/*
* Mesa 3-D graphics library
*
* Copyright (C) 1999-2008 Brian Paul All Rights Reserved.
* Copyright (C) 2009 VMware, Inc. All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*/
/**
* \file bufferobj.c
* \brief Functions for the GL_ARB_vertex/pixel_buffer_object extensions.
* \author Brian Paul, Ian Romanick
*/
#include <stdbool.h>
#include <inttypes.h> /* for PRId64 macro */
#include "util/debug.h"
#include "glheader.h"
#include "enums.h"
#include "hash.h"
#include "imports.h"
#include "context.h"
#include "bufferobj.h"
#include "externalobjects.h"
#include "mtypes.h"
#include "teximage.h"
#include "glformats.h"
#include "texstore.h"
#include "transformfeedback.h"
#include "varray.h"
/* Debug flags */
/*#define VBO_DEBUG*/
/*#define BOUNDS_CHECK*/
/**
* We count the number of buffer modification calls to check for
* inefficient buffer use. This is the number of such calls before we
* issue a warning.
*/
#define BUFFER_WARNING_CALL_COUNT 4
/**
* Helper to warn of possible performance issues, such as frequently
* updating a buffer created with GL_STATIC_DRAW. Called via the macro
* below.
*/
static void
buffer_usage_warning(struct gl_context *ctx, GLuint *id, const char *fmt, ...)
{
va_list args;
va_start(args, fmt);
_mesa_gl_vdebug(ctx, id,
MESA_DEBUG_SOURCE_API,
MESA_DEBUG_TYPE_PERFORMANCE,
MESA_DEBUG_SEVERITY_MEDIUM,
fmt, args);
va_end(args);
}
#define BUFFER_USAGE_WARNING(CTX, FMT, ...) \
do { \
static GLuint id = 0; \
buffer_usage_warning(CTX, &id, FMT, ##__VA_ARGS__); \
} while (0)
/**
* Used as a placeholder for buffer objects between glGenBuffers() and
* glBindBuffer() so that glIsBuffer() can work correctly.
*/
static struct gl_buffer_object DummyBufferObject;
/**
* Return pointer to address of a buffer object target.
* \param ctx the GL context
* \param target the buffer object target to be retrieved.
* \return pointer to pointer to the buffer object bound to \c target in the
* specified context or \c NULL if \c target is invalid.
*/
static inline struct gl_buffer_object **
get_buffer_target(struct gl_context *ctx, GLenum target)
{
/* Other targets are only supported in desktop OpenGL and OpenGL ES 3.0.
*/
if (!_mesa_is_desktop_gl(ctx) && !_mesa_is_gles3(ctx)
&& target != GL_ARRAY_BUFFER && target != GL_ELEMENT_ARRAY_BUFFER)
return NULL;
switch (target) {
case GL_ARRAY_BUFFER_ARB:
return &ctx->Array.ArrayBufferObj;
case GL_ELEMENT_ARRAY_BUFFER_ARB:
return &ctx->Array.VAO->IndexBufferObj;
case GL_PIXEL_PACK_BUFFER_EXT:
return &ctx->Pack.BufferObj;
case GL_PIXEL_UNPACK_BUFFER_EXT:
return &ctx->Unpack.BufferObj;
case GL_COPY_READ_BUFFER:
return &ctx->CopyReadBuffer;
case GL_COPY_WRITE_BUFFER:
return &ctx->CopyWriteBuffer;
case GL_QUERY_BUFFER:
if (_mesa_has_ARB_query_buffer_object(ctx))
return &ctx->QueryBuffer;
break;
case GL_DRAW_INDIRECT_BUFFER:
if ((ctx->API == API_OPENGL_CORE &&
ctx->Extensions.ARB_draw_indirect) ||
_mesa_is_gles31(ctx)) {
return &ctx->DrawIndirectBuffer;
}
break;
case GL_PARAMETER_BUFFER_ARB:
if (_mesa_has_ARB_indirect_parameters(ctx)) {
return &ctx->ParameterBuffer;
}
break;
