBuffers(No array object bound)");
return;
}
vertex_array_vertex_buffers_err(ctx, ctx->Array.VAO, first, count,
buffers, offsets, strides,
"glBindVertexBuffers");
}
void GLAPIENTRY
_mesa_VertexArrayVertexBuffers_no_error(GLuint vaobj, GLuint first,
GLsizei count, const GLuint *buffers,
const GLintptr *offsets,
const GLsizei *strides)
{
GET_CURRENT_CONTEXT(ctx);
struct gl_vertex_array_object *vao = _mesa_lookup_vao(ctx, vaobj);
vertex_array_vertex_buffers(ctx, vao, first, count,
buffers, offsets, strides, true,
"glVertexArrayVertexBuffers");
}
void GLAPIENTRY
_mesa_VertexArrayVertexBuffers(GLuint vaobj, GLuint first, GLsizei count,
const GLuint *buffers,
const GLintptr *offsets, const GLsizei *strides)
{
GET_CURRENT_CONTEXT(ctx);
struct gl_vertex_array_object *vao;
/* The ARB_direct_state_access specification says:
*
* "An INVALID_OPERATION error is generated by VertexArrayVertexBuffer
* if <vaobj> is not [compatibility profile: zero or] the name of an
* existing vertex array object."
*/
vao = _mesa_lookup_vao_err(ctx, vaobj, "glVertexArrayVertexBuffers");
if (!vao)
return;
vertex_array_vertex_buffers_err(ctx, vao, first, count,
buffers, offsets, strides,
"glVertexArrayVertexBuffers");
}
static void
vertex_attrib_format(GLuint attribIndex, GLint size, GLenum type,
GLboolean normalized, GLboolean integer,
GLboolean doubles, GLbitfield legalTypes,
GLsizei sizeMax, GLuint relativeOffset,
const char *func)
{
GET_CURRENT_CONTEXT(ctx);
ASSERT_OUTSIDE_BEGIN_END(ctx);
GLenum format = get_array_format(ctx, sizeMax, &size);
if (!_mesa_is_no_error_enabled(ctx)) {
/* The ARB_vertex_attrib_binding spec says:
*
* "An INVALID_OPERATION error is generated under any of the
* following conditions:
* - if no vertex array object is currently bound (see section
* 2.10);
* - ..."
*
* This error condition only applies to VertexAttribFormat and
* VertexAttribIFormat in the extension spec, but we assume that this
* is an oversight. In the OpenGL 4.3 (Core Profile) spec, it applies
* to all three functions.
*/
if ((ctx->API == API_OPENGL_CORE || _mesa_is_gles31(ctx)) &&
ctx->Array.VAO == ctx->Array.DefaultVAO) {
_mesa_error(ctx, GL_INVALID_OPERATION,
"%s(No array object bound)", func);
return;
}
/* The ARB_vertex_attrib_binding spec says:
*
* "The error INVALID_VALUE is generated if index is greater than or
* equal to the value of MAX_VERTEX_ATTRIBS."
