/*
* Mesa 3-D graphics library
*
* Copyright (C) 1999-2008 Brian Paul All Rights Reserved.
* Copyright (C) 2009 VMware, Inc. All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*/
/**
* \file dlist.c
* Display lists management functions.
*/
#include "c99_math.h"
#include "glheader.h"
#include "imports.h"
#include "api_arrayelt.h"
#include "api_exec.h"
#include "api_loopback.h"
#include "api_validate.h"
#include "atifragshader.h"
#include "config.h"
#include "bufferobj.h"
#include "arrayobj.h"
#include "context.h"
#include "dlist.h"
#include "enums.h"
#include "eval.h"
#include "fbobject.h"
#include "framebuffer.h"
#include "glapi/glapi.h"
#include "glformats.h"
#include "hash.h"
#include "image.h"
#include "light.h"
#include "macros.h"
#include "pack.h"
#include "pbo.h"
#include "queryobj.h"
#include "samplerobj.h"
#include "shaderapi.h"
#include "syncobj.h"
#include "teximage.h"
#include "texstorage.h"
#include "mtypes.h"
#include "varray.h"
#include "arbprogram.h"
#include "transformfeedback.h"
#include "math/m_matrix.h"
#include "main/dispatch.h"
#include "vbo/vbo.h"
#define USE_BITMAP_ATLAS 1
/**
* Other parts of Mesa (such as the VBO module) can plug into the display
* list system. This structure describes new display list instructions.
*/
struct gl_list_instruction
{
GLuint Size;
void (*Execute)( struct gl_context *ctx, void *data );
void (*Destroy)( struct gl_context *ctx, void *data );
void (*Print)( struct gl_context *ctx, void *data, FILE *f );
};
#define MAX_DLIST_EXT_OPCODES 16
/**
* Used by device drivers to hook new commands into display lists.
*/
struct gl_list_extensions
{
struct gl_list_instruction Opcode[MAX_DLIST_EXT_OPCODES];
GLuint NumOpcodes;
};
/**
* Flush vertices.
*
* \param ctx GL context.
*
* Checks if dd_function_table::SaveNeedFlush is marked to flush
* stored (save) vertices, and calls vbo_save_SaveFlushVertices if so.
*/
#define SAVE_FLUSH_VERTICES(ctx) \
do { \
if (ctx->Driver.SaveNeedFlush) \
vbo_save_SaveFlushVertices(ctx); \
} while (0)
/**
* Macro to assert that the API call was made outside the
* glBegin()/glEnd() pair, with return value.
*
* \param ctx GL context.
* \param retval value to return value in case the assertion fails.
*/
#define ASSERT_OUTSIDE_SAVE_BEGIN_END_WITH_RETVAL(ctx, retval) \
do { \
if (ctx->Driver.CurrentSavePrimitive <= PRIM_MAX) { \
_mesa_compile_error( ctx, GL_INVALID_OPERATION, "glBegin/End" ); \
return retval; \
} \
} while (0)
/**
* Macro to assert that the API call was made outside the
* glBegin()/glEnd() pair.
*
* \param ctx GL context.
*/
#define ASSERT_OUTSIDE_SAVE_BEGIN_END(ctx) \
do { \
if (ctx->Driver.CurrentSavePrimitive <= PRIM_MAX) { \
_mesa_compile_error( ctx, GL_INVALID_OPERATION, "glBegin/End" ); \
return; \
} \
} while (0)
/**
* Macro to assert that the API call was made outside the
* glBegin()/glEnd() pair and flush the vertices.
*
* \param ctx GL context.
*/
#define ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx) \
do { \
ASSERT_OUTSIDE_SAVE_BEGIN_END(ctx); \
SAVE_FLUSH_VERTICES(ctx); \
} while (0)
/**
* Macro to assert that the API call was made outside the
* glBegin()/glEnd() pair and flush the vertices, with return value.
*
* \param ctx GL context.
* \param retval value to return value in case the assertion fails.
*/
#define ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH_WITH_RETVAL(ctx, retval) \
do { \
ASSERT_OUTSIDE_SAVE_BEGIN_END_WITH_RETVAL(ctx, retval); \
SAVE_FLUSH_VERTICES(ctx); \
} while (0)
/**
* Display list opcodes.
*
* The fact that these identifiers are assigned consecutive
* integer values starting at 0 is very important, see InstSize array usage)
*/
typedef enum
{
OPCODE_INVALID = -1, /* Force signed enum */
OPCODE_ACCUM,
OPCODE_ALPHA_FUNC,
OPCODE_BIND_TEXTURE,
OPCODE_BITMAP,
OPCODE_BLEND_COLOR,
OPCODE_BLEND_EQUATION,
OPCODE_BLEND_EQUATION_SEPARATE,
OPCODE_BLEND_FUNC_SEPARATE,
OPCODE_BLEND_EQUATION_I,
OPCODE_BLEND_EQUATION_SEPARATE_I,
OPCODE_BLEND_FUNC_I,
OPCODE_BLEND_FUNC_SEPARATE_I,
OPCODE_CALL_LIST,
OPCODE_CALL_LISTS,
OPCODE_CLEAR,
OPCODE_CLEAR_ACCUM,
OPCODE_CLEAR_COLOR,
OPCODE_CLEAR_DEPTH,
OPCODE_CLEAR_INDEX,
OPCODE_CLEAR_STENCIL,
OPCODE_CLEAR_BUFFER_IV,
OPCODE_CLEAR_BUFFER_UIV,
OPCODE_CLEAR_BUFFER_FV,
OPCODE_CLEAR_BUFFER_FI,
OPCODE_CLIP_PLANE,
OPCODE_COLOR_MASK,
OPCODE_COLOR_MASK_INDEXED,
OPCODE_COLOR_MATERIAL,
OPCODE_COPY_PIXELS,
OPCODE_COPY_TEX_IMAGE1D,
OPCODE_COPY_TEX_IMAGE2D,
OPCODE_COPY_TEX_SUB_IMAGE1D,
OPCODE_COPY_TEX_SUB_IMAGE2D,
OPCODE_COPY_TEX_SUB_IMAGE3D,
OPCODE_CULL_FACE,
OPCODE_DEPTH_FUNC,
OPCODE_DEPTH_MASK,
OPCODE_DEPTH_RANGE,
OPCODE_DISABLE,
OPCODE_DISABLE_INDEXED,
OPCODE_DRAW_BUFFER,
OPCODE_DRAW_PIXELS,
OPCODE_ENABLE,
OPCODE_ENABLE_INDEXED,
OPCODE_EVALMESH1,
OPCODE_EVALMESH2,
OPCODE_FOG,
OPCODE_FRONT_FACE,
OPCODE_FRUSTUM,
OPCODE_HINT,
OPCODE_INDEX_MASK,
OPCODE_INIT_NAMES,
OPCODE_LIGHT,
OPCODE_LIGHT_MODEL,
OPCODE_LINE_STIPPLE,
OPCODE_LINE_WIDTH,
OPCODE_LIST_BASE,
OPCODE_LOAD_IDENTITY,
OPCODE_LOAD_MATRIX,
OPCODE_LOAD_NAME,
OPCODE_LOGIC_OP,
OPCODE_MAP1,
OPCODE_MAP2,
OPCODE_MAPGRID1,
OPCODE_MAPGRID2,
OPCODE_MATRIX_MODE,
OPCODE_MULT_MATRIX,
OPCODE_ORTHO,
OPCODE_PASSTHROUGH,
OPCODE_PIXEL_MAP,
OPCODE_PIXEL_TRANSFER,
OPCODE_PIXEL_ZOOM,
OPCODE_POINT_SIZE,
OPCODE_POINT_PARAMETERS,
OPCODE_POLYGON_MODE,
OPCODE_POLYGON_STIPPLE,
OPCODE_POLYGON_OFFSET,
OPCODE_POP_ATTRIB,
OPCODE_POP_MATRIX,
OPCODE_POP_NAME,
OPCODE_PRIORITIZE_TEXTURE,
OPCODE_PUSH_ATTRIB,
OPCODE_PUSH_MATRIX,
OPCODE_PUSH_NAME,
OPCODE_RASTER_POS,
OPCODE_READ_BUFFER,
OPCODE_ROTATE,
OPCODE_SCALE,
OPCODE_SCISSOR,
OPCODE_SELECT_TEXTURE_SGIS,
OPCODE_SELECT_TEXTURE_COORD_SET,
OPCODE_SHADE_MODEL,
OPCODE_STENCIL_FUNC,
OPCODE_STENCIL_MASK,
OPCODE_STENCIL_OP,
OPCODE_TEXENV,
OPCODE_TEXGEN,
OPCODE_TEXPARAMETER,
OPCODE_TEX_IMAGE1D,
OPCODE_TEX_IMAGE2D,
OPCODE_TEX_IMAGE3D,
OPCODE_TEX_SUB_IMAGE1D,
OPCODE_TEX_SUB_IMAGE2D,
OPCODE_TEX_SUB_IMAGE3D,
OPCODE_TRANSLATE,
OPCODE_VIEWPORT,
OPCODE_WINDOW_POS,
/* GL_ARB_multitexture */
OPCODE_ACTIVE_TEXTURE,
/* GL_ARB_texture_compression */
OPCODE_COMPRESSED_TEX_IMAGE_1D,
OPCODE_COMPRESSED_TEX_IMAGE_2D,
OPCODE_COMPRESSED_TEX_IMAGE_3D,
OPCODE_COMPRESSED_TEX_SUB_IMAGE_1D,
OPCODE_COMPRESSED_TEX_SUB_IMAGE_2D,
OPCODE_COMPRESSED_TEX_SUB_IMAGE_3D,
/* GL_ARB_multisample */
OPCODE_SAMPLE_COVERAGE,
/* GL_ARB_window_pos */
OPCODE_WINDOW_POS_ARB,
/* GL_ARB_vertex_program */
OPCODE_BIND_PROGRAM_ARB,
OPCODE_PROGRAM_LOCAL_PARAMETER_ARB,
/* GL_EXT_stencil_two_side */
OPCODE_ACTIVE_STENCIL_FACE_EXT,
/* GL_EXT_depth_bounds_test */
OPCODE_DEPTH_BOUNDS_EXT,
/* GL_ARB_vertex/fragment_program */
OPCODE_PROGRAM_STRING_ARB,
OPCODE_PROGRAM_ENV_PARAMETER_ARB,
/* GL_ARB_occlusion_query */
OPCODE_BEGIN_QUERY_ARB,
OPCODE_END_QUERY_ARB,
/* GL_ARB_draw_buffers */
OPCODE_DRAW_BUFFERS_ARB,
/* GL_ATI_fragment_shader */
OPCODE_BIND_FRAGMENT_SHADER_ATI,
OPCODE_SET_FRAGMENT_SHADER_CONSTANTS_ATI,
/* OpenGL 2.0 */
OPCODE_STENCIL_FUNC_SEPARATE,
OPCODE_STENCIL_OP_SEPARATE,
OPCODE_STENCIL_MASK_SEPARATE,
/* GL_NV_primitive_restart */
OPCODE_PRIMITIVE_RESTART_NV,
/* GL_ARB_shader_objects */
OPCODE_USE_PROGRAM,
OPCODE_UNIFORM_1F,
OPCODE_UNIFORM_2F,
OPCODE_UNIFORM_3F,
OPCODE_UNIFORM_4F,
OPCODE_UNIFORM_1FV,
OPCODE_UNIFORM_2FV,
OPCODE_UNIFORM_3FV,
OPCODE_UNIFORM_4FV,
OPCODE_UNIFORM_1I,
OPCODE_UNIFORM_2I,
OPCODE_UNIFORM_3I,
OPCODE_UNIFORM_4I,
OPCODE_UNIFORM_1IV,
OPCODE_UNIFORM_2IV,
OPCODE_UNIFORM_3IV,
OPCODE_UNIFORM_4IV,
OPCODE_UNIFORM_MATRIX22,
OPCODE_UNIFORM_MATRIX33,
OPCODE_UNIFORM_MATRIX44,
OPCODE_UNIFORM_MATRIX23,
OPCODE_UNIFORM_MATRIX32,
OPCODE_UNIFORM_MATRIX24,
OPCODE_UNIFORM_MATRIX42,
OPCODE_UNIFORM_MATRIX34,
OPCODE_UNIFORM_MATRIX43,
/* OpenGL 3.0 */
OPCODE_UNIFORM_1UI,
OPCODE_UNIFORM_2UI,
OPCODE_UNIFORM_3UI,
OPCODE_UNIFORM_4UI,
OPCODE_UNIFORM_1UIV,
OPCODE_UNIFORM_2UIV,
OPCODE_UNIFORM_3UIV,
OPCODE_UNIFORM_4UIV,
/* OpenGL 4.2 / GL_ARB_separate_shader_objects */
OPCODE_USE_PROGRAM_STAGES,
OPCODE_PROGRAM_UNIFORM_1F,
OPCODE_PROGRAM_UNIFORM_2F,
OPCODE_PROGRAM_UNIFORM_3F,
OPCODE_PROGRAM_UNIFORM_4F,
OPCODE_PROGRAM_UNIFORM_1FV,
OPCODE_PROGRAM_UNIFORM_2FV,
OPCODE_PROGRAM_UNIFORM_3FV,
OPCODE_PROGRAM_UNIFORM_4FV,
OPCODE_PROGRAM_UNIFORM_1I,
OPCODE_PROGRAM_UNIFORM_2I,
OPCODE_PROGRAM_UNIFORM_3I,
OPCODE_PROGRAM_UNIFORM_4I,
OPCODE_PROGRAM_UNIFORM_1IV,
OPCODE_PROGRAM_UNIFORM_2IV,
OPCODE_PROGRAM_UNIFORM_3IV,
OPCODE_PROGRAM_UNIFORM_4IV,
OPCODE_PROGRAM_UNIFORM_1UI,
OPCODE_PROGRAM_UNIFORM_2UI,
OPCODE_PROGRAM_UNIFORM_3UI,
OPCODE_PROGRAM_UNIFORM_4UI,
OPCODE_PROGRAM_UNIFORM_1UIV,
OPCODE_PROGRAM_UNIFORM_2UIV,
OPCODE_PROGRAM_UNIFORM_3UIV,
OPCODE_PROGRAM_UNIFORM_4UIV,
OPCODE_PROGRAM_UNIFORM_MATRIX22F,
OPCODE_PROGRAM_UNIFORM_MATRIX33F,
OPCODE_PROGRAM_UNIFORM_MATRIX44F,
OPCODE_PROGRAM_UNIFORM_MATRIX23F,
OPCODE_PROGRAM_UNIFORM_MATRIX32F,
OPCODE_PROGRAM_UNIFORM_MATRIX24F,
OPCODE_PROGRAM_UNIFORM_MATRIX42F,
OPCODE_PROGRAM_UNIFORM_MATRIX34F,
OPCODE_PROGRAM_UNIFORM_MATRIX43F,
/* GL_ARB_clip_control */
OPCODE_CLIP_CONTROL,
/* GL_ARB_color_buffer_float */
OPCODE_CLAMP_COLOR,
/* GL_EXT_framebuffer_blit */
OPCODE_BLIT_FRAMEBUFFER,
/* Vertex attributes -- fallback for when optimized display
* list build isn't active.
*/
OPCODE_ATTR_1F_NV,
OPCODE_ATTR_2F_NV,
OPCODE_ATTR_3F_NV,
OPCODE_ATTR_4F_NV,
OPCODE_ATTR_1F_ARB,
OPCODE_ATTR_2F_ARB,
OPCODE_ATTR_3F_ARB,
OPCODE_ATTR_4F_ARB,
OPCODE_MATERIAL,
OPCODE_BEGIN,
OPCODE_END,
OPCODE_RECTF,
OPCODE_EVAL_C1,
OPCODE_EVAL_C2,
OPCODE_EVAL_P1,
OPCODE_EVAL_P2,
/* GL_EXT_provoking_vertex */
OPCODE_PROVOKING_VERTEX,
/* GL_EXT_transform_feedback */
OPCODE_BEGIN_TRANSFORM_FEEDBACK,
OPCODE_END_TRANSFORM_FEEDBACK,
OPCODE_BIND_TRANSFORM_FEEDBACK,
OPCODE_PAUSE_TRANSFORM_FEEDBACK,
OPCODE_RESUME_TRANSFORM_FEEDBACK,
OPCODE_DRAW_TRANSFORM_FEEDBACK,
/* GL_EXT_texture_integer */
OPCODE_CLEARCOLOR_I,
OPCODE_CLEARCOLOR_UI,
OPCODE_TEXPARAMETER_I,
OPCODE_TEXPARAMETER_UI,
/* GL_ARB_instanced_arrays */
OPCODE_VERTEX_ATTRIB_DIVISOR,
/* GL_NV_texture_barrier */
OPCODE_TEXTURE_BARRIER_NV,
/* GL_ARB_sampler_object */
OPCODE_BIND_SAMPLER,
OPCODE_SAMPLER_PARAMETERIV,
OPCODE_SAMPLER_PARAMETERFV,
OPCODE_SAMPLER_PARAMETERIIV,
OPCODE_SAMPLER_PARAMETERUIV,
/* GL_ARB_sync */
OPCODE_WAIT_SYNC,
/* GL_NV_conditional_render */
OPCODE_BEGIN_CONDITIONAL_RENDER,
OPCODE_END_CONDITIONAL_RENDER,
/* ARB_timer_query */
OPCODE_QUERY_COUNTER,
/* ARB_transform_feedback3 */
OPCODE_BEGIN_QUERY_INDEXED,
OPCODE_END_QUERY_INDEXED,
OPCODE_DRAW_TRANSFORM_FEEDBACK_STREAM,
/* ARB_transform_feedback_instanced */
OPCODE_DRAW_TRANSFORM_FEEDBACK_INSTANCED,
OPCODE_DRAW_TRANSFORM_FEEDBACK_STREAM_INSTANCED,
/* ARB_uniform_buffer_object */
OPCODE_UNIFORM_BLOCK_BINDING,
/* EXT_polygon_offset_clamp */
OPCODE_POLYGON_OFFSET_CLAMP,
/* EXT_window_rectangles */
OPCODE_WINDOW_RECTANGLES,
/* The following three are meta instructions */
OPCODE_ERROR, /* raise compiled-in error */
OPCODE_CONTINUE,
OPCODE_NOP, /* No-op (used for 8-byte alignment */
OPCODE_END_OF_LIST,
OPCODE_EXT_0
} OpCode;
/**
* Display list node.
*
* Display list instructions are stored as sequences of "nodes". Nodes
* are allocated in blocks. Each block has BLOCK_SIZE nodes. Blocks
* are linked together with a pointer.
*
* Each instruction in the display list is stored as a sequence of
* contiguous nodes in memory.
* Each node is the union of a variety of data types.
*
* Note, all of these members should be 4 bytes in size or less for the
* sake of compact display lists. We store 8-byte pointers in a pair of
* these nodes using the save/get_pointer() functions below.
*/
union gl_dlist_node
{
OpCode opcode;
GLboolean b;
GLbitfield bf;
GLubyte ub;
GLshort s;
GLushort us;
GLint i;
GLuint ui;
GLenum e;
GLfloat f;
GLsizei si;
};
typedef union gl_dlist_node Node;
/** How many 4-byte dwords to store a pointer */
#define POINTER_DWORDS (sizeof(void *) / 4)
/* We want to keep sizeof(union gl_dlist_node) == 4 to minimize
* space for display lists. The following types and functions are
* used to help store 4- and 8-byte pointers in 1 or 2 dlist_nodes.
*/
union pointer
{
void *ptr;
GLuint dwords[POINTER_DWORDS];
};
/**
* Save a 4 or 8-byte pointer at dest (and dest+1).
*/
static inline void
save_pointer(Node *dest, void *src)
{
union pointer p;
unsigned i;
STATIC_ASSERT(POINTER_DWORDS == 1 || POINTER_DWORDS == 2);
STATIC_ASSERT(sizeof(Node) == 4);
p.ptr = src;
for (i = 0; i < POINTER_DWORDS; i++)
dest[i].ui = p.dwords[i];
}
/**
* Retrieve a 4 or 8-byte pointer from node (node+1).
*/
static inline void *
get_pointer(const Node *node)
{
union pointer p;
unsigned i;
for (i = 0; i < POINTER_DWORDS; i++)
p.dwords[i] = node[i].ui;
return p.ptr;
}
/**
* Used to store a 64-bit uint in a pair of "Nodes" for the sake of 32-bit
* environment.
*/
union uint64_pair
{
GLuint64 uint64;
GLuint uint32[2];
};
/**
* How many nodes to allocate at a time. Note that bulk vertex data
* from glBegin/glVertex/glEnd primitives will typically wind up in
* a VBO, and not directly in the display list itself.
*/
#define BLOCK_SIZE 256
/**
* Number of nodes of storage needed for each instruction.
* Sizes for dynamically allocated opcodes are stored in the context struct.
*/
static GLuint InstSize[OPCODE_END_OF_LIST + 1];
void mesa_print_display_list(GLuint list);
/**
* Does the given display list only contain a single glBitmap call?
*/
static bool
is_bitmap_list(const struct gl_display_list *dlist)
{
const Node *n = dlist->Head;
if (n[0].opcode == OPCODE_BITMAP) {
n += InstSize[OPCODE_BITMAP];
if (n[0].opcode == OPCODE_END_OF_LIST)
return true;
}
return false;
}
/**
* Is the given display list an empty list?
*/
static bool
is_empty_list(const struct gl_display_list *dlist)
{
const Node *n = dlist->Head;
return n[0].opcode == OPCODE_END_OF_LIST;
}
/**
* Delete/free a gl_bitmap_atlas. Called during context tear-down.
*/
void
_mesa_delete_bitmap_atlas(struct gl_context *ctx, struct gl_bitmap_atlas *atlas)
{
if (atlas->texObj) {
ctx->Driver.DeleteTexture(ctx, atlas->texObj);
}
free(atlas->glyphs);
}
/**
* Lookup a gl_bitmap_atlas by listBase ID.
*/
static struct gl_bitmap_atlas *
lookup_bitmap_atlas(struct gl_context *ctx, GLuint listBase)
{
struct gl_bitmap_atlas *atlas;
assert(listBase > 0);
atlas = _mesa_HashLookup(ctx->Shared->BitmapAtlas, listBase);
return atlas;
}
/**
* Create new bitmap atlas and insert into hash table.
*/
static struct gl_bitmap_atlas *
alloc_bitmap_atlas(struct gl_context *ctx, GLuint listBase)
{
struct gl_bitmap_atlas *atlas;
assert(listBase > 0);
assert(_mesa_HashLookup(ctx->Shared->BitmapAtlas, listBase) == NULL);
atlas = calloc(1, sizeof(*atlas));
if (atlas) {
_mesa_HashInsert(ctx->Shared->BitmapAtlas, listBase, atlas);
}
return atlas;
}
/**
* Try to build a bitmap atlas. This involves examining a sequence of
* display lists which contain glBitmap commands and putting the bitmap
* images into a texture map (the atlas).
* If we succeed, gl_bitmap_atlas::complete will be set to true.
* If we fail, gl_bitmap_atlas::incomplete will be set to true.
*/
static void
build_bitmap_atlas(struct gl_context *ctx, struct gl_bitmap_atlas *atlas,
GLuint listBase)
{
unsigned i, row_height = 0, xpos = 0, ypos = 0;
GLubyte *map;
GLint map_stride;
assert(atlas);
assert(!atlas->complete);
assert(atlas->numBitmaps > 0);
/* We use a rectangle texture (non-normalized coords) for the atlas */
assert(ctx->Extensions.NV_texture_rectangle);
assert(ctx->Const.MaxTextureRectSize >= 1024);
atlas->texWidth = 1024;
atlas->texHeight = 0; /* determined below */
atlas->glyphs = malloc(atlas->numBitmaps * sizeof(atlas->glyphs[0]));
if (!atlas->glyphs) {
/* give up */
atlas->incomplete = true;
return;
}
/* Loop over the display lists. They should all contain a single glBitmap
* call. If not, bail out. Also, compute the position and sizes of each
* bitmap in the atlas to determine the texture atlas size.
*/
for (i = 0; i < atlas->numBitmaps; i++) {
const struct gl_display_list *list = _mesa_lookup_list(ctx, listBase + i);
const Node *n;
struct gl_bitmap_glyph *g = &atlas->glyphs[i];
unsigned bitmap_width, bitmap_height;
float bitmap_xmove, bitmap_ymove, bitmap_xorig, bitmap_yorig;
if (!list || is_empty_list(list)) {
/* stop here */
atlas->numBitmaps = i;
break;
}
if (!is_bitmap_list(list)) {
/* This list does not contain exactly one glBitmap command. Give up. */
atlas->incomplete = true;
return;
}
/* get bitmap info from the display list command */
n = list->Head;
assert(n[0].opcode == OPCODE_BITMAP);
bitmap_width = n[1].i;
bitmap_height = n[2].i;
bitmap_xorig = n[3].f;
bitmap_yorig = n[4].f;
bitmap_xmove = n[5].f;
bitmap_ymove = n[6].f;
if (xpos + bitmap_width > atlas->texWidth) {
/* advance to the next row of the texture */
xpos = 0;
ypos += row_height;
row_height = 0;
}
/* save the bitmap's position in the atlas */
g->x = xpos;
g->y = ypos;
g->w = bitmap_width;
g->h = bitmap_height;
g->xorig = bitmap_xorig;
g->yorig = bitmap_yorig;
g->xmove = bitmap_xmove;
g->ymove = bitmap_ymove;
xpos += bitmap_width;
/* keep track of tallest bitmap in the row */
row_height = MAX2(row_height, bitmap_height);
}
/* Now we know the texture height */
atlas->texHeight = ypos + row_height;
if (atlas->texHeight == 0) {
/* no glyphs found, give up */
goto fail;
}
else if (atlas->texHeight > ctx->Const.MaxTextureRectSize) {
/* too large, give up */
goto fail;
}
/* Create atlas texture (texture ID is irrelevant) */
atlas->texObj = ctx->Driver.NewTextureObject(ctx, 999, GL_TEXTURE_RECTANGLE);
if (!atlas->texObj) {
goto out_of_memory;
}
atlas->texObj->Sampler.MinFilter = GL_NEAREST;
atlas->texObj->Sampler.MagFilter = GL_NEAREST;
atlas->texObj->MaxLevel = 0;
atlas->texObj->Immutable = GL_TRUE;
atlas->texImage = _mesa_get_tex_image(ctx, atlas->texObj,
GL_TEXTURE_RECTANGLE, 0);
if (!atlas->texImage) {
goto out_of_memory;
}
_mesa_init_teximage_fields(ctx, atlas->texImage,
atlas->texWidth, atlas->texHeight, 1, 0,
GL_ALPHA, MESA_FORMAT_A_UNORM8);
/* alloc image storage */
if (!ctx->Driver.AllocTextureImageBuffer(ctx, atlas->texImage)) {
goto out_of_memory;
}
/* map teximage, load with bitmap glyphs */
ctx->Driver.MapTextureImage(ctx, atlas->texImage, 0,
0, 0, atlas->texWidth, atlas->texHeight,
GL_MAP_WRITE_BIT, &map, &map_stride);
if (!map) {
goto out_of_memory;
}
/* Background/clear pixels are 0xff, foreground/set pixels are 0x0 */
memset(map, 0xff, map_stride * atlas->texHeight);
for (i = 0; i < atlas->numBitmaps; i++) {
const struct gl_display_list *list = _mesa_lookup_list(ctx, listBase + i);
const Node *n = list->Head;
assert(n[0].opcode == OPCODE_BITMAP ||
n[0].opcode == OPCODE_END_OF_LIST);
if (n[0].opcode == OPCODE_BITMAP) {
unsigned bitmap_width = n[1].i;
unsigned bitmap_height = n[2].i;
unsigned xpos = atlas->glyphs[i].x;
unsigned ypos = atlas->glyphs[i].y;
const void *bitmap_image = get_pointer(&n[7]);
assert(atlas->glyphs[i].w == bitmap_width);
assert(atlas->glyphs[i].h == bitmap_height);
/* put the bitmap image into the texture image */
_mesa_expand_bitmap(bitmap_width, bitmap_height,
&ctx->DefaultPacking, bitmap_image,
map + map_stride * ypos + xpos, /* dest addr */
map_stride, 0x0);
}
}
ctx->Driver.UnmapTextureImage(ctx, atlas->texImage, 0);
atlas->complete = true;
return;
out_of_memory:
_mesa_error(ctx, GL_OUT_OF_MEMORY, "Display list bitmap atlas");
fail:
if (atlas->texObj) {
ctx->Driver.DeleteTexture(ctx, atlas->texObj);
}
free(atlas->glyphs);
atlas->glyphs = NULL;
atlas->incomplete = true;
}
/**
* Allocate a gl_display_list object with an initial block of storage.
* \param count how many display list nodes/tokens to allocate
*/
static struct gl_display_list *
make_list(GLuint name, GLuint count)
{
struct gl_display_list *dlist = CALLOC_STRUCT(gl_display_list);
dlist->Name = name;
dlist->Head = malloc(sizeof(Node) * count);
dlist->Head[0].opcode = OPCODE_END_OF_LIST;
return dlist;
}
/**
* Lookup function to just encapsulate casting.
*/
struct gl_display_list *
_mesa_lookup_list(struct gl_context *ctx, GLuint list)
{
return (struct gl_display_list *)
_mesa_HashLookup(ctx->Shared->DisplayList, list);
}
/** Is the given opcode an extension code? */
static inline GLboolean
is_ext_opcode(OpCode opcode)
{
return (opcode >= OPCODE_EXT_0);
}
/** Destroy an extended opcode instruction */
static GLint
ext_opcode_destroy(struct gl_context *ctx, Node *node)
{
const GLint i = node[0].opcode - OPCODE_EXT_0;
GLint step;
ctx->ListExt->Opcode[i].Destroy(ctx, &node[1]);
step = ctx->ListExt->Opcode[i].Size;
return step;
}
/** Execute an extended opcode instruction */
static GLint
ext_opcode_execute(struct gl_context *ctx, Node *node)
{
const GLint i = node[0].opcode - OPCODE_EXT_0;
GLint step;
ctx->ListExt->Opcode[i].Execute(ctx, &node[1]);
step = ctx->ListExt->Opcode[i].Size;
return step;
}
/** Print an extended opcode instruction */
static GLint
ext_opcode_print(struct gl_context *ctx, Node *node, FILE *f)
{
const GLint i = node[0].opcode - OPCODE_EXT_0;
GLint step;
ctx->ListExt->Opcode[i].Print(ctx, &node[1], f);
step = ctx->ListExt->Opcode[i].Size;
return step;
}
/**
* Delete the named display list, but don't remove from hash table.
* \param dlist - display list pointer
*/
void
_mesa_delete_list(struct gl_context *ctx, struct gl_display_list *dlist)
{
Node *n, *block;
GLboolean done;
n = block = dlist->Head;
done = block ? GL_FALSE : GL_TRUE;
while (!done) {
const OpCode opcode = n[0].opcode;
/* check for extension opcodes first */
if (is_ext_opcode(opcode)) {
n += ext_opcode_destroy(ctx, n);
}
else {
switch (opcode) {
/* for some commands, we need to free malloc'd memory */
case OPCODE_MAP1:
free(get_pointer(&n[6]));
n += InstSize[n[0].opcode];
break;
case OPCODE_MAP2:
free(get_pointer(&n[10]));
n += InstSize[n[0].opcode];
break;
case OPCODE_CALL_LISTS:
free(get_pointer(&n[3]));
n += InstSize[n[0].opcode];
break;
case OPCODE_DRAW_PIXELS:
free(get_pointer(&n[5]));
n += InstSize[n[0].opcode];
break;
case OPCODE_BITMAP:
free(get_pointer(&n[7]));
n += InstSize[n[0].opcode];
break;
case OPCODE_POLYGON_STIPPLE:
free(get_pointer(&n[1]));
n += InstSize[n[0].opcode];
break;
case OPCODE_TEX_IMAGE1D:
free(get_pointer(&n[8]));
n += InstSize[n[0].opcode];
break;
case OPCODE_TEX_IMAGE2D:
free(get_pointer(&n[9]));
n += InstSize[n[0].opcode];
break;
case OPCODE_TEX_IMAGE3D:
free(get_pointer(&n[10]));
n += InstSize[n[0].opcode];
break;
case OPCODE_TEX_SUB_IMAGE1D:
free(get_pointer(&n[7]));
n += InstSize[n[0].opcode];
break;
case OPCODE_TEX_SUB_IMAGE2D:
free(get_pointer(&n[9]));
n += InstSize[n[0].opcode];
break;
case OPCODE_TEX_SUB_IMAGE3D:
free(get_pointer(&n[11]));
n += InstSize[n[0].opcode];
break;
case OPCODE_COMPRESSED_TEX_IMAGE_1D:
free(get_pointer(&n[7]));
n += InstSize[n[0].opcode];
break;
case OPCODE_COMPRESSED_TEX_IMAGE_2D:
free(get_pointer(&n[8]));
n += InstSize[n[0].opcode];
break;
case OPCODE_COMPRESSED_TEX_IMAGE_3D:
free(get_pointer(&n[9]));
n += InstSize[n[0].opcode];
break;
case OPCODE_COMPRESSED_TEX_SUB_IMAGE_1D:
free(get_pointer(&n[7]));
n += InstSize[n[0].opcode];
break;
case OPCODE_COMPRESSED_TEX_SUB_IMAGE_2D:
free(get_pointer(&n[9]));
n += InstSize[n[0].opcode];
break;
case OPCODE_COMPRESSED_TEX_SUB_IMAGE_3D:
free(get_pointer(&n[11]));
n += InstSize[n[0].opcode];
break;
case OPCODE_PROGRAM_STRING_ARB:
free(get_pointer(&n[4])); /* program string */
n += InstSize[n[0].opcode];
break;
case OPCODE_UNIFORM_1FV:
case OPCODE_UNIFORM_2FV:
case OPCODE_UNIFORM_3FV:
case OPCODE_UNIFORM_4FV:
case OPCODE_UNIFORM_1IV:
case OPCODE_UNIFORM_2IV:
case OPCODE_UNIFORM_3IV:
case OPCODE_UNIFORM_4IV:
case OPCODE_UNIFORM_1UIV:
case OPCODE_UNIFORM_2UIV:
case OPCODE_UNIFORM_3UIV:
case OPCODE_UNIFORM_4UIV:
free(get_pointer(&n[3]));
n += InstSize[n[0].opcode];
break;
case OPCODE_UNIFORM_MATRIX22:
case OPCODE_UNIFORM_MATRIX33:
case OPCODE_UNIFORM_MATRIX44:
case OPCODE_UNIFORM_MATRIX24:
case OPCODE_UNIFORM_MATRIX42:
case OPCODE_UNIFORM_MATRIX23:
case OPCODE_UNIFORM_MATRIX32:
case OPCODE_UNIFORM_MATRIX34:
case OPCODE_UNIFORM_MATRIX43:
free(get_pointer(&n[4]));
n += InstSize[n[0].opcode];
break;
case OPCODE_PROGRAM_UNIFORM_1FV:
case OPCODE_PROGRAM_UNIFORM_2FV:
case OPCODE_PROGRAM_UNIFORM_3FV:
case OPCODE_PROGRAM_UNIFORM_4FV:
case OPCODE_PROGRAM_UNIFORM_1IV:
case OPCODE_PROGRAM_UNIFORM_2IV:
case OPCODE_PROGRAM_UNIFORM_3IV:
case OPCODE_PROGRAM_UNIFORM_4IV:
case OPCODE_PROGRAM_UNIFORM_1UIV:
case OPCODE_PROGRAM_UNIFORM_2UIV:
case OPCODE_PROGRAM_UNIFORM_3UIV:
case OPCODE_PROGRAM_UNIFORM_4UIV:
free(get_pointer(&n[4]));
n += InstSize[n[0].opcode];
break;
case OPCODE_PROGRAM_UNIFORM_MATRIX22F:
case OPCODE_PROGRAM_UNIFORM_MATRIX33F:
case OPCODE_PROGRAM_UNIFORM_MATRIX44F:
case OPCODE_PROGRAM_UNIFORM_MATRIX24F:
case OPCODE_PROGRAM_UNIFORM_MATRIX42F:
case OPCODE_PROGRAM_UNIFORM_MATRIX23F:
case OPCODE_PROGRAM_UNIFORM_MATRIX32F:
case OPCODE_PROGRAM_UNIFORM_MATRIX34F:
case OPCODE_PROGRAM_UNIFORM_MATRIX43F:
free(get_pointer(&n[5]));
n += InstSize[n[0].opcode];
break;
case OPCODE_PIXEL_MAP:
free(get_pointer(&n[3]));
n += InstSize[n[0].opcode];
break;
case OPCODE_WINDOW_RECTANGLES:
free(get_pointer(&n[3]));
n += InstSize[n[0].opcode];
break;
case OPCODE_CONTINUE:
n = (Node *) get_pointer(&n[1]);
free(block);
block = n;
break;
case OPCODE_END_OF_LIST:
free(block);
done = GL_TRUE;
break;
default:
/* Most frequent case */
n += InstSize[n[0].opcode];
break;
}
}
}
free(dlist->Label);
free(dlist);
}
/**
* Called by _mesa_HashWalk() to check if a display list which is being
* deleted belongs to a bitmap texture atlas.
*/
static void
check_atlas_for_deleted_list(GLuint atlas_id, void *data, void *userData)
{
struct gl_bitmap_atlas *atlas = (struct gl_bitmap_atlas *) data;
GLuint list_id = *((GLuint *) userData); /* the list being deleted */
/* See if the list_id falls in the range contained in this texture atlas */
if (atlas->complete &&
list_id >= atlas_id &&
list_id < atlas_id + atlas->numBitmaps) {
/* Mark the atlas as incomplete so it doesn't get used. But don't
* delete it yet since we don't want to try to recreate it in the next
* glCallLists.
*/
atlas->complete = false;
atlas->incomplete = true;
}
}
/**
* Destroy a display list and remove from hash table.
* \param list - display list number
*/
static void
destroy_list(struct gl_context *ctx, GLuint list)
{
struct gl_display_list *dlist;
if (list == 0)
return;
dlist = _mesa_lookup_list(ctx, list);
if (!dlist)
return;
if (is_bitmap_list(dlist)) {
/* If we're destroying a simple glBitmap display list, there's a
* chance that we're destroying a bitmap image that's in a texture
* atlas. Examine all atlases to see if that's the case. There's
* usually few (if any) atlases so this isn't expensive.
*/
_mesa_HashWalk(ctx->Shared->BitmapAtlas,
check_atlas_for_deleted_list, &list);
}
_mesa_delete_list(ctx, dlist);
_mesa_HashRemove(ctx->Shared->DisplayList, list);
}
/*
* Translate the nth element of list from <type> to GLint.