case GL_DISPATCH_INDIRECT_BUFFER:
if (_mesa_has_compute_shaders(ctx)) {
return &ctx->DispatchIndirectBuffer;
}
break;
case GL_TRANSFORM_FEEDBACK_BUFFER:
if (ctx->Extensions.EXT_transform_feedback) {
return &ctx->TransformFeedback.CurrentBuffer;
}
break;
case GL_TEXTURE_BUFFER:
if (_mesa_has_ARB_texture_buffer_object(ctx) ||
_mesa_has_OES_texture_buffer(ctx)) {
return &ctx->Texture.BufferObject;
}
break;
case GL_UNIFORM_BUFFER:
if (ctx->Extensions.ARB_uniform_buffer_object) {
return &ctx->UniformBuffer;
}
break;
case GL_SHADER_STORAGE_BUFFER:
if (ctx->Extensions.ARB_shader_storage_buffer_object) {
return &ctx->ShaderStorageBuffer;
}
break;
case GL_ATOMIC_COUNTER_BUFFER:
if (ctx->Extensions.ARB_shader_atomic_counters) {
return &ctx->AtomicBuffer;
}
break;
case GL_EXTERNAL_VIRTUAL_MEMORY_BUFFER_AMD:
if (ctx->Extensions.AMD_pinned_memory) {
return &ctx->ExternalVirtualMemoryBuffer;
}
break;
default:
return NULL;
}
return NULL;
}
/**
* Get the buffer object bound to the specified target in a GL context.
* \param ctx the GL context
* \param target the buffer object target to be retrieved.
* \param error the GL error to record if target is illegal.
* \return pointer to the buffer object bound to \c target in the
* specified context or \c NULL if \c target is invalid.
*/
static inline struct gl_buffer_object *
get_buffer(struct gl_context *ctx, const char *func, GLenum target,
GLenum error)
{
struct gl_buffer_object **bufObj = get_buffer_target(ctx, target);
if (!bufObj) {
_mesa_error(ctx, GL_INVALID_ENUM, "%s(target)", func);
return NULL;
}
if (!_mesa_is_bufferobj(*bufObj)) {
_mesa_error(ctx, error, "%s(no buffer bound)", func);
return NULL;
}
return *bufObj;
}
/**
* Convert a GLbitfield describing the mapped buffer access flags
* into one of GL_READ_WRITE, GL_READ_ONLY, or GL_WRITE_ONLY.
*/
static GLenum
simplified_access_mode(struct gl_context *ctx, GLbitfield access)
{
const GLbitfield rwFlags = GL_MAP_READ_BIT | GL_MAP_WRITE_BIT;
if ((access & rwFlags) == rwFlags)
return GL_READ_WRITE;
if ((access & GL_MAP_READ_BIT) == GL_MAP_READ_BIT)
return GL_READ_ONLY;
if ((access & GL_MAP_WRITE_BIT) == GL_MAP_WRITE_BIT)
return GL_WRITE_ONLY;
/* Otherwise, AccessFlags is zero (the default state).
*
* Table 2.6 on page 31 (page 44 of the PDF) of the OpenGL 1.5 spec says:
*
* Name Type Initial Value Legal Values
* ... ... ... ...
* BUFFER_ACCESS enum READ_WRITE READ_ONLY, WRITE_ONLY
* READ_WRITE
*
* However, table 6.8 in the GL_OES_mapbuffer extension says:
*
* Get Value Type Get Command Value Description
* --------- ---- ----------- ----- -----------
* BUFFER_ACCESS_OES Z1 GetBufferParameteriv WRITE_ONLY_OES buffer map flag
*
* The difference is because GL_OES_mapbuffer only supports mapping buffers
* write-only.
*/
assert(access == 0);
return _mesa_is_gles(ctx) ? GL_WRITE_ONLY : GL_READ_WRITE;
}
/**
* Test if the buffer is mapped, and if so, if the mapped range overlaps the
* given range.
* The regions do not overlap if and only if the end of the given
* region is before the mapped region or the start of the given region
* is after the mapped region.