*/
if (attribIndex >= ctx->Const.Program[MESA_SHADER_VERTEX].MaxAttribs) {
_mesa_error(ctx, GL_INVALID_VALUE,
"%s(attribindex=%u > "
"GL_MAX_VERTEX_ATTRIBS)",
func, attribIndex);
return;
}
if (!validate_array_format(ctx, func, ctx->Array.VAO,
VERT_ATTRIB_GENERIC(attribIndex),
legalTypes, 1, sizeMax, size, type,
normalized, integer, doubles, relativeOffset,
format)) {
return;
}
}
FLUSH_VERTICES(ctx, 0);
_mesa_update_array_format(ctx, ctx->Array.VAO,
VERT_ATTRIB_GENERIC(attribIndex), size, type,
format, normalized, integer, doubles,
relativeOffset);
}
void GLAPIENTRY
_mesa_VertexAttribFormat(GLuint attribIndex, GLint size, GLenum type,
GLboolean normalized, GLuint relativeOffset)
{
vertex_attrib_format(attribIndex, size, type, normalized,
GL_FALSE, GL_FALSE, ATTRIB_FORMAT_TYPES_MASK,
BGRA_OR_4, relativeOffset,
"glVertexAttribFormat");
}
void GLAPIENTRY
_mesa_VertexAttribIFormat(GLuint attribIndex, GLint size, GLenum type,
GLuint relativeOffset)
{
vertex_attrib_format(attribIndex, size, type, GL_FALSE,
GL_TRUE, GL_FALSE, ATTRIB_IFORMAT_TYPES_MASK, 4,
relativeOffset, "glVertexAttribIFormat");
}
void GLAPIENTRY
_mesa_VertexAttribLFormat(GLuint attribIndex, GLint size, GLenum type,
GLuint relativeOffset)
{
vertex_attrib_format(attribIndex, size, type, GL_FALSE, GL_FALSE,
GL_TRUE, ATTRIB_LFORMAT_TYPES_MASK, 4,
relativeOffset, "glVertexAttribLFormat");
}
static void
vertex_array_attrib_format(GLuint vaobj, GLuint attribIndex, GLint size,
GLenum type, GLboolean normalized,
GLboolean integer, GLboolean doubles,
GLbitfield legalTypes, GLsizei sizeMax,
GLuint relativeOffset, const char *func)
{
GET_CURRENT_CONTEXT(ctx);
struct gl_vertex_array_object *vao;
ASSERT_OUTSIDE_BEGIN_END(ctx);
GLenum format = get_array_format(ctx, sizeMax, &size);
if (_mesa_is_no_error_enabled(ctx)) {
vao = _mesa_lookup_vao(ctx, vaobj);
if (!vao)
return;
} else {
/* The ARB_direct_state_access spec says:
*
* "An INVALID_OPERATION error is generated by
* VertexArrayAttrib*Format if <vaobj> is not [compatibility profile:
* zero or] the name of an existing vertex array object."
*/
vao = _mesa_lookup_vao_err(ctx, vaobj, func);
if (!vao)
return;
/* The ARB_vertex_attrib_binding spec says:
*
* "The error INVALID_VALUE is generated if index is greater than or
* equal to the value of MAX_VERTEX_ATTRIBS."
*/
if (attribIndex >= ctx->Const.Program[MESA_SHADER_VERTEX].MaxAttribs) {
_mesa_error(ctx, GL_INVALID_VALUE,
"%s(attribindex=%u > GL_MAX_VERTEX_ATTRIBS)",
func, attribIndex);
return;
}
if (!validate_array_format(ctx, func, vao,
VERT_ATTRIB_GENERIC(attribIndex),
legalTypes, 1, sizeMax, size, type,
normalized, integer, doubles, relativeOffset,
format)) {
return;
}
}
FLUSH_VERTICES(ctx, 0);
_mesa_update_array_format(ctx, vao, VERT_ATTRIB_GENERIC(attribIndex), size,
type, format, normalized, integer, doubles,
relativeOffset);
}
void GLAPIENTRY
_mesa_VertexArrayAttribFormat(GLuint vaobj, GLuint attribIndex, GLint size,
GLenum type, GLboolean normalized,
GLuint relativeOffset)
{
vertex_array_attrib_format(vaobj, attribIndex, size, type, normalized,
GL_FALSE, GL_FALSE, ATTRIB_FORMAT_TYPES_MASK,
BGRA_OR_4, relativeOffset,
"glVertexArrayAttribFormat");
}
void GLAPIENTRY
_mesa_VertexArrayAttribIFormat(GLuint vaobj, GLuint attribIndex,
GLint size, GLenum type,
GLuint relativeOffset)
{
vertex_array_attrib_format(vaobj, attribIndex, size, type, GL_FALSE,
GL_TRUE, GL_FALSE, ATTRIB_IFORMAT_TYPES_MASK,
4, relativeOffset,
"glVertexArrayAttribIFormat");
}
void GLAPIENTRY
_mesa_VertexArrayAttribLFormat(GLuint vaobj, GLuint attribIndex,
GLint size, GLenum type,
GLuint relativeOffset)
{
vertex_array_attrib_format(vaobj, attribIndex, size, type, GL_FALSE,
GL_FALSE, GL_TRUE, ATTRIB_LFORMAT_TYPES_MASK,
4, relativeOffset,
"glVertexArrayAttribLFormat");
}
static void
vertex_array_attrib_binding(struct gl_context *ctx,
struct gl_vertex_array_object *vao,
GLuint attribIndex, GLuint bindingIndex,
const char *func)
{
ASSERT_OUTSIDE_BEGIN_END(ctx);
/* The ARB_vertex_attrib_binding spec says:
*
* "<attribindex> must be less than the value of MAX_VERTEX_ATTRIBS and
* <bindingindex> must be less than the value of
* MAX_VERTEX_ATTRIB_BINDINGS, otherwise the error INVALID_VALUE
* is generated."