*/
static GLint
translate_id(GLsizei n, GLenum type, const GLvoid * list)
{
GLbyte *bptr;
GLubyte *ubptr;
GLshort *sptr;
GLushort *usptr;
GLint *iptr;
GLuint *uiptr;
GLfloat *fptr;
switch (type) {
case GL_BYTE:
bptr = (GLbyte *) list;
return (GLint) bptr[n];
case GL_UNSIGNED_BYTE:
ubptr = (GLubyte *) list;
return (GLint) ubptr[n];
case GL_SHORT:
sptr = (GLshort *) list;
return (GLint) sptr[n];
case GL_UNSIGNED_SHORT:
usptr = (GLushort *) list;
return (GLint) usptr[n];
case GL_INT:
iptr = (GLint *) list;
return iptr[n];
case GL_UNSIGNED_INT:
uiptr = (GLuint *) list;
return (GLint) uiptr[n];
case GL_FLOAT:
fptr = (GLfloat *) list;
return (GLint) floorf(fptr[n]);
case GL_2_BYTES:
ubptr = ((GLubyte *) list) + 2 * n;
return (GLint) ubptr[0] * 256
+ (GLint) ubptr[1];
case GL_3_BYTES:
ubptr = ((GLubyte *) list) + 3 * n;
return (GLint) ubptr[0] * 65536
+ (GLint) ubptr[1] * 256
+ (GLint) ubptr[2];
case GL_4_BYTES:
ubptr = ((GLubyte *) list) + 4 * n;
return (GLint) ubptr[0] * 16777216
+ (GLint) ubptr[1] * 65536
+ (GLint) ubptr[2] * 256
+ (GLint) ubptr[3];
default:
return 0;
}
}
/**
* Wrapper for _mesa_unpack_image/bitmap() that handles pixel buffer objects.
* If width < 0 or height < 0 or format or type are invalid we'll just
* return NULL. We will not generate an error since OpenGL command
* arguments aren't error-checked until the command is actually executed
* (not when they're compiled).
* But if we run out of memory, GL_OUT_OF_MEMORY will be recorded.
*/
static GLvoid *
unpack_image(struct gl_context *ctx, GLuint dimensions,
GLsizei width, GLsizei height, GLsizei depth,
GLenum format, GLenum type, const GLvoid * pixels,
const struct gl_pixelstore_attrib *unpack)
{
if (width <= 0 || height <= 0) {
return NULL;
}
if (_mesa_bytes_per_pixel(format, type) < 0) {
/* bad format and/or type */
return NULL;
}
if (!_mesa_is_bufferobj(unpack->BufferObj)) {
/* no PBO */
GLvoid *image;
image = _mesa_unpack_image(dimensions, width, height, depth,
format, type, pixels, unpack);
if (pixels && !image) {
_mesa_error(ctx, GL_OUT_OF_MEMORY, "display list construction");
}
return image;
}
else if (_mesa_validate_pbo_access(dimensions, unpack, width, height,
depth, format, type, INT_MAX, pixels)) {
const GLubyte *map, *src;
GLvoid *image;
map = (GLubyte *)
ctx->Driver.MapBufferRange(ctx, 0, unpack->BufferObj->Size,
GL_MAP_READ_BIT, unpack->BufferObj,
MAP_INTERNAL);
if (!map) {
/* unable to map src buffer! */
_mesa_error(ctx, GL_INVALID_OPERATION, "unable to map PBO");
return NULL;
}
src = ADD_POINTERS(map, pixels);
image = _mesa_unpack_image(dimensions, width, height, depth,
format, type, src, unpack);
ctx->Driver.UnmapBuffer(ctx, unpack->BufferObj, MAP_INTERNAL);
if (!image) {
_mesa_error(ctx, GL_OUT_OF_MEMORY, "display list construction");
}
return image;
}
/* bad access! */
_mesa_error(ctx, GL_INVALID_OPERATION, "invalid PBO access");
return NULL;
}
/** Return copy of memory */
static void *
memdup(const void *src, GLsizei bytes)
{
void *b = bytes >= 0 ? malloc(bytes) : NULL;
if (b)
memcpy(b, src, bytes);
return b;
}
/**
* Allocate space for a display list instruction (opcode + payload space).
* \param opcode the instruction opcode (OPCODE_* value)
* \param bytes instruction payload size (not counting opcode)
* \param align8 does the payload need to be 8-byte aligned?
* This is only relevant in 64-bit environments.
* \return pointer to allocated memory (the payload will be at pointer+1)
*/
static Node *
dlist_alloc(struct gl_context *ctx, OpCode opcode, GLuint bytes, bool align8)
{
const GLuint numNodes = 1 + (bytes + sizeof(Node) - 1) / sizeof(Node);
const GLuint contNodes = 1 + POINTER_DWORDS; /* size of continue info */
GLuint nopNode;
Node *n;
if (opcode < OPCODE_EXT_0) {
if (InstSize[opcode] == 0) {
/* save instruction size now */
InstSize[opcode] = numNodes;
}
else {
/* make sure instruction size agrees */
assert(numNodes == InstSize[opcode]);
}
}
if (sizeof(void *) > sizeof(Node) && align8
&& ctx->ListState.CurrentPos % 2 == 0) {
/* The opcode would get placed at node[0] and the payload would start
* at node[1]. But the payload needs to be at an even offset (8-byte
* multiple).
*/
nopNode = 1;
}
else {
nopNode = 0;
}
if (ctx->ListState.CurrentPos + nopNode + numNodes + contNodes
> BLOCK_SIZE) {
/* This block is full. Allocate a new block and chain to it */
Node *newblock;
n = ctx->ListState.CurrentBlock + ctx->ListState.CurrentPos;
n[0].opcode = OPCODE_CONTINUE;
newblock = malloc(sizeof(Node) * BLOCK_SIZE);
if (!newblock) {
_mesa_error(ctx, GL_OUT_OF_MEMORY, "Building display list");
return NULL;
}
/* a fresh block should be 8-byte aligned on 64-bit systems */
assert(((GLintptr) newblock) % sizeof(void *) == 0);
save_pointer(&n[1], newblock);
ctx->ListState.CurrentBlock = newblock;
ctx->ListState.CurrentPos = 0;
/* Display list nodes are always 4 bytes. If we need 8-byte alignment
* we have to insert a NOP so that the payload of the real opcode lands
* on an even location:
* node[0] = OPCODE_NOP
* node[1] = OPCODE_x;
* node[2] = start of payload
*/
nopNode = sizeof(void *) > sizeof(Node) && align8;
}
n = ctx->ListState.CurrentBlock + ctx->ListState.CurrentPos;
if (nopNode) {
assert(ctx->ListState.CurrentPos % 2 == 0); /* even value */
n[0].opcode = OPCODE_NOP;
n++;
/* The "real" opcode will now be at an odd location and the payload
* will be at an even location.
*/
}
ctx->ListState.CurrentPos += nopNode + numNodes;
n[0].opcode = opcode;
return n;
}
/**
* Allocate space for a display list instruction. Used by callers outside
* this file for things like VBO vertex data.
*
* \param opcode the instruction opcode (OPCODE_* value)
* \param bytes instruction size in bytes, not counting opcode.
* \return pointer to the usable data area (not including the internal
* opcode).
*/
void *
_mesa_dlist_alloc(struct gl_context *ctx, GLuint opcode, GLuint bytes)
{
Node *n = dlist_alloc(ctx, (OpCode) opcode, bytes, false);
if (n)
return n + 1; /* return pointer to payload area, after opcode */
else
return NULL;
}
/**
* Same as _mesa_dlist_alloc(), but return a pointer which is 8-byte
* aligned in 64-bit environments, 4-byte aligned otherwise.
*/
void *
_mesa_dlist_alloc_aligned(struct gl_context *ctx, GLuint opcode, GLuint bytes)
{
Node *n = dlist_alloc(ctx, (OpCode) opcode, bytes, true);
if (n)
return n + 1; /* return pointer to payload area, after opcode */
else
return NULL;
}
/**
* This function allows modules and drivers to get their own opcodes
* for extending display list functionality.
* \param ctx the rendering context
* \param size number of bytes for storing the new display list command
* \param execute function to execute the new display list command
* \param destroy function to destroy the new display list command
* \param print function to print the new display list command
* \return the new opcode number or -1 if error
*/
GLint
_mesa_dlist_alloc_opcode(struct gl_context *ctx,
GLuint size,
void (*execute) (struct gl_context *, void *),
void (*destroy) (struct gl_context *, void *),
void (*print) (struct gl_context *, void *, FILE *))
{
if (ctx->ListExt->NumOpcodes < MAX_DLIST_EXT_OPCODES) {
const GLuint i = ctx->ListExt->NumOpcodes++;
ctx->ListExt->Opcode[i].Size =
1 + (size + sizeof(Node) - 1) / sizeof(Node);
ctx->ListExt->Opcode[i].Execute = execute;
ctx->ListExt->Opcode[i].Destroy = destroy;
ctx->ListExt->Opcode[i].Print = print;
return i + OPCODE_EXT_0;
}
return -1;
}
/**
* Allocate space for a display list instruction. The space is basically
* an array of Nodes where node[0] holds the opcode, node[1] is the first
* function parameter, node[2] is the second parameter, etc.
*
* \param opcode one of OPCODE_x
* \param nparams number of function parameters
* \return pointer to start of instruction space
*/
static inline Node *
alloc_instruction(struct gl_context *ctx, OpCode opcode, GLuint nparams)
{
return dlist_alloc(ctx, opcode, nparams * sizeof(Node), false);
}
/**
* Called by EndList to try to reduce memory used for the list.
*/
static void
trim_list(struct gl_context *ctx)
{
/* If the list we're ending only has one allocated block of nodes/tokens
* and its size isn't a full block size, realloc the block to use less
* memory. This is important for apps that create many small display
* lists and apps that use glXUseXFont (many lists each containing one
* glBitmap call).
* Note: we currently only trim display lists that allocated one block
* of tokens. That hits the short list case which is what we're mainly
* concerned with. Trimming longer lists would involve traversing the
* linked list of blocks.
*/
struct gl_dlist_state *list = &ctx->ListState;
if ((list->CurrentList->Head == list->CurrentBlock) &&
(list->CurrentPos < BLOCK_SIZE)) {
/* There's only one block and it's not full, so realloc */
GLuint newSize = list->CurrentPos * sizeof(Node);
list->CurrentList->Head =
list->CurrentBlock = realloc(list->CurrentBlock, newSize);
if (!list->CurrentBlock) {
_mesa_error(ctx, GL_OUT_OF_MEMORY, "glEndList");
}
}
}
/*
* Display List compilation functions
*/
static void GLAPIENTRY
save_Accum(GLenum op, GLfloat value)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_ACCUM, 2);
if (n) {
n[1].e = op;
n[2].f = value;
}
if (ctx->ExecuteFlag) {
CALL_Accum(ctx->Exec, (op, value));
}
}
static void GLAPIENTRY
save_AlphaFunc(GLenum func, GLclampf ref)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_ALPHA_FUNC, 2);
if (n) {
n[1].e = func;
n[2].f = (GLfloat) ref;
}
if (ctx->ExecuteFlag) {
CALL_AlphaFunc(ctx->Exec, (func, ref));
}
}
static void GLAPIENTRY
save_BindTexture(GLenum target, GLuint texture)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_BIND_TEXTURE, 2);
if (n) {
n[1].e = target;
n[2].ui = texture;
}
if (ctx->ExecuteFlag) {
CALL_BindTexture(ctx->Exec, (target, texture));
}
}
static void GLAPIENTRY
save_Bitmap(GLsizei width, GLsizei height,
GLfloat xorig, GLfloat yorig,
GLfloat xmove, GLfloat ymove, const GLubyte * pixels)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_BITMAP, 6 + POINTER_DWORDS);
if (n) {
n[1].i = (GLint) width;
n[2].i = (GLint) height;
n[3].f = xorig;
n[4].f = yorig;
n[5].f = xmove;
n[6].f = ymove;
save_pointer(&n[7],
unpack_image(ctx, 2, width, height, 1, GL_COLOR_INDEX,
GL_BITMAP, pixels, &ctx->Unpack));
}
if (ctx->ExecuteFlag) {
CALL_Bitmap(ctx->Exec, (width, height,
xorig, yorig, xmove, ymove, pixels));
}
}
static void GLAPIENTRY
save_BlendEquation(GLenum mode)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_BLEND_EQUATION, 1);
if (n) {
n[1].e = mode;
}
if (ctx->ExecuteFlag) {
CALL_BlendEquation(ctx->Exec, (mode));
}
}
static void GLAPIENTRY
save_BlendEquationSeparateEXT(GLenum modeRGB, GLenum modeA)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_BLEND_EQUATION_SEPARATE, 2);
if (n) {
n[1].e = modeRGB;
n[2].e = modeA;
}
if (ctx->ExecuteFlag) {
CALL_BlendEquationSeparate(ctx->Exec, (modeRGB, modeA));
}
}
static void GLAPIENTRY
save_BlendFuncSeparateEXT(GLenum sfactorRGB, GLenum dfactorRGB,
GLenum sfactorA, GLenum dfactorA)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_BLEND_FUNC_SEPARATE, 4);
if (n) {
n[1].e = sfactorRGB;
n[2].e = dfactorRGB;
n[3].e = sfactorA;
n[4].e = dfactorA;
}
if (ctx->ExecuteFlag) {
CALL_BlendFuncSeparate(ctx->Exec,
(sfactorRGB, dfactorRGB, sfactorA, dfactorA));
}
}
static void GLAPIENTRY
save_BlendFunc(GLenum srcfactor, GLenum dstfactor)
{
save_BlendFuncSeparateEXT(srcfactor, dstfactor, srcfactor, dstfactor);
}
static void GLAPIENTRY
save_BlendColor(GLfloat red, GLfloat green, GLfloat blue, GLfloat alpha)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_BLEND_COLOR, 4);
if (n) {
n[1].f = red;
n[2].f = green;
n[3].f = blue;
n[4].f = alpha;
}
if (ctx->ExecuteFlag) {
CALL_BlendColor(ctx->Exec, (red, green, blue, alpha));
}
}
/* GL_ARB_draw_buffers_blend */
static void GLAPIENTRY
save_BlendFuncSeparatei(GLuint buf, GLenum sfactorRGB, GLenum dfactorRGB,
GLenum sfactorA, GLenum dfactorA)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_BLEND_FUNC_SEPARATE_I, 5);
if (n) {
n[1].ui = buf;
n[2].e = sfactorRGB;
n[3].e = dfactorRGB;
n[4].e = sfactorA;
n[5].e = dfactorA;
}
if (ctx->ExecuteFlag) {
CALL_BlendFuncSeparateiARB(ctx->Exec, (buf, sfactorRGB, dfactorRGB,
sfactorA, dfactorA));
}
}
/* GL_ARB_draw_buffers_blend */
static void GLAPIENTRY
save_BlendFunci(GLuint buf, GLenum sfactor, GLenum dfactor)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_BLEND_FUNC_I, 3);
if (n) {
n[1].ui = buf;
n[2].e = sfactor;
n[3].e = dfactor;
}
if (ctx->ExecuteFlag) {
CALL_BlendFunciARB(ctx->Exec, (buf, sfactor, dfactor));
}
}
/* GL_ARB_draw_buffers_blend */
static void GLAPIENTRY
save_BlendEquationi(GLuint buf, GLenum mode)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_BLEND_EQUATION_I, 2);
if (n) {
n[1].ui = buf;
n[2].e = mode;
}
if (ctx->ExecuteFlag) {
CALL_BlendEquationiARB(ctx->Exec, (buf, mode));
}
}
/* GL_ARB_draw_buffers_blend */
static void GLAPIENTRY
save_BlendEquationSeparatei(GLuint buf, GLenum modeRGB, GLenum modeA)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_BLEND_EQUATION_SEPARATE_I, 3);
if (n) {
n[1].ui = buf;
n[2].e = modeRGB;
n[3].e = modeA;
}
if (ctx->ExecuteFlag) {
CALL_BlendEquationSeparateiARB(ctx->Exec, (buf, modeRGB, modeA));
}
}
/* GL_ARB_draw_instanced. */
static void GLAPIENTRY
save_DrawArraysInstancedARB(UNUSED GLenum mode,
UNUSED GLint first,
UNUSED GLsizei count,
UNUSED GLsizei primcount)
{
GET_CURRENT_CONTEXT(ctx);
_mesa_error(ctx, GL_INVALID_OPERATION,
"glDrawArraysInstanced() during display list compile");
}
static void GLAPIENTRY
save_DrawElementsInstancedARB(UNUSED GLenum mode,
UNUSED GLsizei count,
UNUSED GLenum type,
UNUSED const GLvoid *indices,
UNUSED GLsizei primcount)
{
GET_CURRENT_CONTEXT(ctx);
_mesa_error(ctx, GL_INVALID_OPERATION,
"glDrawElementsInstanced() during display list compile");
}
static void GLAPIENTRY
save_DrawElementsInstancedBaseVertexARB(UNUSED GLenum mode,
UNUSED GLsizei count,
UNUSED GLenum type,
UNUSED const GLvoid *indices,
UNUSED GLsizei primcount,
UNUSED GLint basevertex)
{
GET_CURRENT_CONTEXT(ctx);
_mesa_error(ctx, GL_INVALID_OPERATION,
"glDrawElementsInstancedBaseVertex() during display list compile");
}
/* GL_ARB_base_instance. */
static void GLAPIENTRY
save_DrawArraysInstancedBaseInstance(UNUSED GLenum mode,
UNUSED GLint first,
UNUSED GLsizei count,
UNUSED GLsizei primcount,
UNUSED GLuint baseinstance)
{
GET_CURRENT_CONTEXT(ctx);
_mesa_error(ctx, GL_INVALID_OPERATION,
"glDrawArraysInstancedBaseInstance() during display list compile");
}
static void APIENTRY
save_DrawElementsInstancedBaseInstance(UNUSED GLenum mode,
UNUSED GLsizei count,
UNUSED GLenum type,
UNUSED const void *indices,
UNUSED GLsizei primcount,
UNUSED GLuint baseinstance)
{
GET_CURRENT_CONTEXT(ctx);
_mesa_error(ctx, GL_INVALID_OPERATION,
"glDrawElementsInstancedBaseInstance() during display list compile");
}
static void APIENTRY
save_DrawElementsInstancedBaseVertexBaseInstance(UNUSED GLenum mode,
UNUSED GLsizei count,
UNUSED GLenum type,
UNUSED const void *indices,
UNUSED GLsizei primcount,
UNUSED GLint basevertex,
UNUSED GLuint baseinstance)
{
GET_CURRENT_CONTEXT(ctx);
_mesa_error(ctx, GL_INVALID_OPERATION,
"glDrawElementsInstancedBaseVertexBaseInstance() during display list compile");
}
/**
* While building a display list we cache some OpenGL state.
* Under some circumstances we need to invalidate that state (immediately
* when we start compiling a list, or after glCallList(s)).
*/
static void
invalidate_saved_current_state(struct gl_context *ctx)
{
GLint i;
for (i = 0; i < VERT_ATTRIB_MAX; i++)
ctx->ListState.ActiveAttribSize[i] = 0;
for (i = 0; i < MAT_ATTRIB_MAX; i++)
ctx->ListState.ActiveMaterialSize[i] = 0;
memset(&ctx->ListState.Current, 0, sizeof ctx->ListState.Current);
ctx->Driver.CurrentSavePrimitive = PRIM_UNKNOWN;
}
static void GLAPIENTRY
save_CallList(GLuint list)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
SAVE_FLUSH_VERTICES(ctx);
n = alloc_instruction(ctx, OPCODE_CALL_LIST, 1);
if (n) {
n[1].ui = list;
}
/* After this, we don't know what state we're in. Invalidate all
* cached information previously gathered:
*/
invalidate_saved_current_state( ctx );
if (ctx->ExecuteFlag) {
_mesa_CallList(list);
}
}
static void GLAPIENTRY
save_CallLists(GLsizei num, GLenum type, const GLvoid * lists)
{
GET_CURRENT_CONTEXT(ctx);
unsigned type_size;
Node *n;
void *lists_copy;
SAVE_FLUSH_VERTICES(ctx);
switch (type) {
case GL_BYTE:
case GL_UNSIGNED_BYTE:
type_size = 1;
break;
case GL_SHORT:
case GL_UNSIGNED_SHORT:
case GL_2_BYTES:
type_size = 2;
break;
case GL_3_BYTES:
type_size = 3;
break;
case GL_INT:
case GL_UNSIGNED_INT:
case GL_FLOAT:
case GL_4_BYTES:
type_size = 4;
break;
default:
type_size = 0;
}
if (num > 0 && type_size > 0) {
/* create a copy of the array of list IDs to save in the display list */
lists_copy = memdup(lists, num * type_size);
} else {
lists_copy = NULL;
}
n = alloc_instruction(ctx, OPCODE_CALL_LISTS, 2 + POINTER_DWORDS);
if (n) {
n[1].i = num;
n[2].e = type;
save_pointer(&n[3], lists_copy);
}
/* After this, we don't know what state we're in. Invalidate all
* cached information previously gathered:
*/
invalidate_saved_current_state( ctx );
if (ctx->ExecuteFlag) {
CALL_CallLists(ctx->Exec, (num, type, lists));
}
}
static void GLAPIENTRY
save_Clear(GLbitfield mask)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_CLEAR, 1);
if (n) {
n[1].bf = mask;
}
if (ctx->ExecuteFlag) {
CALL_Clear(ctx->Exec, (mask));
}
}
static void GLAPIENTRY
save_ClearBufferiv(GLenum buffer, GLint drawbuffer, const GLint *value)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_CLEAR_BUFFER_IV, 6);
if (n) {
n[1].e = buffer;
n[2].i = drawbuffer;
n[3].i = value[0];
if (buffer == GL_COLOR) {
n[4].i = value[1];
n[5].i = value[2];
n[6].i = value[3];
}
else {
n[4].i = 0;
n[5].i = 0;
n[6].i = 0;
}
}
if (ctx->ExecuteFlag) {
CALL_ClearBufferiv(ctx->Exec, (buffer, drawbuffer, value));
}
}
static void GLAPIENTRY
save_ClearBufferuiv(GLenum buffer, GLint drawbuffer, const GLuint *value)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_CLEAR_BUFFER_UIV, 6);
if (n) {
n[1].e = buffer;
n[2].i = drawbuffer;
n[3].ui = value[0];
if (buffer == GL_COLOR) {
n[4].ui = value[1];
n[5].ui = value[2];
n[6].ui = value[3];
}
else {
n[4].ui = 0;
n[5].ui = 0;
n[6].ui = 0;
}
}
if (ctx->ExecuteFlag) {
CALL_ClearBufferuiv(ctx->Exec, (buffer, drawbuffer, value));
}
}
static void GLAPIENTRY
save_ClearBufferfv(GLenum buffer, GLint drawbuffer, const GLfloat *value)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_CLEAR_BUFFER_FV, 6);
if (n) {
n[1].e = buffer;
n[2].i = drawbuffer;
n[3].f = value[0];
if (buffer == GL_COLOR) {
n[4].f = value[1];
n[5].f = value[2];
n[6].f = value[3];
}
else {
n[4].f = 0.0F;
n[5].f = 0.0F;
n[6].f = 0.0F;
}
}
if (ctx->ExecuteFlag) {
CALL_ClearBufferfv(ctx->Exec, (buffer, drawbuffer, value));
}
}
static void GLAPIENTRY
save_ClearBufferfi(GLenum buffer, GLint drawbuffer,
GLfloat depth, GLint stencil)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_CLEAR_BUFFER_FI, 4);
if (n) {
n[1].e = buffer;
n[2].i = drawbuffer;
n[3].f = depth;
n[4].i = stencil;
}
if (ctx->ExecuteFlag) {
CALL_ClearBufferfi(ctx->Exec, (buffer, drawbuffer, depth, stencil));
}
}
static void GLAPIENTRY
save_ClearAccum(GLfloat red, GLfloat green, GLfloat blue, GLfloat alpha)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_CLEAR_ACCUM, 4);
if (n) {
n[1].f = red;
n[2].f = green;
n[3].f = blue;
n[4].f = alpha;
}
if (ctx->ExecuteFlag) {
CALL_ClearAccum(ctx->Exec, (red, green, blue, alpha));
}
}
static void GLAPIENTRY
save_ClearColor(GLclampf red, GLclampf green, GLclampf blue, GLclampf alpha)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_CLEAR_COLOR, 4);
if (n) {
n[1].f = red;
n[2].f = green;
n[3].f = blue;
n[4].f = alpha;
}
if (ctx->ExecuteFlag) {
CALL_ClearColor(ctx->Exec, (red, green, blue, alpha));
}
}
static void GLAPIENTRY
save_ClearDepth(GLclampd depth)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_CLEAR_DEPTH, 1);
if (n) {
n[1].f = (GLfloat) depth;
}
if (ctx->ExecuteFlag) {
CALL_ClearDepth(ctx->Exec, (depth));
}
}
static void GLAPIENTRY
save_ClearIndex(GLfloat c)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_CLEAR_INDEX, 1);
if (n) {
n[1].f = c;
}
if (ctx->ExecuteFlag) {
CALL_ClearIndex(ctx->Exec, (c));
}
}
static void GLAPIENTRY
save_ClearStencil(GLint s)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_CLEAR_STENCIL, 1);
if (n) {
n[1].i = s;
}
if (ctx->ExecuteFlag) {
CALL_ClearStencil(ctx->Exec, (s));
}
}
static void GLAPIENTRY
save_ClipPlane(GLenum plane, const GLdouble * equ)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_CLIP_PLANE, 5);
if (n) {
n[1].e = plane;
n[2].f = (GLfloat) equ[0];
n[3].f = (GLfloat) equ[1];
n[4].f = (GLfloat) equ[2];
n[5].f = (GLfloat) equ[3];
}
if (ctx->ExecuteFlag) {
CALL_ClipPlane(ctx->Exec, (plane, equ));
}
}
static void GLAPIENTRY
save_ColorMask(GLboolean red, GLboolean green,
GLboolean blue, GLboolean alpha)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_COLOR_MASK, 4);
if (n) {
n[1].b = red;
n[2].b = green;
n[3].b = blue;
n[4].b = alpha;
}
if (ctx->ExecuteFlag) {
CALL_ColorMask(ctx->Exec, (red, green, blue, alpha));
}
}
static void GLAPIENTRY
save_ColorMaskIndexed(GLuint buf, GLboolean red, GLboolean green,
GLboolean blue, GLboolean alpha)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_COLOR_MASK_INDEXED, 5);
if (n) {
n[1].ui = buf;
n[2].b = red;
n[3].b = green;
n[4].b = blue;
n[5].b = alpha;
}
if (ctx->ExecuteFlag) {
/*CALL_ColorMaski(ctx->Exec, (buf, red, green, blue, alpha));*/
}
}
static void GLAPIENTRY
save_ColorMaterial(GLenum face, GLenum mode)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_COLOR_MATERIAL, 2);
if (n) {
n[1].e = face;
n[2].e = mode;
}
if (ctx->ExecuteFlag) {
CALL_ColorMaterial(ctx->Exec, (face, mode));
}
}
static void GLAPIENTRY
save_CopyPixels(GLint x, GLint y, GLsizei width, GLsizei height, GLenum type)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_COPY_PIXELS, 5);
if (n) {
n[1].i = x;
n[2].i = y;
n[3].i = (GLint) width;
n[4].i = (GLint) height;
n[5].e = type;
}
if (ctx->ExecuteFlag) {
CALL_CopyPixels(ctx->Exec, (x, y, width, height, type));
}
}
static void GLAPIENTRY
save_CopyTexImage1D(GLenum target, GLint level, GLenum internalformat,
GLint x, GLint y, GLsizei width, GLint border)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_COPY_TEX_IMAGE1D, 7);
if (n) {
n[1].e = target;
n[2].i = level;
n[3].e = internalformat;
n[4].i = x;
n[5].i = y;
n[6].i = width;
n[7].i = border;
}
if (ctx->ExecuteFlag) {
CALL_CopyTexImage1D(ctx->Exec, (target, level, internalformat,
x, y, width, border));
}
}
static void GLAPIENTRY
save_CopyTexImage2D(GLenum target, GLint level,
GLenum internalformat,
GLint x, GLint y, GLsizei width,
GLsizei height, GLint border)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_COPY_TEX_IMAGE2D, 8);
if (n) {
n[1].e = target;
n[2].i = level;
n[3].e = internalformat;
n[4].i = x;
n[5].i = y;
n[6].i = width;
n[7].i = height;
n[8].i = border;
}
if (ctx->ExecuteFlag) {
CALL_CopyTexImage2D(ctx->Exec, (target, level, internalformat,
x, y, width, height, border));
}
}
static void GLAPIENTRY
save_CopyTexSubImage1D(GLenum target, GLint level,
GLint xoffset, GLint x, GLint y, GLsizei width)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_COPY_TEX_SUB_IMAGE1D, 6);
if (n) {
n[1].e = target;
n[2].i = level;
n[3].i = xoffset;
n[4].i = x;
n[5].i = y;
n[6].i = width;
}
if (ctx->ExecuteFlag) {
CALL_CopyTexSubImage1D(ctx->Exec,
(target, level, xoffset, x, y, width));
}
}
static void GLAPIENTRY
save_CopyTexSubImage2D(GLenum target, GLint level,
GLint xoffset, GLint yoffset,
GLint x, GLint y, GLsizei width, GLint height)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_COPY_TEX_SUB_IMAGE2D, 8);
if (n) {
n[1].e = target;
n[2].i = level;
n[3].i = xoffset;
n[4].i = yoffset;
n[5].i = x;
n[6].i = y;
n[7].i = width;
n[8].i = height;
}
if (ctx->ExecuteFlag) {
CALL_CopyTexSubImage2D(ctx->Exec, (target, level, xoffset, yoffset,
x, y, width, height));
}
}
static void GLAPIENTRY
save_CopyTexSubImage3D(GLenum target, GLint level,
GLint xoffset, GLint yoffset, GLint zoffset,
GLint x, GLint y, GLsizei width, GLint height)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_COPY_TEX_SUB_IMAGE3D, 9);
if (n) {
n[1].e = target;
n[2].i = level;
n[3].i = xoffset;
n[4].i = yoffset;
n[5].i = zoffset;
n[6].i = x;
n[7].i = y;
n[8].i = width;
n[9].i = height;
}
if (ctx->ExecuteFlag) {
CALL_CopyTexSubImage3D(ctx->Exec, (target, level,
xoffset, yoffset, zoffset,
x, y, width, height));
}
}
static void GLAPIENTRY
save_CullFace(GLenum mode)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_CULL_FACE, 1);
if (n) {
n[1].e = mode;
}
if (ctx->ExecuteFlag) {
CALL_CullFace(ctx->Exec, (mode));
}
}
static void GLAPIENTRY
save_DepthFunc(GLenum func)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_DEPTH_FUNC, 1);
if (n) {
n[1].e = func;
}
if (ctx->ExecuteFlag) {
CALL_DepthFunc(ctx->Exec, (func));
}
}
static void GLAPIENTRY
save_DepthMask(GLboolean mask)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_DEPTH_MASK, 1);
if (n) {
n[1].b = mask;
}
if (ctx->ExecuteFlag) {
CALL_DepthMask(ctx->Exec, (mask));
}
}
static void GLAPIENTRY
save_DepthRange(GLclampd nearval, GLclampd farval)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_DEPTH_RANGE, 2);
if (n) {
n[1].f = (GLfloat) nearval;
n[2].f = (GLfloat) farval;
}
if (ctx->ExecuteFlag) {
CALL_DepthRange(ctx->Exec, (nearval, farval));
}
}
static void GLAPIENTRY
save_Disable(GLenum cap)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_DISABLE, 1);
if (n) {
n[1].e = cap;
}
if (ctx->ExecuteFlag) {
CALL_Disable(ctx->Exec, (cap));
}
}
static void GLAPIENTRY
save_DisableIndexed(GLuint index, GLenum cap)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_DISABLE_INDEXED, 2);
if (n) {
n[1].ui = index;
n[2].e = cap;
}
if (ctx->ExecuteFlag) {
CALL_Disablei(ctx->Exec, (index, cap));
}
}
static void GLAPIENTRY
save_DrawBuffer(GLenum mode)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_DRAW_BUFFER, 1);
if (n) {
n[1].e = mode;
}
if (ctx->ExecuteFlag) {
CALL_DrawBuffer(ctx->Exec, (mode));
}
}
static void GLAPIENTRY
save_DrawPixels(GLsizei width, GLsizei height,
GLenum format, GLenum type, const GLvoid * pixels)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_DRAW_PIXELS, 4 + POINTER_DWORDS);
if (n) {
n[1].i = width;
n[2].i = height;
n[3].e = format;
n[4].e = type;
save_pointer(&n[5],
unpack_image(ctx, 2, width, height, 1, format, type,
pixels, &ctx->Unpack));
}
if (ctx->ExecuteFlag) {
CALL_DrawPixels(ctx->Exec, (width, height, format, type, pixels));
}
}
static void GLAPIENTRY
save_Enable(GLenum cap)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_ENABLE, 1);
if (n) {
n[1].e = cap;
}
if (ctx->ExecuteFlag) {
CALL_Enable(ctx->Exec, (cap));
}
}
static void GLAPIENTRY
save_EnableIndexed(GLuint index, GLenum cap)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_ENABLE_INDEXED, 2);
if (n) {
n[1].ui = index;
n[2].e = cap;
}
if (ctx->ExecuteFlag) {
CALL_Enablei(ctx->Exec, (index, cap));
}
}
static void GLAPIENTRY
save_EvalMesh1(GLenum mode, GLint i1, GLint i2)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_EVALMESH1, 3);
if (n) {
n[1].e = mode;
n[2].i = i1;
n[3].i = i2;
}
if (ctx->ExecuteFlag) {
CALL_EvalMesh1(ctx->Exec, (mode, i1, i2));
}
}
static void GLAPIENTRY
save_EvalMesh2(GLenum mode, GLint i1, GLint i2, GLint j1, GLint j2)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_EVALMESH2, 5);
if (n) {
n[1].e = mode;
n[2].i = i1;
n[3].i = i2;
n[4].i = j1;
n[5].i = j2;
}
if (ctx->ExecuteFlag) {
CALL_EvalMesh2(ctx->Exec, (mode, i1, i2, j1, j2));
}
}
static void GLAPIENTRY
save_Fogfv(GLenum pname, const GLfloat *params)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_FOG, 5);
if (n) {
n[1].e = pname;
n[2].f = params[0];
n[3].f = params[1];
n[4].f = params[2];
n[5].f = params[3];
}
if (ctx->ExecuteFlag) {
CALL_Fogfv(ctx->Exec, (pname, params));
}
}
static void GLAPIENTRY
save_Fogf(GLenum pname, GLfloat param)
{
GLfloat parray[4];
parray[0] = param;
parray[1] = parray[2] = parray[3] = 0.0F;
save_Fogfv(pname, parray);
}
static void GLAPIENTRY
save_Fogiv(GLenum pname, const GLint *params)
{
GLfloat p[4];
switch (pname) {
case GL_FOG_MODE:
case GL_FOG_DENSITY:
case GL_FOG_START:
case GL_FOG_END:
case GL_FOG_INDEX:
p[0] = (GLfloat) *params;
p[1] = 0.0f;
p[2] = 0.0f;
p[3] = 0.0f;
break;
case GL_FOG_COLOR:
p[0] = INT_TO_FLOAT(params[0]);
p[1] = INT_TO_FLOAT(params[1]);
p[2] = INT_TO_FLOAT(params[2]);
p[3] = INT_TO_FLOAT(params[3]);
break;
default:
/* Error will be caught later in gl_Fogfv */
ASSIGN_4V(p, 0.0F, 0.0F, 0.0F, 0.0F);
}
save_Fogfv(pname, p);
}
static void GLAPIENTRY
save_Fogi(GLenum pname, GLint param)
{
GLint parray[4];
parray[0] = param;
parray[1] = parray[2] = parray[3] = 0;
save_Fogiv(pname, parray);
}
static void GLAPIENTRY
save_FrontFace(GLenum mode)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_FRONT_FACE, 1);
if (n) {
n[1].e = mode;
}
if (ctx->ExecuteFlag) {
CALL_FrontFace(ctx->Exec, (mode));
}
}
static void GLAPIENTRY
save_Frustum(GLdouble left, GLdouble right,
GLdouble bottom, GLdouble top, GLdouble nearval, GLdouble farval)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_FRUSTUM, 6);
if (n) {
n[1].f = (GLfloat) left;
n[2].f = (GLfloat) right;
n[3].f = (GLfloat) bottom;
n[4].f = (GLfloat) top;
n[5].f = (GLfloat) nearval;
n[6].f = (GLfloat) farval;
}
if (ctx->ExecuteFlag) {
CALL_Frustum(ctx->Exec, (left, right, bottom, top, nearval, farval));
}
}
static void GLAPIENTRY
save_Hint(GLenum target, GLenum mode)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_HINT, 2);
if (n) {
n[1].e = target;
n[2].e = mode;
}
if (ctx->ExecuteFlag) {
CALL_Hint(ctx->Exec, (target, mode));
}
}
static void GLAPIENTRY
save_IndexMask(GLuint mask)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_INDEX_MASK, 1);
if (n) {
n[1].ui = mask;
}
if (ctx->ExecuteFlag) {
CALL_IndexMask(ctx->Exec, (mask));
}
}
static void GLAPIENTRY
save_InitNames(void)
{
GET_CURRENT_CONTEXT(ctx);
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
(void) alloc_instruction(ctx, OPCODE_INIT_NAMES, 0);
if (ctx->ExecuteFlag) {
CALL_InitNames(ctx->Exec, ());
}
}
static void GLAPIENTRY
save_Lightfv(GLenum light, GLenum pname, const GLfloat *params)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_LIGHT, 6);
if (n) {
GLint i, nParams;
n[1].e = light;
n[2].e = pname;
switch (pname) {
case GL_AMBIENT:
nParams = 4;
break;
case GL_DIFFUSE:
nParams = 4;
break;
case GL_SPECULAR:
nParams = 4;
break;
case GL_POSITION:
nParams = 4;
break;
case GL_SPOT_DIRECTION:
nParams = 3;
break;
case GL_SPOT_EXPONENT:
nParams = 1;
break;
case GL_SPOT_CUTOFF:
nParams = 1;
break;
case GL_CONSTANT_ATTENUATION:
nParams = 1;
break;
case GL_LINEAR_ATTENUATION:
nParams = 1;
break;
case GL_QUADRATIC_ATTENUATION:
nParams = 1;
break;
default:
nParams = 0;
}
for (i = 0; i < nParams; i++) {
n[3 + i].f = params[i];
}
}
if (ctx->ExecuteFlag) {
CALL_Lightfv(ctx->Exec, (light, pname, params));
}
}
static void GLAPIENTRY
save_Lightf(GLenum light, GLenum pname, GLfloat param)
{
GLfloat parray[4];
parray[0] = param;