*
* \param obj Buffer object target on which to operate.
* \param offset Offset of the first byte of the subdata range.
* \param size Size, in bytes, of the subdata range.
* \return true if ranges overlap, false otherwise
*
*/
static bool
bufferobj_range_mapped(const struct gl_buffer_object *obj,
GLintptr offset, GLsizeiptr size)
{
if (_mesa_bufferobj_mapped(obj, MAP_USER)) {
const GLintptr end = offset + size;
const GLintptr mapEnd = obj->Mappings[MAP_USER].Offset +
obj->Mappings[MAP_USER].Length;
if (!(end <= obj->Mappings[MAP_USER].Offset || offset >= mapEnd)) {
return true;
}
}
return false;
}
/**
* Tests the subdata range parameters and sets the GL error code for
* \c glBufferSubDataARB, \c glGetBufferSubDataARB and
* \c glClearBufferSubData.
*
* \param ctx GL context.
* \param bufObj The buffer object.
* \param offset Offset of the first byte of the subdata range.
* \param size Size, in bytes, of the subdata range.
* \param mappedRange If true, checks if an overlapping range is mapped.
* If false, checks if buffer is mapped.
* \param caller Name of calling function for recording errors.
* \return false if error, true otherwise
*
* \sa glBufferSubDataARB, glGetBufferSubDataARB, glClearBufferSubData
*/
static bool
buffer_object_subdata_range_good(struct gl_context *ctx,
const struct gl_buffer_object *bufObj,
GLintptr offset, GLsizeiptr size,
bool mappedRange, const char *caller)
{
if (size < 0) {
_mesa_error(ctx, GL_INVALID_VALUE, "%s(size < 0)", caller);
return false;
}
if (offset < 0) {
_mesa_error(ctx, GL_INVALID_VALUE, "%s(offset < 0)", caller);
return false;
}
if (offset + size > bufObj->Size) {
_mesa_error(ctx, GL_INVALID_VALUE,
"%s(offset %lu + size %lu > buffer size %lu)", caller,
(unsigned long) offset,
(unsigned long) size,
(unsigned long) bufObj->Size);
return false;
}
if (bufObj->Mappings[MAP_USER].AccessFlags & GL_MAP_PERSISTENT_BIT)
return true;
if (mappedRange) {
if (bufferobj_range_mapped(bufObj, offset, size)) {
_mesa_error(ctx, GL_INVALID_OPERATION,
"%s(range is mapped without persistent bit)",
caller);
return false;
}
}
else {
if (_mesa_bufferobj_mapped(bufObj, MAP_USER)) {
_mesa_error(ctx, GL_INVALID_OPERATION,
"%s(buffer is mapped without persistent bit)",
caller);
return false;
}
}
return true;
}
/**
* Test the format and type parameters and set the GL error code for
* \c glClearBufferData and \c glClearBufferSubData.
*
* \param ctx GL context.
* \param internalformat Format to which the data is to be converted.
* \param format Format of the supplied data.
* \param type Type of the supplied data.
* \param caller Name of calling function for recording errors.
* \return If internalformat, format and type are legal the mesa_format
* corresponding to internalformat, otherwise MESA_FORMAT_NONE.
*
* \sa glClearBufferData and glClearBufferSubData
*/
static mesa_format
validate_clear_buffer_format(struct gl_context *ctx,
GLenum internalformat,
GLenum format, GLenum type,
const char *caller)
{
mesa_format mesaFormat;
GLenum errorFormatType;
mesaFormat = _mesa_validate_texbuffer_format(ctx, internalformat);
if (mesaFormat == MESA_FORMAT_NONE) {
_mesa_error(ctx, GL_INVALID_ENUM,
"%s(invalid internalformat)", caller);
return MESA_FORMAT_NONE;
}
/* NOTE: not mentioned in ARB_clear_buffer_object but according to
* EXT_texture_integer there is no conversion between integer and
* non-integer formats
*/
if (_mesa_is_enum_format_signed_int(format) !=
_mesa_is_format_integer_color(mesaFormat)) {
_mesa_error(ctx, GL_INVALID_OPERATION,
"%s(integer vs non-integer)", caller);
return MESA_FORMAT_NONE;
}
if (!_mesa_is_color_format(format)) {
_mesa_error(ctx, GL_INVALID_ENUM,
"%s(format is not a color format)", caller);
return MESA_FORMAT_NONE;
}
errorFormatType = _mesa_error_check_format_and_type(ctx, format, type);
if (errorFormatType != GL_NO_ERROR) {
_mesa_error(ctx, GL_INVALID_ENUM,
"%s(invalid format or type)", caller);
return MESA_FORMAT_NONE;
}
return mesaFormat;
}
/**
* Convert user-specified clear value to the specified internal format.