*/
if (attribIndex >= ctx->Const.Program[MESA_SHADER_VERTEX].MaxAttribs) {
_mesa_error(ctx, GL_INVALID_VALUE,
"%s(attribindex=%u >= "
"GL_MAX_VERTEX_ATTRIBS)",
func, attribIndex);
return;
}
if (bindingIndex >= ctx->Const.MaxVertexAttribBindings) {
_mesa_error(ctx, GL_INVALID_VALUE,
"%s(bindingindex=%u >= "
"GL_MAX_VERTEX_ATTRIB_BINDINGS)",
func, bindingIndex);
return;
}
assert(VERT_ATTRIB_GENERIC(attribIndex) < ARRAY_SIZE(vao->VertexAttrib));
vertex_attrib_binding(ctx, vao,
VERT_ATTRIB_GENERIC(attribIndex),
VERT_ATTRIB_GENERIC(bindingIndex));
}
void GLAPIENTRY
_mesa_VertexAttribBinding_no_error(GLuint attribIndex, GLuint bindingIndex)
{
GET_CURRENT_CONTEXT(ctx);
vertex_attrib_binding(ctx, ctx->Array.VAO,
VERT_ATTRIB_GENERIC(attribIndex),
VERT_ATTRIB_GENERIC(bindingIndex));
}
void GLAPIENTRY
_mesa_VertexAttribBinding(GLuint attribIndex, GLuint bindingIndex)
{
GET_CURRENT_CONTEXT(ctx);
/* The ARB_vertex_attrib_binding spec says:
*
* "An INVALID_OPERATION error is generated if no vertex array object
* is bound."
*/
if ((ctx->API == API_OPENGL_CORE || _mesa_is_gles31(ctx)) &&
ctx->Array.VAO == ctx->Array.DefaultVAO) {
_mesa_error(ctx, GL_INVALID_OPERATION,
"glVertexAttribBinding(No array object bound)");
return;
}
vertex_array_attrib_binding(ctx, ctx->Array.VAO,
attribIndex, bindingIndex,
"glVertexAttribBinding");
}
void GLAPIENTRY
_mesa_VertexArrayAttribBinding_no_error(GLuint vaobj, GLuint attribIndex,
GLuint bindingIndex)
{
GET_CURRENT_CONTEXT(ctx);
struct gl_vertex_array_object *vao = _mesa_lookup_vao(ctx, vaobj);
vertex_attrib_binding(ctx, vao,
VERT_ATTRIB_GENERIC(attribIndex),
VERT_ATTRIB_GENERIC(bindingIndex));
}
void GLAPIENTRY
_mesa_VertexArrayAttribBinding(GLuint vaobj, GLuint attribIndex, GLuint bindingIndex)
{
GET_CURRENT_CONTEXT(ctx);
struct gl_vertex_array_object *vao;
/* The ARB_direct_state_access specification says:
*
* "An INVALID_OPERATION error is generated by VertexArrayAttribBinding
* if <vaobj> is not [compatibility profile: zero or] the name of an
* existing vertex array object."