parray[1] = parray[2] = parray[3] = 0.0F;
save_Lightfv(light, pname, parray);
}
static void GLAPIENTRY
save_Lightiv(GLenum light, GLenum pname, const GLint *params)
{
GLfloat fparam[4];
switch (pname) {
case GL_AMBIENT:
case GL_DIFFUSE:
case GL_SPECULAR:
fparam[0] = INT_TO_FLOAT(params[0]);
fparam[1] = INT_TO_FLOAT(params[1]);
fparam[2] = INT_TO_FLOAT(params[2]);
fparam[3] = INT_TO_FLOAT(params[3]);
break;
case GL_POSITION:
fparam[0] = (GLfloat) params[0];
fparam[1] = (GLfloat) params[1];
fparam[2] = (GLfloat) params[2];
fparam[3] = (GLfloat) params[3];
break;
case GL_SPOT_DIRECTION:
fparam[0] = (GLfloat) params[0];
fparam[1] = (GLfloat) params[1];
fparam[2] = (GLfloat) params[2];
break;
case GL_SPOT_EXPONENT:
case GL_SPOT_CUTOFF:
case GL_CONSTANT_ATTENUATION:
case GL_LINEAR_ATTENUATION:
case GL_QUADRATIC_ATTENUATION:
fparam[0] = (GLfloat) params[0];
break;
default:
/* error will be caught later in gl_Lightfv */
;
}
save_Lightfv(light, pname, fparam);
}
static void GLAPIENTRY
save_Lighti(GLenum light, GLenum pname, GLint param)
{
GLint parray[4];
parray[0] = param;
parray[1] = parray[2] = parray[3] = 0;
save_Lightiv(light, pname, parray);
}
static void GLAPIENTRY
save_LightModelfv(GLenum pname, const GLfloat *params)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_LIGHT_MODEL, 5);
if (n) {
n[1].e = pname;
n[2].f = params[0];
n[3].f = params[1];
n[4].f = params[2];
n[5].f = params[3];
}
if (ctx->ExecuteFlag) {
CALL_LightModelfv(ctx->Exec, (pname, params));
}
}
static void GLAPIENTRY
save_LightModelf(GLenum pname, GLfloat param)
{
GLfloat parray[4];
parray[0] = param;
parray[1] = parray[2] = parray[3] = 0.0F;
save_LightModelfv(pname, parray);
}
static void GLAPIENTRY
save_LightModeliv(GLenum pname, const GLint *params)
{
GLfloat fparam[4];
switch (pname) {
case GL_LIGHT_MODEL_AMBIENT:
fparam[0] = INT_TO_FLOAT(params[0]);
fparam[1] = INT_TO_FLOAT(params[1]);
fparam[2] = INT_TO_FLOAT(params[2]);
fparam[3] = INT_TO_FLOAT(params[3]);
break;
case GL_LIGHT_MODEL_LOCAL_VIEWER:
case GL_LIGHT_MODEL_TWO_SIDE:
case GL_LIGHT_MODEL_COLOR_CONTROL:
fparam[0] = (GLfloat) params[0];
fparam[1] = 0.0F;
fparam[2] = 0.0F;
fparam[3] = 0.0F;
break;
default:
/* Error will be caught later in gl_LightModelfv */
ASSIGN_4V(fparam, 0.0F, 0.0F, 0.0F, 0.0F);
}
save_LightModelfv(pname, fparam);
}
static void GLAPIENTRY
save_LightModeli(GLenum pname, GLint param)
{
GLint parray[4];
parray[0] = param;
parray[1] = parray[2] = parray[3] = 0;
save_LightModeliv(pname, parray);
}
static void GLAPIENTRY
save_LineStipple(GLint factor, GLushort pattern)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_LINE_STIPPLE, 2);
if (n) {
n[1].i = factor;
n[2].us = pattern;
}
if (ctx->ExecuteFlag) {
CALL_LineStipple(ctx->Exec, (factor, pattern));
}
}
static void GLAPIENTRY
save_LineWidth(GLfloat width)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_LINE_WIDTH, 1);
if (n) {
n[1].f = width;
}
if (ctx->ExecuteFlag) {
CALL_LineWidth(ctx->Exec, (width));
}
}
static void GLAPIENTRY
save_ListBase(GLuint base)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_LIST_BASE, 1);
if (n) {
n[1].ui = base;
}
if (ctx->ExecuteFlag) {
CALL_ListBase(ctx->Exec, (base));
}
}
static void GLAPIENTRY
save_LoadIdentity(void)
{
GET_CURRENT_CONTEXT(ctx);
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
(void) alloc_instruction(ctx, OPCODE_LOAD_IDENTITY, 0);
if (ctx->ExecuteFlag) {
CALL_LoadIdentity(ctx->Exec, ());
}
}
static void GLAPIENTRY
save_LoadMatrixf(const GLfloat * m)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_LOAD_MATRIX, 16);
if (n) {
GLuint i;
for (i = 0; i < 16; i++) {
n[1 + i].f = m[i];
}
}
if (ctx->ExecuteFlag) {
CALL_LoadMatrixf(ctx->Exec, (m));
}
}
static void GLAPIENTRY
save_LoadMatrixd(const GLdouble * m)
{
GLfloat f[16];
GLint i;
for (i = 0; i < 16; i++) {
f[i] = (GLfloat) m[i];
}
save_LoadMatrixf(f);
}
static void GLAPIENTRY
save_LoadName(GLuint name)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_LOAD_NAME, 1);
if (n) {
n[1].ui = name;
}
if (ctx->ExecuteFlag) {
CALL_LoadName(ctx->Exec, (name));
}
}
static void GLAPIENTRY
save_LogicOp(GLenum opcode)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_LOGIC_OP, 1);
if (n) {
n[1].e = opcode;
}
if (ctx->ExecuteFlag) {
CALL_LogicOp(ctx->Exec, (opcode));
}
}
static void GLAPIENTRY
save_Map1d(GLenum target, GLdouble u1, GLdouble u2, GLint stride,
GLint order, const GLdouble * points)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_MAP1, 5 + POINTER_DWORDS);
if (n) {
GLfloat *pnts = _mesa_copy_map_points1d(target, stride, order, points);
n[1].e = target;
n[2].f = (GLfloat) u1;
n[3].f = (GLfloat) u2;
n[4].i = _mesa_evaluator_components(target); /* stride */
n[5].i = order;
save_pointer(&n[6], pnts);
}
if (ctx->ExecuteFlag) {
CALL_Map1d(ctx->Exec, (target, u1, u2, stride, order, points));
}
}
static void GLAPIENTRY
save_Map1f(GLenum target, GLfloat u1, GLfloat u2, GLint stride,
GLint order, const GLfloat * points)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_MAP1, 5 + POINTER_DWORDS);
if (n) {
GLfloat *pnts = _mesa_copy_map_points1f(target, stride, order, points);
n[1].e = target;
n[2].f = u1;
n[3].f = u2;
n[4].i = _mesa_evaluator_components(target); /* stride */
n[5].i = order;
save_pointer(&n[6], pnts);
}
if (ctx->ExecuteFlag) {
CALL_Map1f(ctx->Exec, (target, u1, u2, stride, order, points));
}
}
static void GLAPIENTRY
save_Map2d(GLenum target,
GLdouble u1, GLdouble u2, GLint ustride, GLint uorder,
GLdouble v1, GLdouble v2, GLint vstride, GLint vorder,
const GLdouble * points)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_MAP2, 9 + POINTER_DWORDS);
if (n) {
GLfloat *pnts = _mesa_copy_map_points2d(target, ustride, uorder,
vstride, vorder, points);
n[1].e = target;
n[2].f = (GLfloat) u1;
n[3].f = (GLfloat) u2;
n[4].f = (GLfloat) v1;
n[5].f = (GLfloat) v2;
/* XXX verify these strides are correct */
n[6].i = _mesa_evaluator_components(target) * vorder; /*ustride */
n[7].i = _mesa_evaluator_components(target); /*vstride */
n[8].i = uorder;
n[9].i = vorder;
save_pointer(&n[10], pnts);
}
if (ctx->ExecuteFlag) {
CALL_Map2d(ctx->Exec, (target,
u1, u2, ustride, uorder,
v1, v2, vstride, vorder, points));
}
}
static void GLAPIENTRY
save_Map2f(GLenum target,
GLfloat u1, GLfloat u2, GLint ustride, GLint uorder,
GLfloat v1, GLfloat v2, GLint vstride, GLint vorder,
const GLfloat * points)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_MAP2, 9 + POINTER_DWORDS);
if (n) {
GLfloat *pnts = _mesa_copy_map_points2f(target, ustride, uorder,
vstride, vorder, points);
n[1].e = target;
n[2].f = u1;
n[3].f = u2;
n[4].f = v1;
n[5].f = v2;
/* XXX verify these strides are correct */
n[6].i = _mesa_evaluator_components(target) * vorder; /*ustride */
n[7].i = _mesa_evaluator_components(target); /*vstride */
n[8].i = uorder;
n[9].i = vorder;
save_pointer(&n[10], pnts);
}
if (ctx->ExecuteFlag) {
CALL_Map2f(ctx->Exec, (target, u1, u2, ustride, uorder,
v1, v2, vstride, vorder, points));
}
}
static void GLAPIENTRY
save_MapGrid1f(GLint un, GLfloat u1, GLfloat u2)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_MAPGRID1, 3);
if (n) {
n[1].i = un;
n[2].f = u1;
n[3].f = u2;
}
if (ctx->ExecuteFlag) {
CALL_MapGrid1f(ctx->Exec, (un, u1, u2));
}
}
static void GLAPIENTRY
save_MapGrid1d(GLint un, GLdouble u1, GLdouble u2)
{
save_MapGrid1f(un, (GLfloat) u1, (GLfloat) u2);
}
static void GLAPIENTRY
save_MapGrid2f(GLint un, GLfloat u1, GLfloat u2,
GLint vn, GLfloat v1, GLfloat v2)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_MAPGRID2, 6);
if (n) {
n[1].i = un;
n[2].f = u1;
n[3].f = u2;
n[4].i = vn;
n[5].f = v1;
n[6].f = v2;
}
if (ctx->ExecuteFlag) {
CALL_MapGrid2f(ctx->Exec, (un, u1, u2, vn, v1, v2));
}
}
static void GLAPIENTRY
save_MapGrid2d(GLint un, GLdouble u1, GLdouble u2,
GLint vn, GLdouble v1, GLdouble v2)
{
save_MapGrid2f(un, (GLfloat) u1, (GLfloat) u2,
vn, (GLfloat) v1, (GLfloat) v2);
}
static void GLAPIENTRY
save_MatrixMode(GLenum mode)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_MATRIX_MODE, 1);
if (n) {
n[1].e = mode;
}
if (ctx->ExecuteFlag) {
CALL_MatrixMode(ctx->Exec, (mode));
}
}
static void GLAPIENTRY
save_MultMatrixf(const GLfloat * m)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_MULT_MATRIX, 16);
if (n) {
GLuint i;
for (i = 0; i < 16; i++) {
n[1 + i].f = m[i];
}
}
if (ctx->ExecuteFlag) {
CALL_MultMatrixf(ctx->Exec, (m));
}
}
static void GLAPIENTRY
save_MultMatrixd(const GLdouble * m)
{
GLfloat f[16];
GLint i;
for (i = 0; i < 16; i++) {
f[i] = (GLfloat) m[i];
}
save_MultMatrixf(f);
}
static void GLAPIENTRY
save_NewList(GLuint name, GLenum mode)
{
GET_CURRENT_CONTEXT(ctx);
/* It's an error to call this function while building a display list */
_mesa_error(ctx, GL_INVALID_OPERATION, "glNewList");
(void) name;
(void) mode;
}
static void GLAPIENTRY
save_Ortho(GLdouble left, GLdouble right,
GLdouble bottom, GLdouble top, GLdouble nearval, GLdouble farval)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_ORTHO, 6);
if (n) {
n[1].f = (GLfloat) left;
n[2].f = (GLfloat) right;
n[3].f = (GLfloat) bottom;
n[4].f = (GLfloat) top;
n[5].f = (GLfloat) nearval;
n[6].f = (GLfloat) farval;
}
if (ctx->ExecuteFlag) {
CALL_Ortho(ctx->Exec, (left, right, bottom, top, nearval, farval));
}
}
static void GLAPIENTRY
save_PixelMapfv(GLenum map, GLint mapsize, const GLfloat *values)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_PIXEL_MAP, 2 + POINTER_DWORDS);
if (n) {
n[1].e = map;
n[2].i = mapsize;
save_pointer(&n[3], memdup(values, mapsize * sizeof(GLfloat)));
}
if (ctx->ExecuteFlag) {
CALL_PixelMapfv(ctx->Exec, (map, mapsize, values));
}
}
static void GLAPIENTRY
save_PixelMapuiv(GLenum map, GLint mapsize, const GLuint *values)
{
GLfloat fvalues[MAX_PIXEL_MAP_TABLE];
GLint i;
if (map == GL_PIXEL_MAP_I_TO_I || map == GL_PIXEL_MAP_S_TO_S) {
for (i = 0; i < mapsize; i++) {
fvalues[i] = (GLfloat) values[i];
}
}
else {
for (i = 0; i < mapsize; i++) {
fvalues[i] = UINT_TO_FLOAT(values[i]);
}
}
save_PixelMapfv(map, mapsize, fvalues);
}
static void GLAPIENTRY
save_PixelMapusv(GLenum map, GLint mapsize, const GLushort *values)
{
GLfloat fvalues[MAX_PIXEL_MAP_TABLE];
GLint i;
if (map == GL_PIXEL_MAP_I_TO_I || map == GL_PIXEL_MAP_S_TO_S) {
for (i = 0; i < mapsize; i++) {
fvalues[i] = (GLfloat) values[i];
}
}
else {
for (i = 0; i < mapsize; i++) {
fvalues[i] = USHORT_TO_FLOAT(values[i]);
}
}
save_PixelMapfv(map, mapsize, fvalues);
}
static void GLAPIENTRY
save_PixelTransferf(GLenum pname, GLfloat param)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_PIXEL_TRANSFER, 2);
if (n) {
n[1].e = pname;
n[2].f = param;
}
if (ctx->ExecuteFlag) {
CALL_PixelTransferf(ctx->Exec, (pname, param));
}
}
static void GLAPIENTRY
save_PixelTransferi(GLenum pname, GLint param)
{
save_PixelTransferf(pname, (GLfloat) param);
}
static void GLAPIENTRY
save_PixelZoom(GLfloat xfactor, GLfloat yfactor)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_PIXEL_ZOOM, 2);
if (n) {
n[1].f = xfactor;
n[2].f = yfactor;
}
if (ctx->ExecuteFlag) {
CALL_PixelZoom(ctx->Exec, (xfactor, yfactor));
}
}
static void GLAPIENTRY
save_PointParameterfvEXT(GLenum pname, const GLfloat *params)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_POINT_PARAMETERS, 4);
if (n) {
n[1].e = pname;
n[2].f = params[0];
n[3].f = params[1];
n[4].f = params[2];
}
if (ctx->ExecuteFlag) {
CALL_PointParameterfv(ctx->Exec, (pname, params));
}
}
static void GLAPIENTRY
save_PointParameterfEXT(GLenum pname, GLfloat param)
{
GLfloat parray[3];
parray[0] = param;
parray[1] = parray[2] = 0.0F;
save_PointParameterfvEXT(pname, parray);
}
static void GLAPIENTRY
save_PointParameteriNV(GLenum pname, GLint param)
{
GLfloat parray[3];
parray[0] = (GLfloat) param;
parray[1] = parray[2] = 0.0F;
save_PointParameterfvEXT(pname, parray);
}
static void GLAPIENTRY
save_PointParameterivNV(GLenum pname, const GLint * param)
{
GLfloat parray[3];
parray[0] = (GLfloat) param[0];
parray[1] = parray[2] = 0.0F;
save_PointParameterfvEXT(pname, parray);
}
static void GLAPIENTRY
save_PointSize(GLfloat size)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_POINT_SIZE, 1);
if (n) {
n[1].f = size;
}
if (ctx->ExecuteFlag) {
CALL_PointSize(ctx->Exec, (size));
}
}
static void GLAPIENTRY
save_PolygonMode(GLenum face, GLenum mode)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_POLYGON_MODE, 2);
if (n) {
n[1].e = face;
n[2].e = mode;
}
if (ctx->ExecuteFlag) {
CALL_PolygonMode(ctx->Exec, (face, mode));
}
}
static void GLAPIENTRY
save_PolygonStipple(const GLubyte * pattern)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_POLYGON_STIPPLE, POINTER_DWORDS);
if (n) {
save_pointer(&n[1],
unpack_image(ctx, 2, 32, 32, 1, GL_COLOR_INDEX, GL_BITMAP,
pattern, &ctx->Unpack));
}
if (ctx->ExecuteFlag) {
CALL_PolygonStipple(ctx->Exec, ((GLubyte *) pattern));
}
}
static void GLAPIENTRY
save_PolygonOffset(GLfloat factor, GLfloat units)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_POLYGON_OFFSET, 2);
if (n) {
n[1].f = factor;
n[2].f = units;
}
if (ctx->ExecuteFlag) {
CALL_PolygonOffset(ctx->Exec, (factor, units));
}
}
static void GLAPIENTRY
save_PolygonOffsetEXT(GLfloat factor, GLfloat bias)
{
GET_CURRENT_CONTEXT(ctx);
/* XXX mult by DepthMaxF here??? */
save_PolygonOffset(factor, ctx->DrawBuffer->_DepthMaxF * bias);
}
static void GLAPIENTRY
save_PolygonOffsetClampEXT(GLfloat factor, GLfloat units, GLfloat clamp)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_POLYGON_OFFSET_CLAMP, 3);
if (n) {
n[1].f = factor;
n[2].f = units;
n[3].f = clamp;
}
if (ctx->ExecuteFlag) {
CALL_PolygonOffsetClampEXT(ctx->Exec, (factor, units, clamp));
}
}
static void GLAPIENTRY
save_PopAttrib(void)
{
GET_CURRENT_CONTEXT(ctx);
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
(void) alloc_instruction(ctx, OPCODE_POP_ATTRIB, 0);
if (ctx->ExecuteFlag) {
CALL_PopAttrib(ctx->Exec, ());
}
}
static void GLAPIENTRY
save_PopMatrix(void)
{
GET_CURRENT_CONTEXT(ctx);
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
(void) alloc_instruction(ctx, OPCODE_POP_MATRIX, 0);
if (ctx->ExecuteFlag) {
CALL_PopMatrix(ctx->Exec, ());
}
}
static void GLAPIENTRY
save_PopName(void)
{
GET_CURRENT_CONTEXT(ctx);
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
(void) alloc_instruction(ctx, OPCODE_POP_NAME, 0);
if (ctx->ExecuteFlag) {
CALL_PopName(ctx->Exec, ());
}
}
static void GLAPIENTRY
save_PrioritizeTextures(GLsizei num, const GLuint * textures,
const GLclampf * priorities)
{
GET_CURRENT_CONTEXT(ctx);
GLint i;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
for (i = 0; i < num; i++) {
Node *n;
n = alloc_instruction(ctx, OPCODE_PRIORITIZE_TEXTURE, 2);
if (n) {
n[1].ui = textures[i];
n[2].f = priorities[i];
}
}
if (ctx->ExecuteFlag) {
CALL_PrioritizeTextures(ctx->Exec, (num, textures, priorities));
}
}
static void GLAPIENTRY
save_PushAttrib(GLbitfield mask)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_PUSH_ATTRIB, 1);
if (n) {
n[1].bf = mask;
}
if (ctx->ExecuteFlag) {
CALL_PushAttrib(ctx->Exec, (mask));
}
}
static void GLAPIENTRY
save_PushMatrix(void)
{
GET_CURRENT_CONTEXT(ctx);
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
(void) alloc_instruction(ctx, OPCODE_PUSH_MATRIX, 0);
if (ctx->ExecuteFlag) {
CALL_PushMatrix(ctx->Exec, ());
}
}
static void GLAPIENTRY
save_PushName(GLuint name)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_PUSH_NAME, 1);
if (n) {
n[1].ui = name;
}
if (ctx->ExecuteFlag) {
CALL_PushName(ctx->Exec, (name));
}
}
static void GLAPIENTRY
save_RasterPos4f(GLfloat x, GLfloat y, GLfloat z, GLfloat w)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_RASTER_POS, 4);
if (n) {
n[1].f = x;
n[2].f = y;
n[3].f = z;
n[4].f = w;
}
if (ctx->ExecuteFlag) {
CALL_RasterPos4f(ctx->Exec, (x, y, z, w));
}
}
static void GLAPIENTRY
save_RasterPos2d(GLdouble x, GLdouble y)
{
save_RasterPos4f((GLfloat) x, (GLfloat) y, 0.0F, 1.0F);
}
static void GLAPIENTRY
save_RasterPos2f(GLfloat x, GLfloat y)
{
save_RasterPos4f(x, y, 0.0F, 1.0F);
}
static void GLAPIENTRY
save_RasterPos2i(GLint x, GLint y)
{
save_RasterPos4f((GLfloat) x, (GLfloat) y, 0.0F, 1.0F);
}
static void GLAPIENTRY
save_RasterPos2s(GLshort x, GLshort y)
{
save_RasterPos4f(x, y, 0.0F, 1.0F);
}
static void GLAPIENTRY
save_RasterPos3d(GLdouble x, GLdouble y, GLdouble z)
{
save_RasterPos4f((GLfloat) x, (GLfloat) y, (GLfloat) z, 1.0F);
}
static void GLAPIENTRY
save_RasterPos3f(GLfloat x, GLfloat y, GLfloat z)
{
save_RasterPos4f(x, y, z, 1.0F);
}
static void GLAPIENTRY
save_RasterPos3i(GLint x, GLint y, GLint z)
{
save_RasterPos4f((GLfloat) x, (GLfloat) y, (GLfloat) z, 1.0F);
}
static void GLAPIENTRY
save_RasterPos3s(GLshort x, GLshort y, GLshort z)
{
save_RasterPos4f(x, y, z, 1.0F);
}
static void GLAPIENTRY
save_RasterPos4d(GLdouble x, GLdouble y, GLdouble z, GLdouble w)
{
save_RasterPos4f((GLfloat) x, (GLfloat) y, (GLfloat) z, (GLfloat) w);
}
static void GLAPIENTRY
save_RasterPos4i(GLint x, GLint y, GLint z, GLint w)
{
save_RasterPos4f((GLfloat) x, (GLfloat) y, (GLfloat) z, (GLfloat) w);
}
static void GLAPIENTRY
save_RasterPos4s(GLshort x, GLshort y, GLshort z, GLshort w)
{
save_RasterPos4f(x, y, z, w);
}
static void GLAPIENTRY
save_RasterPos2dv(const GLdouble * v)
{
save_RasterPos4f((GLfloat) v[0], (GLfloat) v[1], 0.0F, 1.0F);
}
static void GLAPIENTRY
save_RasterPos2fv(const GLfloat * v)
{
save_RasterPos4f(v[0], v[1], 0.0F, 1.0F);
}
static void GLAPIENTRY
save_RasterPos2iv(const GLint * v)
{
save_RasterPos4f((GLfloat) v[0], (GLfloat) v[1], 0.0F, 1.0F);
}
static void GLAPIENTRY
save_RasterPos2sv(const GLshort * v)
{
save_RasterPos4f(v[0], v[1], 0.0F, 1.0F);
}
static void GLAPIENTRY
save_RasterPos3dv(const GLdouble * v)
{
save_RasterPos4f((GLfloat) v[0], (GLfloat) v[1], (GLfloat) v[2], 1.0F);
}
static void GLAPIENTRY
save_RasterPos3fv(const GLfloat * v)
{
save_RasterPos4f(v[0], v[1], v[2], 1.0F);
}
static void GLAPIENTRY
save_RasterPos3iv(const GLint * v)
{
save_RasterPos4f((GLfloat) v[0], (GLfloat) v[1], (GLfloat) v[2], 1.0F);
}
static void GLAPIENTRY
save_RasterPos3sv(const GLshort * v)
{
save_RasterPos4f(v[0], v[1], v[2], 1.0F);
}
static void GLAPIENTRY
save_RasterPos4dv(const GLdouble * v)
{
save_RasterPos4f((GLfloat) v[0], (GLfloat) v[1],
(GLfloat) v[2], (GLfloat) v[3]);
}
static void GLAPIENTRY
save_RasterPos4fv(const GLfloat * v)
{
save_RasterPos4f(v[0], v[1], v[2], v[3]);
}
static void GLAPIENTRY
save_RasterPos4iv(const GLint * v)
{
save_RasterPos4f((GLfloat) v[0], (GLfloat) v[1],
(GLfloat) v[2], (GLfloat) v[3]);
}
static void GLAPIENTRY
save_RasterPos4sv(const GLshort * v)
{
save_RasterPos4f(v[0], v[1], v[2], v[3]);
}
static void GLAPIENTRY
save_PassThrough(GLfloat token)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_PASSTHROUGH, 1);
if (n) {
n[1].f = token;
}
if (ctx->ExecuteFlag) {
CALL_PassThrough(ctx->Exec, (token));
}
}
static void GLAPIENTRY
save_ReadBuffer(GLenum mode)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_READ_BUFFER, 1);
if (n) {
n[1].e = mode;
}
if (ctx->ExecuteFlag) {
CALL_ReadBuffer(ctx->Exec, (mode));
}
}
static void GLAPIENTRY
save_Rotatef(GLfloat angle, GLfloat x, GLfloat y, GLfloat z)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_ROTATE, 4);
if (n) {
n[1].f = angle;
n[2].f = x;
n[3].f = y;
n[4].f = z;
}
if (ctx->ExecuteFlag) {
CALL_Rotatef(ctx->Exec, (angle, x, y, z));
}
}
static void GLAPIENTRY
save_Rotated(GLdouble angle, GLdouble x, GLdouble y, GLdouble z)
{
save_Rotatef((GLfloat) angle, (GLfloat) x, (GLfloat) y, (GLfloat) z);
}
static void GLAPIENTRY
save_Scalef(GLfloat x, GLfloat y, GLfloat z)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_SCALE, 3);
if (n) {
n[1].f = x;
n[2].f = y;
n[3].f = z;
}
if (ctx->ExecuteFlag) {
CALL_Scalef(ctx->Exec, (x, y, z));
}
}
static void GLAPIENTRY
save_Scaled(GLdouble x, GLdouble y, GLdouble z)
{
save_Scalef((GLfloat) x, (GLfloat) y, (GLfloat) z);
}
static void GLAPIENTRY
save_Scissor(GLint x, GLint y, GLsizei width, GLsizei height)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_SCISSOR, 4);
if (n) {
n[1].i = x;
n[2].i = y;
n[3].i = width;
n[4].i = height;
}
if (ctx->ExecuteFlag) {
CALL_Scissor(ctx->Exec, (x, y, width, height));
}
}
static void GLAPIENTRY
save_ShadeModel(GLenum mode)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END(ctx);
if (ctx->ExecuteFlag) {
CALL_ShadeModel(ctx->Exec, (mode));
}
/* Don't compile this call if it's a no-op.
* By avoiding this state change we have a better chance of
* coalescing subsequent drawing commands into one batch.
*/
if (ctx->ListState.Current.ShadeModel == mode)
return;
SAVE_FLUSH_VERTICES(ctx);
ctx->ListState.Current.ShadeModel = mode;
n = alloc_instruction(ctx, OPCODE_SHADE_MODEL, 1);
if (n) {
n[1].e = mode;
}
}
static void GLAPIENTRY
save_StencilFunc(GLenum func, GLint ref, GLuint mask)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_STENCIL_FUNC, 3);
if (n) {
n[1].e = func;
n[2].i = ref;
n[3].ui = mask;
}
if (ctx->ExecuteFlag) {
CALL_StencilFunc(ctx->Exec, (func, ref, mask));
}
}
static void GLAPIENTRY
save_StencilMask(GLuint mask)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_STENCIL_MASK, 1);
if (n) {
n[1].ui = mask;
}
if (ctx->ExecuteFlag) {
CALL_StencilMask(ctx->Exec, (mask));
}
}
static void GLAPIENTRY
save_StencilOp(GLenum fail, GLenum zfail, GLenum zpass)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_STENCIL_OP, 3);
if (n) {
n[1].e = fail;
n[2].e = zfail;
n[3].e = zpass;
}
if (ctx->ExecuteFlag) {
CALL_StencilOp(ctx->Exec, (fail, zfail, zpass));
}
}
static void GLAPIENTRY
save_StencilFuncSeparate(GLenum face, GLenum func, GLint ref, GLuint mask)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_STENCIL_FUNC_SEPARATE, 4);
if (n) {
n[1].e = face;
n[2].e = func;
n[3].i = ref;
n[4].ui = mask;
}
if (ctx->ExecuteFlag) {
CALL_StencilFuncSeparate(ctx->Exec, (face, func, ref, mask));
}
}
static void GLAPIENTRY
save_StencilFuncSeparateATI(GLenum frontfunc, GLenum backfunc, GLint ref,
GLuint mask)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
/* GL_FRONT */
n = alloc_instruction(ctx, OPCODE_STENCIL_FUNC_SEPARATE, 4);
if (n) {
n[1].e = GL_FRONT;
n[2].e = frontfunc;
n[3].i = ref;
n[4].ui = mask;
}
/* GL_BACK */
n = alloc_instruction(ctx, OPCODE_STENCIL_FUNC_SEPARATE, 4);
if (n) {
n[1].e = GL_BACK;
n[2].e = backfunc;
n[3].i = ref;
n[4].ui = mask;
}
if (ctx->ExecuteFlag) {
CALL_StencilFuncSeparate(ctx->Exec, (GL_FRONT, frontfunc, ref, mask));
CALL_StencilFuncSeparate(ctx->Exec, (GL_BACK, backfunc, ref, mask));
}
}
static void GLAPIENTRY
save_StencilMaskSeparate(GLenum face, GLuint mask)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_STENCIL_MASK_SEPARATE, 2);
if (n) {
n[1].e = face;
n[2].ui = mask;
}
if (ctx->ExecuteFlag) {
CALL_StencilMaskSeparate(ctx->Exec, (face, mask));
}
}
static void GLAPIENTRY
save_StencilOpSeparate(GLenum face, GLenum fail, GLenum zfail, GLenum zpass)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_STENCIL_OP_SEPARATE, 4);
if (n) {
n[1].e = face;
n[2].e = fail;
n[3].e = zfail;
n[4].e = zpass;
}
if (ctx->ExecuteFlag) {
CALL_StencilOpSeparate(ctx->Exec, (face, fail, zfail, zpass));
}
}
static void GLAPIENTRY
save_TexEnvfv(GLenum target, GLenum pname, const GLfloat *params)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_TEXENV, 6);
if (n) {
n[1].e = target;
n[2].e = pname;
if (pname == GL_TEXTURE_ENV_COLOR) {
n[3].f = params[0];
n[4].f = params[1];
n[5].f = params[2];
n[6].f = params[3];
}
else {
n[3].f = params[0];
n[4].f = n[5].f = n[6].f = 0.0F;
}
}
if (ctx->ExecuteFlag) {
CALL_TexEnvfv(ctx->Exec, (target, pname, params));
}
}
static void GLAPIENTRY
save_TexEnvf(GLenum target, GLenum pname, GLfloat param)
{
GLfloat parray[4];
parray[0] = (GLfloat) param;
parray[1] = parray[2] = parray[3] = 0.0F;
save_TexEnvfv(target, pname, parray);
}
static void GLAPIENTRY
save_TexEnvi(GLenum target, GLenum pname, GLint param)
{
GLfloat p[4];
p[0] = (GLfloat) param;
p[1] = p[2] = p[3] = 0.0F;
save_TexEnvfv(target, pname, p);
}
static void GLAPIENTRY
save_TexEnviv(GLenum target, GLenum pname, const GLint * param)
{
GLfloat p[4];
if (pname == GL_TEXTURE_ENV_COLOR) {
p[0] = INT_TO_FLOAT(param[0]);
p[1] = INT_TO_FLOAT(param[1]);
p[2] = INT_TO_FLOAT(param[2]);
p[3] = INT_TO_FLOAT(param[3]);
}
else {
p[0] = (GLfloat) param[0];
p[1] = p[2] = p[3] = 0.0F;
}
save_TexEnvfv(target, pname, p);
}
static void GLAPIENTRY
save_TexGenfv(GLenum coord, GLenum pname, const GLfloat *params)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_TEXGEN, 6);
if (n) {
n[1].e = coord;
n[2].e = pname;
n[3].f = params[0];
n[4].f = params[1];
n[5].f = params[2];
n[6].f = params[3];
}
if (ctx->ExecuteFlag) {
CALL_TexGenfv(ctx->Exec, (coord, pname, params));
}
}
static void GLAPIENTRY
save_TexGeniv(GLenum coord, GLenum pname, const GLint *params)
{
GLfloat p[4];
p[0] = (GLfloat) params[0];
p[1] = (GLfloat) params[1];
p[2] = (GLfloat) params[2];
p[3] = (GLfloat) params[3];
save_TexGenfv(coord, pname, p);
}
static void GLAPIENTRY
save_TexGend(GLenum coord, GLenum pname, GLdouble param)
{
GLfloat parray[4];
parray[0] = (GLfloat) param;
parray[1] = parray[2] = parray[3] = 0.0F;
save_TexGenfv(coord, pname, parray);
}
static void GLAPIENTRY
save_TexGendv(GLenum coord, GLenum pname, const GLdouble *params)
{
GLfloat p[4];
p[0] = (GLfloat) params[0];
p[1] = (GLfloat) params[1];
p[2] = (GLfloat) params[2];
p[3] = (GLfloat) params[3];
save_TexGenfv(coord, pname, p);
}
static void GLAPIENTRY
save_TexGenf(GLenum coord, GLenum pname, GLfloat param)
{
GLfloat parray[4];
parray[0] = param;
parray[1] = parray[2] = parray[3] = 0.0F;
save_TexGenfv(coord, pname, parray);
}
static void GLAPIENTRY
save_TexGeni(GLenum coord, GLenum pname, GLint param)
{
GLint parray[4];
parray[0] = param;
parray[1] = parray[2] = parray[3] = 0;
save_TexGeniv(coord, pname, parray);
}
static void GLAPIENTRY
save_TexParameterfv(GLenum target, GLenum pname, const GLfloat *params)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_TEXPARAMETER, 6);
if (n) {
n[1].e = target;
n[2].e = pname;
n[3].f = params[0];
n[4].f = params[1];
n[5].f = params[2];
n[6].f = params[3];
}
if (ctx->ExecuteFlag) {
CALL_TexParameterfv(ctx->Exec, (target, pname, params));
}
}
static void GLAPIENTRY
save_TexParameterf(GLenum target, GLenum pname, GLfloat param)
{
GLfloat parray[4];
parray[0] = param;
parray[1] = parray[2] = parray[3] = 0.0F;
save_TexParameterfv(target, pname, parray);
}
static void GLAPIENTRY
save_TexParameteri(GLenum target, GLenum pname, GLint param)
{
GLfloat fparam[4];
fparam[0] = (GLfloat) param;
fparam[1] = fparam[2] = fparam[3] = 0.0F;
save_TexParameterfv(target, pname, fparam);
}
static void GLAPIENTRY
save_TexParameteriv(GLenum target, GLenum pname, const GLint *params)
{
GLfloat fparam[4];
fparam[0] = (GLfloat) params[0];
fparam[1] = fparam[2] = fparam[3] = 0.0F;
save_TexParameterfv(target, pname, fparam);
}
static void GLAPIENTRY
save_TexImage1D(GLenum target,
GLint level, GLint components,
GLsizei width, GLint border,
GLenum format, GLenum type, const GLvoid * pixels)
{
GET_CURRENT_CONTEXT(ctx);
if (target == GL_PROXY_TEXTURE_1D) {
/* don't compile, execute immediately */
CALL_TexImage1D(ctx->Exec, (target, level, components, width,
border, format, type, pixels));
}
else {
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_TEX_IMAGE1D, 7 + POINTER_DWORDS);
if (n) {
n[1].e = target;
n[2].i = level;
n[3].i = components;
n[4].i = (GLint) width;
n[5].i = border;
n[6].e = format;
n[7].e = type;
save_pointer(&n[8],
unpack_image(ctx, 1, width, 1, 1, format, type,
pixels, &ctx->Unpack));
}
if (ctx->ExecuteFlag) {
CALL_TexImage1D(ctx->Exec, (target, level, components, width,
border, format, type, pixels));
}
}
}
static void GLAPIENTRY
save_TexImage2D(GLenum target,
GLint level, GLint components,
GLsizei width, GLsizei height, GLint border,
GLenum format, GLenum type, const GLvoid * pixels)
{
GET_CURRENT_CONTEXT(ctx);
if (target == GL_PROXY_TEXTURE_2D) {
/* don't compile, execute immediately */
CALL_TexImage2D(ctx->Exec, (target, level, components, width,
height, border, format, type, pixels));
}
else {
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_TEX_IMAGE2D, 8 + POINTER_DWORDS);
if (n) {
n[1].e = target;
n[2].i = level;
n[3].i = components;
n[4].i = (GLint) width;
n[5].i = (GLint) height;
n[6].i = border;
n[7].e = format;
n[8].e = type;
save_pointer(&n[9],
unpack_image(ctx, 2, width, height, 1, format, type,
pixels, &ctx->Unpack));
}
if (ctx->ExecuteFlag) {
CALL_TexImage2D(ctx->Exec, (target, level, components, width,
height, border, format, type, pixels));
}
}
}
static void GLAPIENTRY
save_TexImage3D(GLenum target,
GLint level, GLint internalFormat,
GLsizei width, GLsizei height, GLsizei depth,
GLint border,
GLenum format, GLenum type, const GLvoid * pixels)
{
GET_CURRENT_CONTEXT(ctx);
if (target == GL_PROXY_TEXTURE_3D) {
/* don't compile, execute immediately */
CALL_TexImage3D(ctx->Exec, (target, level, internalFormat, width,
height, depth, border, format, type,
pixels));
}
else {
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_TEX_IMAGE3D, 9 + POINTER_DWORDS);
if (n) {
n[1].e = target;
n[2].i = level;
n[3].i = (GLint) internalFormat;
n[4].i = (GLint) width;
n[5].i = (GLint) height;
n[6].i = (GLint) depth;
n[7].i = border;
n[8].e = format;
n[9].e = type;
save_pointer(&n[10],
unpack_image(ctx, 3, width, height, depth, format, type,
pixels, &ctx->Unpack));
}
if (ctx->ExecuteFlag) {
CALL_TexImage3D(ctx->Exec, (target, level, internalFormat, width,
height, depth, border, format, type,
pixels));
}
}
}
static void GLAPIENTRY
save_TexSubImage1D(GLenum target, GLint level, GLint xoffset,
GLsizei width, GLenum format, GLenum type,
const GLvoid * pixels)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_TEX_SUB_IMAGE1D, 6 + POINTER_DWORDS);
if (n) {
n[1].e = target;
n[2].i = level;
n[3].i = xoffset;
n[4].i = (GLint) width;
n[5].e = format;
n[6].e = type;
save_pointer(&n[7],
unpack_image(ctx, 1, width, 1, 1, format, type,
pixels, &ctx->Unpack));
}
if (ctx->ExecuteFlag) {
CALL_TexSubImage1D(ctx->Exec, (target, level, xoffset, width,
format, type, pixels));
}
}
static void GLAPIENTRY
save_TexSubImage2D(GLenum target, GLint level,
GLint xoffset, GLint yoffset,
GLsizei width, GLsizei height,
GLenum format, GLenum type, const GLvoid * pixels)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_TEX_SUB_IMAGE2D, 8 + POINTER_DWORDS);
if (n) {
n[1].e = target;
n[2].i = level;
n[3].i = xoffset;
n[4].i = yoffset;
n[5].i = (GLint) width;
n[6].i = (GLint) height;
n[7].e = format;
n[8].e = type;
save_pointer(&n[9],
unpack_image(ctx, 2, width, height, 1, format, type,
pixels, &ctx->Unpack));
}
if (ctx->ExecuteFlag) {
CALL_TexSubImage2D(ctx->Exec, (target, level, xoffset, yoffset,
width, height, format, type, pixels));
}
}
static void GLAPIENTRY
save_TexSubImage3D(GLenum target, GLint level,
GLint xoffset, GLint yoffset, GLint zoffset,
GLsizei width, GLsizei height, GLsizei depth,
GLenum format, GLenum type, const GLvoid * pixels)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_TEX_SUB_IMAGE3D, 10 + POINTER_DWORDS);
if (n) {
n[1].e = target;
n[2].i = level;
n[3].i = xoffset;
n[4].i = yoffset;
n[5].i = zoffset;
n[6].i = (GLint) width;
n[7].i = (GLint) height;