*
* \param ctx GL context.
* \param internalformat Format to which the data is converted.
* \param clearValue Points to the converted clear value.
* \param format Format of the supplied data.
* \param type Type of the supplied data.
* \param data Data which is to be converted to internalformat.
* \param caller Name of calling function for recording errors.
* \return true if data could be converted, false otherwise.
*
* \sa glClearBufferData, glClearBufferSubData
*/
static bool
convert_clear_buffer_data(struct gl_context *ctx,
mesa_format internalformat,
GLubyte *clearValue, GLenum format, GLenum type,
const GLvoid *data, const char *caller)
{
GLenum internalformatBase = _mesa_get_format_base_format(internalformat);
if (_mesa_texstore(ctx, 1, internalformatBase, internalformat,
0, &clearValue, 1, 1, 1,
format, type, data, &ctx->Unpack)) {
return true;
}
else {
_mesa_error(ctx, GL_OUT_OF_MEMORY, "%s", caller);
return false;
}
}
/**
* Allocate and initialize a new buffer object.
*
* Default callback for the \c dd_function_table::NewBufferObject() hook.
*/
static struct gl_buffer_object *
_mesa_new_buffer_object(struct gl_context *ctx, GLuint name)
{
struct gl_buffer_object *obj = MALLOC_STRUCT(gl_buffer_object);
if (!obj)
return NULL;
_mesa_initialize_buffer_object(ctx, obj, name);
return obj;
}
/**
* Delete a buffer object.
*
* Default callback for the \c dd_function_table::DeleteBuffer() hook.
*/
void
_mesa_delete_buffer_object(struct gl_context *ctx,
struct gl_buffer_object *bufObj)
{
(void) ctx;
vbo_delete_minmax_cache(bufObj);
_mesa_align_free(bufObj->Data);
/* assign strange values here to help w/ debugging */
bufObj->RefCount = -1000;
bufObj->Name = ~0;
simple_mtx_destroy(&bufObj->Mutex);
free(bufObj->Label);
free(bufObj);
}
/**
* Set ptr to bufObj w/ reference counting.
* This is normally only called from the _mesa_reference_buffer_object() macro
* when there's a real pointer change.
*/
void
_mesa_reference_buffer_object_(struct gl_context *ctx,
struct gl_buffer_object **ptr,
struct gl_buffer_object *bufObj)
{
if (*ptr) {
/* Unreference the old buffer */
GLboolean deleteFlag = GL_FALSE;
struct gl_buffer_object *oldObj = *ptr;
simple_mtx_lock(&oldObj->Mutex);
assert(oldObj->RefCount > 0);
oldObj->RefCount--;
deleteFlag = (oldObj->RefCount == 0);
simple_mtx_unlock(&oldObj->Mutex);
if (deleteFlag) {
assert(ctx->Driver.DeleteBuffer);
ctx->Driver.DeleteBuffer(ctx, oldObj);
}
*ptr = NULL;
}
assert(!*ptr);
if (bufObj) {
/* reference new buffer */
simple_mtx_lock(&bufObj->Mutex);
assert(bufObj->RefCount > 0);
bufObj->RefCount++;
*ptr = bufObj;
simple_mtx_unlock(&bufObj->Mutex);
}
}
/**
* Get the value of MESA_NO_MINMAX_CACHE.