*/
vao = _mesa_lookup_vao_err(ctx, vaobj, "glVertexArrayAttribBinding");
if (!vao)
return;
vertex_array_attrib_binding(ctx, vao, attribIndex, bindingIndex,
"glVertexArrayAttribBinding");
}
static void
vertex_array_binding_divisor(struct gl_context *ctx,
struct gl_vertex_array_object *vao,
GLuint bindingIndex, GLuint divisor,
const char *func)
{
ASSERT_OUTSIDE_BEGIN_END(ctx);
if (!ctx->Extensions.ARB_instanced_arrays) {
_mesa_error(ctx, GL_INVALID_OPERATION, "%s()", func);
return;
}
/* The ARB_vertex_attrib_binding spec says:
*
* "An INVALID_VALUE error is generated if <bindingindex> is greater
* than or equal to the value of MAX_VERTEX_ATTRIB_BINDINGS."
*/
if (bindingIndex >= ctx->Const.MaxVertexAttribBindings) {
_mesa_error(ctx, GL_INVALID_VALUE,
"%s(bindingindex=%u > "
"GL_MAX_VERTEX_ATTRIB_BINDINGS)",
func, bindingIndex);
return;
}
vertex_binding_divisor(ctx, vao, VERT_ATTRIB_GENERIC(bindingIndex), divisor);
}
void GLAPIENTRY
_mesa_VertexBindingDivisor_no_error(GLuint bindingIndex, GLuint divisor)
{
GET_CURRENT_CONTEXT(ctx);
vertex_binding_divisor(ctx, ctx->Array.VAO,
VERT_ATTRIB_GENERIC(bindingIndex), divisor);
}
void GLAPIENTRY
_mesa_VertexBindingDivisor(GLuint bindingIndex, GLuint divisor)
{
GET_CURRENT_CONTEXT(ctx);
/* The ARB_vertex_attrib_binding spec says:
*
* "An INVALID_OPERATION error is generated if no vertex array object
* is bound."
*/
if ((ctx->API == API_OPENGL_CORE || _mesa_is_gles31(ctx)) &&
ctx->Array.VAO == ctx->Array.DefaultVAO) {
_mesa_error(ctx, GL_INVALID_OPERATION,
"glVertexBindingDivisor(No array object bound)");
return;
}
vertex_array_binding_divisor(ctx, ctx->Array.VAO,
bindingIndex, divisor,
"glVertexBindingDivisor");
}
void GLAPIENTRY
_mesa_VertexArrayBindingDivisor_no_error(GLuint vaobj, GLuint bindingIndex,
GLuint divisor)
{
GET_CURRENT_CONTEXT(ctx);
struct gl_vertex_array_object *vao = _mesa_lookup_vao(ctx, vaobj);
vertex_binding_divisor(ctx, vao, VERT_ATTRIB_GENERIC(bindingIndex), divisor);
}
void GLAPIENTRY
_mesa_VertexArrayBindingDivisor(GLuint vaobj, GLuint bindingIndex,
GLuint divisor)
{
struct gl_vertex_array_object *vao;
GET_CURRENT_CONTEXT(ctx);
/* The ARB_direct_state_access specification says:
*
* "An INVALID_OPERATION error is generated by VertexArrayBindingDivisor
* if <vaobj> is not [compatibility profile: zero or] the name of an
* existing vertex array object."
*/
vao = _mesa_lookup_vao_err(ctx, vaobj, "glVertexArrayBindingDivisor");
if (!vao)
return;
vertex_array_binding_divisor(ctx, vao, bindingIndex, divisor,
"glVertexArrayBindingDivisor");
}
/**
* Copy one client vertex array to another.