n[8].i = (GLint) depth;
n[9].e = format;
n[10].e = type;
save_pointer(&n[11],
unpack_image(ctx, 3, width, height, depth, format, type,
pixels, &ctx->Unpack));
}
if (ctx->ExecuteFlag) {
CALL_TexSubImage3D(ctx->Exec, (target, level,
xoffset, yoffset, zoffset,
width, height, depth, format, type,
pixels));
}
}
static void GLAPIENTRY
save_Translatef(GLfloat x, GLfloat y, GLfloat z)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_TRANSLATE, 3);
if (n) {
n[1].f = x;
n[2].f = y;
n[3].f = z;
}
if (ctx->ExecuteFlag) {
CALL_Translatef(ctx->Exec, (x, y, z));
}
}
static void GLAPIENTRY
save_Translated(GLdouble x, GLdouble y, GLdouble z)
{
save_Translatef((GLfloat) x, (GLfloat) y, (GLfloat) z);
}
static void GLAPIENTRY
save_Viewport(GLint x, GLint y, GLsizei width, GLsizei height)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_VIEWPORT, 4);
if (n) {
n[1].i = x;
n[2].i = y;
n[3].i = (GLint) width;
n[4].i = (GLint) height;
}
if (ctx->ExecuteFlag) {
CALL_Viewport(ctx->Exec, (x, y, width, height));
}
}
static void GLAPIENTRY
save_WindowPos4fMESA(GLfloat x, GLfloat y, GLfloat z, GLfloat w)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_WINDOW_POS, 4);
if (n) {
n[1].f = x;
n[2].f = y;
n[3].f = z;
n[4].f = w;
}
if (ctx->ExecuteFlag) {
CALL_WindowPos4fMESA(ctx->Exec, (x, y, z, w));
}
}
static void GLAPIENTRY
save_WindowPos2dMESA(GLdouble x, GLdouble y)
{
save_WindowPos4fMESA((GLfloat) x, (GLfloat) y, 0.0F, 1.0F);
}
static void GLAPIENTRY
save_WindowPos2fMESA(GLfloat x, GLfloat y)
{
save_WindowPos4fMESA(x, y, 0.0F, 1.0F);
}
static void GLAPIENTRY
save_WindowPos2iMESA(GLint x, GLint y)
{
save_WindowPos4fMESA((GLfloat) x, (GLfloat) y, 0.0F, 1.0F);
}
static void GLAPIENTRY
save_WindowPos2sMESA(GLshort x, GLshort y)
{
save_WindowPos4fMESA(x, y, 0.0F, 1.0F);
}
static void GLAPIENTRY
save_WindowPos3dMESA(GLdouble x, GLdouble y, GLdouble z)
{
save_WindowPos4fMESA((GLfloat) x, (GLfloat) y, (GLfloat) z, 1.0F);
}
static void GLAPIENTRY
save_WindowPos3fMESA(GLfloat x, GLfloat y, GLfloat z)
{
save_WindowPos4fMESA(x, y, z, 1.0F);
}
static void GLAPIENTRY
save_WindowPos3iMESA(GLint x, GLint y, GLint z)
{
save_WindowPos4fMESA((GLfloat) x, (GLfloat) y, (GLfloat) z, 1.0F);
}
static void GLAPIENTRY
save_WindowPos3sMESA(GLshort x, GLshort y, GLshort z)
{
save_WindowPos4fMESA(x, y, z, 1.0F);
}
static void GLAPIENTRY
save_WindowPos4dMESA(GLdouble x, GLdouble y, GLdouble z, GLdouble w)
{
save_WindowPos4fMESA((GLfloat) x, (GLfloat) y, (GLfloat) z, (GLfloat) w);
}
static void GLAPIENTRY
save_WindowPos4iMESA(GLint x, GLint y, GLint z, GLint w)
{
save_WindowPos4fMESA((GLfloat) x, (GLfloat) y, (GLfloat) z, (GLfloat) w);
}
static void GLAPIENTRY
save_WindowPos4sMESA(GLshort x, GLshort y, GLshort z, GLshort w)
{
save_WindowPos4fMESA(x, y, z, w);
}
static void GLAPIENTRY
save_WindowPos2dvMESA(const GLdouble * v)
{
save_WindowPos4fMESA((GLfloat) v[0], (GLfloat) v[1], 0.0F, 1.0F);
}
static void GLAPIENTRY
save_WindowPos2fvMESA(const GLfloat * v)
{
save_WindowPos4fMESA(v[0], v[1], 0.0F, 1.0F);
}
static void GLAPIENTRY
save_WindowPos2ivMESA(const GLint * v)
{
save_WindowPos4fMESA((GLfloat) v[0], (GLfloat) v[1], 0.0F, 1.0F);
}
static void GLAPIENTRY
save_WindowPos2svMESA(const GLshort * v)
{
save_WindowPos4fMESA(v[0], v[1], 0.0F, 1.0F);
}
static void GLAPIENTRY
save_WindowPos3dvMESA(const GLdouble * v)
{
save_WindowPos4fMESA((GLfloat) v[0], (GLfloat) v[1], (GLfloat) v[2], 1.0F);
}
static void GLAPIENTRY
save_WindowPos3fvMESA(const GLfloat * v)
{
save_WindowPos4fMESA(v[0], v[1], v[2], 1.0F);
}
static void GLAPIENTRY
save_WindowPos3ivMESA(const GLint * v)
{
save_WindowPos4fMESA((GLfloat) v[0], (GLfloat) v[1], (GLfloat) v[2], 1.0F);
}
static void GLAPIENTRY
save_WindowPos3svMESA(const GLshort * v)
{
save_WindowPos4fMESA(v[0], v[1], v[2], 1.0F);
}
static void GLAPIENTRY
save_WindowPos4dvMESA(const GLdouble * v)
{
save_WindowPos4fMESA((GLfloat) v[0], (GLfloat) v[1],
(GLfloat) v[2], (GLfloat) v[3]);
}
static void GLAPIENTRY
save_WindowPos4fvMESA(const GLfloat * v)
{
save_WindowPos4fMESA(v[0], v[1], v[2], v[3]);
}
static void GLAPIENTRY
save_WindowPos4ivMESA(const GLint * v)
{
save_WindowPos4fMESA((GLfloat) v[0], (GLfloat) v[1],
(GLfloat) v[2], (GLfloat) v[3]);
}
static void GLAPIENTRY
save_WindowPos4svMESA(const GLshort * v)
{
save_WindowPos4fMESA(v[0], v[1], v[2], v[3]);
}
/* GL_ARB_multitexture */
static void GLAPIENTRY
save_ActiveTextureARB(GLenum target)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_ACTIVE_TEXTURE, 1);
if (n) {
n[1].e = target;
}
if (ctx->ExecuteFlag) {
CALL_ActiveTexture(ctx->Exec, (target));
}
}
/* GL_ARB_transpose_matrix */
static void GLAPIENTRY
save_LoadTransposeMatrixdARB(const GLdouble m[16])
{
GLfloat tm[16];
_math_transposefd(tm, m);
save_LoadMatrixf(tm);
}
static void GLAPIENTRY
save_LoadTransposeMatrixfARB(const GLfloat m[16])
{
GLfloat tm[16];
_math_transposef(tm, m);
save_LoadMatrixf(tm);
}
static void GLAPIENTRY
save_MultTransposeMatrixdARB(const GLdouble m[16])
{
GLfloat tm[16];
_math_transposefd(tm, m);
save_MultMatrixf(tm);
}
static void GLAPIENTRY
save_MultTransposeMatrixfARB(const GLfloat m[16])
{
GLfloat tm[16];
_math_transposef(tm, m);
save_MultMatrixf(tm);
}
static GLvoid *copy_data(const GLvoid *data, GLsizei size, const char *func)
{
GET_CURRENT_CONTEXT(ctx);
GLvoid *image;
if (!data)
return NULL;
image = malloc(size);
if (!image) {
_mesa_error(ctx, GL_OUT_OF_MEMORY, "%s", func);
return NULL;
}
memcpy(image, data, size);
return image;
}
/* GL_ARB_texture_compression */
static void GLAPIENTRY
save_CompressedTexImage1DARB(GLenum target, GLint level,
GLenum internalFormat, GLsizei width,
GLint border, GLsizei imageSize,
const GLvoid * data)
{
GET_CURRENT_CONTEXT(ctx);
if (target == GL_PROXY_TEXTURE_1D) {
/* don't compile, execute immediately */
CALL_CompressedTexImage1D(ctx->Exec, (target, level, internalFormat,
width, border, imageSize,
data));
}
else {
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_COMPRESSED_TEX_IMAGE_1D,
6 + POINTER_DWORDS);
if (n) {
n[1].e = target;
n[2].i = level;
n[3].e = internalFormat;
n[4].i = (GLint) width;
n[5].i = border;
n[6].i = imageSize;
save_pointer(&n[7],
copy_data(data, imageSize, "glCompressedTexImage1DARB"));
}
if (ctx->ExecuteFlag) {
CALL_CompressedTexImage1D(ctx->Exec,
(target, level, internalFormat, width,
border, imageSize, data));
}
}
}
static void GLAPIENTRY
save_CompressedTexImage2DARB(GLenum target, GLint level,
GLenum internalFormat, GLsizei width,
GLsizei height, GLint border, GLsizei imageSize,
const GLvoid * data)
{
GET_CURRENT_CONTEXT(ctx);
if (target == GL_PROXY_TEXTURE_2D) {
/* don't compile, execute immediately */
CALL_CompressedTexImage2D(ctx->Exec, (target, level, internalFormat,
width, height, border,
imageSize, data));
}
else {
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_COMPRESSED_TEX_IMAGE_2D,
7 + POINTER_DWORDS);
if (n) {
n[1].e = target;
n[2].i = level;
n[3].e = internalFormat;
n[4].i = (GLint) width;
n[5].i = (GLint) height;
n[6].i = border;
n[7].i = imageSize;
save_pointer(&n[8],
copy_data(data, imageSize, "glCompressedTexImage2DARB"));
}
if (ctx->ExecuteFlag) {
CALL_CompressedTexImage2D(ctx->Exec,
(target, level, internalFormat, width,
height, border, imageSize, data));
}
}
}
static void GLAPIENTRY
save_CompressedTexImage3DARB(GLenum target, GLint level,
GLenum internalFormat, GLsizei width,
GLsizei height, GLsizei depth, GLint border,
GLsizei imageSize, const GLvoid * data)
{
GET_CURRENT_CONTEXT(ctx);
if (target == GL_PROXY_TEXTURE_3D) {
/* don't compile, execute immediately */
CALL_CompressedTexImage3D(ctx->Exec, (target, level, internalFormat,
width, height, depth, border,
imageSize, data));
}
else {
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_COMPRESSED_TEX_IMAGE_3D,
8 + POINTER_DWORDS);
if (n) {
n[1].e = target;
n[2].i = level;
n[3].e = internalFormat;
n[4].i = (GLint) width;
n[5].i = (GLint) height;
n[6].i = (GLint) depth;
n[7].i = border;
n[8].i = imageSize;
save_pointer(&n[9],
copy_data(data, imageSize, "glCompressedTexImage3DARB"));
}
if (ctx->ExecuteFlag) {
CALL_CompressedTexImage3D(ctx->Exec,
(target, level, internalFormat, width,
height, depth, border, imageSize,
data));
}
}
}
static void GLAPIENTRY
save_CompressedTexSubImage1DARB(GLenum target, GLint level, GLint xoffset,
GLsizei width, GLenum format,
GLsizei imageSize, const GLvoid * data)
{
Node *n;
GET_CURRENT_CONTEXT(ctx);
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_COMPRESSED_TEX_SUB_IMAGE_1D,
6 + POINTER_DWORDS);
if (n) {
n[1].e = target;
n[2].i = level;
n[3].i = xoffset;
n[4].i = (GLint) width;
n[5].e = format;
n[6].i = imageSize;
save_pointer(&n[7],
copy_data(data, imageSize, "glCompressedTexSubImage1DARB"));
}
if (ctx->ExecuteFlag) {
CALL_CompressedTexSubImage1D(ctx->Exec, (target, level, xoffset,
width, format, imageSize,
data));
}
}
static void GLAPIENTRY
save_CompressedTexSubImage2DARB(GLenum target, GLint level, GLint xoffset,
GLint yoffset, GLsizei width, GLsizei height,
GLenum format, GLsizei imageSize,
const GLvoid * data)
{
Node *n;
GET_CURRENT_CONTEXT(ctx);
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_COMPRESSED_TEX_SUB_IMAGE_2D,
8 + POINTER_DWORDS);
if (n) {
n[1].e = target;
n[2].i = level;
n[3].i = xoffset;
n[4].i = yoffset;
n[5].i = (GLint) width;
n[6].i = (GLint) height;
n[7].e = format;
n[8].i = imageSize;
save_pointer(&n[9],
copy_data(data, imageSize, "glCompressedTexSubImage2DARB"));
}
if (ctx->ExecuteFlag) {
CALL_CompressedTexSubImage2D(ctx->Exec,
(target, level, xoffset, yoffset, width,
height, format, imageSize, data));
}
}
static void GLAPIENTRY
save_CompressedTexSubImage3DARB(GLenum target, GLint level, GLint xoffset,
GLint yoffset, GLint zoffset, GLsizei width,
GLsizei height, GLsizei depth, GLenum format,
GLsizei imageSize, const GLvoid * data)
{
Node *n;
GET_CURRENT_CONTEXT(ctx);
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_COMPRESSED_TEX_SUB_IMAGE_3D,
10 + POINTER_DWORDS);
if (n) {
n[1].e = target;
n[2].i = level;
n[3].i = xoffset;
n[4].i = yoffset;
n[5].i = zoffset;
n[6].i = (GLint) width;
n[7].i = (GLint) height;
n[8].i = (GLint) depth;
n[9].e = format;
n[10].i = imageSize;
save_pointer(&n[11],
copy_data(data, imageSize, "glCompressedTexSubImage3DARB"));
}
if (ctx->ExecuteFlag) {
CALL_CompressedTexSubImage3D(ctx->Exec,
(target, level, xoffset, yoffset,
zoffset, width, height, depth, format,
imageSize, data));
}
}
/* GL_ARB_multisample */
static void GLAPIENTRY
save_SampleCoverageARB(GLclampf value, GLboolean invert)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_SAMPLE_COVERAGE, 2);
if (n) {
n[1].f = value;
n[2].b = invert;
}
if (ctx->ExecuteFlag) {
CALL_SampleCoverage(ctx->Exec, (value, invert));
}
}
/*
* GL_ARB_vertex_program
*/
static void GLAPIENTRY
save_BindProgramARB(GLenum target, GLuint id)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_BIND_PROGRAM_ARB, 2);
if (n) {
n[1].e = target;
n[2].ui = id;
}
if (ctx->ExecuteFlag) {
CALL_BindProgramARB(ctx->Exec, (target, id));
}
}
static void GLAPIENTRY
save_ProgramEnvParameter4fARB(GLenum target, GLuint index,
GLfloat x, GLfloat y, GLfloat z, GLfloat w)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_PROGRAM_ENV_PARAMETER_ARB, 6);
if (n) {
n[1].e = target;
n[2].ui = index;
n[3].f = x;
n[4].f = y;
n[5].f = z;
n[6].f = w;
}
if (ctx->ExecuteFlag) {
CALL_ProgramEnvParameter4fARB(ctx->Exec, (target, index, x, y, z, w));
}
}
static void GLAPIENTRY
save_ProgramEnvParameter4fvARB(GLenum target, GLuint index,
const GLfloat *params)
{
save_ProgramEnvParameter4fARB(target, index, params[0], params[1],
params[2], params[3]);
}
static void GLAPIENTRY
save_ProgramEnvParameters4fvEXT(GLenum target, GLuint index, GLsizei count,
const GLfloat * params)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
if (count > 0) {
GLint i;
const GLfloat * p = params;
for (i = 0 ; i < count ; i++) {
n = alloc_instruction(ctx, OPCODE_PROGRAM_ENV_PARAMETER_ARB, 6);
if (n) {
n[1].e = target;
n[2].ui = index;
n[3].f = p[0];
n[4].f = p[1];
n[5].f = p[2];
n[6].f = p[3];
p += 4;
}
}
}
if (ctx->ExecuteFlag) {
CALL_ProgramEnvParameters4fvEXT(ctx->Exec, (target, index, count, params));
}
}
static void GLAPIENTRY
save_ProgramEnvParameter4dARB(GLenum target, GLuint index,
GLdouble x, GLdouble y, GLdouble z, GLdouble w)
{
save_ProgramEnvParameter4fARB(target, index,
(GLfloat) x,
(GLfloat) y, (GLfloat) z, (GLfloat) w);
}
static void GLAPIENTRY
save_ProgramEnvParameter4dvARB(GLenum target, GLuint index,
const GLdouble *params)
{
save_ProgramEnvParameter4fARB(target, index,
(GLfloat) params[0],
(GLfloat) params[1],
(GLfloat) params[2], (GLfloat) params[3]);
}
static void GLAPIENTRY
save_ProgramLocalParameter4fARB(GLenum target, GLuint index,
GLfloat x, GLfloat y, GLfloat z, GLfloat w)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_PROGRAM_LOCAL_PARAMETER_ARB, 6);
if (n) {
n[1].e = target;
n[2].ui = index;
n[3].f = x;
n[4].f = y;
n[5].f = z;
n[6].f = w;
}
if (ctx->ExecuteFlag) {
CALL_ProgramLocalParameter4fARB(ctx->Exec, (target, index, x, y, z, w));
}
}
static void GLAPIENTRY
save_ProgramLocalParameter4fvARB(GLenum target, GLuint index,
const GLfloat *params)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_PROGRAM_LOCAL_PARAMETER_ARB, 6);
if (n) {
n[1].e = target;
n[2].ui = index;
n[3].f = params[0];
n[4].f = params[1];
n[5].f = params[2];
n[6].f = params[3];
}
if (ctx->ExecuteFlag) {
CALL_ProgramLocalParameter4fvARB(ctx->Exec, (target, index, params));
}
}
static void GLAPIENTRY
save_ProgramLocalParameters4fvEXT(GLenum target, GLuint index, GLsizei count,
const GLfloat *params)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
if (count > 0) {
GLint i;
const GLfloat * p = params;
for (i = 0 ; i < count ; i++) {
n = alloc_instruction(ctx, OPCODE_PROGRAM_LOCAL_PARAMETER_ARB, 6);
if (n) {
n[1].e = target;
n[2].ui = index;
n[3].f = p[0];
n[4].f = p[1];
n[5].f = p[2];
n[6].f = p[3];
p += 4;
}
}
}
if (ctx->ExecuteFlag) {
CALL_ProgramLocalParameters4fvEXT(ctx->Exec, (target, index, count, params));
}
}
static void GLAPIENTRY
save_ProgramLocalParameter4dARB(GLenum target, GLuint index,
GLdouble x, GLdouble y,
GLdouble z, GLdouble w)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_PROGRAM_LOCAL_PARAMETER_ARB, 6);
if (n) {
n[1].e = target;
n[2].ui = index;
n[3].f = (GLfloat) x;
n[4].f = (GLfloat) y;
n[5].f = (GLfloat) z;
n[6].f = (GLfloat) w;
}
if (ctx->ExecuteFlag) {
CALL_ProgramLocalParameter4dARB(ctx->Exec, (target, index, x, y, z, w));
}
}
static void GLAPIENTRY
save_ProgramLocalParameter4dvARB(GLenum target, GLuint index,
const GLdouble *params)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_PROGRAM_LOCAL_PARAMETER_ARB, 6);
if (n) {
n[1].e = target;
n[2].ui = index;
n[3].f = (GLfloat) params[0];
n[4].f = (GLfloat) params[1];
n[5].f = (GLfloat) params[2];
n[6].f = (GLfloat) params[3];
}
if (ctx->ExecuteFlag) {
CALL_ProgramLocalParameter4dvARB(ctx->Exec, (target, index, params));
}
}
/* GL_EXT_stencil_two_side */
static void GLAPIENTRY
save_ActiveStencilFaceEXT(GLenum face)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_ACTIVE_STENCIL_FACE_EXT, 1);
if (n) {
n[1].e = face;
}
if (ctx->ExecuteFlag) {
CALL_ActiveStencilFaceEXT(ctx->Exec, (face));
}
}
/* GL_EXT_depth_bounds_test */
static void GLAPIENTRY
save_DepthBoundsEXT(GLclampd zmin, GLclampd zmax)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_DEPTH_BOUNDS_EXT, 2);
if (n) {
n[1].f = (GLfloat) zmin;
n[2].f = (GLfloat) zmax;
}
if (ctx->ExecuteFlag) {
CALL_DepthBoundsEXT(ctx->Exec, (zmin, zmax));
}
}
static void GLAPIENTRY
save_ProgramStringARB(GLenum target, GLenum format, GLsizei len,
const GLvoid * string)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_PROGRAM_STRING_ARB, 3 + POINTER_DWORDS);
if (n) {
GLubyte *programCopy = malloc(len);
if (!programCopy) {
_mesa_error(ctx, GL_OUT_OF_MEMORY, "glProgramStringARB");
return;
}
memcpy(programCopy, string, len);
n[1].e = target;
n[2].e = format;
n[3].i = len;
save_pointer(&n[4], programCopy);
}
if (ctx->ExecuteFlag) {
CALL_ProgramStringARB(ctx->Exec, (target, format, len, string));
}
}
static void GLAPIENTRY
save_BeginQueryARB(GLenum target, GLuint id)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_BEGIN_QUERY_ARB, 2);
if (n) {
n[1].e = target;
n[2].ui = id;
}
if (ctx->ExecuteFlag) {
CALL_BeginQuery(ctx->Exec, (target, id));
}
}
static void GLAPIENTRY
save_EndQueryARB(GLenum target)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_END_QUERY_ARB, 1);
if (n) {
n[1].e = target;
}
if (ctx->ExecuteFlag) {
CALL_EndQuery(ctx->Exec, (target));
}
}
static void GLAPIENTRY
save_QueryCounter(GLuint id, GLenum target)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_QUERY_COUNTER, 2);
if (n) {
n[1].ui = id;
n[2].e = target;
}
if (ctx->ExecuteFlag) {
CALL_QueryCounter(ctx->Exec, (id, target));
}
}
static void GLAPIENTRY
save_BeginQueryIndexed(GLenum target, GLuint index, GLuint id)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_BEGIN_QUERY_INDEXED, 3);
if (n) {
n[1].e = target;
n[2].ui = index;
n[3].ui = id;
}
if (ctx->ExecuteFlag) {
CALL_BeginQueryIndexed(ctx->Exec, (target, index, id));
}
}
static void GLAPIENTRY
save_EndQueryIndexed(GLenum target, GLuint index)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_END_QUERY_INDEXED, 2);
if (n) {
n[1].e = target;
n[2].ui = index;
}
if (ctx->ExecuteFlag) {
CALL_EndQueryIndexed(ctx->Exec, (target, index));
}
}
static void GLAPIENTRY
save_DrawBuffersARB(GLsizei count, const GLenum * buffers)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_DRAW_BUFFERS_ARB, 1 + MAX_DRAW_BUFFERS);
if (n) {
GLint i;
n[1].i = count;
if (count > MAX_DRAW_BUFFERS)
count = MAX_DRAW_BUFFERS;
for (i = 0; i < count; i++) {
n[2 + i].e = buffers[i];
}
}
if (ctx->ExecuteFlag) {
CALL_DrawBuffers(ctx->Exec, (count, buffers));
}
}
static void GLAPIENTRY
save_BindFragmentShaderATI(GLuint id)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
n = alloc_instruction(ctx, OPCODE_BIND_FRAGMENT_SHADER_ATI, 1);
if (n) {
n[1].ui = id;
}
if (ctx->ExecuteFlag) {
CALL_BindFragmentShaderATI(ctx->Exec, (id));
}
}
static void GLAPIENTRY
save_SetFragmentShaderConstantATI(GLuint dst, const GLfloat *value)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
n = alloc_instruction(ctx, OPCODE_SET_FRAGMENT_SHADER_CONSTANTS_ATI, 5);
if (n) {
n[1].ui = dst;
n[2].f = value[0];
n[3].f = value[1];
n[4].f = value[2];
n[5].f = value[3];
}
if (ctx->ExecuteFlag) {
CALL_SetFragmentShaderConstantATI(ctx->Exec, (dst, value));
}
}
static void GLAPIENTRY
save_Attr1fNV(GLenum attr, GLfloat x)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
SAVE_FLUSH_VERTICES(ctx);
n = alloc_instruction(ctx, OPCODE_ATTR_1F_NV, 2);
if (n) {
n[1].e = attr;
n[2].f = x;
}
assert(attr < MAX_VERTEX_GENERIC_ATTRIBS);
ctx->ListState.ActiveAttribSize[attr] = 1;
ASSIGN_4V(ctx->ListState.CurrentAttrib[attr], x, 0, 0, 1);
if (ctx->ExecuteFlag) {
CALL_VertexAttrib1fNV(ctx->Exec, (attr, x));
}
}
static void GLAPIENTRY
save_Attr2fNV(GLenum attr, GLfloat x, GLfloat y)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
SAVE_FLUSH_VERTICES(ctx);
n = alloc_instruction(ctx, OPCODE_ATTR_2F_NV, 3);
if (n) {
n[1].e = attr;
n[2].f = x;
n[3].f = y;
}
assert(attr < MAX_VERTEX_GENERIC_ATTRIBS);
ctx->ListState.ActiveAttribSize[attr] = 2;
ASSIGN_4V(ctx->ListState.CurrentAttrib[attr], x, y, 0, 1);
if (ctx->ExecuteFlag) {
CALL_VertexAttrib2fNV(ctx->Exec, (attr, x, y));
}
}
static void GLAPIENTRY
save_Attr3fNV(GLenum attr, GLfloat x, GLfloat y, GLfloat z)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
SAVE_FLUSH_VERTICES(ctx);
n = alloc_instruction(ctx, OPCODE_ATTR_3F_NV, 4);
if (n) {
n[1].e = attr;
n[2].f = x;
n[3].f = y;
n[4].f = z;
}
assert(attr < MAX_VERTEX_GENERIC_ATTRIBS);
ctx->ListState.ActiveAttribSize[attr] = 3;
ASSIGN_4V(ctx->ListState.CurrentAttrib[attr], x, y, z, 1);
if (ctx->ExecuteFlag) {
CALL_VertexAttrib3fNV(ctx->Exec, (attr, x, y, z));
}
}
static void GLAPIENTRY
save_Attr4fNV(GLenum attr, GLfloat x, GLfloat y, GLfloat z, GLfloat w)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
SAVE_FLUSH_VERTICES(ctx);
n = alloc_instruction(ctx, OPCODE_ATTR_4F_NV, 5);
if (n) {
n[1].e = attr;
n[2].f = x;
n[3].f = y;
n[4].f = z;
n[5].f = w;
}
assert(attr < MAX_VERTEX_GENERIC_ATTRIBS);
ctx->ListState.ActiveAttribSize[attr] = 4;
ASSIGN_4V(ctx->ListState.CurrentAttrib[attr], x, y, z, w);
if (ctx->ExecuteFlag) {
CALL_VertexAttrib4fNV(ctx->Exec, (attr, x, y, z, w));
}
}
static void GLAPIENTRY
save_Attr1fARB(GLenum attr, GLfloat x)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
SAVE_FLUSH_VERTICES(ctx);
n = alloc_instruction(ctx, OPCODE_ATTR_1F_ARB, 2);
if (n) {
n[1].e = attr;
n[2].f = x;
}
assert(attr < MAX_VERTEX_GENERIC_ATTRIBS);
ctx->ListState.ActiveAttribSize[attr] = 1;
ASSIGN_4V(ctx->ListState.CurrentAttrib[attr], x, 0, 0, 1);
if (ctx->ExecuteFlag) {
CALL_VertexAttrib1fARB(ctx->Exec, (attr, x));
}
}
static void GLAPIENTRY
save_Attr2fARB(GLenum attr, GLfloat x, GLfloat y)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
SAVE_FLUSH_VERTICES(ctx);
n = alloc_instruction(ctx, OPCODE_ATTR_2F_ARB, 3);
if (n) {
n[1].e = attr;
n[2].f = x;
n[3].f = y;
}
assert(attr < MAX_VERTEX_GENERIC_ATTRIBS);
ctx->ListState.ActiveAttribSize[attr] = 2;
ASSIGN_4V(ctx->ListState.CurrentAttrib[attr], x, y, 0, 1);
if (ctx->ExecuteFlag) {
CALL_VertexAttrib2fARB(ctx->Exec, (attr, x, y));
}
}
static void GLAPIENTRY
save_Attr3fARB(GLenum attr, GLfloat x, GLfloat y, GLfloat z)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
SAVE_FLUSH_VERTICES(ctx);
n = alloc_instruction(ctx, OPCODE_ATTR_3F_ARB, 4);
if (n) {
n[1].e = attr;
n[2].f = x;
n[3].f = y;
n[4].f = z;
}
assert(attr < MAX_VERTEX_GENERIC_ATTRIBS);
ctx->ListState.ActiveAttribSize[attr] = 3;
ASSIGN_4V(ctx->ListState.CurrentAttrib[attr], x, y, z, 1);
if (ctx->ExecuteFlag) {
CALL_VertexAttrib3fARB(ctx->Exec, (attr, x, y, z));
}
}
static void GLAPIENTRY
save_Attr4fARB(GLenum attr, GLfloat x, GLfloat y, GLfloat z, GLfloat w)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
SAVE_FLUSH_VERTICES(ctx);
n = alloc_instruction(ctx, OPCODE_ATTR_4F_ARB, 5);
if (n) {
n[1].e = attr;
n[2].f = x;
n[3].f = y;
n[4].f = z;
n[5].f = w;
}
assert(attr < MAX_VERTEX_GENERIC_ATTRIBS);
ctx->ListState.ActiveAttribSize[attr] = 4;
ASSIGN_4V(ctx->ListState.CurrentAttrib[attr], x, y, z, w);
if (ctx->ExecuteFlag) {
CALL_VertexAttrib4fARB(ctx->Exec, (attr, x, y, z, w));
}
}
static void GLAPIENTRY
save_EvalCoord1f(GLfloat x)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
SAVE_FLUSH_VERTICES(ctx);
n = alloc_instruction(ctx, OPCODE_EVAL_C1, 1);
if (n) {
n[1].f = x;
}
if (ctx->ExecuteFlag) {
CALL_EvalCoord1f(ctx->Exec, (x));
}
}
static void GLAPIENTRY
save_EvalCoord1fv(const GLfloat * v)
{
save_EvalCoord1f(v[0]);
}
static void GLAPIENTRY
save_EvalCoord2f(GLfloat x, GLfloat y)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
SAVE_FLUSH_VERTICES(ctx);
n = alloc_instruction(ctx, OPCODE_EVAL_C2, 2);
if (n) {
n[1].f = x;
n[2].f = y;
}
if (ctx->ExecuteFlag) {
CALL_EvalCoord2f(ctx->Exec, (x, y));
}
}
static void GLAPIENTRY
save_EvalCoord2fv(const GLfloat * v)
{
save_EvalCoord2f(v[0], v[1]);
}
static void GLAPIENTRY
save_EvalPoint1(GLint x)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
SAVE_FLUSH_VERTICES(ctx);
n = alloc_instruction(ctx, OPCODE_EVAL_P1, 1);
if (n) {
n[1].i = x;
}
if (ctx->ExecuteFlag) {
CALL_EvalPoint1(ctx->Exec, (x));
}
}
static void GLAPIENTRY
save_EvalPoint2(GLint x, GLint y)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
SAVE_FLUSH_VERTICES(ctx);
n = alloc_instruction(ctx, OPCODE_EVAL_P2, 2);
if (n) {
n[1].i = x;
n[2].i = y;
}
if (ctx->ExecuteFlag) {
CALL_EvalPoint2(ctx->Exec, (x, y));
}
}
static void GLAPIENTRY
save_Indexf(GLfloat x)
{
save_Attr1fNV(VERT_ATTRIB_COLOR_INDEX, x);
}
static void GLAPIENTRY
save_Indexfv(const GLfloat * v)
{
save_Attr1fNV(VERT_ATTRIB_COLOR_INDEX, v[0]);
}
static void GLAPIENTRY
save_EdgeFlag(GLboolean x)
{
save_Attr1fNV(VERT_ATTRIB_EDGEFLAG, x ? 1.0f : 0.0f);
}
/**
* Compare 'count' elements of vectors 'a' and 'b'.
* \return GL_TRUE if equal, GL_FALSE if different.
*/
static inline GLboolean
compare_vec(const GLfloat *a, const GLfloat *b, GLuint count)
{
return memcmp( a, b, count * sizeof(GLfloat) ) == 0;
}
/**
* This glMaterial function is used for glMaterial calls that are outside
* a glBegin/End pair. For glMaterial inside glBegin/End, see the VBO code.
*/
static void GLAPIENTRY
save_Materialfv(GLenum face, GLenum pname, const GLfloat * param)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
int args, i;
GLuint bitmask;
switch (face) {
case GL_BACK:
case GL_FRONT:
case GL_FRONT_AND_BACK:
break;
default:
_mesa_compile_error(ctx, GL_INVALID_ENUM, "glMaterial(face)");
return;
}
switch (pname) {
case GL_EMISSION:
case GL_AMBIENT:
case GL_DIFFUSE:
case GL_SPECULAR:
case GL_AMBIENT_AND_DIFFUSE:
args = 4;
break;
case GL_SHININESS:
args = 1;
break;
case GL_COLOR_INDEXES:
args = 3;
break;
default:
_mesa_compile_error(ctx, GL_INVALID_ENUM, "glMaterial(pname)");
return;
}
if (ctx->ExecuteFlag) {
CALL_Materialfv(ctx->Exec, (face, pname, param));
}
bitmask = _mesa_material_bitmask(ctx, face, pname, ~0, NULL);
/* Try to eliminate redundant statechanges. Because it is legal to
* call glMaterial even inside begin/end calls, don't need to worry
* about ctx->Driver.CurrentSavePrimitive here.
*/
for (i = 0; i < MAT_ATTRIB_MAX; i++) {
if (bitmask & (1 << i)) {
if (ctx->ListState.ActiveMaterialSize[i] == args &&
compare_vec(ctx->ListState.CurrentMaterial[i], param, args)) {
/* no change in material value */
bitmask &= ~(1 << i);
}
else {
ctx->ListState.ActiveMaterialSize[i] = args;
COPY_SZ_4V(ctx->ListState.CurrentMaterial[i], args, param);
}
}
}
/* If this call has no effect, return early */
if (bitmask == 0)
return;
SAVE_FLUSH_VERTICES(ctx);
n = alloc_instruction(ctx, OPCODE_MATERIAL, 6);
if (n) {
n[1].e = face;
n[2].e = pname;
for (i = 0; i < args; i++)
n[3 + i].f = param[i];
}
}
static void GLAPIENTRY
save_Begin(GLenum mode)
{
GET_CURRENT_CONTEXT(ctx);
if (!_mesa_is_valid_prim_mode(ctx, mode)) {
/* compile this error into the display list */
_mesa_compile_error(ctx, GL_INVALID_ENUM, "glBegin(mode)");
}
else if (_mesa_inside_dlist_begin_end(ctx)) {
/* compile this error into the display list */
_mesa_compile_error(ctx, GL_INVALID_OPERATION, "recursive glBegin");
}
else {
ctx->Driver.CurrentSavePrimitive = mode;
vbo_save_NotifyBegin(ctx, mode);
}
}
static void GLAPIENTRY
save_End(void)
{
GET_CURRENT_CONTEXT(ctx);
SAVE_FLUSH_VERTICES(ctx);
(void) alloc_instruction(ctx, OPCODE_END, 0);
ctx->Driver.CurrentSavePrimitive = PRIM_OUTSIDE_BEGIN_END;
if (ctx->ExecuteFlag) {
CALL_End(ctx->Exec, ());
}
}
static void GLAPIENTRY
save_Rectf(GLfloat a, GLfloat b, GLfloat c, GLfloat d)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_RECTF, 4);
if (n) {
n[1].f = a;
n[2].f = b;
n[3].f = c;
n[4].f = d;
}
if (ctx->ExecuteFlag) {
CALL_Rectf(ctx->Exec, (a, b, c, d));
}
}
static void GLAPIENTRY
save_Vertex2f(GLfloat x, GLfloat y)
{
save_Attr2fNV(VERT_ATTRIB_POS, x, y);
}
static void GLAPIENTRY
save_Vertex2fv(const GLfloat * v)
{
save_Attr2fNV(VERT_ATTRIB_POS, v[0], v[1]);
}
static void GLAPIENTRY
save_Vertex3f(GLfloat x, GLfloat y, GLfloat z)
{
save_Attr3fNV(VERT_ATTRIB_POS, x, y, z);
}
static void GLAPIENTRY
save_Vertex3fv(const GLfloat * v)
{
save_Attr3fNV(VERT_ATTRIB_POS, v[0], v[1], v[2]);
}
static void GLAPIENTRY
save_Vertex4f(GLfloat x, GLfloat y, GLfloat z, GLfloat w)
{
save_Attr4fNV(VERT_ATTRIB_POS, x, y, z, w);
}
static void GLAPIENTRY
save_Vertex4fv(const GLfloat * v)
{
save_Attr4fNV(VERT_ATTRIB_POS, v[0], v[1], v[2], v[3]);
}
static void GLAPIENTRY
save_TexCoord1f(GLfloat x)
{
save_Attr1fNV(VERT_ATTRIB_TEX0, x);
}
static void GLAPIENTRY
save_TexCoord1fv(const GLfloat * v)
{
save_Attr1fNV(VERT_ATTRIB_TEX0, v[0]);
}
static void GLAPIENTRY
save_TexCoord2f(GLfloat x, GLfloat y)
{
save_Attr2fNV(VERT_ATTRIB_TEX0, x, y);
}
static void GLAPIENTRY
save_TexCoord2fv(const GLfloat * v)
{
save_Attr2fNV(VERT_ATTRIB_TEX0, v[0], v[1]);
}
static void GLAPIENTRY
save_TexCoord3f(GLfloat x, GLfloat y, GLfloat z)
{
save_Attr3fNV(VERT_ATTRIB_TEX0, x, y, z);
}
static void GLAPIENTRY
save_TexCoord3fv(const GLfloat * v)
{
save_Attr3fNV(VERT_ATTRIB_TEX0, v[0], v[1], v[2]);
}
static void GLAPIENTRY
save_TexCoord4f(GLfloat x, GLfloat y, GLfloat z, GLfloat w)
{
save_Attr4fNV(VERT_ATTRIB_TEX0, x, y, z, w);
}
static void GLAPIENTRY
save_TexCoord4fv(const GLfloat * v)
{
save_Attr4fNV(VERT_ATTRIB_TEX0, v[0], v[1], v[2], v[3]);
}
static void GLAPIENTRY
save_Normal3f(GLfloat x, GLfloat y, GLfloat z)
{
save_Attr3fNV(VERT_ATTRIB_NORMAL, x, y, z);
}
static void GLAPIENTRY
save_Normal3fv(const GLfloat * v)
{
save_Attr3fNV(VERT_ATTRIB_NORMAL, v[0], v[1], v[2]);
}
static void GLAPIENTRY
save_FogCoordfEXT(GLfloat x)
{
save_Attr1fNV(VERT_ATTRIB_FOG, x);
}
static void GLAPIENTRY
save_FogCoordfvEXT(const GLfloat * v)
{
save_Attr1fNV(VERT_ATTRIB_FOG, v[0]);
}
static void GLAPIENTRY
save_Color3f(GLfloat x, GLfloat y, GLfloat z)
{
save_Attr3fNV(VERT_ATTRIB_COLOR0, x, y, z);
}
static void GLAPIENTRY
save_Color3fv(const GLfloat * v)
{
save_Attr3fNV(VERT_ATTRIB_COLOR0, v[0], v[1], v[2]);
}
static void GLAPIENTRY
save_Color4f(GLfloat x, GLfloat y, GLfloat z, GLfloat w)
{
save_Attr4fNV(VERT_ATTRIB_COLOR0, x, y, z, w);
}
static void GLAPIENTRY
save_Color4fv(const GLfloat * v)
{
save_Attr4fNV(VERT_ATTRIB_COLOR0, v[0], v[1], v[2], v[3]);
}
static void GLAPIENTRY
save_SecondaryColor3fEXT(GLfloat x, GLfloat y, GLfloat z)
{
save_Attr3fNV(VERT_ATTRIB_COLOR1, x, y, z);
}
static void GLAPIENTRY
save_SecondaryColor3fvEXT(const GLfloat * v)
{
save_Attr3fNV(VERT_ATTRIB_COLOR1, v[0], v[1], v[2]);
}
/* Just call the respective ATTR for texcoord
*/
static void GLAPIENTRY
save_MultiTexCoord1f(GLenum target, GLfloat x)
{
GLuint attr = (target & 0x7) + VERT_ATTRIB_TEX0;
save_Attr1fNV(attr, x);
}
static void GLAPIENTRY
save_MultiTexCoord1fv(GLenum target, const GLfloat * v)
{
GLuint attr = (target & 0x7) + VERT_ATTRIB_TEX0;
save_Attr1fNV(attr, v[0]);
}
static void GLAPIENTRY
save_MultiTexCoord2f(GLenum target, GLfloat x, GLfloat y)
{
GLuint attr = (target & 0x7) + VERT_ATTRIB_TEX0;
save_Attr2fNV(attr, x, y);
}
static void GLAPIENTRY
save_MultiTexCoord2fv(GLenum target, const GLfloat * v)
{
GLuint attr = (target & 0x7) + VERT_ATTRIB_TEX0;
save_Attr2fNV(attr, v[0], v[1]);
}
static void GLAPIENTRY
save_MultiTexCoord3f(GLenum target, GLfloat x, GLfloat y, GLfloat z)
{
GLuint attr = (target & 0x7) + VERT_ATTRIB_TEX0;
save_Attr3fNV(attr, x, y, z);
}
static void GLAPIENTRY
save_MultiTexCoord3fv(GLenum target, const GLfloat * v)
{
GLuint attr = (target & 0x7) + VERT_ATTRIB_TEX0;
save_Attr3fNV(attr, v[0], v[1], v[2]);
}
static void GLAPIENTRY
save_MultiTexCoord4f(GLenum target, GLfloat x, GLfloat y,
GLfloat z, GLfloat w)
{
GLuint attr = (target & 0x7) + VERT_ATTRIB_TEX0;
save_Attr4fNV(attr, x, y, z, w);
}
static void GLAPIENTRY
save_MultiTexCoord4fv(GLenum target, const GLfloat * v)
{
GLuint attr = (target & 0x7) + VERT_ATTRIB_TEX0;
save_Attr4fNV(attr, v[0], v[1], v[2], v[3]);
}
/**
* Record a GL_INVALID_VALUE error when an invalid vertex attribute
* index is found.