*/
void
_mesa_copy_client_array(struct gl_context *ctx,
struct gl_vertex_array *dst,
struct gl_vertex_array *src)
{
dst->Size = src->Size;
dst->Type = src->Type;
dst->Format = src->Format;
dst->StrideB = src->StrideB;
dst->Ptr = src->Ptr;
dst->Normalized = src->Normalized;
dst->Integer = src->Integer;
dst->Doubles = src->Doubles;
dst->InstanceDivisor = src->InstanceDivisor;
dst->_ElementSize = src->_ElementSize;
_mesa_reference_buffer_object(ctx, &dst->BufferObj, src->BufferObj);
}
void
_mesa_copy_vertex_attrib_array(struct gl_context *ctx,
struct gl_array_attributes *dst,
const struct gl_array_attributes *src)
{
dst->Size = src->Size;
dst->Type = src->Type;
dst->Format = src->Format;
dst->BufferBindingIndex = src->BufferBindingIndex;
dst->RelativeOffset = src->RelativeOffset;
dst->Format = src->Format;
dst->Integer = src->Integer;
dst->Doubles = src->Doubles;
dst->Normalized = src->Normalized;
dst->Ptr = src->Ptr;
dst->Enabled = src->Enabled;
dst->_ElementSize = src->_ElementSize;
}
void
_mesa_copy_vertex_buffer_binding(struct gl_context *ctx,
struct gl_vertex_buffer_binding *dst,
const struct gl_vertex_buffer_binding *src)
{
dst->Offset = src->Offset;
dst->Stride = src->Stride;
dst->InstanceDivisor = src->InstanceDivisor;
dst->_BoundArrays = src->_BoundArrays;
_mesa_reference_buffer_object(ctx, &dst->BufferObj, src->BufferObj);
}
/**
* Print current vertex object/array info. For debug.
*/
void
_mesa_print_arrays(struct gl_context *ctx)
{
const struct gl_vertex_array_object *vao = ctx->Array.VAO;
fprintf(stderr, "Array Object %u\n", vao->Name);
unsigned i;
for (i = 0; i < VERT_ATTRIB_MAX; ++i) {
const struct gl_array_attributes *array = &vao->VertexAttrib[i];
if (!array->Enabled)
continue;
const struct gl_vertex_buffer_binding *binding =
&vao->BufferBinding[array->BufferBindingIndex];
const struct gl_buffer_object *bo = binding->BufferObj;
fprintf(stderr, " %s: Ptr=%p, Type=%s, Size=%d, ElemSize=%u, "
"Stride=%d, Buffer=%u(Size %lu)\n",
gl_vert_attrib_name((gl_vert_attrib)i),
array->Ptr, _mesa_enum_to_string(array->Type), array->Size,
array->_ElementSize, binding->Stride, bo->Name,
(unsigned long) bo->Size);
}
}
/**
* Initialize vertex array state for given context.
*/
void
_mesa_init_varray(struct gl_context *ctx)
{
ctx->Array.DefaultVAO = _mesa_new_vao(ctx, 0);
_mesa_reference_vao(ctx, &ctx->Array.VAO, ctx->Array.DefaultVAO);
ctx->Array.ActiveTexture = 0; /* GL_ARB_multitexture */
ctx->Array.Objects = _mesa_NewHashTable();
}
/**
* Callback for deleting an array object. Called by _mesa_HashDeleteAll().
*/
static void
delete_arrayobj_cb(GLuint id, void *data, void *userData)
{
struct gl_vertex_array_object *vao = (struct gl_vertex_array_object *) data;
struct gl_context *ctx = (struct gl_context *) userData;
_mesa_delete_vao(ctx, vao);
}
/**
* Free vertex array state for given context.
*/
void
_mesa_free_varray_data(struct gl_context *ctx)
{
_mesa_HashDeleteAll(ctx->Array.Objects, delete_arrayobj_cb, ctx);
_mesa_DeleteHashTable(ctx->Array.Objects);
}