*/
static void
index_error(void)
{
GET_CURRENT_CONTEXT(ctx);
_mesa_error(ctx, GL_INVALID_VALUE, "VertexAttribf(index)");
}
static void GLAPIENTRY
save_VertexAttrib1fARB(GLuint index, GLfloat x)
{
if (index < MAX_VERTEX_GENERIC_ATTRIBS)
save_Attr1fARB(index, x);
else
index_error();
}
static void GLAPIENTRY
save_VertexAttrib1fvARB(GLuint index, const GLfloat * v)
{
if (index < MAX_VERTEX_GENERIC_ATTRIBS)
save_Attr1fARB(index, v[0]);
else
index_error();
}
static void GLAPIENTRY
save_VertexAttrib2fARB(GLuint index, GLfloat x, GLfloat y)
{
if (index < MAX_VERTEX_GENERIC_ATTRIBS)
save_Attr2fARB(index, x, y);
else
index_error();
}
static void GLAPIENTRY
save_VertexAttrib2fvARB(GLuint index, const GLfloat * v)
{
if (index < MAX_VERTEX_GENERIC_ATTRIBS)
save_Attr2fARB(index, v[0], v[1]);
else
index_error();
}
static void GLAPIENTRY
save_VertexAttrib3fARB(GLuint index, GLfloat x, GLfloat y, GLfloat z)
{
if (index < MAX_VERTEX_GENERIC_ATTRIBS)
save_Attr3fARB(index, x, y, z);
else
index_error();
}
static void GLAPIENTRY
save_VertexAttrib3fvARB(GLuint index, const GLfloat * v)
{
if (index < MAX_VERTEX_GENERIC_ATTRIBS)
save_Attr3fARB(index, v[0], v[1], v[2]);
else
index_error();
}
static void GLAPIENTRY
save_VertexAttrib4fARB(GLuint index, GLfloat x, GLfloat y, GLfloat z,
GLfloat w)
{
if (index < MAX_VERTEX_GENERIC_ATTRIBS)
save_Attr4fARB(index, x, y, z, w);
else
index_error();
}
static void GLAPIENTRY
save_VertexAttrib4fvARB(GLuint index, const GLfloat * v)
{
if (index < MAX_VERTEX_GENERIC_ATTRIBS)
save_Attr4fARB(index, v[0], v[1], v[2], v[3]);
else
index_error();
}
static void GLAPIENTRY
save_PrimitiveRestartNV(void)
{
/* Note: this is used when outside a glBegin/End pair in a display list */
GET_CURRENT_CONTEXT(ctx);
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
(void) alloc_instruction(ctx, OPCODE_PRIMITIVE_RESTART_NV, 0);
if (ctx->ExecuteFlag) {
CALL_PrimitiveRestartNV(ctx->Exec, ());
}
}
static void GLAPIENTRY
save_BlitFramebufferEXT(GLint srcX0, GLint srcY0, GLint srcX1, GLint srcY1,
GLint dstX0, GLint dstY0, GLint dstX1, GLint dstY1,
GLbitfield mask, GLenum filter)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_BLIT_FRAMEBUFFER, 10);
if (n) {
n[1].i = srcX0;
n[2].i = srcY0;
n[3].i = srcX1;
n[4].i = srcY1;
n[5].i = dstX0;
n[6].i = dstY0;
n[7].i = dstX1;
n[8].i = dstY1;
n[9].i = mask;
n[10].e = filter;
}
if (ctx->ExecuteFlag) {
CALL_BlitFramebuffer(ctx->Exec, (srcX0, srcY0, srcX1, srcY1,
dstX0, dstY0, dstX1, dstY1,
mask, filter));
}
}
/** GL_EXT_provoking_vertex */
static void GLAPIENTRY
save_ProvokingVertexEXT(GLenum mode)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_PROVOKING_VERTEX, 1);
if (n) {
n[1].e = mode;
}
if (ctx->ExecuteFlag) {
/*CALL_ProvokingVertex(ctx->Exec, (mode));*/
_mesa_ProvokingVertex(mode);
}
}
/** GL_EXT_transform_feedback */
static void GLAPIENTRY
save_BeginTransformFeedback(GLenum mode)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_BEGIN_TRANSFORM_FEEDBACK, 1);
if (n) {
n[1].e = mode;
}
if (ctx->ExecuteFlag) {
CALL_BeginTransformFeedback(ctx->Exec, (mode));
}
}
/** GL_EXT_transform_feedback */
static void GLAPIENTRY
save_EndTransformFeedback(void)
{
GET_CURRENT_CONTEXT(ctx);
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
(void) alloc_instruction(ctx, OPCODE_END_TRANSFORM_FEEDBACK, 0);
if (ctx->ExecuteFlag) {
CALL_EndTransformFeedback(ctx->Exec, ());
}
}
static void GLAPIENTRY
save_BindTransformFeedback(GLenum target, GLuint name)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_BIND_TRANSFORM_FEEDBACK, 2);
if (n) {
n[1].e = target;
n[2].ui = name;
}
if (ctx->ExecuteFlag) {
CALL_BindTransformFeedback(ctx->Exec, (target, name));
}
}
static void GLAPIENTRY
save_PauseTransformFeedback(void)
{
GET_CURRENT_CONTEXT(ctx);
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
(void) alloc_instruction(ctx, OPCODE_PAUSE_TRANSFORM_FEEDBACK, 0);
if (ctx->ExecuteFlag) {
CALL_PauseTransformFeedback(ctx->Exec, ());
}
}
static void GLAPIENTRY
save_ResumeTransformFeedback(void)
{
GET_CURRENT_CONTEXT(ctx);
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
(void) alloc_instruction(ctx, OPCODE_RESUME_TRANSFORM_FEEDBACK, 0);
if (ctx->ExecuteFlag) {
CALL_ResumeTransformFeedback(ctx->Exec, ());
}
}
static void GLAPIENTRY
save_DrawTransformFeedback(GLenum mode, GLuint name)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_DRAW_TRANSFORM_FEEDBACK, 2);
if (n) {
n[1].e = mode;
n[2].ui = name;
}
if (ctx->ExecuteFlag) {
CALL_DrawTransformFeedback(ctx->Exec, (mode, name));
}
}
static void GLAPIENTRY
save_DrawTransformFeedbackStream(GLenum mode, GLuint name, GLuint stream)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_DRAW_TRANSFORM_FEEDBACK_STREAM, 3);
if (n) {
n[1].e = mode;
n[2].ui = name;
n[3].ui = stream;
}
if (ctx->ExecuteFlag) {
CALL_DrawTransformFeedbackStream(ctx->Exec, (mode, name, stream));
}
}
static void GLAPIENTRY
save_DrawTransformFeedbackInstanced(GLenum mode, GLuint name,
GLsizei primcount)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_DRAW_TRANSFORM_FEEDBACK_INSTANCED, 3);
if (n) {
n[1].e = mode;
n[2].ui = name;
n[3].si = primcount;
}
if (ctx->ExecuteFlag) {
CALL_DrawTransformFeedbackInstanced(ctx->Exec, (mode, name, primcount));
}
}
static void GLAPIENTRY
save_DrawTransformFeedbackStreamInstanced(GLenum mode, GLuint name,
GLuint stream, GLsizei primcount)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_DRAW_TRANSFORM_FEEDBACK_STREAM_INSTANCED, 4);
if (n) {
n[1].e = mode;
n[2].ui = name;
n[3].ui = stream;
n[4].si = primcount;
}
if (ctx->ExecuteFlag) {
CALL_DrawTransformFeedbackStreamInstanced(ctx->Exec, (mode, name, stream,
primcount));
}
}
static void GLAPIENTRY
save_UseProgram(GLuint program)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_USE_PROGRAM, 1);
if (n) {
n[1].ui = program;
}
if (ctx->ExecuteFlag) {
CALL_UseProgram(ctx->Exec, (program));
}
}
static void GLAPIENTRY
save_Uniform1fARB(GLint location, GLfloat x)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_UNIFORM_1F, 2);
if (n) {
n[1].i = location;
n[2].f = x;
}
if (ctx->ExecuteFlag) {
CALL_Uniform1f(ctx->Exec, (location, x));
}
}
static void GLAPIENTRY
save_Uniform2fARB(GLint location, GLfloat x, GLfloat y)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_UNIFORM_2F, 3);
if (n) {
n[1].i = location;
n[2].f = x;
n[3].f = y;
}
if (ctx->ExecuteFlag) {
CALL_Uniform2f(ctx->Exec, (location, x, y));
}
}
static void GLAPIENTRY
save_Uniform3fARB(GLint location, GLfloat x, GLfloat y, GLfloat z)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_UNIFORM_3F, 4);
if (n) {
n[1].i = location;
n[2].f = x;
n[3].f = y;
n[4].f = z;
}
if (ctx->ExecuteFlag) {
CALL_Uniform3f(ctx->Exec, (location, x, y, z));
}
}
static void GLAPIENTRY
save_Uniform4fARB(GLint location, GLfloat x, GLfloat y, GLfloat z, GLfloat w)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_UNIFORM_4F, 5);
if (n) {
n[1].i = location;
n[2].f = x;
n[3].f = y;
n[4].f = z;
n[5].f = w;
}
if (ctx->ExecuteFlag) {
CALL_Uniform4f(ctx->Exec, (location, x, y, z, w));
}
}
static void GLAPIENTRY
save_Uniform1fvARB(GLint location, GLsizei count, const GLfloat *v)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_UNIFORM_1FV, 2 + POINTER_DWORDS);
if (n) {
n[1].i = location;
n[2].i = count;
save_pointer(&n[3], memdup(v, count * 1 * sizeof(GLfloat)));
}
if (ctx->ExecuteFlag) {
CALL_Uniform1fv(ctx->Exec, (location, count, v));
}
}
static void GLAPIENTRY
save_Uniform2fvARB(GLint location, GLsizei count, const GLfloat *v)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_UNIFORM_2FV, 2 + POINTER_DWORDS);
if (n) {
n[1].i = location;
n[2].i = count;
save_pointer(&n[3], memdup(v, count * 2 * sizeof(GLfloat)));
}
if (ctx->ExecuteFlag) {
CALL_Uniform2fv(ctx->Exec, (location, count, v));
}
}
static void GLAPIENTRY
save_Uniform3fvARB(GLint location, GLsizei count, const GLfloat *v)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_UNIFORM_3FV, 2 + POINTER_DWORDS);
if (n) {
n[1].i = location;
n[2].i = count;
save_pointer(&n[3], memdup(v, count * 3 * sizeof(GLfloat)));
}
if (ctx->ExecuteFlag) {
CALL_Uniform3fv(ctx->Exec, (location, count, v));
}
}
static void GLAPIENTRY
save_Uniform4fvARB(GLint location, GLsizei count, const GLfloat *v)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_UNIFORM_4FV, 2 + POINTER_DWORDS);
if (n) {
n[1].i = location;
n[2].i = count;
save_pointer(&n[3], memdup(v, count * 4 * sizeof(GLfloat)));
}
if (ctx->ExecuteFlag) {
CALL_Uniform4fv(ctx->Exec, (location, count, v));
}
}
static void GLAPIENTRY
save_Uniform1iARB(GLint location, GLint x)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_UNIFORM_1I, 2);
if (n) {
n[1].i = location;
n[2].i = x;
}
if (ctx->ExecuteFlag) {
CALL_Uniform1i(ctx->Exec, (location, x));
}
}
static void GLAPIENTRY
save_Uniform2iARB(GLint location, GLint x, GLint y)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_UNIFORM_2I, 3);
if (n) {
n[1].i = location;
n[2].i = x;
n[3].i = y;
}
if (ctx->ExecuteFlag) {
CALL_Uniform2i(ctx->Exec, (location, x, y));
}
}
static void GLAPIENTRY
save_Uniform3iARB(GLint location, GLint x, GLint y, GLint z)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_UNIFORM_3I, 4);
if (n) {
n[1].i = location;
n[2].i = x;
n[3].i = y;
n[4].i = z;
}
if (ctx->ExecuteFlag) {
CALL_Uniform3i(ctx->Exec, (location, x, y, z));
}
}
static void GLAPIENTRY
save_Uniform4iARB(GLint location, GLint x, GLint y, GLint z, GLint w)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_UNIFORM_4I, 5);
if (n) {
n[1].i = location;
n[2].i = x;
n[3].i = y;
n[4].i = z;
n[5].i = w;
}
if (ctx->ExecuteFlag) {
CALL_Uniform4i(ctx->Exec, (location, x, y, z, w));
}
}
static void GLAPIENTRY
save_Uniform1ivARB(GLint location, GLsizei count, const GLint *v)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_UNIFORM_1IV, 2 + POINTER_DWORDS);
if (n) {
n[1].i = location;
n[2].i = count;
save_pointer(&n[3], memdup(v, count * 1 * sizeof(GLint)));
}
if (ctx->ExecuteFlag) {
CALL_Uniform1iv(ctx->Exec, (location, count, v));
}
}
static void GLAPIENTRY
save_Uniform2ivARB(GLint location, GLsizei count, const GLint *v)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_UNIFORM_2IV, 2 + POINTER_DWORDS);
if (n) {
n[1].i = location;
n[2].i = count;
save_pointer(&n[3], memdup(v, count * 2 * sizeof(GLint)));
}
if (ctx->ExecuteFlag) {
CALL_Uniform2iv(ctx->Exec, (location, count, v));
}
}
static void GLAPIENTRY
save_Uniform3ivARB(GLint location, GLsizei count, const GLint *v)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_UNIFORM_3IV, 2 + POINTER_DWORDS);
if (n) {
n[1].i = location;
n[2].i = count;
save_pointer(&n[3], memdup(v, count * 3 * sizeof(GLint)));
}
if (ctx->ExecuteFlag) {
CALL_Uniform3iv(ctx->Exec, (location, count, v));
}
}
static void GLAPIENTRY
save_Uniform4ivARB(GLint location, GLsizei count, const GLint *v)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_UNIFORM_4IV, 2 + POINTER_DWORDS);
if (n) {
n[1].i = location;
n[2].i = count;
save_pointer(&n[3], memdup(v, count * 4 * sizeof(GLfloat)));
}
if (ctx->ExecuteFlag) {
CALL_Uniform4iv(ctx->Exec, (location, count, v));
}
}
static void GLAPIENTRY
save_Uniform1ui(GLint location, GLuint x)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_UNIFORM_1UI, 2);
if (n) {
n[1].i = location;
n[2].i = x;
}
if (ctx->ExecuteFlag) {
/*CALL_Uniform1ui(ctx->Exec, (location, x));*/
}
}
static void GLAPIENTRY
save_Uniform2ui(GLint location, GLuint x, GLuint y)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_UNIFORM_2UI, 3);
if (n) {
n[1].i = location;
n[2].i = x;
n[3].i = y;
}
if (ctx->ExecuteFlag) {
/*CALL_Uniform2ui(ctx->Exec, (location, x, y));*/
}
}
static void GLAPIENTRY
save_Uniform3ui(GLint location, GLuint x, GLuint y, GLuint z)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_UNIFORM_3UI, 4);
if (n) {
n[1].i = location;
n[2].i = x;
n[3].i = y;
n[4].i = z;
}
if (ctx->ExecuteFlag) {
/*CALL_Uniform3ui(ctx->Exec, (location, x, y, z));*/
}
}
static void GLAPIENTRY
save_Uniform4ui(GLint location, GLuint x, GLuint y, GLuint z, GLuint w)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_UNIFORM_4UI, 5);
if (n) {
n[1].i = location;
n[2].i = x;
n[3].i = y;
n[4].i = z;
n[5].i = w;
}
if (ctx->ExecuteFlag) {
/*CALL_Uniform4ui(ctx->Exec, (location, x, y, z, w));*/
}
}
static void GLAPIENTRY
save_Uniform1uiv(GLint location, GLsizei count, const GLuint *v)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_UNIFORM_1UIV, 2 + POINTER_DWORDS);
if (n) {
n[1].i = location;
n[2].i = count;
save_pointer(&n[3], memdup(v, count * 1 * sizeof(*v)));
}
if (ctx->ExecuteFlag) {
/*CALL_Uniform1uiv(ctx->Exec, (location, count, v));*/
}
}
static void GLAPIENTRY
save_Uniform2uiv(GLint location, GLsizei count, const GLuint *v)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_UNIFORM_2UIV, 2 + POINTER_DWORDS);
if (n) {
n[1].i = location;
n[2].i = count;
save_pointer(&n[3], memdup(v, count * 2 * sizeof(*v)));
}
if (ctx->ExecuteFlag) {
/*CALL_Uniform2uiv(ctx->Exec, (location, count, v));*/
}
}
static void GLAPIENTRY
save_Uniform3uiv(GLint location, GLsizei count, const GLuint *v)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_UNIFORM_3UIV, 2 + POINTER_DWORDS);
if (n) {
n[1].i = location;
n[2].i = count;
save_pointer(&n[3], memdup(v, count * 3 * sizeof(*v)));
}
if (ctx->ExecuteFlag) {
/*CALL_Uniform3uiv(ctx->Exec, (location, count, v));*/
}
}
static void GLAPIENTRY
save_Uniform4uiv(GLint location, GLsizei count, const GLuint *v)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_UNIFORM_4UIV, 2 + POINTER_DWORDS);
if (n) {
n[1].i = location;
n[2].i = count;
save_pointer(&n[3], memdup(v, count * 4 * sizeof(*v)));
}
if (ctx->ExecuteFlag) {
/*CALL_Uniform4uiv(ctx->Exec, (location, count, v));*/
}
}
static void GLAPIENTRY
save_UniformMatrix2fvARB(GLint location, GLsizei count, GLboolean transpose,
const GLfloat *m)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_UNIFORM_MATRIX22, 3 + POINTER_DWORDS);
if (n) {
n[1].i = location;
n[2].i = count;
n[3].b = transpose;
save_pointer(&n[4], memdup(m, count * 2 * 2 * sizeof(GLfloat)));
}
if (ctx->ExecuteFlag) {
CALL_UniformMatrix2fv(ctx->Exec, (location, count, transpose, m));
}
}
static void GLAPIENTRY
save_UniformMatrix3fvARB(GLint location, GLsizei count, GLboolean transpose,
const GLfloat *m)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_UNIFORM_MATRIX33, 3 + POINTER_DWORDS);
if (n) {
n[1].i = location;
n[2].i = count;
n[3].b = transpose;
save_pointer(&n[4], memdup(m, count * 3 * 3 * sizeof(GLfloat)));
}
if (ctx->ExecuteFlag) {
CALL_UniformMatrix3fv(ctx->Exec, (location, count, transpose, m));
}
}
static void GLAPIENTRY
save_UniformMatrix4fvARB(GLint location, GLsizei count, GLboolean transpose,
const GLfloat *m)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_UNIFORM_MATRIX44, 3 + POINTER_DWORDS);
if (n) {
n[1].i = location;
n[2].i = count;
n[3].b = transpose;
save_pointer(&n[4], memdup(m, count * 4 * 4 * sizeof(GLfloat)));
}
if (ctx->ExecuteFlag) {
CALL_UniformMatrix4fv(ctx->Exec, (location, count, transpose, m));
}
}
static void GLAPIENTRY
save_UniformMatrix2x3fv(GLint location, GLsizei count, GLboolean transpose,
const GLfloat *m)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_UNIFORM_MATRIX23, 3 + POINTER_DWORDS);
if (n) {
n[1].i = location;
n[2].i = count;
n[3].b = transpose;
save_pointer(&n[4], memdup(m, count * 2 * 3 * sizeof(GLfloat)));
}
if (ctx->ExecuteFlag) {
CALL_UniformMatrix2x3fv(ctx->Exec, (location, count, transpose, m));
}
}
static void GLAPIENTRY
save_UniformMatrix3x2fv(GLint location, GLsizei count, GLboolean transpose,
const GLfloat *m)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_UNIFORM_MATRIX32, 3 + POINTER_DWORDS);
if (n) {
n[1].i = location;
n[2].i = count;
n[3].b = transpose;
save_pointer(&n[4], memdup(m, count * 3 * 2 * sizeof(GLfloat)));
}
if (ctx->ExecuteFlag) {
CALL_UniformMatrix3x2fv(ctx->Exec, (location, count, transpose, m));
}
}
static void GLAPIENTRY
save_UniformMatrix2x4fv(GLint location, GLsizei count, GLboolean transpose,
const GLfloat *m)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_UNIFORM_MATRIX24, 3 + POINTER_DWORDS);
if (n) {
n[1].i = location;
n[2].i = count;
n[3].b = transpose;
save_pointer(&n[4], memdup(m, count * 2 * 4 * sizeof(GLfloat)));
}
if (ctx->ExecuteFlag) {
CALL_UniformMatrix2x4fv(ctx->Exec, (location, count, transpose, m));
}
}
static void GLAPIENTRY
save_UniformMatrix4x2fv(GLint location, GLsizei count, GLboolean transpose,
const GLfloat *m)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_UNIFORM_MATRIX42, 3 + POINTER_DWORDS);
if (n) {
n[1].i = location;
n[2].i = count;
n[3].b = transpose;
save_pointer(&n[4], memdup(m, count * 4 * 2 * sizeof(GLfloat)));
}
if (ctx->ExecuteFlag) {
CALL_UniformMatrix4x2fv(ctx->Exec, (location, count, transpose, m));
}
}
static void GLAPIENTRY
save_UniformMatrix3x4fv(GLint location, GLsizei count, GLboolean transpose,
const GLfloat *m)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_UNIFORM_MATRIX34, 3 + POINTER_DWORDS);
if (n) {
n[1].i = location;
n[2].i = count;
n[3].b = transpose;
save_pointer(&n[4], memdup(m, count * 3 * 4 * sizeof(GLfloat)));
}
if (ctx->ExecuteFlag) {
CALL_UniformMatrix3x4fv(ctx->Exec, (location, count, transpose, m));
}
}
static void GLAPIENTRY
save_UniformMatrix4x3fv(GLint location, GLsizei count, GLboolean transpose,
const GLfloat *m)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_UNIFORM_MATRIX43, 3 + POINTER_DWORDS);
if (n) {
n[1].i = location;
n[2].i = count;
n[3].b = transpose;
save_pointer(&n[4], memdup(m, count * 4 * 3 * sizeof(GLfloat)));
}
if (ctx->ExecuteFlag) {
CALL_UniformMatrix4x3fv(ctx->Exec, (location, count, transpose, m));
}
}
static void GLAPIENTRY
save_UseProgramStages(GLuint pipeline, GLbitfield stages, GLuint program)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_USE_PROGRAM_STAGES, 3);
if (n) {
n[1].ui = pipeline;
n[2].ui = stages;
n[3].ui = program;
}
if (ctx->ExecuteFlag) {
CALL_UseProgramStages(ctx->Exec, (pipeline, stages, program));
}
}
static void GLAPIENTRY
save_ProgramUniform1f(GLuint program, GLint location, GLfloat x)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_PROGRAM_UNIFORM_1F, 3);
if (n) {
n[1].ui = program;
n[2].i = location;
n[3].f = x;
}
if (ctx->ExecuteFlag) {
CALL_ProgramUniform1f(ctx->Exec, (program, location, x));
}
}
static void GLAPIENTRY
save_ProgramUniform2f(GLuint program, GLint location, GLfloat x, GLfloat y)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_PROGRAM_UNIFORM_2F, 4);
if (n) {
n[1].ui = program;
n[2].i = location;
n[3].f = x;
n[4].f = y;
}
if (ctx->ExecuteFlag) {
CALL_ProgramUniform2f(ctx->Exec, (program, location, x, y));
}
}
static void GLAPIENTRY
save_ProgramUniform3f(GLuint program, GLint location,
GLfloat x, GLfloat y, GLfloat z)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_PROGRAM_UNIFORM_3F, 5);
if (n) {
n[1].ui = program;
n[2].i = location;
n[3].f = x;
n[4].f = y;
n[5].f = z;
}
if (ctx->ExecuteFlag) {
CALL_ProgramUniform3f(ctx->Exec, (program, location, x, y, z));
}
}
static void GLAPIENTRY
save_ProgramUniform4f(GLuint program, GLint location,
GLfloat x, GLfloat y, GLfloat z, GLfloat w)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_PROGRAM_UNIFORM_4F, 6);
if (n) {
n[1].ui = program;
n[2].i = location;
n[3].f = x;
n[4].f = y;
n[5].f = z;
n[6].f = w;
}
if (ctx->ExecuteFlag) {
CALL_ProgramUniform4f(ctx->Exec, (program, location, x, y, z, w));
}
}
static void GLAPIENTRY
save_ProgramUniform1fv(GLuint program, GLint location, GLsizei count,
const GLfloat *v)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_PROGRAM_UNIFORM_1FV, 3 + POINTER_DWORDS);
if (n) {
n[1].ui = program;
n[2].i = location;
n[3].i = count;
save_pointer(&n[4], memdup(v, count * 1 * sizeof(GLfloat)));
}
if (ctx->ExecuteFlag) {
CALL_ProgramUniform1fv(ctx->Exec, (program, location, count, v));
}
}
static void GLAPIENTRY
save_ProgramUniform2fv(GLuint program, GLint location, GLsizei count,
const GLfloat *v)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_PROGRAM_UNIFORM_2FV, 3 + POINTER_DWORDS);
if (n) {
n[1].ui = program;
n[2].i = location;
n[3].i = count;
save_pointer(&n[4], memdup(v, count * 2 * sizeof(GLfloat)));
}
if (ctx->ExecuteFlag) {
CALL_ProgramUniform2fv(ctx->Exec, (program, location, count, v));
}
}
static void GLAPIENTRY
save_ProgramUniform3fv(GLuint program, GLint location, GLsizei count,
const GLfloat *v)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_PROGRAM_UNIFORM_3FV, 3 + POINTER_DWORDS);
if (n) {
n[1].ui = program;
n[2].i = location;
n[3].i = count;
save_pointer(&n[4], memdup(v, count * 3 * sizeof(GLfloat)));
}
if (ctx->ExecuteFlag) {
CALL_ProgramUniform3fv(ctx->Exec, (program, location, count, v));
}
}
static void GLAPIENTRY
save_ProgramUniform4fv(GLuint program, GLint location, GLsizei count,
const GLfloat *v)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_PROGRAM_UNIFORM_4FV, 3 + POINTER_DWORDS);
if (n) {
n[1].ui = program;
n[2].i = location;
n[3].i = count;
save_pointer(&n[4], memdup(v, count * 4 * sizeof(GLfloat)));
}
if (ctx->ExecuteFlag) {
CALL_ProgramUniform4fv(ctx->Exec, (program, location, count, v));
}
}
static void GLAPIENTRY
save_ProgramUniform1i(GLuint program, GLint location, GLint x)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_PROGRAM_UNIFORM_1I, 3);
if (n) {
n[1].ui = program;
n[2].i = location;
n[3].i = x;
}
if (ctx->ExecuteFlag) {
CALL_ProgramUniform1i(ctx->Exec, (program, location, x));
}
}
static void GLAPIENTRY
save_ProgramUniform2i(GLuint program, GLint location, GLint x, GLint y)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_PROGRAM_UNIFORM_2I, 4);
if (n) {
n[1].ui = program;
n[2].i = location;
n[3].i = x;
n[4].i = y;
}
if (ctx->ExecuteFlag) {
CALL_ProgramUniform2i(ctx->Exec, (program, location, x, y));
}
}
static void GLAPIENTRY
save_ProgramUniform3i(GLuint program, GLint location,
GLint x, GLint y, GLint z)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_PROGRAM_UNIFORM_3I, 5);
if (n) {
n[1].ui = program;
n[2].i = location;
n[3].i = x;
n[4].i = y;
n[5].i = z;
}
if (ctx->ExecuteFlag) {
CALL_ProgramUniform3i(ctx->Exec, (program, location, x, y, z));
}
}
static void GLAPIENTRY
save_ProgramUniform4i(GLuint program, GLint location,
GLint x, GLint y, GLint z, GLint w)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_PROGRAM_UNIFORM_4I, 6);
if (n) {
n[1].ui = program;
n[2].i = location;
n[3].i = x;
n[4].i = y;
n[5].i = z;
n[6].i = w;
}
if (ctx->ExecuteFlag) {
CALL_ProgramUniform4i(ctx->Exec, (program, location, x, y, z, w));
}
}
static void GLAPIENTRY
save_ProgramUniform1iv(GLuint program, GLint location, GLsizei count,
const GLint *v)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_PROGRAM_UNIFORM_1IV, 3 + POINTER_DWORDS);
if (n) {
n[1].ui = program;
n[2].i = location;
n[3].i = count;
save_pointer(&n[4], memdup(v, count * 1 * sizeof(GLint)));
}
if (ctx->ExecuteFlag) {
CALL_ProgramUniform1iv(ctx->Exec, (program, location, count, v));
}
}
static void GLAPIENTRY
save_ProgramUniform2iv(GLuint program, GLint location, GLsizei count,
const GLint *v)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_PROGRAM_UNIFORM_2IV, 3 + POINTER_DWORDS);
if (n) {
n[1].ui = program;
n[2].i = location;
n[3].i = count;
save_pointer(&n[4], memdup(v, count * 2 * sizeof(GLint)));
}
if (ctx->ExecuteFlag) {
CALL_ProgramUniform2iv(ctx->Exec, (program, location, count, v));
}
}
static void GLAPIENTRY
save_ProgramUniform3iv(GLuint program, GLint location, GLsizei count,
const GLint *v)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_PROGRAM_UNIFORM_3IV, 3 + POINTER_DWORDS);
if (n) {
n[1].ui = program;
n[2].i = location;
n[3].i = count;
save_pointer(&n[4], memdup(v, count * 3 * sizeof(GLint)));
}
if (ctx->ExecuteFlag) {
CALL_ProgramUniform3iv(ctx->Exec, (program, location, count, v));
}
}
static void GLAPIENTRY
save_ProgramUniform4iv(GLuint program, GLint location, GLsizei count,
const GLint *v)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_PROGRAM_UNIFORM_4IV, 3 + POINTER_DWORDS);
if (n) {
n[1].ui = program;
n[2].i = location;
n[3].i = count;
save_pointer(&n[4], memdup(v, count * 4 * sizeof(GLint)));
}
if (ctx->ExecuteFlag) {
CALL_ProgramUniform4iv(ctx->Exec, (program, location, count, v));
}
}
static void GLAPIENTRY
save_ProgramUniform1ui(GLuint program, GLint location, GLuint x)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_PROGRAM_UNIFORM_1UI, 3);
if (n) {
n[1].ui = program;
n[2].i = location;
n[3].ui = x;
}
if (ctx->ExecuteFlag) {
CALL_ProgramUniform1ui(ctx->Exec, (program, location, x));
}
}
static void GLAPIENTRY
save_ProgramUniform2ui(GLuint program, GLint location, GLuint x, GLuint y)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_PROGRAM_UNIFORM_2UI, 4);
if (n) {
n[1].ui = program;
n[2].i = location;
n[3].ui = x;
n[4].ui = y;
}
if (ctx->ExecuteFlag) {
CALL_ProgramUniform2ui(ctx->Exec, (program, location, x, y));
}
}
static void GLAPIENTRY
save_ProgramUniform3ui(GLuint program, GLint location,
GLuint x, GLuint y, GLuint z)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_PROGRAM_UNIFORM_3UI, 5);
if (n) {
n[1].ui = program;
n[2].i = location;
n[3].ui = x;
n[4].ui = y;
n[5].ui = z;
}
if (ctx->ExecuteFlag) {
CALL_ProgramUniform3ui(ctx->Exec, (program, location, x, y, z));
}
}
static void GLAPIENTRY
save_ProgramUniform4ui(GLuint program, GLint location,
GLuint x, GLuint y, GLuint z, GLuint w)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_PROGRAM_UNIFORM_4UI, 6);
if (n) {
n[1].ui = program;
n[2].i = location;
n[3].ui = x;
n[4].ui = y;
n[5].ui = z;
n[6].ui = w;
}
if (ctx->ExecuteFlag) {
CALL_ProgramUniform4ui(ctx->Exec, (program, location, x, y, z, w));
}
}
static void GLAPIENTRY
save_ProgramUniform1uiv(GLuint program, GLint location, GLsizei count,
const GLuint *v)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_PROGRAM_UNIFORM_1UIV, 3 + POINTER_DWORDS);
if (n) {
n[1].ui = program;
n[2].i = location;
n[3].i = count;
save_pointer(&n[4], memdup(v, count * 1 * sizeof(GLuint)));
}
if (ctx->ExecuteFlag) {
CALL_ProgramUniform1uiv(ctx->Exec, (program, location, count, v));
}
}
static void GLAPIENTRY
save_ProgramUniform2uiv(GLuint program, GLint location, GLsizei count,
const GLuint *v)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_PROGRAM_UNIFORM_2UIV, 3 + POINTER_DWORDS);
if (n) {
n[1].ui = program;
n[2].i = location;
n[3].i = count;
save_pointer(&n[4], memdup(v, count * 2 * sizeof(GLuint)));
}
if (ctx->ExecuteFlag) {
CALL_ProgramUniform2uiv(ctx->Exec, (program, location, count, v));
}
}
static void GLAPIENTRY
save_ProgramUniform3uiv(GLuint program, GLint location, GLsizei count,
const GLuint *v)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_PROGRAM_UNIFORM_3UIV, 3 + POINTER_DWORDS);
if (n) {
n[1].ui = program;
n[2].i = location;
n[3].i = count;
save_pointer(&n[4], memdup(v, count * 3 * sizeof(GLuint)));
}
if (ctx->ExecuteFlag) {
CALL_ProgramUniform3uiv(ctx->Exec, (program, location, count, v));
}
}
static void GLAPIENTRY
save_ProgramUniform4uiv(GLuint program, GLint location, GLsizei count,
const GLuint *v)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_PROGRAM_UNIFORM_4UIV, 3 + POINTER_DWORDS);
if (n) {
n[1].ui = program;
n[2].i = location;
n[3].i = count;
save_pointer(&n[4], memdup(v, count * 4 * sizeof(GLuint)));
}
if (ctx->ExecuteFlag) {
CALL_ProgramUniform4uiv(ctx->Exec, (program, location, count, v));
}
}
static void GLAPIENTRY
save_ProgramUniformMatrix2fv(GLuint program, GLint location, GLsizei count,
GLboolean transpose, const GLfloat *v)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_PROGRAM_UNIFORM_MATRIX22F,
4 + POINTER_DWORDS);
if (n) {
n[1].ui = program;
n[2].i = location;
n[3].i = count;
n[4].b = transpose;
save_pointer(&n[5], memdup(v, count * 2 * 2 * sizeof(GLfloat)));
}
if (ctx->ExecuteFlag) {
CALL_ProgramUniformMatrix2fv(ctx->Exec,
(program, location, count, transpose, v));
}
}
static void GLAPIENTRY
save_ProgramUniformMatrix2x3fv(GLuint program, GLint location, GLsizei count,
GLboolean transpose, const GLfloat *v)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_PROGRAM_UNIFORM_MATRIX23F,
4 + POINTER_DWORDS);
if (n) {
n[1].ui = program;
n[2].i = location;
n[3].i = count;
n[4].b = transpose;
save_pointer(&n[5], memdup(v, count * 2 * 3 * sizeof(GLfloat)));
}
if (ctx->ExecuteFlag) {
CALL_ProgramUniformMatrix2x3fv(ctx->Exec,
(program, location, count, transpose, v));
}
}
static void GLAPIENTRY
save_ProgramUniformMatrix2x4fv(GLuint program, GLint location, GLsizei count,
GLboolean transpose, const GLfloat *v)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_PROGRAM_UNIFORM_MATRIX24F,
4 + POINTER_DWORDS);
if (n) {
n[1].ui = program;
n[2].i = location;
n[3].i = count;
n[4].b = transpose;
save_pointer(&n[5], memdup(v, count * 2 * 4 * sizeof(GLfloat)));
}
if (ctx->ExecuteFlag) {
CALL_ProgramUniformMatrix2x4fv(ctx->Exec,
(program, location, count, transpose, v));
}
}
static void GLAPIENTRY
save_ProgramUniformMatrix3x2fv(GLuint program, GLint location, GLsizei count,
GLboolean transpose, const GLfloat *v)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_PROGRAM_UNIFORM_MATRIX32F,
4 + POINTER_DWORDS);
if (n) {
n[1].ui = program;
n[2].i = location;
n[3].i = count;
n[4].b = transpose;
save_pointer(&n[5], memdup(v, count * 3 * 2 * sizeof(GLfloat)));
}
if (ctx->ExecuteFlag) {
CALL_ProgramUniformMatrix3x2fv(ctx->Exec,
(program, location, count, transpose, v));
}
}
static void GLAPIENTRY
save_ProgramUniformMatrix3fv(GLuint program, GLint location, GLsizei count,
GLboolean transpose, const GLfloat *v)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_PROGRAM_UNIFORM_MATRIX33F,
4 + POINTER_DWORDS);
if (n) {
n[1].ui = program;
n[2].i = location;
n[3].i = count;
n[4].b = transpose;
save_pointer(&n[5], memdup(v, count * 3 * 3 * sizeof(GLfloat)));
}
if (ctx->ExecuteFlag) {
CALL_ProgramUniformMatrix3fv(ctx->Exec,
(program, location, count, transpose, v));
}
}
static void GLAPIENTRY
save_ProgramUniformMatrix3x4fv(GLuint program, GLint location, GLsizei count,
GLboolean transpose, const GLfloat *v)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_PROGRAM_UNIFORM_MATRIX34F,
4 + POINTER_DWORDS);
if (n) {
n[1].ui = program;
n[2].i = location;
n[3].i = count;
n[4].b = transpose;
save_pointer(&n[5], memdup(v, count * 3 * 4 * sizeof(GLfloat)));
}
if (ctx->ExecuteFlag) {
CALL_ProgramUniformMatrix3x4fv(ctx->Exec,
(program, location, count, transpose, v));
}
}
static void GLAPIENTRY
save_ProgramUniformMatrix4x2fv(GLuint program, GLint location, GLsizei count,
GLboolean transpose, const GLfloat *v)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_PROGRAM_UNIFORM_MATRIX42F,
4 + POINTER_DWORDS);
if (n) {
n[1].ui = program;
n[2].i = location;
n[3].i = count;
n[4].b = transpose;
save_pointer(&n[5], memdup(v, count * 4 * 2 * sizeof(GLfloat)));
}
if (ctx->ExecuteFlag) {
CALL_ProgramUniformMatrix4x2fv(ctx->Exec,
(program, location, count, transpose, v));
}
}
static void GLAPIENTRY
save_ProgramUniformMatrix4x3fv(GLuint program, GLint location, GLsizei count,
GLboolean transpose, const GLfloat *v)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_PROGRAM_UNIFORM_MATRIX43F,
4 + POINTER_DWORDS);
if (n) {
n[1].ui = program;
n[2].i = location;
n[3].i = count;
n[4].b = transpose;
save_pointer(&n[5], memdup(v, count * 4 * 3 * sizeof(GLfloat)));
}
if (ctx->ExecuteFlag) {
CALL_ProgramUniformMatrix4x3fv(ctx->Exec,
(program, location, count, transpose, v));
}
}
static void GLAPIENTRY
save_ProgramUniformMatrix4fv(GLuint program, GLint location, GLsizei count,
GLboolean transpose, const GLfloat *v)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_PROGRAM_UNIFORM_MATRIX44F,
4 + POINTER_DWORDS);
if (n) {
n[1].ui = program;
n[2].i = location;
n[3].i = count;
n[4].b = transpose;
save_pointer(&n[5], memdup(v, count * 4 * 4 * sizeof(GLfloat)));
}
if (ctx->ExecuteFlag) {
CALL_ProgramUniformMatrix4fv(ctx->Exec,
(program, location, count, transpose, v));
}
}
static void GLAPIENTRY
save_ClipControl(GLenum origin, GLenum depth)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_CLIP_CONTROL, 2);
if (n) {
n[1].e = origin;
n[2].e = depth;
}
if (ctx->ExecuteFlag) {
CALL_ClipControl(ctx->Exec, (origin, depth));
}
}
static void GLAPIENTRY
save_ClampColorARB(GLenum target, GLenum clamp)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_CLAMP_COLOR, 2);
if (n) {
n[1].e = target;
n[2].e = clamp;
}
if (ctx->ExecuteFlag) {
CALL_ClampColor(ctx->Exec, (target, clamp));
}
}
/** GL_EXT_texture_integer */
static void GLAPIENTRY
save_ClearColorIi(GLint red, GLint green, GLint blue, GLint alpha)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_CLEARCOLOR_I, 4);
if (n) {
n[1].i = red;
n[2].i = green;
n[3].i = blue;
n[4].i = alpha;
}
if (ctx->ExecuteFlag) {
CALL_ClearColorIiEXT(ctx->Exec, (red, green, blue, alpha));
}
}
/** GL_EXT_texture_integer */
static void GLAPIENTRY
save_ClearColorIui(GLuint red, GLuint green, GLuint blue, GLuint alpha)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_CLEARCOLOR_UI, 4);
if (n) {
n[1].ui = red;
n[2].ui = green;
n[3].ui = blue;
n[4].ui = alpha;
}
if (ctx->ExecuteFlag) {
CALL_ClearColorIuiEXT(ctx->Exec, (red, green, blue, alpha));
}
}
/** GL_EXT_texture_integer */
static void GLAPIENTRY
save_TexParameterIiv(GLenum target, GLenum pname, const GLint *params)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_TEXPARAMETER_I, 6);
if (n) {
n[1].e = target;
n[2].e = pname;
n[3].i = params[0];
n[4].i = params[1];
n[5].i = params[2];
n[6].i = params[3];
}
if (ctx->ExecuteFlag) {
CALL_TexParameterIiv(ctx->Exec, (target, pname, params));
}
}
/** GL_EXT_texture_integer */
static void GLAPIENTRY
save_TexParameterIuiv(GLenum target, GLenum pname, const GLuint *params)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_TEXPARAMETER_UI, 6);
if (n) {
n[1].e = target;
n[2].e = pname;
n[3].ui = params[0];
n[4].ui = params[1];
n[5].ui = params[2];
n[6].ui = params[3];
}
if (ctx->ExecuteFlag) {
CALL_TexParameterIuiv(ctx->Exec, (target, pname, params));
}
}
/* GL_ARB_instanced_arrays */
static void GLAPIENTRY
save_VertexAttribDivisor(GLuint index, GLuint divisor)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_VERTEX_ATTRIB_DIVISOR, 2);
if (n) {
n[1].ui = index;
n[2].ui = divisor;
}
if (ctx->ExecuteFlag) {
CALL_VertexAttribDivisor(ctx->Exec, (index, divisor));
}
}
/* GL_NV_texture_barrier */
static void GLAPIENTRY
save_TextureBarrierNV(void)
{
GET_CURRENT_CONTEXT(ctx);
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
alloc_instruction(ctx, OPCODE_TEXTURE_BARRIER_NV, 0);
if (ctx->ExecuteFlag) {
CALL_TextureBarrierNV(ctx->Exec, ());
}
}
/* GL_ARB_sampler_objects */
static void GLAPIENTRY
save_BindSampler(GLuint unit, GLuint sampler)
{
Node *n;
GET_CURRENT_CONTEXT(ctx);
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_BIND_SAMPLER, 2);
if (n) {
n[1].ui = unit;
n[2].ui = sampler;
}
if (ctx->ExecuteFlag) {
CALL_BindSampler(ctx->Exec, (unit, sampler));
}
}
static void GLAPIENTRY
save_SamplerParameteriv(GLuint sampler, GLenum pname, const GLint *params)
{
Node *n;
GET_CURRENT_CONTEXT(ctx);
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_SAMPLER_PARAMETERIV, 6);
if (n) {
n[1].ui = sampler;
n[2].e = pname;
n[3].i = params[0];
if (pname == GL_TEXTURE_BORDER_COLOR) {
n[4].i = params[1];
n[5].i = params[2];
n[6].i = params[3];
}
else {
n[4].i = n[5].i = n[6].i = 0;
}
}
if (ctx->ExecuteFlag) {
CALL_SamplerParameteriv(ctx->Exec, (sampler, pname, params));
}
}
static void GLAPIENTRY
save_SamplerParameteri(GLuint sampler, GLenum pname, GLint param)
{
GLint parray[4];
parray[0] = param;
parray[1] = parray[2] = parray[3] = 0;
save_SamplerParameteriv(sampler, pname, parray);
}
static void GLAPIENTRY
save_SamplerParameterfv(GLuint sampler, GLenum pname, const GLfloat *params)
{
Node *n;
GET_CURRENT_CONTEXT(ctx);
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_SAMPLER_PARAMETERFV, 6);
if (n) {
n[1].ui = sampler;
n[2].e = pname;
n[3].f = params[0];
if (pname == GL_TEXTURE_BORDER_COLOR) {
n[4].f = params[1];
n[5].f = params[2];
n[6].f = params[3];
}
else {
n[4].f = n[5].f = n[6].f = 0.0F;
}
}
if (ctx->ExecuteFlag) {
CALL_SamplerParameterfv(ctx->Exec, (sampler, pname, params));
}
}
static void GLAPIENTRY
save_SamplerParameterf(GLuint sampler, GLenum pname, GLfloat param)
{
GLfloat parray[4];
parray[0] = param;
parray[1] = parray[2] = parray[3] = 0.0F;
save_SamplerParameterfv(sampler, pname, parray);
}
static void GLAPIENTRY
save_SamplerParameterIiv(GLuint sampler, GLenum pname, const GLint *params)
{
Node *n;
GET_CURRENT_CONTEXT(ctx);
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_SAMPLER_PARAMETERIIV, 6);
if (n) {
n[1].ui = sampler;
n[2].e = pname;
n[3].i = params[0];
if (pname == GL_TEXTURE_BORDER_COLOR) {
n[4].i = params[1];
n[5].i = params[2];
n[6].i = params[3];
}
else {
n[4].i = n[5].i = n[6].i = 0;
}
}
if (ctx->ExecuteFlag) {
CALL_SamplerParameterIiv(ctx->Exec, (sampler, pname, params));
}
}
static void GLAPIENTRY
save_SamplerParameterIuiv(GLuint sampler, GLenum pname, const GLuint *params)
{
Node *n;
GET_CURRENT_CONTEXT(ctx);
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_SAMPLER_PARAMETERUIV, 6);
if (n) {
n[1].ui = sampler;
n[2].e = pname;
n[3].ui = params[0];
if (pname == GL_TEXTURE_BORDER_COLOR) {
n[4].ui = params[1];
n[5].ui = params[2];
n[6].ui = params[3];
}
else {
n[4].ui = n[5].ui = n[6].ui = 0;
}
}
if (ctx->ExecuteFlag) {
CALL_SamplerParameterIuiv(ctx->Exec, (sampler, pname, params));
}
}
static void GLAPIENTRY
save_WaitSync(GLsync sync, GLbitfield flags, GLuint64 timeout)
{
Node *n;
GET_CURRENT_CONTEXT(ctx);
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_WAIT_SYNC, 4);
if (n) {
union uint64_pair p;
p.uint64 = timeout;
n[1].bf = flags;
n[2].ui = p.uint32[0];
n[3].ui = p.uint32[1];
save_pointer(&n[4], sync);
}
if (ctx->ExecuteFlag) {
CALL_WaitSync(ctx->Exec, (sync, flags, timeout));
}
}
/** GL_NV_conditional_render */
static void GLAPIENTRY
save_BeginConditionalRender(GLuint queryId, GLenum mode)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_BEGIN_CONDITIONAL_RENDER, 2);
if (n) {
n[1].i = queryId;
n[2].e = mode;
}
if (ctx->ExecuteFlag) {
CALL_BeginConditionalRender(ctx->Exec, (queryId, mode));
}
}
static void GLAPIENTRY
save_EndConditionalRender(void)
{
GET_CURRENT_CONTEXT(ctx);
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
alloc_instruction(ctx, OPCODE_END_CONDITIONAL_RENDER, 0);
if (ctx->ExecuteFlag) {
CALL_EndConditionalRender(ctx->Exec, ());
}
}
static void GLAPIENTRY
save_UniformBlockBinding(GLuint prog, GLuint index, GLuint binding)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_UNIFORM_BLOCK_BINDING, 3);
if (n) {
n[1].ui = prog;
n[2].ui = index;
n[3].ui = binding;
}
if (ctx->ExecuteFlag) {
CALL_UniformBlockBinding(ctx->Exec, (prog, index, binding));
}
}
/** GL_EXT_window_rectangles */
static void GLAPIENTRY
save_WindowRectanglesEXT(GLenum mode, GLsizei count, const GLint *box)
{
GET_CURRENT_CONTEXT(ctx);
Node *n;
ASSERT_OUTSIDE_SAVE_BEGIN_END_AND_FLUSH(ctx);
n = alloc_instruction(ctx, OPCODE_WINDOW_RECTANGLES, 2 + POINTER_DWORDS);
if (n) {
GLint *box_copy = NULL;
if (count > 0)
box_copy = memdup(box, sizeof(GLint) * 4 * count);
n[1].e = mode;
n[2].si = count;
save_pointer(&n[3], box_copy);
}
if (ctx->ExecuteFlag) {
CALL_WindowRectanglesEXT(ctx->Exec, (mode, count, box));
}
}
/**
* Save an error-generating command into display list.
*
* KW: Will appear in the list before the vertex buffer containing the
* command that provoked the error. I don't see this as a problem.
*/
static void
save_error(struct gl_context *ctx, GLenum error, const char *s)
{
Node *n;
n = alloc_instruction(ctx, OPCODE_ERROR, 1 + POINTER_DWORDS);
if (n) {
n[1].e = error;
save_pointer(&n[2], (void *) s);
/* note: the data/string here doesn't have to be freed in
* _mesa_delete_list() since the string is never dynamically
* allocated.
*/
}
}
/**
* Compile an error into current display list.
*/
void
_mesa_compile_error(struct gl_context *ctx, GLenum error, const char *s)
{
if (ctx->CompileFlag)
save_error(ctx, error, s);
if (ctx->ExecuteFlag)
_mesa_error(ctx, error, "%s", s);
}
/**
* Test if ID names a display list.
*/
static GLboolean
islist(struct gl_context *ctx, GLuint list)
{
if (list > 0 && _mesa_lookup_list(ctx, list)) {
return GL_TRUE;
}
else {
return GL_FALSE;
}
}
/**********************************************************************/
/* Display list execution */
/**********************************************************************/
/*
* Execute a display list. Note that the ListBase offset must have already
* been added before calling this function. I.e. the list argument is
* the absolute list number, not relative to ListBase.
* \param list - display list number
*/
static void
execute_list(struct gl_context *ctx, GLuint list)
{
struct gl_display_list *dlist;
Node *n;
GLboolean done;
if (list == 0 || !islist(ctx, list))
return;
if (ctx->ListState.CallDepth == MAX_LIST_NESTING) {
/* raise an error? */
return;
}
dlist = _mesa_lookup_list(ctx, list);
if (!dlist)
return;
ctx->ListState.CallDepth++;
vbo_save_BeginCallList(ctx, dlist);
n = dlist->Head;
done = GL_FALSE;
while (!done) {
const OpCode opcode = n[0].opcode;
if (is_ext_opcode(opcode)) {
n += ext_opcode_execute(ctx, n);
}
else {
switch (opcode) {
case OPCODE_ERROR:
_mesa_error(ctx, n[1].e, "%s", (const char *) get_pointer(&n[2]));
break;
case OPCODE_ACCUM:
CALL_Accum(ctx->Exec, (n[1].e, n[2].f));
break;
case OPCODE_ALPHA_FUNC:
CALL_AlphaFunc(ctx->Exec, (n[1].e, n[2].f));
break;
case OPCODE_BIND_TEXTURE:
CALL_BindTexture(ctx->Exec, (n[1].e, n[2].ui));
break;
case OPCODE_BITMAP:
{
const struct gl_pixelstore_attrib save = ctx->Unpack;
ctx->Unpack = ctx->DefaultPacking;
CALL_Bitmap(ctx->Exec, ((GLsizei) n[1].i, (GLsizei) n[2].i,
n[3].f, n[4].f, n[5].f, n[6].f,
get_pointer(&n[7])));
ctx->Unpack = save; /* restore */
}
break;
case OPCODE_BLEND_COLOR:
CALL_BlendColor(ctx->Exec, (n[1].f, n[2].f, n[3].f, n[4].f));
break;
case OPCODE_BLEND_EQUATION:
CALL_BlendEquation(ctx->Exec, (n[1].e));
break;
case OPCODE_BLEND_EQUATION_SEPARATE:
CALL_BlendEquationSeparate(ctx->Exec, (n[1].e, n[2].e));
break;
case OPCODE_BLEND_FUNC_SEPARATE:
CALL_BlendFuncSeparate(ctx->Exec,
(n[1].e, n[2].e, n[3].e, n[4].e));
break;
case OPCODE_BLEND_FUNC_I:
/* GL_ARB_draw_buffers_blend */
CALL_BlendFunciARB(ctx->Exec, (n[1].ui, n[2].e, n[3].e));
break;
case OPCODE_BLEND_FUNC_SEPARATE_I:
/* GL_ARB_draw_buffers_blend */
CALL_BlendFuncSeparateiARB(ctx->Exec, (n[1].ui, n[2].e, n[3].e,
n[4].e, n[5].e));
break;
case OPCODE_BLEND_EQUATION_I:
/* GL_ARB_draw_buffers_blend */
CALL_BlendEquationiARB(ctx->Exec, (n[1].ui, n[2].e));
break;
case OPCODE_BLEND_EQUATION_SEPARATE_I:
/* GL_ARB_draw_buffers_blend */
CALL_BlendEquationSeparateiARB(ctx->Exec,
(n[1].ui, n[2].e, n[3].e));
break;
case OPCODE_CALL_LIST:
/* Generated by glCallList(), don't add ListBase */
if (ctx->ListState.CallDepth < MAX_LIST_NESTING) {
execute_list(ctx, n[1].ui);
}
break;
case OPCODE_CALL_LISTS:
if (ctx->ListState.CallDepth < MAX_LIST_NESTING) {
CALL_CallLists(ctx->Exec, (n[1].i, n[2].e, get_pointer(&n[3])));
}
break;
case OPCODE_CLEAR:
CALL_Clear(ctx->Exec, (n[1].bf));
break;
case OPCODE_CLEAR_BUFFER_IV:
{
GLint value[4];
value[0] = n[3].i;
value[1] = n[4].i;
value[2] = n[5].i;
value[3] = n[6].i;
CALL_ClearBufferiv(ctx->Exec, (n[1].e, n[2].i, value));
}
break;
case OPCODE_CLEAR_BUFFER_UIV:
{
GLuint value[4];
value[0] = n[3].ui;
value[1] = n[4].ui;
value[2] = n[5].ui;
value[3] = n[6].ui;
CALL_ClearBufferuiv(ctx->Exec, (n[1].e, n[2].i, value));
}
break;
case OPCODE_CLEAR_BUFFER_FV:
{
GLfloat value[4];
value[0] = n[3].f;
value[1] = n[4].f;
value[2] = n[5].f;
value[3] = n[6].f;
CALL_ClearBufferfv(ctx->Exec, (n[1].e, n[2].i, value));
}
break;
case OPCODE_CLEAR_BUFFER_FI:
CALL_ClearBufferfi(ctx->Exec, (n[1].e, n[2].i, n[3].f, n[4].i));
break;
case OPCODE_CLEAR_COLOR:
CALL_ClearColor(ctx->Exec, (n[1].f, n[2].f, n[3].f, n[4].f));
break;
case OPCODE_CLEAR_ACCUM:
CALL_ClearAccum(ctx->Exec, (n[1].f, n[2].f, n[3].f, n[4].f));
break;
case OPCODE_CLEAR_DEPTH:
CALL_ClearDepth(ctx->Exec, ((GLclampd) n[1].f));
break;
case OPCODE_CLEAR_INDEX:
CALL_ClearIndex(ctx->Exec, ((GLfloat) n[1].ui));
break;
case OPCODE_CLEAR_STENCIL:
CALL_ClearStencil(ctx->Exec, (n[1].i));
break;
case OPCODE_CLIP_PLANE:
{
GLdouble eq[4];
eq[0] = n[2].f;
eq[1] = n[3].f;
eq[2] = n[4].f;
eq[3] = n[5].f;
CALL_ClipPlane(ctx->Exec, (n[1].e, eq));
}
break;
case OPCODE_COLOR_MASK:
CALL_ColorMask(ctx->Exec, (n[1].b, n[2].b, n[3].b, n[4].b));
break;
case OPCODE_COLOR_MASK_INDEXED:
CALL_ColorMaski(ctx->Exec, (n[1].ui, n[2].b, n[3].b,
n[4].b, n[5].b));
break;
case OPCODE_COLOR_MATERIAL:
CALL_ColorMaterial(ctx->Exec, (n[1].e, n[2].e));
break;
case OPCODE_COPY_PIXELS:
CALL_CopyPixels(ctx->Exec, (n[1].i, n[2].i,
(GLsizei) n[3].i, (GLsizei) n[4].i,
n[5].e));
break;
case OPCODE_COPY_TEX_IMAGE1D:
CALL_CopyTexImage1D(ctx->Exec, (n[1].e, n[2].i, n[3].e, n[4].i,
n[5].i, n[6].i, n[7].i));
break;
case OPCODE_COPY_TEX_IMAGE2D:
CALL_CopyTexImage2D(ctx->Exec, (n[1].e, n[2].i, n[3].e, n[4].i,
n[5].i, n[6].i, n[7].i, n[8].i));
break;
case OPCODE_COPY_TEX_SUB_IMAGE1D:
CALL_CopyTexSubImage1D(ctx->Exec, (n[1].e, n[2].i, n[3].i,
n[4].i, n[5].i, n[6].i));
break;
case OPCODE_COPY_TEX_SUB_IMAGE2D:
CALL_CopyTexSubImage2D(ctx->Exec, (n[1].e, n[2].i, n[3].i,
n[4].i, n[5].i, n[6].i, n[7].i,
n[8].i));
break;
case OPCODE_COPY_TEX_SUB_IMAGE3D:
CALL_CopyTexSubImage3D(ctx->Exec, (n[1].e, n[2].i, n[3].i,
n[4].i, n[5].i, n[6].i, n[7].i,
n[8].i, n[9].i));
break;
case OPCODE_CULL_FACE:
CALL_CullFace(ctx->Exec, (n[1].e));
break;
case OPCODE_DEPTH_FUNC:
CALL_DepthFunc(ctx->Exec, (n[1].e));
break;
case OPCODE_DEPTH_MASK:
CALL_DepthMask(ctx->Exec, (n[1].b));
break;
case OPCODE_DEPTH_RANGE:
CALL_DepthRange(ctx->Exec,
((GLclampd) n[1].f, (GLclampd) n[2].f));
break;
case OPCODE_DISABLE:
CALL_Disable(ctx->Exec, (n[1].e));
break;
case OPCODE_DISABLE_INDEXED:
CALL_Disablei(ctx->Exec, (n[1].ui, n[2].e));
break;
case OPCODE_DRAW_BUFFER:
CALL_DrawBuffer(ctx->Exec, (n[1].e));
break;
case OPCODE_DRAW_PIXELS:
{
const struct gl_pixelstore_attrib save = ctx->Unpack;
ctx->Unpack = ctx->DefaultPacking;
CALL_DrawPixels(ctx->Exec, (n[1].i, n[2].i, n[3].e, n[4].e,
get_pointer(&n[5])));
ctx->Unpack = save; /* restore */
}
break;
case OPCODE_ENABLE:
CALL_Enable(ctx->Exec, (n[1].e));
break;
case OPCODE_ENABLE_INDEXED:
CALL_Enablei(ctx->Exec, (n[1].ui, n[2].e));
break;
case OPCODE_EVALMESH1:
CALL_EvalMesh1(ctx->Exec, (n[1].e, n[2].i, n[3].i));
break;
case OPCODE_EVALMESH2:
CALL_EvalMesh2(ctx->Exec,
(n[1].e, n[2].i, n[3].i, n[4].i, n[5].i));
break;
case OPCODE_FOG:
{
GLfloat p[4];
p[0] = n[2].f;
p[1] = n[3].f;
p[2] = n[4].f;
p[3] = n[5].f;
CALL_Fogfv(ctx->Exec, (n[1].e, p));
}
break;
case OPCODE_FRONT_FACE:
CALL_FrontFace(ctx->Exec, (n[1].e));
break;
case OPCODE_FRUSTUM:
CALL_Frustum(ctx->Exec,
(n[1].f, n[2].f, n[3].f, n[4].f, n[5].f, n[6].f));
break;
case OPCODE_HINT:
CALL_Hint(ctx->Exec, (n[1].e, n[2].e));
break;
case OPCODE_INDEX_MASK:
CALL_IndexMask(ctx->Exec, (n[1].ui));
break;
case OPCODE_INIT_NAMES:
CALL_InitNames(ctx->Exec, ());
break;
case OPCODE_LIGHT:
{
GLfloat p[4];
p[0] = n[3].f;
p[1] = n[4].f;
p[2] = n[5].f;
p[3] = n[6].f;
CALL_Lightfv(ctx->Exec, (n[1].e, n[2].e, p));
}
break;
case OPCODE_LIGHT_MODEL:
{
GLfloat p[4];
p[0] = n[2].f;
p[1] = n[3].f;
p[2] = n[4].f;
p[3] = n[5].f;
CALL_LightModelfv(ctx->Exec, (n[1].e, p));
}
break;
case OPCODE_LINE_STIPPLE:
CALL_LineStipple(ctx->Exec, (n[1].i, n[2].us));
break;
case OPCODE_LINE_WIDTH:
CALL_LineWidth(ctx->Exec, (n[1].f));
break;
case OPCODE_LIST_BASE:
CALL_ListBase(ctx->Exec, (n[1].ui));
break;
case OPCODE_LOAD_IDENTITY:
CALL_LoadIdentity(ctx->Exec, ());
break;
case OPCODE_LOAD_MATRIX:
STATIC_ASSERT(sizeof(Node) == sizeof(GLfloat));
CALL_LoadMatrixf(ctx->Exec, (&n[1].f));
break;
case OPCODE_LOAD_NAME:
CALL_LoadName(ctx->Exec, (n[1].ui));
break;
case OPCODE_LOGIC_OP:
CALL_LogicOp(ctx->Exec, (n[1].e));
break;
case OPCODE_MAP1:
{
GLenum target = n[1].e;
GLint ustride = _mesa_evaluator_components(target);
GLint uorder = n[5].i;
GLfloat u1 = n[2].f;
GLfloat u2 = n[3].f;
CALL_Map1f(ctx->Exec, (target, u1, u2, ustride, uorder,
(GLfloat *) get_pointer(&n[6])));
}
break;
case OPCODE_MAP2:
{
GLenum target = n[1].e;
GLfloat u1 = n[2].f;
GLfloat u2 = n[3].f;
GLfloat v1 = n[4].f;
GLfloat v2 = n[5].f;
GLint ustride = n[6].i;
GLint vstride = n[7].i;
GLint uorder = n[8].i;
GLint vorder = n[9].i;
CALL_Map2f(ctx->Exec, (target, u1, u2, ustride, uorder,
v1, v2, vstride, vorder,
(GLfloat *) get_pointer(&n[10])));
}
break;
case OPCODE_MAPGRID1:
CALL_MapGrid1f(ctx->Exec, (n[1].i, n[2].f, n[3].f));
break;
case OPCODE_MAPGRID2:
CALL_MapGrid2f(ctx->Exec,
(n[1].i, n[2].f, n[3].f, n[4].i, n[5].f, n[6].f));
break;
case OPCODE_MATRIX_MODE:
CALL_MatrixMode(ctx->Exec, (n[1].e));
break;
case OPCODE_MULT_MATRIX:
CALL_MultMatrixf(ctx->Exec, (&n[1].f));
break;
case OPCODE_ORTHO:
CALL_Ortho(ctx->Exec,
(n[1].f, n[2].f, n[3].f, n[4].f, n[5].f, n[6].f));
break;
case OPCODE_PASSTHROUGH:
CALL_PassThrough(ctx->Exec, (n[1].f));
break;
case OPCODE_PIXEL_MAP:
CALL_PixelMapfv(ctx->Exec,
(n[1].e, n[2].i, get_pointer(&n[3])));
break;
case OPCODE_PIXEL_TRANSFER:
CALL_PixelTransferf(ctx->Exec, (n[1].e, n[2].f));
break;
case OPCODE_PIXEL_ZOOM:
CALL_PixelZoom(ctx->Exec, (n[1].f, n[2].f));
break;
case OPCODE_POINT_SIZE:
CALL_PointSize(ctx->Exec, (n[1].f));
break;
case OPCODE_POINT_PARAMETERS:
{
GLfloat params[3];
params[0] = n[2].f;
params[1] = n[3].f;
params[2] = n[4].f;
CALL_PointParameterfv(ctx->Exec, (n[1].e, params));
}
break;
case OPCODE_POLYGON_MODE:
CALL_PolygonMode(ctx->Exec, (n[1].e, n[2].e));
break;
case OPCODE_POLYGON_STIPPLE:
{
const struct gl_pixelstore_attrib save = ctx->Unpack;
ctx->Unpack = ctx->DefaultPacking;
CALL_PolygonStipple(ctx->Exec, (get_pointer(&n[1])));
ctx->Unpack = save; /* restore */
}
break;
case OPCODE_POLYGON_OFFSET:
CALL_PolygonOffset(ctx->Exec, (n[1].f, n[2].f));
break;
case OPCODE_POLYGON_OFFSET_CLAMP:
CALL_PolygonOffsetClampEXT(ctx->Exec, (n[1].f, n[2].f, n[3].f));
break;
case OPCODE_POP_ATTRIB:
CALL_PopAttrib(ctx->Exec, ());
break;
case OPCODE_POP_MATRIX:
CALL_PopMatrix(ctx->Exec, ());
break;
case OPCODE_POP_NAME:
CALL_PopName(ctx->Exec, ());
break;
case OPCODE_PRIORITIZE_TEXTURE:
CALL_PrioritizeTextures(ctx->Exec, (1, &n[1].ui, &n[2].f));
break;
case OPCODE_PUSH_ATTRIB:
CALL_PushAttrib(ctx->Exec, (n[1].bf));
break;
case OPCODE_PUSH_MATRIX:
CALL_PushMatrix(ctx->Exec, ());
break;
case OPCODE_PUSH_NAME:
CALL_PushName(ctx->Exec, (n[1].ui));
break;
case OPCODE_RASTER_POS:
CALL_RasterPos4f(ctx->Exec, (n[1].f, n[2].f, n[3].f, n[4].f));
break;
case OPCODE_READ_BUFFER:
CALL_ReadBuffer(ctx->Exec, (n[1].e));
break;
case OPCODE_ROTATE:
CALL_Rotatef(ctx->Exec, (n[1].f, n[2].f, n[3].f, n[4].f));
break;
case OPCODE_SCALE:
CALL_Scalef(ctx->Exec, (n[1].f, n[2].f, n[3].f));
break;
case OPCODE_SCISSOR:
CALL_Scissor(ctx->Exec, (n[1].i, n[2].i, n[3].i, n[4].i));
break;
case OPCODE_SHADE_MODEL:
CALL_ShadeModel(ctx->Exec, (n[1].e));
break;
case OPCODE_PROVOKING_VERTEX:
CALL_ProvokingVertex(ctx->Exec, (n[1].e));
break;
case OPCODE_STENCIL_FUNC:
CALL_StencilFunc(ctx->Exec, (n[1].e, n[2].i, n[3].ui));
break;
case OPCODE_STENCIL_MASK:
CALL_StencilMask(ctx->Exec, (n[1].ui));
break;
case OPCODE_STENCIL_OP:
CALL_StencilOp(ctx->Exec, (n[1].e, n[2].e, n[3].e));
break;
case OPCODE_STENCIL_FUNC_SEPARATE:
CALL_StencilFuncSeparate(ctx->Exec,
(n[1].e, n[2].e, n[3].i, n[4].ui));
break;
case OPCODE_STENCIL_MASK_SEPARATE:
CALL_StencilMaskSeparate(ctx->Exec, (n[1].e, n[2].ui));
break;
case OPCODE_STENCIL_OP_SEPARATE:
CALL_StencilOpSeparate(ctx->Exec,
(n[1].e, n[2].e, n[3].e, n[4].e));
break;
case OPCODE_TEXENV:
{
GLfloat params[4];
params[0] = n[3].f;
params[1] = n[4].f;
params[2] = n[5].f;
params[3] = n[6].f;
CALL_TexEnvfv(ctx->Exec, (n[1].e, n[2].e, params));
}
break;
case OPCODE_TEXGEN:
{
GLfloat params[4];
params[0] = n[3].f;
params[1] = n[4].f;
params[2] = n[5].f;
params[3] = n[6].f;
CALL_TexGenfv(ctx->Exec, (n[1].e, n[2].e, params));
}
break;
case OPCODE_TEXPARAMETER:
{
GLfloat params[4];
params[0] = n[3].f;
params[1] = n[4].f;
params[2] = n[5].f;
params[3] = n[6].f;
CALL_TexParameterfv(ctx->Exec, (n[1].e, n[2].e, params));
}
break;
case OPCODE_TEX_IMAGE1D:
{
const struct gl_pixelstore_attrib save = ctx->Unpack;
ctx->Unpack = ctx->DefaultPacking;
CALL_TexImage1D(ctx->Exec, (n[1].e, /* target */
n[2].i, /* level */
n[3].i, /* components */
n[4].i, /* width */
n[5].e, /* border */
n[6].e, /* format */
n[7].e, /* type */
get_pointer(&n[8])));
ctx->Unpack = save; /* restore */
}
break;
case OPCODE_TEX_IMAGE2D:
{
const struct gl_pixelstore_attrib save = ctx->Unpack;
ctx->Unpack = ctx->DefaultPacking;
CALL_TexImage2D(ctx->Exec, (n[1].e, /* target */
n[2].i, /* level */
n[3].i, /* components */
n[4].i, /* width */
n[5].i, /* height */
n[6].e, /* border */
n[7].e, /* format */
n[8].e, /* type */
get_pointer(&n[9])));
ctx->Unpack = save; /* restore */
}
break;
case OPCODE_TEX_IMAGE3D:
{
const struct gl_pixelstore_attrib save = ctx->Unpack;
ctx->Unpack = ctx->DefaultPacking;
CALL_TexImage3D(ctx->Exec, (n[1].e, /* target */
n[2].i, /* level */
n[3].i, /* components */
n[4].i, /* width */
n[5].i, /* height */
n[6].i, /* depth */
n[7].e, /* border */
n[8].e, /* format */
n[9].e, /* type */
get_pointer(&n[10])));
ctx->Unpack = save; /* restore */
}
break;
case OPCODE_TEX_SUB_IMAGE1D:
{
const struct gl_pixelstore_attrib save = ctx->Unpack;
ctx->Unpack = ctx->DefaultPacking;
CALL_TexSubImage1D(ctx->Exec, (n[1].e, n[2].i, n[3].i,
n[4].i, n[5].e,
n[6].e, get_pointer(&n[7])));
ctx->Unpack = save; /* restore */
}
break;
case OPCODE_TEX_SUB_IMAGE2D:
{
const struct gl_pixelstore_attrib save = ctx->Unpack;
ctx->Unpack = ctx->DefaultPacking;
CALL_TexSubImage2D(ctx->Exec, (n[1].e, n[2].i, n[3].i,
n[4].i, n[5].e,
n[6].i, n[7].e, n[8].e,
get_pointer(&n[9])));
ctx->Unpack = save; /* restore */
}
break;
case OPCODE_TEX_SUB_IMAGE3D:
{
const struct gl_pixelstore_attrib save = ctx->Unpack;
ctx->Unpack = ctx->DefaultPacking;
CALL_TexSubImage3D(ctx->Exec, (n[1].e, n[2].i, n[3].i,
n[4].i, n[5].i, n[6].i, n[7].i,
n[8].i, n[9].e, n[10].e,
get_pointer(&n[11])));
ctx->Unpack = save; /* restore */
}
break;
case OPCODE_TRANSLATE:
CALL_Translatef(ctx->Exec, (n[1].f, n[2].f, n[3].f));
break;
case OPCODE_VIEWPORT:
CALL_Viewport(ctx->Exec, (n[1].i, n[2].i,
(GLsizei) n[3].i, (GLsizei) n[4].i));
break;
case OPCODE_WINDOW_POS:
CALL_WindowPos4fMESA(ctx->Exec, (n[1].f, n[2].f, n[3].f, n[4].f));
break;
case OPCODE_ACTIVE_TEXTURE: /* GL_ARB_multitexture */
CALL_ActiveTexture(ctx->Exec, (n[1].e));
break;
case OPCODE_COMPRESSED_TEX_IMAGE_1D: /* GL_ARB_texture_compression */
CALL_CompressedTexImage1D(ctx->Exec, (n[1].e, n[2].i, n[3].e,
n[4].i, n[5].i, n[6].i,
get_pointer(&n[7])));
break;
case OPCODE_COMPRESSED_TEX_IMAGE_2D: /* GL_ARB_texture_compression */
CALL_CompressedTexImage2D(ctx->Exec, (n[1].e, n[2].i, n[3].e,
n[4].i, n[5].i, n[6].i,
n[7].i, get_pointer(&n[8])));
break;
case OPCODE_COMPRESSED_TEX_IMAGE_3D: /* GL_ARB_texture_compression */
CALL_CompressedTexImage3D(ctx->Exec, (n[1].e, n[2].i, n[3].e,
n[4].i, n[5].i, n[6].i,
n[7].i, n[8].i,
get_pointer(&n[9])));
break;
case OPCODE_COMPRESSED_TEX_SUB_IMAGE_1D: /* GL_ARB_texture_compress */
CALL_CompressedTexSubImage1D(ctx->Exec,
(n[1].e, n[2].i, n[3].i, n[4].i,
n[5].e, n[6].i,
get_pointer(&n[7])));
break;
case OPCODE_COMPRESSED_TEX_SUB_IMAGE_2D: /* GL_ARB_texture_compress */
CALL_CompressedTexSubImage2D(ctx->Exec,
(n[1].e, n[2].i, n[3].i, n[4].i,
n[5].i, n[6].i, n[7].e, n[8].i,
get_pointer(&n[9])));
break;
case OPCODE_COMPRESSED_TEX_SUB_IMAGE_3D: /* GL_ARB_texture_compress */
CALL_CompressedTexSubImage3D(ctx->Exec,
(n[1].e, n[2].i, n[3].i, n[4].i,
n[5].i, n[6].i, n[7].i, n[8].i,
n[9].e, n[10].i,
get_pointer(&n[11])));
break;
case OPCODE_SAMPLE_COVERAGE: /* GL_ARB_multisample */
CALL_SampleCoverage(ctx->Exec, (n[1].f, n[2].b));
break;
case OPCODE_WINDOW_POS_ARB: /* GL_ARB_window_pos */
CALL_WindowPos3f(ctx->Exec, (n[1].f, n[2].f, n[3].f));
break;
case OPCODE_BIND_PROGRAM_ARB: /* GL_ARB_vertex_program */
CALL_BindProgramARB(ctx->Exec, (n[1].e, n[2].ui));
break;
case OPCODE_PROGRAM_LOCAL_PARAMETER_ARB:
CALL_ProgramLocalParameter4fARB(ctx->Exec,
(n[1].e, n[2].ui, n[3].f, n[4].f,
n[5].f, n[6].f));
break;
case OPCODE_ACTIVE_STENCIL_FACE_EXT:
CALL_ActiveStencilFaceEXT(ctx->Exec, (n[1].e));
break;
case OPCODE_DEPTH_BOUNDS_EXT:
CALL_DepthBoundsEXT(ctx->Exec, (n[1].f, n[2].f));
break;
case OPCODE_PROGRAM_STRING_ARB:
CALL_ProgramStringARB(ctx->Exec,
(n[1].e, n[2].e, n[3].i,
get_pointer(&n[4])));
break;
case OPCODE_PROGRAM_ENV_PARAMETER_ARB:
CALL_ProgramEnvParameter4fARB(ctx->Exec, (n[1].e, n[2].ui, n[3].f,
n[4].f, n[5].f,
n[6].f));
break;
case OPCODE_BEGIN_QUERY_ARB:
CALL_BeginQuery(ctx->Exec, (n[1].e, n[2].ui));
break;
case OPCODE_END_QUERY_ARB:
CALL_EndQuery(ctx->Exec, (n[1].e));
break;
case OPCODE_QUERY_COUNTER:
CALL_QueryCounter(ctx->Exec, (n[1].ui, n[2].e));
break;
case OPCODE_BEGIN_QUERY_INDEXED:
CALL_BeginQueryIndexed(ctx->Exec, (n[1].e, n[2].ui, n[3].ui));
break;
case OPCODE_END_QUERY_INDEXED:
CALL_EndQueryIndexed(ctx->Exec, (n[1].e, n[2].ui));
break;
case OPCODE_DRAW_BUFFERS_ARB:
{
GLenum buffers[MAX_DRAW_BUFFERS];
GLint i, count = MIN2(n[1].i, MAX_DRAW_BUFFERS);
for (i = 0; i < count; i++)
buffers[i] = n[2 + i].e;
CALL_DrawBuffers(ctx->Exec, (n[1].i, buffers));
}
break;
case OPCODE_BLIT_FRAMEBUFFER:
CALL_BlitFramebuffer(ctx->Exec, (n[1].i, n[2].i, n[3].i, n[4].i,
n[5].i, n[6].i, n[7].i, n[8].i,
n[9].i, n[10].e));
break;
case OPCODE_PRIMITIVE_RESTART_NV:
CALL_PrimitiveRestartNV(ctx->Exec, ());
break;
case OPCODE_USE_PROGRAM:
CALL_UseProgram(ctx->Exec, (n[1].ui));
break;
case OPCODE_UNIFORM_1F:
CALL_Uniform1f(ctx->Exec, (n[1].i, n[2].f));
break;
case OPCODE_UNIFORM_2F:
CALL_Uniform2f(ctx->Exec, (n[1].i, n[2].f, n[3].f));
break;
case OPCODE_UNIFORM_3F:
CALL_Uniform3f(ctx->Exec, (n[1].i, n[2].f, n[3].f, n[4].f));
break;
case OPCODE_UNIFORM_4F:
CALL_Uniform4f(ctx->Exec,
(n[1].i, n[2].f, n[3].f, n[4].f, n[5].f));
break;
case OPCODE_UNIFORM_1FV:
CALL_Uniform1fv(ctx->Exec, (n[1].i, n[2].i, get_pointer(&n[3])));
break;
case OPCODE_UNIFORM_2FV:
CALL_Uniform2fv(ctx->Exec, (n[1].i, n[2].i, get_pointer(&n[3])));
break;
case OPCODE_UNIFORM_3FV:
CALL_Uniform3fv(ctx->Exec, (n[1].i, n[2].i, get_pointer(&n[3])));
break;
case OPCODE_UNIFORM_4FV:
CALL_Uniform4fv(ctx->Exec, (n[1].i, n[2].i, get_pointer(&n[3])));
break;
case OPCODE_UNIFORM_1I:
CALL_Uniform1i(ctx->Exec, (n[1].i, n[2].i));
break;
case OPCODE_UNIFORM_2I:
CALL_Uniform2i(ctx->Exec, (n[1].i, n[2].i, n[3].i));
break;
case OPCODE_UNIFORM_3I:
CALL_Uniform3i(ctx->Exec, (n[1].i, n[2].i, n[3].i, n[4].i));
break;
case OPCODE_UNIFORM_4I:
CALL_Uniform4i(ctx->Exec,
(n[1].i, n[2].i, n[3].i, n[4].i, n[5].i));
break;
case OPCODE_UNIFORM_1IV:
CALL_Uniform1iv(ctx->Exec, (n[1].i, n[2].i, get_pointer(&n[3])));
break;
case OPCODE_UNIFORM_2IV:
CALL_Uniform2iv(ctx->Exec, (n[1].i, n[2].i, get_pointer(&n[3])));
break;
case OPCODE_UNIFORM_3IV:
CALL_Uniform3iv(ctx->Exec, (n[1].i, n[2].i, get_pointer(&n[3])));
break;
case OPCODE_UNIFORM_4IV:
CALL_Uniform4iv(ctx->Exec, (n[1].i, n[2].i, get_pointer(&n[3])));
break;
case OPCODE_UNIFORM_1UI:
/*CALL_Uniform1uiARB(ctx->Exec, (n[1].i, n[2].i));*/
break;
case OPCODE_UNIFORM_2UI:
/*CALL_Uniform2uiARB(ctx->Exec, (n[1].i, n[2].i, n[3].i));*/
break;
case OPCODE_UNIFORM_3UI:
/*CALL_Uniform3uiARB(ctx->Exec, (n[1].i, n[2].i, n[3].i, n[4].i));*/
break;
case OPCODE_UNIFORM_4UI:
/*CALL_Uniform4uiARB(ctx->Exec,
(n[1].i, n[2].i, n[3].i, n[4].i, n[5].i));
*/
break;
case OPCODE_UNIFORM_1UIV:
/*CALL_Uniform1uivARB(ctx->Exec, (n[1].i, n[2].i,
get_pointer(&n[3])));*/
break;
case OPCODE_UNIFORM_2UIV:
/*CALL_Uniform2uivARB(ctx->Exec, (n[1].i, n[2].i,
get_pointer(&n[3])));*/
break;
case OPCODE_UNIFORM_3UIV:
/*CALL_Uniform3uivARB(ctx->Exec, (n[1].i, n[2].i,
get_pointer(&n[3])));*/
break;
case OPCODE_UNIFORM_4UIV:
/*CALL_Uniform4uivARB(ctx->Exec, (n[1].i, n[2].i,
get_pointer(&n[3])));*/
break;
case OPCODE_UNIFORM_MATRIX22:
CALL_UniformMatrix2fv(ctx->Exec,
(n[1].i, n[2].i, n[3].b, get_pointer(&n[4])));
break;
case OPCODE_UNIFORM_MATRIX33:
CALL_UniformMatrix3fv(ctx->Exec,
(n[1].i, n[2].i, n[3].b, get_pointer(&n[4])));
break;
case OPCODE_UNIFORM_MATRIX44:
CALL_UniformMatrix4fv(ctx->Exec,
(n[1].i, n[2].i, n[3].b, get_pointer(&n[4])));
break;
case OPCODE_UNIFORM_MATRIX23:
CALL_UniformMatrix2x3fv(ctx->Exec,
(n[1].i, n[2].i, n[3].b, get_pointer(&n[4])));
break;
case OPCODE_UNIFORM_MATRIX32:
CALL_UniformMatrix3x2fv(ctx->Exec,
(n[1].i, n[2].i, n[3].b, get_pointer(&n[4])));
break;
case OPCODE_UNIFORM_MATRIX24:
CALL_UniformMatrix2x4fv(ctx->Exec,
(n[1].i, n[2].i, n[3].b, get_pointer(&n[4])));
break;
case OPCODE_UNIFORM_MATRIX42:
CALL_UniformMatrix4x2fv(ctx->Exec,
(n[1].i, n[2].i, n[3].b, get_pointer(&n[4])));
break;
case OPCODE_UNIFORM_MATRIX34:
CALL_UniformMatrix3x4fv(ctx->Exec,
(n[1].i, n[2].i, n[3].b, get_pointer(&n[4])));
break;
case OPCODE_UNIFORM_MATRIX43:
CALL_UniformMatrix4x3fv(ctx->Exec,
(n[1].i, n[2].i, n[3].b, get_pointer(&n[4])));
break;
case OPCODE_USE_PROGRAM_STAGES:
CALL_UseProgramStages(ctx->Exec, (n[1].ui, n[2].ui, n[3].ui));
break;
case OPCODE_PROGRAM_UNIFORM_1F:
CALL_ProgramUniform1f(ctx->Exec, (n[1].ui, n[2].i, n[3].f));
break;
case OPCODE_PROGRAM_UNIFORM_2F:
CALL_ProgramUniform2f(ctx->Exec, (n[1].ui, n[2].i, n[3].f, n[4].f));
break;
case OPCODE_PROGRAM_UNIFORM_3F:
CALL_ProgramUniform3f(ctx->Exec, (n[1].ui, n[2].i,
n[3].f, n[4].f, n[5].f));
break;
case OPCODE_PROGRAM_UNIFORM_4F:
CALL_ProgramUniform4f(ctx->Exec, (n[1].ui, n[2].i,
n[3].f, n[4].f, n[5].f, n[6].f));
break;
case OPCODE_PROGRAM_UNIFORM_1FV:
CALL_ProgramUniform1fv(ctx->Exec, (n[1].ui, n[2].i, n[3].i,
get_pointer(&n[4])));
break;
case OPCODE_PROGRAM_UNIFORM_2FV:
CALL_ProgramUniform2fv(ctx->Exec, (n[1].ui, n[2].i, n[3].i,
get_pointer(&n[4])));
break;
case OPCODE_PROGRAM_UNIFORM_3FV:
CALL_ProgramUniform3fv(ctx->Exec, (n[1].ui, n[2].i, n[3].i,
get_pointer(&n[4])));
break;
case OPCODE_PROGRAM_UNIFORM_4FV:
CALL_ProgramUniform4fv(ctx->Exec, (n[1].ui, n[2].i, n[3].i,
get_pointer(&n[4])));
break;
case OPCODE_PROGRAM_UNIFORM_1I:
CALL_ProgramUniform1i(ctx->Exec, (n[1].ui, n[2].i, n[3].i));
break;
case OPCODE_PROGRAM_UNIFORM_2I:
CALL_ProgramUniform2i(ctx->Exec, (n[1].ui, n[2].i, n[3].i, n[4].i));
break;
case OPCODE_PROGRAM_UNIFORM_3I:
CALL_ProgramUniform3i(ctx->Exec, (n[1].ui, n[2].i,
n[3].i, n[4].i, n[5].i));
break;
case OPCODE_PROGRAM_UNIFORM_4I:
CALL_ProgramUniform4i(ctx->Exec, (n[1].ui, n[2].i,
n[3].i, n[4].i, n[5].i, n[6].i));
break;
case OPCODE_PROGRAM_UNIFORM_1IV:
CALL_ProgramUniform1iv(ctx->Exec, (n[1].ui, n[2].i, n[3].i,
get_pointer(&n[4])));
break;
case OPCODE_PROGRAM_UNIFORM_2IV:
CALL_ProgramUniform2iv(ctx->Exec, (n[1].ui, n[2].i, n[3].i,
get_pointer(&n[4])));
break;
case OPCODE_PROGRAM_UNIFORM_3IV:
CALL_ProgramUniform3iv(ctx->Exec, (n[1].ui, n[2].i, n[3].i,
get_pointer(&n[4])));
break;
case OPCODE_PROGRAM_UNIFORM_4IV:
CALL_ProgramUniform4iv(ctx->Exec, (n[1].ui, n[2].i, n[3].i,
get_pointer(&n[4])));
break;
case OPCODE_PROGRAM_UNIFORM_1UI:
CALL_ProgramUniform1ui(ctx->Exec, (n[1].ui, n[2].i, n[3].ui));
break;
case OPCODE_PROGRAM_UNIFORM_2UI:
CALL_ProgramUniform2ui(ctx->Exec, (n[1].ui, n[2].i,
n[3].ui, n[4].ui));
break;
case OPCODE_PROGRAM_UNIFORM_3UI:
CALL_ProgramUniform3ui(ctx->Exec, (n[1].ui, n[2].i,
n[3].ui, n[4].ui, n[5].ui));
break;
case OPCODE_PROGRAM_UNIFORM_4UI:
CALL_ProgramUniform4ui(ctx->Exec, (n[1].ui, n[2].i,
n[3].ui,
n[4].ui, n[5].ui, n[6].ui));
break;
case OPCODE_PROGRAM_UNIFORM_1UIV:
CALL_ProgramUniform1uiv(ctx->Exec, (n[1].ui, n[2].i, n[3].i,
get_pointer(&n[4])));
break;
case OPCODE_PROGRAM_UNIFORM_2UIV:
CALL_ProgramUniform2uiv(ctx->Exec, (n[1].ui, n[2].i, n[3].i,
get_pointer(&n[4])));
break;
case OPCODE_PROGRAM_UNIFORM_3UIV:
CALL_ProgramUniform3uiv(ctx->Exec, (n[1].ui, n[2].i, n[3].i,
get_pointer(&n[4])));
break;
case OPCODE_PROGRAM_UNIFORM_4UIV:
CALL_ProgramUniform4uiv(ctx->Exec, (n[1].ui, n[2].i, n[3].i,
get_pointer(&n[4])));
break;
case OPCODE_PROGRAM_UNIFORM_MATRIX22F:
CALL_ProgramUniformMatrix2fv(ctx->Exec,
(n[1].ui, n[2].i, n[3].i, n[4].b,
get_pointer(&n[5])));
break;
case OPCODE_PROGRAM_UNIFORM_MATRIX23F:
CALL_ProgramUniformMatrix2x3fv(ctx->Exec,
(n[1].ui, n[2].i, n[3].i, n[4].b,
get_pointer(&n[5])));
break;
case OPCODE_PROGRAM_UNIFORM_MATRIX24F:
CALL_ProgramUniformMatrix2x4fv(ctx->Exec,
(n[1].ui, n[2].i, n[3].i, n[4].b,
get_pointer(&n[5])));
break;
case OPCODE_PROGRAM_UNIFORM_MATRIX32F:
CALL_ProgramUniformMatrix3x2fv(ctx->Exec,
(n[1].ui, n[2].i, n[3].i, n[4].b,
get_pointer(&n[5])));
break;
case OPCODE_PROGRAM_UNIFORM_MATRIX33F:
CALL_ProgramUniformMatrix3fv(ctx->Exec,
(n[1].ui, n[2].i, n[3].i, n[4].b,
get_pointer(&n[5])));
break;
case OPCODE_PROGRAM_UNIFORM_MATRIX34F:
CALL_ProgramUniformMatrix3x4fv(ctx->Exec,
(n[1].ui, n[2].i, n[3].i, n[4].b,
get_pointer(&n[5])));
break;
case OPCODE_PROGRAM_UNIFORM_MATRIX42F:
CALL_ProgramUniformMatrix4x2fv(ctx->Exec,
(n[1].ui, n[2].i, n[3].i, n[4].b,
get_pointer(&n[5])));
break;
case OPCODE_PROGRAM_UNIFORM_MATRIX43F:
CALL_ProgramUniformMatrix4x3fv(ctx->Exec,
(n[1].ui, n[2].i, n[3].i, n[4].b,
get_pointer(&n[5])));
break;
case OPCODE_PROGRAM_UNIFORM_MATRIX44F:
CALL_ProgramUniformMatrix4fv(ctx->Exec,
(n[1].ui, n[2].i, n[3].i, n[4].b,
get_pointer(&n[5])));
break;
case OPCODE_CLIP_CONTROL:
CALL_ClipControl(ctx->Exec, (n[1].e, n[2].e));
break;
case OPCODE_CLAMP_COLOR:
CALL_ClampColor(ctx->Exec, (n[1].e, n[2].e));
break;
case OPCODE_BIND_FRAGMENT_SHADER_ATI:
CALL_BindFragmentShaderATI(ctx->Exec, (n[1].i));
break;
case OPCODE_SET_FRAGMENT_SHADER_CONSTANTS_ATI:
CALL_SetFragmentShaderConstantATI(ctx->Exec, (n[1].ui, &n[2].f));
break;
case OPCODE_ATTR_1F_NV:
CALL_VertexAttrib1fNV(ctx->Exec, (n[1].e, n[2].f));
break;
case OPCODE_ATTR_2F_NV:
CALL_VertexAttrib2fvNV(ctx->Exec, (n[1].e, &n[2].f));
break;
case OPCODE_ATTR_3F_NV:
CALL_VertexAttrib3fvNV(ctx->Exec, (n[1].e, &n[2].f));
break;
case OPCODE_ATTR_4F_NV:
CALL_VertexAttrib4fvNV(ctx->Exec, (n[1].e, &n[2].f));
break;
case OPCODE_ATTR_1F_ARB:
CALL_VertexAttrib1fARB(ctx->Exec, (n[1].e, n[2].f));
break;
case OPCODE_ATTR_2F_ARB:
CALL_VertexAttrib2fvARB(ctx->Exec, (n[1].e, &n[2].f));
break;
case OPCODE_ATTR_3F_ARB:
CALL_VertexAttrib3fvARB(ctx->Exec, (n[1].e, &n[2].f));
break;
case OPCODE_ATTR_4F_ARB:
CALL_VertexAttrib4fvARB(ctx->Exec, (n[1].e, &n[2].f));
break;
case OPCODE_MATERIAL:
CALL_Materialfv(ctx->Exec, (n[1].e, n[2].e, &n[3].f));
break;
case OPCODE_BEGIN:
CALL_Begin(ctx->Exec, (n[1].e));
break;
case OPCODE_END:
CALL_End(ctx->Exec, ());
break;
case OPCODE_RECTF:
CALL_Rectf(ctx->Exec, (n[1].f, n[2].f, n[3].f, n[4].f));
break;
case OPCODE_EVAL_C1:
CALL_EvalCoord1f(ctx->Exec, (n[1].f));
break;
case OPCODE_EVAL_C2:
CALL_EvalCoord2f(ctx->Exec, (n[1].f, n[2].f));
break;
case OPCODE_EVAL_P1:
CALL_EvalPoint1(ctx->Exec, (n[1].i));
break;
case OPCODE_EVAL_P2:
CALL_EvalPoint2(ctx->Exec, (n[1].i, n[2].i));
break;
/* GL_EXT_texture_integer */
case OPCODE_CLEARCOLOR_I:
CALL_ClearColorIiEXT(ctx->Exec, (n[1].i, n[2].i, n[3].i, n[4].i));
break;
case OPCODE_CLEARCOLOR_UI:
CALL_ClearColorIuiEXT(ctx->Exec,
(n[1].ui, n[2].ui, n[3].ui, n[4].ui));
break;
case OPCODE_TEXPARAMETER_I:
{
GLint params[4];
params[0] = n[3].i;
params[1] = n[4].i;
params[2] = n[5].i;
params[3] = n[6].i;
CALL_TexParameterIiv(ctx->Exec, (n[1].e, n[2].e, params));
}
break;
case OPCODE_TEXPARAMETER_UI:
{
GLuint params[4];
params[0] = n[3].ui;
params[1] = n[4].ui;
params[2] = n[5].ui;
params[3] = n[6].ui;
CALL_TexParameterIuiv(ctx->Exec, (n[1].e, n[2].e, params));
}
break;
case OPCODE_VERTEX_ATTRIB_DIVISOR:
/* GL_ARB_instanced_arrays */
CALL_VertexAttribDivisor(ctx->Exec, (n[1].ui, n[2].ui));
break;
case OPCODE_TEXTURE_BARRIER_NV:
CALL_TextureBarrierNV(ctx->Exec, ());
break;
/* GL_EXT/ARB_transform_feedback */
case OPCODE_BEGIN_TRANSFORM_FEEDBACK:
CALL_BeginTransformFeedback(ctx->Exec, (n[1].e));
break;
case OPCODE_END_TRANSFORM_FEEDBACK:
CALL_EndTransformFeedback(ctx->Exec, ());
break;
case OPCODE_BIND_TRANSFORM_FEEDBACK:
CALL_BindTransformFeedback(ctx->Exec, (n[1].e, n[2].ui));
break;
case OPCODE_PAUSE_TRANSFORM_FEEDBACK:
CALL_PauseTransformFeedback(ctx->Exec, ());
break;
case OPCODE_RESUME_TRANSFORM_FEEDBACK:
CALL_ResumeTransformFeedback(ctx->Exec, ());
break;
case OPCODE_DRAW_TRANSFORM_FEEDBACK:
CALL_DrawTransformFeedback(ctx->Exec, (n[1].e, n[2].ui));
break;
case OPCODE_DRAW_TRANSFORM_FEEDBACK_STREAM:
CALL_DrawTransformFeedbackStream(ctx->Exec,
(n[1].e, n[2].ui, n[3].ui));
break;
case OPCODE_DRAW_TRANSFORM_FEEDBACK_INSTANCED:
CALL_DrawTransformFeedbackInstanced(ctx->Exec,
(n[1].e, n[2].ui, n[3].si));
break;
case OPCODE_DRAW_TRANSFORM_FEEDBACK_STREAM_INSTANCED:
CALL_DrawTransformFeedbackStreamInstanced(ctx->Exec,
(n[1].e, n[2].ui, n[3].ui, n[4].si));
break;
case OPCODE_BIND_SAMPLER:
CALL_BindSampler(ctx->Exec, (n[1].ui, n[2].ui));
break;
case OPCODE_SAMPLER_PARAMETERIV:
{
GLint params[4];
params[0] = n[3].i;
params[1] = n[4].i;
params[2] = n[5].i;
params[3] = n[6].i;
CALL_SamplerParameteriv(ctx->Exec, (n[1].ui, n[2].e, params));
}
break;
case OPCODE_SAMPLER_PARAMETERFV:
{
GLfloat params[4];
params[0] = n[3].f;
params[1] = n[4].f;
params[2] = n[5].f;
params[3] = n[6].f;
CALL_SamplerParameterfv(ctx->Exec, (n[1].ui, n[2].e, params));
}
break;
case OPCODE_SAMPLER_PARAMETERIIV:
{
GLint params[4];
params[0] = n[3].i;
params[1] = n[4].i;
params[2] = n[5].i;
params[3] = n[6].i;
CALL_SamplerParameterIiv(ctx->Exec, (n[1].ui, n[2].e, params));
}
break;
case OPCODE_SAMPLER_PARAMETERUIV:
{
GLuint params[4];
params[0] = n[3].ui;
params[1] = n[4].ui;
params[2] = n[5].ui;
params[3] = n[6].ui;
CALL_SamplerParameterIuiv(ctx->Exec, (n[1].ui, n[2].e, params));
}
break;
/* GL_ARB_sync */
case OPCODE_WAIT_SYNC:
{
union uint64_pair p;
p.uint32[0] = n[2].ui;
p.uint32[1] = n[3].ui;
CALL_WaitSync(ctx->Exec,
(get_pointer(&n[4]), n[1].bf, p.uint64));
}
break;
/* GL_NV_conditional_render */
case OPCODE_BEGIN_CONDITIONAL_RENDER:
CALL_BeginConditionalRender(ctx->Exec, (n[1].i, n[2].e));
break;
case OPCODE_END_CONDITIONAL_RENDER:
CALL_EndConditionalRender(ctx->Exec, ());
break;
case OPCODE_UNIFORM_BLOCK_BINDING:
CALL_UniformBlockBinding(ctx->Exec, (n[1].ui, n[2].ui, n[3].ui));
break;
/* GL_EXT_window_rectangles */
case OPCODE_WINDOW_RECTANGLES:
CALL_WindowRectanglesEXT(
ctx->Exec, (n[1].e, n[2].si, get_pointer(&n[3])));
break;
case OPCODE_CONTINUE:
n = (Node *) get_pointer(&n[1]);
break;
case OPCODE_NOP:
/* no-op */
break;
case OPCODE_END_OF_LIST:
done = GL_TRUE;
break;
default:
{
char msg[1000];
_mesa_snprintf(msg, sizeof(msg), "Error in execute_list: opcode=%d",
(int) opcode);
_mesa_problem(ctx, "%s", msg);
}
done = GL_TRUE;
}
/* increment n to point to next compiled command */
if (opcode != OPCODE_CONTINUE) {
n += InstSize[opcode];
}
}
}
vbo_save_EndCallList(ctx);
ctx->ListState.CallDepth--;
}
/**********************************************************************/
/* GL functions */
/**********************************************************************/
/**
* Test if a display list number is valid.
*/
GLboolean GLAPIENTRY
_mesa_IsList(GLuint list)
{
GET_CURRENT_CONTEXT(ctx);
FLUSH_VERTICES(ctx, 0); /* must be called before assert */
ASSERT_OUTSIDE_BEGIN_END_WITH_RETVAL(ctx, GL_FALSE);
return islist(ctx, list);
}
/**
* Delete a sequence of consecutive display lists.
*/
void GLAPIENTRY
_mesa_DeleteLists(GLuint list, GLsizei range)
{
GET_CURRENT_CONTEXT(ctx);
GLuint i;
FLUSH_VERTICES(ctx, 0); /* must be called before assert */
ASSERT_OUTSIDE_BEGIN_END(ctx);
if (range < 0) {
_mesa_error(ctx, GL_INVALID_VALUE, "glDeleteLists");
return;
}
if (range > 1) {
/* We may be deleting a set of bitmap lists. See if there's a
* bitmap atlas to free.
*/
struct gl_bitmap_atlas *atlas = lookup_bitmap_atlas(ctx, list);
if (atlas) {
_mesa_delete_bitmap_atlas(ctx, atlas);
_mesa_HashRemove(ctx->Shared->BitmapAtlas, list);
}
}
for (i = list; i < list + range; i++) {
destroy_list(ctx, i);
}
}
/**
* Return a display list number, n, such that lists n through n+range-1
* are free.
*/
GLuint GLAPIENTRY
_mesa_GenLists(GLsizei range)
{
GET_CURRENT_CONTEXT(ctx);
GLuint base;
FLUSH_VERTICES(ctx, 0); /* must be called before assert */
ASSERT_OUTSIDE_BEGIN_END_WITH_RETVAL(ctx, 0);
if (range < 0) {
_mesa_error(ctx, GL_INVALID_VALUE, "glGenLists");
return 0;
}
if (range == 0) {
return 0;
}
/*
* Make this an atomic operation
*/
_mesa_HashLockMutex(ctx->Shared->DisplayList);
base = _mesa_HashFindFreeKeyBlock(ctx->Shared->DisplayList, range);
if (base) {
/* reserve the list IDs by with empty/dummy lists */
GLint i;
for (i = 0; i < range; i++) {
_mesa_HashInsertLocked(ctx->Shared->DisplayList, base + i,
make_list(base + i, 1));
}
}
if (USE_BITMAP_ATLAS &&
range > 16 &&
ctx->Driver.DrawAtlasBitmaps) {
/* "range > 16" is a rough heuristic to guess when glGenLists might be
* used to allocate display lists for glXUseXFont or wglUseFontBitmaps.
* Create the empty atlas now.
*/
struct gl_bitmap_atlas *atlas = lookup_bitmap_atlas(ctx, base);
if (!atlas) {
atlas = alloc_bitmap_atlas(ctx, base);
}
if (atlas) {
/* Atlas _should_ be new/empty now, but clobbering is OK */
assert(atlas->numBitmaps == 0);
atlas->numBitmaps = range;
}
}
_mesa_HashUnlockMutex(ctx->Shared->DisplayList);
return base;
}
/**
* Begin a new display list.
*/
void GLAPIENTRY
_mesa_NewList(GLuint name, GLenum mode)
{
GET_CURRENT_CONTEXT(ctx);
FLUSH_CURRENT(ctx, 0); /* must be called before assert */
ASSERT_OUTSIDE_BEGIN_END(ctx);
if (MESA_VERBOSE & VERBOSE_API)
_mesa_debug(ctx, "glNewList %u %s\n", name,
_mesa_enum_to_string(mode));
if (name == 0) {
_mesa_error(ctx, GL_INVALID_VALUE, "glNewList");
return;
}
if (mode != GL_COMPILE && mode != GL_COMPILE_AND_EXECUTE) {
_mesa_error(ctx, GL_INVALID_ENUM, "glNewList");
return;
}
if (ctx->ListState.CurrentList) {
/* already compiling a display list */
_mesa_error(ctx, GL_INVALID_OPERATION, "glNewList");
return;
}
ctx->CompileFlag = GL_TRUE;
ctx->ExecuteFlag = (mode == GL_COMPILE_AND_EXECUTE);
/* Reset accumulated list state */
invalidate_saved_current_state( ctx );
/* Allocate new display list */
ctx->ListState.CurrentList = make_list(name, BLOCK_SIZE);
ctx->ListState.CurrentBlock = ctx->ListState.CurrentList->Head;
ctx->ListState.CurrentPos = 0;
vbo_save_NewList(ctx, name, mode);
ctx->CurrentServerDispatch = ctx->Save;
_glapi_set_dispatch(ctx->CurrentServerDispatch);
if (ctx->MarshalExec == NULL) {
ctx->CurrentClientDispatch = ctx->CurrentServerDispatch;
}
}
/**
* End definition of current display list.
*/
void GLAPIENTRY
_mesa_EndList(void)
{
GET_CURRENT_CONTEXT(ctx);
SAVE_FLUSH_VERTICES(ctx);
FLUSH_VERTICES(ctx, 0);
if (MESA_VERBOSE & VERBOSE_API)
_mesa_debug(ctx, "glEndList\n");
if (ctx->ExecuteFlag && _mesa_inside_dlist_begin_end(ctx)) {
_mesa_error(ctx, GL_INVALID_OPERATION,
"glEndList() called inside glBegin/End");
}
/* Check that a list is under construction */
if (!ctx->ListState.CurrentList) {
_mesa_error(ctx, GL_INVALID_OPERATION, "glEndList");
return;
}
/* Call before emitting END_OF_LIST, in case the driver wants to
* emit opcodes itself.
*/
vbo_save_EndList(ctx);
(void) alloc_instruction(ctx, OPCODE_END_OF_LIST, 0);
trim_list(ctx);
/* Destroy old list, if any */
destroy_list(ctx, ctx->ListState.CurrentList->Name);
/* Install the new list */
_mesa_HashInsert(ctx->Shared->DisplayList,
ctx->ListState.CurrentList->Name,
ctx->ListState.CurrentList);
if (MESA_VERBOSE & VERBOSE_DISPLAY_LIST)
mesa_print_display_list(ctx->ListState.CurrentList->Name);
ctx->ListState.CurrentList = NULL;
ctx->ListState.CurrentBlock = NULL;
ctx->ListState.CurrentPos = 0;
ctx->ExecuteFlag = GL_TRUE;
ctx->CompileFlag = GL_FALSE;
ctx->CurrentServerDispatch = ctx->Exec;
_glapi_set_dispatch(ctx->CurrentServerDispatch);
if (ctx->MarshalExec == NULL) {
ctx->CurrentClientDispatch = ctx->CurrentServerDispatch;
}
}
void GLAPIENTRY
_mesa_CallList(GLuint list)
{
GLboolean save_compile_flag;
GET_CURRENT_CONTEXT(ctx);
FLUSH_CURRENT(ctx, 0);
if (MESA_VERBOSE & VERBOSE_API)
_mesa_debug(ctx, "glCallList %d\n", list);
if (list == 0) {
_mesa_error(ctx, GL_INVALID_VALUE, "glCallList(list==0)");
return;
}
if (0)
mesa_print_display_list( list );
/* VERY IMPORTANT: Save the CompileFlag status, turn it off,
* execute the display list, and restore the CompileFlag.
*/
save_compile_flag = ctx->CompileFlag;
if (save_compile_flag) {
ctx->CompileFlag = GL_FALSE;
}
execute_list(ctx, list);
ctx->CompileFlag = save_compile_flag;
/* also restore API function pointers to point to "save" versions */
if (save_compile_flag) {
ctx->CurrentServerDispatch = ctx->Save;
_glapi_set_dispatch(ctx->CurrentServerDispatch);
if (ctx->MarshalExec == NULL) {
ctx->CurrentClientDispatch = ctx->CurrentServerDispatch;
}
}
}
/**
* Try to execute a glCallLists() command where the display lists contain
* glBitmap commands with a texture atlas.
* \return true for success, false otherwise
*/
static bool
render_bitmap_atlas(struct gl_context *ctx, GLsizei n, GLenum type,
const void *lists)
{
struct gl_bitmap_atlas *atlas;
int i;
if (!USE_BITMAP_ATLAS ||
!ctx->Current.RasterPosValid ||
ctx->List.ListBase == 0 ||
type != GL_UNSIGNED_BYTE ||
!ctx->Driver.DrawAtlasBitmaps) {
/* unsupported */
return false;
}
atlas = lookup_bitmap_atlas(ctx, ctx->List.ListBase);
if (!atlas) {
/* Even if glGenLists wasn't called, we can still try to create
* the atlas now.
*/
atlas = alloc_bitmap_atlas(ctx, ctx->List.ListBase);
}
if (atlas && !atlas->complete && !atlas->incomplete) {
/* Try to build the bitmap atlas now.
* If the atlas was created in glGenLists, we'll have recorded the
* number of lists (bitmaps). Otherwise, take a guess at 256.
*/
if (atlas->numBitmaps == 0)
atlas->numBitmaps = 256;
build_bitmap_atlas(ctx, atlas, ctx->List.ListBase);
}
if (!atlas || !atlas->complete) {
return false;
}
/* check that all display list IDs are in the atlas */
for (i = 0; i < n; i++) {
const GLubyte *ids = (const GLubyte *) lists;
if (ids[i] >= atlas->numBitmaps) {
return false;
}
}
ctx->Driver.DrawAtlasBitmaps(ctx, atlas, n, (const GLubyte *) lists);
return true;
}
/**
* Execute glCallLists: call multiple display lists.
*/
void GLAPIENTRY
_mesa_CallLists(GLsizei n, GLenum type, const GLvoid * lists)
{
GET_CURRENT_CONTEXT(ctx);
GLint i;
GLboolean save_compile_flag;
if (MESA_VERBOSE & VERBOSE_API)
_mesa_debug(ctx, "glCallLists %d\n", n);
switch (type) {
case GL_BYTE:
case GL_UNSIGNED_BYTE:
case GL_SHORT:
case GL_UNSIGNED_SHORT:
case GL_INT:
case GL_UNSIGNED_INT:
case GL_FLOAT:
case GL_2_BYTES:
case GL_3_BYTES:
case GL_4_BYTES:
/* OK */
break;
default:
_mesa_error(ctx, GL_INVALID_ENUM, "glCallLists(type)");
return;
}
if (n < 0) {
_mesa_error(ctx, GL_INVALID_VALUE, "glCallLists(n < 0)");
return;
} else if (n == 0 || lists == NULL) {
/* nothing to do */
return;
}
if (render_bitmap_atlas(ctx, n, type, lists)) {
return;
}
/* Save the CompileFlag status, turn it off, execute display list,
* and restore the CompileFlag.
*/
save_compile_flag = ctx->CompileFlag;
ctx->CompileFlag = GL_FALSE;
for (i = 0; i < n; i++) {
GLuint list = (GLuint) (ctx->List.ListBase + translate_id(i, type, lists));
execute_list(ctx, list);
}
ctx->CompileFlag = save_compile_flag;
/* also restore API function pointers to point to "save" versions */
if (save_compile_flag) {
ctx->CurrentServerDispatch = ctx->Save;
_glapi_set_dispatch(ctx->CurrentServerDispatch);
if (ctx->MarshalExec == NULL) {
ctx->CurrentClientDispatch = ctx->CurrentServerDispatch;
}
}
}
/**
* Set the offset added to list numbers in glCallLists.
*/
void GLAPIENTRY
_mesa_ListBase(GLuint base)
{
GET_CURRENT_CONTEXT(ctx);
FLUSH_VERTICES(ctx, 0); /* must be called before assert */
ASSERT_OUTSIDE_BEGIN_END(ctx);
ctx->List.ListBase = base;
}
/**
* Setup the given dispatch table to point to Mesa's display list
* building functions.
*
* This does not include any of the tnl functions - they are
* initialized from _mesa_init_api_defaults and from the active vtxfmt
* struct.
*/
void
_mesa_initialize_save_table(const struct gl_context *ctx)
{
struct _glapi_table *table = ctx->Save;
int numEntries = MAX2(_gloffset_COUNT, _glapi_get_dispatch_table_size());
/* Initially populate the dispatch table with the contents of the
* normal-execution dispatch table. This lets us skip populating functions
* that should be called directly instead of compiled into display lists.
*/
memcpy(table, ctx->Exec, numEntries * sizeof(_glapi_proc));
_mesa_loopback_init_api_table(ctx, table);
/* VBO functions */
vbo_initialize_save_dispatch(ctx, table);
/* GL 1.0 */
SET_Accum(table, save_Accum);
SET_AlphaFunc(table, save_AlphaFunc);
SET_Bitmap(table, save_Bitmap);
SET_BlendFunc(table, save_BlendFunc);
SET_CallList(table, save_CallList);
SET_CallLists(table, save_CallLists);
SET_Clear(table, save_Clear);
SET_ClearAccum(table, save_ClearAccum);
SET_ClearColor(table, save_ClearColor);
SET_ClearDepth(table, save_ClearDepth);
SET_ClearIndex(table, save_ClearIndex);
SET_ClearStencil(table, save_ClearStencil);
SET_ClipPlane(table, save_ClipPlane);
SET_ColorMask(table, save_ColorMask);
SET_ColorMaski(table, save_ColorMaskIndexed);
SET_ColorMaterial(table, save_ColorMaterial);
SET_CopyPixels(table, save_CopyPixels);
SET_CullFace(table, save_CullFace);
SET_DepthFunc(table, save_DepthFunc);
SET_DepthMask(table, save_DepthMask);
SET_DepthRange(table, save_DepthRange);
SET_Disable(table, save_Disable);
SET_Disablei(table, save_DisableIndexed);
SET_DrawBuffer(table, save_DrawBuffer);
SET_DrawPixels(table, save_DrawPixels);
SET_Enable(table, save_Enable);
SET_Enablei(table, save_EnableIndexed);
SET_EvalMesh1(table, save_EvalMesh1);
SET_EvalMesh2(table, save_EvalMesh2);
SET_Fogf(table, save_Fogf);
SET_Fogfv(table, save_Fogfv);
SET_Fogi(table, save_Fogi);
SET_Fogiv(table, save_Fogiv);
SET_FrontFace(table, save_FrontFace);
SET_Frustum(table, save_Frustum);
SET_Hint(table, save_Hint);
SET_IndexMask(table, save_IndexMask);
SET_InitNames(table, save_InitNames);
SET_LightModelf(table, save_LightModelf);
SET_LightModelfv(table, save_LightModelfv);
SET_LightModeli(table, save_LightModeli);
SET_LightModeliv(table, save_LightModeliv);
SET_Lightf(table, save_Lightf);
SET_Lightfv(table, save_Lightfv);
SET_Lighti(table, save_Lighti);
SET_Lightiv(table, save_Lightiv);
SET_LineStipple(table, save_LineStipple);
SET_LineWidth(table, save_LineWidth);
SET_ListBase(table, save_ListBase);
SET_LoadIdentity(table, save_LoadIdentity);
SET_LoadMatrixd(table, save_LoadMatrixd);
SET_LoadMatrixf(table, save_LoadMatrixf);
SET_LoadName(table, save_LoadName);
SET_LogicOp(table, save_LogicOp);
SET_Map1d(table, save_Map1d);
SET_Map1f(table, save_Map1f);
SET_Map2d(table, save_Map2d);
SET_Map2f(table, save_Map2f);
SET_MapGrid1d(table, save_MapGrid1d);
SET_MapGrid1f(table, save_MapGrid1f);
SET_MapGrid2d(table, save_MapGrid2d);
SET_MapGrid2f(table, save_MapGrid2f);
SET_MatrixMode(table, save_MatrixMode);
SET_MultMatrixd(table, save_MultMatrixd);
SET_MultMatrixf(table, save_MultMatrixf);
SET_NewList(table, save_NewList);
SET_Ortho(table, save_Ortho);
SET_PassThrough(table, save_PassThrough);
SET_PixelMapfv(table, save_PixelMapfv);
SET_PixelMapuiv(table, save_PixelMapuiv);
SET_PixelMapusv(table, save_PixelMapusv);
SET_PixelTransferf(table, save_PixelTransferf);
SET_PixelTransferi(table, save_PixelTransferi);
SET_PixelZoom(table, save_PixelZoom);
SET_PointSize(table, save_PointSize);
SET_PolygonMode(table, save_PolygonMode);
SET_PolygonOffset(table, save_PolygonOffset);
SET_PolygonStipple(table, save_PolygonStipple);
SET_PopAttrib(table, save_PopAttrib);
SET_PopMatrix(table, save_PopMatrix);
SET_PopName(table, save_PopName);
SET_PushAttrib(table, save_PushAttrib);
SET_PushMatrix(table, save_PushMatrix);
SET_PushName(table, save_PushName);
SET_RasterPos2d(table, save_RasterPos2d);
SET_RasterPos2dv(table, save_RasterPos2dv);
SET_RasterPos2f(table, save_RasterPos2f);
SET_RasterPos2fv(table, save_RasterPos2fv);
SET_RasterPos2i(table, save_RasterPos2i);
SET_RasterPos2iv(table, save_RasterPos2iv);
SET_RasterPos2s(table, save_RasterPos2s);
SET_RasterPos2sv(table, save_RasterPos2sv);
SET_RasterPos3d(table, save_RasterPos3d);
SET_RasterPos3dv(table, save_RasterPos3dv);
SET_RasterPos3f(table, save_RasterPos3f);
SET_RasterPos3fv(table, save_RasterPos3fv);
SET_RasterPos3i(table, save_RasterPos3i);
SET_RasterPos3iv(table, save_RasterPos3iv);
SET_RasterPos3s(table, save_RasterPos3s);
SET_RasterPos3sv(table, save_RasterPos3sv);
SET_RasterPos4d(table, save_RasterPos4d);
SET_RasterPos4dv(table, save_RasterPos4dv);
SET_RasterPos4f(table, save_RasterPos4f);
SET_RasterPos4fv(table, save_RasterPos4fv);
SET_RasterPos4i(table, save_RasterPos4i);
SET_RasterPos4iv(table, save_RasterPos4iv);
SET_RasterPos4s(table, save_RasterPos4s);
SET_RasterPos4sv(table, save_RasterPos4sv);
SET_ReadBuffer(table, save_ReadBuffer);
SET_Rectf(table, save_Rectf);
SET_Rotated(table, save_Rotated);
SET_Rotatef(table, save_Rotatef);
SET_Scaled(table, save_Scaled);
SET_Scalef(table, save_Scalef);
SET_Scissor(table, save_Scissor);
SET_ShadeModel(table, save_ShadeModel);
SET_StencilFunc(table, save_StencilFunc);
SET_StencilMask(table, save_StencilMask);
SET_StencilOp(table, save_StencilOp);
SET_TexEnvf(table, save_TexEnvf);
SET_TexEnvfv(table, save_TexEnvfv);
SET_TexEnvi(table, save_TexEnvi);
SET_TexEnviv(table, save_TexEnviv);
SET_TexGend(table, save_TexGend);
SET_TexGendv(table, save_TexGendv);
SET_TexGenf(table, save_TexGenf);
SET_TexGenfv(table, save_TexGenfv);
SET_TexGeni(table, save_TexGeni);
SET_TexGeniv(table, save_TexGeniv);
SET_TexImage1D(table, save_TexImage1D);
SET_TexImage2D(table, save_TexImage2D);
SET_TexParameterf(table, save_TexParameterf);
SET_TexParameterfv(table, save_TexParameterfv);
SET_TexParameteri(table, save_TexParameteri);
SET_TexParameteriv(table, save_TexParameteriv);
SET_Translated(table, save_Translated);
SET_Translatef(table, save_Translatef);
SET_Viewport(table, save_Viewport);
/* GL 1.1 */
SET_BindTexture(table, save_BindTexture);
SET_CopyTexImage1D(table, save_CopyTexImage1D);
SET_CopyTexImage2D(table, save_CopyTexImage2D);
SET_CopyTexSubImage1D(table, save_CopyTexSubImage1D);
SET_CopyTexSubImage2D(table, save_CopyTexSubImage2D);
SET_PrioritizeTextures(table, save_PrioritizeTextures);
SET_TexSubImage1D(table, save_TexSubImage1D);
SET_TexSubImage2D(table, save_TexSubImage2D);
/* GL 1.2 */
SET_CopyTexSubImage3D(table, save_CopyTexSubImage3D);
SET_TexImage3D(table, save_TexImage3D);
SET_TexSubImage3D(table, save_TexSubImage3D);
/* GL 2.0 */
SET_StencilFuncSeparate(table, save_StencilFuncSeparate);
SET_StencilMaskSeparate(table, save_StencilMaskSeparate);
SET_StencilOpSeparate(table, save_StencilOpSeparate);
/* ATI_separate_stencil */
SET_StencilFuncSeparateATI(table, save_StencilFuncSeparateATI);
/* GL_ARB_imaging */
/* Not all are supported */
SET_BlendColor(table, save_BlendColor);
SET_BlendEquation(table, save_BlendEquation);
/* 2. GL_EXT_blend_color */
#if 0
SET_BlendColorEXT(table, save_BlendColorEXT);
#endif
/* 3. GL_EXT_polygon_offset */
SET_PolygonOffsetEXT(table, save_PolygonOffsetEXT);
/* 6. GL_EXT_texture3d */
#if 0
SET_CopyTexSubImage3DEXT(table, save_CopyTexSubImage3D);
SET_TexImage3DEXT(table, save_TexImage3DEXT);
SET_TexSubImage3DEXT(table, save_TexSubImage3D);
#endif
/* 37. GL_EXT_blend_minmax */
#if 0
SET_BlendEquationEXT(table, save_BlendEquationEXT);
#endif
/* 54. GL_EXT_point_parameters */
SET_PointParameterf(table, save_PointParameterfEXT);
SET_PointParameterfv(table, save_PointParameterfvEXT);
/* 173. GL_EXT_blend_func_separate */
SET_BlendFuncSeparate(table, save_BlendFuncSeparateEXT);
/* 197. GL_MESA_window_pos */
SET_WindowPos2d(table, save_WindowPos2dMESA);
SET_WindowPos2dv(table, save_WindowPos2dvMESA);
SET_WindowPos2f(table, save_WindowPos2fMESA);
SET_WindowPos2fv(table, save_WindowPos2fvMESA);
SET_WindowPos2i(table, save_WindowPos2iMESA);
SET_WindowPos2iv(table, save_WindowPos2ivMESA);
SET_WindowPos2s(table, save_WindowPos2sMESA);
SET_WindowPos2sv(table, save_WindowPos2svMESA);
SET_WindowPos3d(table, save_WindowPos3dMESA);
SET_WindowPos3dv(table, save_WindowPos3dvMESA);
SET_WindowPos3f(table, save_WindowPos3fMESA);
SET_WindowPos3fv(table, save_WindowPos3fvMESA);
SET_WindowPos3i(table, save_WindowPos3iMESA);
SET_WindowPos3iv(table, save_WindowPos3ivMESA);
SET_WindowPos3s(table, save_WindowPos3sMESA);
SET_WindowPos3sv(table, save_WindowPos3svMESA);
SET_WindowPos4dMESA(table, save_WindowPos4dMESA);
SET_WindowPos4dvMESA(table, save_WindowPos4dvMESA);
SET_WindowPos4fMESA(table, save_WindowPos4fMESA);
SET_WindowPos4fvMESA(table, save_WindowPos4fvMESA);
SET_WindowPos4iMESA(table, save_WindowPos4iMESA);
SET_WindowPos4ivMESA(table, save_WindowPos4ivMESA);
SET_WindowPos4sMESA(table, save_WindowPos4sMESA);
SET_WindowPos4svMESA(table, save_WindowPos4svMESA);
/* 245. GL_ATI_fragment_shader */
SET_BindFragmentShaderATI(table, save_BindFragmentShaderATI);
SET_SetFragmentShaderConstantATI(table, save_SetFragmentShaderConstantATI);
/* 262. GL_NV_point_sprite */
SET_PointParameteri(table, save_PointParameteriNV);
SET_PointParameteriv(table, save_PointParameterivNV);
/* 268. GL_EXT_stencil_two_side */
SET_ActiveStencilFaceEXT(table, save_ActiveStencilFaceEXT);
/* ???. GL_EXT_depth_bounds_test */
SET_DepthBoundsEXT(table, save_DepthBoundsEXT);
/* ARB 1. GL_ARB_multitexture */
SET_ActiveTexture(table, save_ActiveTextureARB);
/* ARB 3. GL_ARB_transpose_matrix */
SET_LoadTransposeMatrixd(table, save_LoadTransposeMatrixdARB);
SET_LoadTransposeMatrixf(table, save_LoadTransposeMatrixfARB);
SET_MultTransposeMatrixd(table, save_MultTransposeMatrixdARB);
SET_MultTransposeMatrixf(table, save_MultTransposeMatrixfARB);
/* ARB 5. GL_ARB_multisample */
SET_SampleCoverage(table, save_SampleCoverageARB);
/* ARB 12. GL_ARB_texture_compression */
SET_CompressedTexImage3D(table, save_CompressedTexImage3DARB);
SET_CompressedTexImage2D(table, save_CompressedTexImage2DARB);
SET_CompressedTexImage1D(table, save_CompressedTexImage1DARB);
SET_CompressedTexSubImage3D(table, save_CompressedTexSubImage3DARB);
SET_CompressedTexSubImage2D(table, save_CompressedTexSubImage2DARB);
SET_CompressedTexSubImage1D(table, save_CompressedTexSubImage1DARB);
/* ARB 14. GL_ARB_point_parameters */
/* aliased with EXT_point_parameters functions */
/* ARB 25. GL_ARB_window_pos */
/* aliased with MESA_window_pos functions */
/* ARB 26. GL_ARB_vertex_program */
/* ARB 27. GL_ARB_fragment_program */
/* glVertexAttrib* functions alias the NV ones, handled elsewhere */
SET_ProgramStringARB(table, save_ProgramStringARB);
SET_BindProgramARB(table, save_BindProgramARB);
SET_ProgramEnvParameter4dARB(table, save_ProgramEnvParameter4dARB);
SET_ProgramEnvParameter4dvARB(table, save_ProgramEnvParameter4dvARB);
SET_ProgramEnvParameter4fARB(table, save_ProgramEnvParameter4fARB);
SET_ProgramEnvParameter4fvARB(table, save_ProgramEnvParameter4fvARB);
SET_ProgramLocalParameter4dARB(table, save_ProgramLocalParameter4dARB);
SET_ProgramLocalParameter4dvARB(table, save_ProgramLocalParameter4dvARB);
SET_ProgramLocalParameter4fARB(table, save_ProgramLocalParameter4fARB);
SET_ProgramLocalParameter4fvARB(table, save_ProgramLocalParameter4fvARB);
SET_BeginQuery(table, save_BeginQueryARB);
SET_EndQuery(table, save_EndQueryARB);
SET_QueryCounter(table, save_QueryCounter);
SET_DrawBuffers(table, save_DrawBuffersARB);
SET_BlitFramebuffer(table, save_BlitFramebufferEXT);
SET_UseProgram(table, save_UseProgram);
SET_Uniform1f(table, save_Uniform1fARB);
SET_Uniform2f(table, save_Uniform2fARB);
SET_Uniform3f(table, save_Uniform3fARB);
SET_Uniform4f(table, save_Uniform4fARB);
SET_Uniform1fv(table, save_Uniform1fvARB);
SET_Uniform2fv(table, save_Uniform2fvARB);
SET_Uniform3fv(table, save_Uniform3fvARB);
SET_Uniform4fv(table, save_Uniform4fvARB);
SET_Uniform1i(table, save_Uniform1iARB);
SET_Uniform2i(table, save_Uniform2iARB);
SET_Uniform3i(table, save_Uniform3iARB);
SET_Uniform4i(table, save_Uniform4iARB);
SET_Uniform1iv(table, save_Uniform1ivARB);
SET_Uniform2iv(table, save_Uniform2ivARB);
SET_Uniform3iv(table, save_Uniform3ivARB);
SET_Uniform4iv(table, save_Uniform4ivARB);
SET_UniformMatrix2fv(table, save_UniformMatrix2fvARB);
SET_UniformMatrix3fv(table, save_UniformMatrix3fvARB);
SET_UniformMatrix4fv(table, save_UniformMatrix4fvARB);
SET_UniformMatrix2x3fv(table, save_UniformMatrix2x3fv);
SET_UniformMatrix3x2fv(table, save_UniformMatrix3x2fv);
SET_UniformMatrix2x4fv(table, save_UniformMatrix2x4fv);
SET_UniformMatrix4x2fv(table, save_UniformMatrix4x2fv);
SET_UniformMatrix3x4fv(table, save_UniformMatrix3x4fv);
SET_UniformMatrix4x3fv(table, save_UniformMatrix4x3fv);
/* 299. GL_EXT_blend_equation_separate */
SET_BlendEquationSeparate(table, save_BlendEquationSeparateEXT);
/* GL_EXT_gpu_program_parameters */
SET_ProgramEnvParameters4fvEXT(table, save_ProgramEnvParameters4fvEXT);
SET_ProgramLocalParameters4fvEXT(table, save_ProgramLocalParameters4fvEXT);
/* 364. GL_EXT_provoking_vertex */
SET_ProvokingVertex(table, save_ProvokingVertexEXT);
/* GL_EXT_texture_integer */
SET_ClearColorIiEXT(table, save_ClearColorIi);
SET_ClearColorIuiEXT(table, save_ClearColorIui);
SET_TexParameterIiv(table, save_TexParameterIiv);
SET_TexParameterIuiv(table, save_TexParameterIuiv);
/* GL_ARB_clip_control */
SET_ClipControl(table, save_ClipControl);
/* GL_ARB_color_buffer_float */
SET_ClampColor(table, save_ClampColorARB);
/* GL 3.0 */
SET_ClearBufferiv(table, save_ClearBufferiv);
SET_ClearBufferuiv(table, save_ClearBufferuiv);
SET_ClearBufferfv(table, save_ClearBufferfv);
SET_ClearBufferfi(table, save_ClearBufferfi);
#if 0
SET_Uniform1ui(table, save_Uniform1ui);
SET_Uniform2ui(table, save_Uniform2ui);
SET_Uniform3ui(table, save_Uniform3ui);
SET_Uniform4ui(table, save_Uniform4ui);
SET_Uniform1uiv(table, save_Uniform1uiv);
SET_Uniform2uiv(table, save_Uniform2uiv);
SET_Uniform3uiv(table, save_Uniform3uiv);
SET_Uniform4uiv(table, save_Uniform4uiv);
#else
(void) save_Uniform1ui;
(void) save_Uniform2ui;
(void) save_Uniform3ui;
(void) save_Uniform4ui;
(void) save_Uniform1uiv;
(void) save_Uniform2uiv;
(void) save_Uniform3uiv;
(void) save_Uniform4uiv;
#endif
/* These are: */
SET_BeginTransformFeedback(table, save_BeginTransformFeedback);
SET_EndTransformFeedback(table, save_EndTransformFeedback);
SET_BindTransformFeedback(table, save_BindTransformFeedback);
SET_PauseTransformFeedback(table, save_PauseTransformFeedback);
SET_ResumeTransformFeedback(table, save_ResumeTransformFeedback);
SET_DrawTransformFeedback(table, save_DrawTransformFeedback);
SET_DrawTransformFeedbackStream(table, save_DrawTransformFeedbackStream);
SET_DrawTransformFeedbackInstanced(table,
save_DrawTransformFeedbackInstanced);
SET_DrawTransformFeedbackStreamInstanced(table,
save_DrawTransformFeedbackStreamInstanced);
SET_BeginQueryIndexed(table, save_BeginQueryIndexed);
SET_EndQueryIndexed(table, save_EndQueryIndexed);
/* GL_ARB_instanced_arrays */
SET_VertexAttribDivisor(table, save_VertexAttribDivisor);
/* GL_NV_texture_barrier */
SET_TextureBarrierNV(table, save_TextureBarrierNV);
SET_BindSampler(table, save_BindSampler);
SET_SamplerParameteri(table, save_SamplerParameteri);
SET_SamplerParameterf(table, save_SamplerParameterf);
SET_SamplerParameteriv(table, save_SamplerParameteriv);
SET_SamplerParameterfv(table, save_SamplerParameterfv);
SET_SamplerParameterIiv(table, save_SamplerParameterIiv);
SET_SamplerParameterIuiv(table, save_SamplerParameterIuiv);
/* GL_ARB_draw_buffer_blend */
SET_BlendFunciARB(table, save_BlendFunci);
SET_BlendFuncSeparateiARB(table, save_BlendFuncSeparatei);
SET_BlendEquationiARB(table, save_BlendEquationi);
SET_BlendEquationSeparateiARB(table, save_BlendEquationSeparatei);
/* GL_NV_conditional_render */
SET_BeginConditionalRender(table, save_BeginConditionalRender);
SET_EndConditionalRender(table, save_EndConditionalRender);
/* GL_ARB_sync */
SET_WaitSync(table, save_WaitSync);
/* GL_ARB_uniform_buffer_object */
SET_UniformBlockBinding(table, save_UniformBlockBinding);
/* GL_ARB_draw_instanced */
SET_DrawArraysInstancedARB(table, save_DrawArraysInstancedARB);
SET_DrawElementsInstancedARB(table, save_DrawElementsInstancedARB);
/* GL_ARB_draw_elements_base_vertex */
SET_DrawElementsInstancedBaseVertex(table, save_DrawElementsInstancedBaseVertexARB);
/* GL_ARB_base_instance */
SET_DrawArraysInstancedBaseInstance(table, save_DrawArraysInstancedBaseInstance);
SET_DrawElementsInstancedBaseInstance(table, save_DrawElementsInstancedBaseInstance);
SET_DrawElementsInstancedBaseVertexBaseInstance(table, save_DrawElementsInstancedBaseVertexBaseInstance);
/* OpenGL 4.2 / GL_ARB_separate_shader_objects */
SET_UseProgramStages(table, save_UseProgramStages);
SET_ProgramUniform1f(table, save_ProgramUniform1f);
SET_ProgramUniform2f(table, save_ProgramUniform2f);
SET_ProgramUniform3f(table, save_ProgramUniform3f);
SET_ProgramUniform4f(table, save_ProgramUniform4f);
SET_ProgramUniform1fv(table, save_ProgramUniform1fv);
SET_ProgramUniform2fv(table, save_ProgramUniform2fv);
SET_ProgramUniform3fv(table, save_ProgramUniform3fv);
SET_ProgramUniform4fv(table, save_ProgramUniform4fv);
SET_ProgramUniform1i(table, save_ProgramUniform1i);
SET_ProgramUniform2i(table, save_ProgramUniform2i);
SET_ProgramUniform3i(table, save_ProgramUniform3i);
SET_ProgramUniform4i(table, save_ProgramUniform4i);
SET_ProgramUniform1iv(table, save_ProgramUniform1iv);
SET_ProgramUniform2iv(table, save_ProgramUniform2iv);
SET_ProgramUniform3iv(table, save_ProgramUniform3iv);
SET_ProgramUniform4iv(table, save_ProgramUniform4iv);
SET_ProgramUniform1ui(table, save_ProgramUniform1ui);
SET_ProgramUniform2ui(table, save_ProgramUniform2ui);
SET_ProgramUniform3ui(table, save_ProgramUniform3ui);
SET_ProgramUniform4ui(table, save_ProgramUniform4ui);
SET_ProgramUniform1uiv(table, save_ProgramUniform1uiv);
SET_ProgramUniform2uiv(table, save_ProgramUniform2uiv);
SET_ProgramUniform3uiv(table, save_ProgramUniform3uiv);
SET_ProgramUniform4uiv(table, save_ProgramUniform4uiv);
SET_ProgramUniformMatrix2fv(table, save_ProgramUniformMatrix2fv);
SET_ProgramUniformMatrix3fv(table, save_ProgramUniformMatrix3fv);
SET_ProgramUniformMatrix4fv(table, save_ProgramUniformMatrix4fv);
SET_ProgramUniformMatrix2x3fv(table, save_ProgramUniformMatrix2x3fv);
SET_ProgramUniformMatrix3x2fv(table, save_ProgramUniformMatrix3x2fv);
SET_ProgramUniformMatrix2x4fv(table, save_ProgramUniformMatrix2x4fv);
SET_ProgramUniformMatrix4x2fv(table, save_ProgramUniformMatrix4x2fv);
SET_ProgramUniformMatrix3x4fv(table, save_ProgramUniformMatrix3x4fv);
SET_ProgramUniformMatrix4x3fv(table, save_ProgramUniformMatrix4x3fv);
/* GL_{ARB,EXT}_polygon_offset_clamp */
SET_PolygonOffsetClampEXT(table, save_PolygonOffsetClampEXT);
/* GL_EXT_window_rectangles */
SET_WindowRectanglesEXT(table, save_WindowRectanglesEXT);
}
static const char *
enum_string(GLenum k)
{
return _mesa_enum_to_string(k);
}
/**
* Print the commands in a display list. For debugging only.
* TODO: many commands aren't handled yet.
* \param fname filename to write display list to. If null, use stdout.
*/
static void GLAPIENTRY
print_list(struct gl_context *ctx, GLuint list, const char *fname)
{
struct gl_display_list *dlist;
Node *n;
GLboolean done;
FILE *f = stdout;
if (fname) {
f = fopen(fname, "w");
if (!f)
return;
}
if (!islist(ctx, list)) {
fprintf(f, "%u is not a display list ID\n", list);
goto out;
}
dlist = _mesa_lookup_list(ctx, list);
if (!dlist) {
goto out;
}
n = dlist->Head;
fprintf(f, "START-LIST %u, address %p\n", list, (void *) n);
done = n ? GL_FALSE : GL_TRUE;
while (!done) {
const OpCode opcode = n[0].opcode;
if (is_ext_opcode(opcode)) {
n += ext_opcode_print(ctx, n, f);
}
else {
switch (opcode) {
case OPCODE_ACCUM:
fprintf(f, "Accum %s %g\n", enum_string(n[1].e), n[2].f);
break;
case OPCODE_ACTIVE_TEXTURE:
fprintf(f, "ActiveTexture(%s)\n", enum_string(n[1].e));
break;
case OPCODE_BITMAP:
fprintf(f, "Bitmap %d %d %g %g %g %g %p\n", n[1].i, n[2].i,
n[3].f, n[4].f, n[5].f, n[6].f,
get_pointer(&n[7]));
break;
case OPCODE_BLEND_COLOR:
fprintf(f, "BlendColor %f, %f, %f, %f\n",
n[1].f, n[2].f, n[3].f, n[4].f);
break;
case OPCODE_BLEND_EQUATION:
fprintf(f, "BlendEquation %s\n",
enum_string(n[1].e));
break;
case OPCODE_BLEND_EQUATION_SEPARATE:
fprintf(f, "BlendEquationSeparate %s, %s\n",
enum_string(n[1].e),
enum_string(n[2].e));
break;
case OPCODE_BLEND_FUNC_SEPARATE:
fprintf(f, "BlendFuncSeparate %s, %s, %s, %s\n",
enum_string(n[1].e),
enum_string(n[2].e),
enum_string(n[3].e),
enum_string(n[4].e));
break;
case OPCODE_BLEND_EQUATION_I:
fprintf(f, "BlendEquationi %u, %s\n",
n[1].ui, enum_string(n[2].e));
break;
case OPCODE_BLEND_EQUATION_SEPARATE_I:
fprintf(f, "BlendEquationSeparatei %u, %s, %s\n",
n[1].ui, enum_string(n[2].e), enum_string(n[3].e));
break;
case OPCODE_BLEND_FUNC_I:
fprintf(f, "BlendFunci %u, %s, %s\n",
n[1].ui, enum_string(n[2].e), enum_string(n[3].e));
break;
case OPCODE_BLEND_FUNC_SEPARATE_I:
fprintf(f, "BlendFuncSeparatei %u, %s, %s, %s, %s\n",
n[1].ui,
enum_string(n[2].e),
enum_string(n[3].e),
enum_string(n[4].e),
enum_string(n[5].e));
break;
case OPCODE_CALL_LIST:
fprintf(f, "CallList %d\n", (int) n[1].ui);
break;
case OPCODE_CALL_LISTS:
fprintf(f, "CallLists %d, %s\n", n[1].i, enum_string(n[1].e));
break;
case OPCODE_DISABLE:
fprintf(f, "Disable %s\n", enum_string(n[1].e));
break;
case OPCODE_ENABLE:
fprintf(f, "Enable %s\n", enum_string(n[1].e));
break;
case OPCODE_FRUSTUM:
fprintf(f, "Frustum %g %g %g %g %g %g\n",
n[1].f, n[2].f, n[3].f, n[4].f, n[5].f, n[6].f);
break;
case OPCODE_LINE_STIPPLE:
fprintf(f, "LineStipple %d %x\n", n[1].i, (int) n[2].us);
break;
case OPCODE_LINE_WIDTH:
fprintf(f, "LineWidth %f\n", n[1].f);
break;
case OPCODE_LOAD_IDENTITY:
fprintf(f, "LoadIdentity\n");
break;
case OPCODE_LOAD_MATRIX:
fprintf(f, "LoadMatrix\n");
fprintf(f, " %8f %8f %8f %8f\n",
n[1].f, n[5].f, n[9].f, n[13].f);
fprintf(f, " %8f %8f %8f %8f\n",
n[2].f, n[6].f, n[10].f, n[14].f);
fprintf(f, " %8f %8f %8f %8f\n",
n[3].f, n[7].f, n[11].f, n[15].f);
fprintf(f, " %8f %8f %8f %8f\n",
n[4].f, n[8].f, n[12].f, n[16].f);
break;
case OPCODE_MULT_MATRIX:
fprintf(f, "MultMatrix (or Rotate)\n");
fprintf(f, " %8f %8f %8f %8f\n",
n[1].f, n[5].f, n[9].f, n[13].f);
fprintf(f, " %8f %8f %8f %8f\n",
n[2].f, n[6].f, n[10].f, n[14].f);
fprintf(f, " %8f %8f %8f %8f\n",
n[3].f, n[7].f, n[11].f, n[15].f);
fprintf(f, " %8f %8f %8f %8f\n",
n[4].f, n[8].f, n[12].f, n[16].f);
break;
case OPCODE_ORTHO:
fprintf(f, "Ortho %g %g %g %g %g %g\n",
n[1].f, n[2].f, n[3].f, n[4].f, n[5].f, n[6].f);
break;
case OPCODE_POINT_SIZE:
fprintf(f, "PointSize %f\n", n[1].f);
break;
case OPCODE_POP_ATTRIB:
fprintf(f, "PopAttrib\n");
break;
case OPCODE_POP_MATRIX:
fprintf(f, "PopMatrix\n");
break;
case OPCODE_POP_NAME:
fprintf(f, "PopName\n");
break;
case OPCODE_PUSH_ATTRIB:
fprintf(f, "PushAttrib %x\n", n[1].bf);
break;
case OPCODE_PUSH_MATRIX:
fprintf(f, "PushMatrix\n");
break;
case OPCODE_PUSH_NAME:
fprintf(f, "PushName %d\n", (int) n[1].ui);
break;
case OPCODE_RASTER_POS:
fprintf(f, "RasterPos %g %g %g %g\n",
n[1].f, n[2].f, n[3].f, n[4].f);
break;
case OPCODE_ROTATE:
fprintf(f, "Rotate %g %g %g %g\n",
n[1].f, n[2].f, n[3].f, n[4].f);
break;
case OPCODE_SCALE:
fprintf(f, "Scale %g %g %g\n", n[1].f, n[2].f, n[3].f);
break;
case OPCODE_TRANSLATE:
fprintf(f, "Translate %g %g %g\n", n[1].f, n[2].f, n[3].f);
break;
case OPCODE_BIND_TEXTURE:
fprintf(f, "BindTexture %s %d\n",
_mesa_enum_to_string(n[1].ui), n[2].ui);
break;
case OPCODE_SHADE_MODEL:
fprintf(f, "ShadeModel %s\n", _mesa_enum_to_string(n[1].ui));
break;
case OPCODE_MAP1:
fprintf(f, "Map1 %s %.3f %.3f %d %d\n",
_mesa_enum_to_string(n[1].ui),
n[2].f, n[3].f, n[4].i, n[5].i);
break;
case OPCODE_MAP2:
fprintf(f, "Map2 %s %.3f %.3f %.3f %.3f %d %d %d %d\n",
_mesa_enum_to_string(n[1].ui),
n[2].f, n[3].f, n[4].f, n[5].f,
n[6].i, n[7].i, n[8].i, n[9].i);
break;
case OPCODE_MAPGRID1:
fprintf(f, "MapGrid1 %d %.3f %.3f\n", n[1].i, n[2].f, n[3].f);
break;
case OPCODE_MAPGRID2:
fprintf(f, "MapGrid2 %d %.3f %.3f, %d %.3f %.3f\n",
n[1].i, n[2].f, n[3].f, n[4].i, n[5].f, n[6].f);
break;
case OPCODE_EVALMESH1:
fprintf(f, "EvalMesh1 %d %d\n", n[1].i, n[2].i);
break;
case OPCODE_EVALMESH2:
fprintf(f, "EvalMesh2 %d %d %d %d\n",
n[1].i, n[2].i, n[3].i, n[4].i);
break;
case OPCODE_ATTR_1F_NV:
fprintf(f, "ATTR_1F_NV attr %d: %f\n", n[1].i, n[2].f);
break;
case OPCODE_ATTR_2F_NV:
fprintf(f, "ATTR_2F_NV attr %d: %f %f\n",
n[1].i, n[2].f, n[3].f);
break;
case OPCODE_ATTR_3F_NV:
fprintf(f, "ATTR_3F_NV attr %d: %f %f %f\n",
n[1].i, n[2].f, n[3].f, n[4].f);
break;
case OPCODE_ATTR_4F_NV:
fprintf(f, "ATTR_4F_NV attr %d: %f %f %f %f\n",
n[1].i, n[2].f, n[3].f, n[4].f, n[5].f);
break;
case OPCODE_ATTR_1F_ARB:
fprintf(f, "ATTR_1F_ARB attr %d: %f\n", n[1].i, n[2].f);
break;
case OPCODE_ATTR_2F_ARB:
fprintf(f, "ATTR_2F_ARB attr %d: %f %f\n",
n[1].i, n[2].f, n[3].f);
break;
case OPCODE_ATTR_3F_ARB:
fprintf(f, "ATTR_3F_ARB attr %d: %f %f %f\n",
n[1].i, n[2].f, n[3].f, n[4].f);
break;
case OPCODE_ATTR_4F_ARB:
fprintf(f, "ATTR_4F_ARB attr %d: %f %f %f %f\n",
n[1].i, n[2].f, n[3].f, n[4].f, n[5].f);
break;
case OPCODE_MATERIAL:
fprintf(f, "MATERIAL %x %x: %f %f %f %f\n",
n[1].i, n[2].i, n[3].f, n[4].f, n[5].f, n[6].f);
break;
case OPCODE_BEGIN:
fprintf(f, "BEGIN %x\n", n[1].i);
break;
case OPCODE_END:
fprintf(f, "END\n");
break;
case OPCODE_RECTF:
fprintf(f, "RECTF %f %f %f %f\n", n[1].f, n[2].f, n[3].f,
n[4].f);
break;
case OPCODE_EVAL_C1:
fprintf(f, "EVAL_C1 %f\n", n[1].f);
break;
case OPCODE_EVAL_C2:
fprintf(f, "EVAL_C2 %f %f\n", n[1].f, n[2].f);
break;
case OPCODE_EVAL_P1:
fprintf(f, "EVAL_P1 %d\n", n[1].i);
break;
case OPCODE_EVAL_P2:
fprintf(f, "EVAL_P2 %d %d\n", n[1].i, n[2].i);
break;
case OPCODE_PROVOKING_VERTEX:
fprintf(f, "ProvokingVertex %s\n",
_mesa_enum_to_string(n[1].ui));
break;
/*
* meta opcodes/commands
*/
case OPCODE_ERROR:
fprintf(f, "Error: %s %s\n", enum_string(n[1].e),
(const char *) get_pointer(&n[2]));
break;
case OPCODE_CONTINUE:
fprintf(f, "DISPLAY-LIST-CONTINUE\n");
n = (Node *) get_pointer(&n[1]);
break;
case OPCODE_NOP:
fprintf(f, "NOP\n");
break;
case OPCODE_END_OF_LIST:
fprintf(f, "END-LIST %u\n", list);
done = GL_TRUE;
break;
default:
if (opcode < 0 || opcode > OPCODE_END_OF_LIST) {
printf
("ERROR IN DISPLAY LIST: opcode = %d, address = %p\n",
opcode, (void *) n);
goto out;
}
else {
fprintf(f, "command %d, %u operands\n", opcode,
InstSize[opcode]);
}
}
/* increment n to point to next compiled command */
if (opcode != OPCODE_CONTINUE) {
n += InstSize[opcode];
}
}
}
out:
fflush(f);
if (fname)
fclose(f);
}
/**
* Clients may call this function to help debug display list problems.
* This function is _ONLY_FOR_DEBUGGING_PURPOSES_. It may be removed,
* changed, or break in the future without notice.
*/
void
mesa_print_display_list(GLuint list)
{
GET_CURRENT_CONTEXT(ctx);
print_list(ctx, list, NULL);
}
/**********************************************************************/
/***** Initialization *****/
/**********************************************************************/
static void
save_vtxfmt_init(GLvertexformat * vfmt)
{
vfmt->ArrayElement = _ae_ArrayElement;
vfmt->Begin = save_Begin;
vfmt->CallList = save_CallList;
vfmt->CallLists = save_CallLists;
vfmt->Color3f = save_Color3f;
vfmt->Color3fv = save_Color3fv;
vfmt->Color4f = save_Color4f;
vfmt->Color4fv = save_Color4fv;
vfmt->EdgeFlag = save_EdgeFlag;
vfmt->End = save_End;
vfmt->EvalCoord1f = save_EvalCoord1f;
vfmt->EvalCoord1fv = save_EvalCoord1fv;
vfmt->EvalCoord2f = save_EvalCoord2f;
vfmt->EvalCoord2fv = save_EvalCoord2fv;
vfmt->EvalPoint1 = save_EvalPoint1;
vfmt->EvalPoint2 = save_EvalPoint2;
vfmt->FogCoordfEXT = save_FogCoordfEXT;
vfmt->FogCoordfvEXT = save_FogCoordfvEXT;
vfmt->Indexf = save_Indexf;
vfmt->Indexfv = save_Indexfv;
vfmt->Materialfv = save_Materialfv;
vfmt->MultiTexCoord1fARB = save_MultiTexCoord1f;
vfmt->MultiTexCoord1fvARB = save_MultiTexCoord1fv;
vfmt->MultiTexCoord2fARB = save_MultiTexCoord2f;
vfmt->MultiTexCoord2fvARB = save_MultiTexCoord2fv;
vfmt->MultiTexCoord3fARB = save_MultiTexCoord3f;
vfmt->MultiTexCoord3fvARB = save_MultiTexCoord3fv;
vfmt->MultiTexCoord4fARB = save_MultiTexCoord4f;
vfmt->MultiTexCoord4fvARB = save_MultiTexCoord4fv;
vfmt->Normal3f = save_Normal3f;
vfmt->Normal3fv = save_Normal3fv;
vfmt->SecondaryColor3fEXT = save_SecondaryColor3fEXT;
vfmt->SecondaryColor3fvEXT = save_SecondaryColor3fvEXT;
vfmt->TexCoord1f = save_TexCoord1f;
vfmt->TexCoord1fv = save_TexCoord1fv;
vfmt->TexCoord2f = save_TexCoord2f;
vfmt->TexCoord2fv = save_TexCoord2fv;
vfmt->TexCoord3f = save_TexCoord3f;
vfmt->TexCoord3fv = save_TexCoord3fv;
vfmt->TexCoord4f = save_TexCoord4f;
vfmt->TexCoord4fv = save_TexCoord4fv;
vfmt->Vertex2f = save_Vertex2f;
vfmt->Vertex2fv = save_Vertex2fv;
vfmt->Vertex3f = save_Vertex3f;
vfmt->Vertex3fv = save_Vertex3fv;
vfmt->Vertex4f = save_Vertex4f;
vfmt->Vertex4fv = save_Vertex4fv;
vfmt->VertexAttrib1fARB = save_VertexAttrib1fARB;
vfmt->VertexAttrib1fvARB = save_VertexAttrib1fvARB;
vfmt->VertexAttrib2fARB = save_VertexAttrib2fARB;
vfmt->VertexAttrib2fvARB = save_VertexAttrib2fvARB;
vfmt->VertexAttrib3fARB = save_VertexAttrib3fARB;
vfmt->VertexAttrib3fvARB = save_VertexAttrib3fvARB;
vfmt->VertexAttrib4fARB = save_VertexAttrib4fARB;
vfmt->VertexAttrib4fvARB = save_VertexAttrib4fvARB;
vfmt->PrimitiveRestartNV = save_PrimitiveRestartNV;
}
void
_mesa_install_dlist_vtxfmt(struct _glapi_table *disp,
const GLvertexformat *vfmt)
{
SET_CallList(disp, vfmt->CallList);
SET_CallLists(disp, vfmt->CallLists);
}
/**
* Initialize display list state for given context.
*/
void
_mesa_init_display_list(struct gl_context *ctx)
{
static GLboolean tableInitialized = GL_FALSE;
/* zero-out the instruction size table, just once */
if (!tableInitialized) {
memset(InstSize, 0, sizeof(InstSize));
tableInitialized = GL_TRUE;
}
/* extension info */
ctx->ListExt = CALLOC_STRUCT(gl_list_extensions);
/* Display list */
ctx->ListState.CallDepth = 0;
ctx->ExecuteFlag = GL_TRUE;
ctx->CompileFlag = GL_FALSE;
ctx->ListState.CurrentBlock = NULL;
ctx->ListState.CurrentPos = 0;
/* Display List group */
ctx->List.ListBase = 0;
save_vtxfmt_init(&ctx->ListState.ListVtxfmt);
InstSize[OPCODE_NOP] = 1;
}
void
_mesa_free_display_list_data(struct gl_context *ctx)
{
free(ctx->ListExt);
ctx->ListExt = NULL;
}