*/
static bool
get_no_minmax_cache()
{
static bool read = false;
static bool disable = false;
if (!read) {
disable = env_var_as_boolean("MESA_NO_MINMAX_CACHE", false);
read = true;
}
return disable;
}
/**
* Initialize a buffer object to default values.
*/
void
_mesa_initialize_buffer_object(struct gl_context *ctx,
struct gl_buffer_object *obj,
GLuint name)
{
memset(obj, 0, sizeof(struct gl_buffer_object));
simple_mtx_init(&obj->Mutex, mtx_plain);
obj->RefCount = 1;
obj->Name = name;
obj->Usage = GL_STATIC_DRAW_ARB;
if (get_no_minmax_cache())
obj->UsageHistory |= USAGE_DISABLE_MINMAX_CACHE;
}
/**
* Callback called from _mesa_HashWalk()
*/
static void
count_buffer_size(GLuint key, void *data, void *userData)
{
const struct gl_buffer_object *bufObj =
(const struct gl_buffer_object *) data;
GLuint *total = (GLuint *) userData;
(void) key;
*total = *total + bufObj->Size;
}
/**
* Compute total size (in bytes) of all buffer objects for the given context.
* For debugging purposes.
*/
GLuint
_mesa_total_buffer_object_memory(struct gl_context *ctx)
{
GLuint total = 0;
_mesa_HashWalk(ctx->Shared->BufferObjects, count_buffer_size, &total);
return total;
}
/**
* Allocate space for and store data in a buffer object. Any data that was
* previously stored in the buffer object is lost. If \c data is \c NULL,
* memory will be allocated, but no copy will occur.
*
* This is the default callback for \c dd_function_table::BufferData()
* Note that all GL error checking will have been done already.
*
* \param ctx GL context.
* \param target Buffer object target on which to operate.
* \param size Size, in bytes, of the new data store.
* \param data Pointer to the data to store in the buffer object. This
* pointer may be \c NULL.
* \param usage Hints about how the data will be used.
* \param bufObj Object to be used.
*
* \return GL_TRUE for success, GL_FALSE for failure
* \sa glBufferDataARB, dd_function_table::BufferData.
*/
static GLboolean
buffer_data_fallback(struct gl_context *ctx, GLenum target, GLsizeiptr size,
const GLvoid *data, GLenum usage, GLenum storageFlags,
struct gl_buffer_object *bufObj)
{
void * new_data;
(void) target;
_mesa_align_free( bufObj->Data );
new_data = _mesa_align_malloc( size, ctx->Const.MinMapBufferAlignment );
if (new_data) {
bufObj->Data = (GLubyte *) new_data;
bufObj->Size = size;
bufObj->Usage = usage;
bufObj->StorageFlags = storageFlags;
if (data) {
memcpy( bufObj->Data, data, size );
}
return GL_TRUE;
}
else {
return GL_FALSE;
}
}
/**
* Replace data in a subrange of buffer object. If the data range
* specified by \c size + \c offset extends beyond the end of the buffer or
* if \c data is \c NULL, no copy is performed.
*
* This is the default callback for \c dd_function_table::BufferSubData()
* Note that all GL error checking will have been done already.
*
* \param ctx GL context.
* \param offset Offset of the first byte to be modified.
* \param size Size, in bytes, of the data range.
* \param data Pointer to the data to store in the buffer object.
* \param bufObj Object to be used.
*
* \sa glBufferSubDataARB, dd_function_table::BufferSubData.
*/
static void
buffer_sub_data_fallback(struct gl_context *ctx, GLintptr offset,
GLsizeiptr size, const GLvoid *data,
struct gl_buffer_object *bufObj)
{
(void) ctx;
/* this should have been caught in _mesa_BufferSubData() */
assert(size + offset <= bufObj->Size);
if (bufObj->Data) {
memcpy( (GLubyte *) bufObj->Data + offset, data, size );
}
}
/**
* Retrieve data from a subrange of buffer object. If the data range
* specified by \c size + \c offset extends beyond the end of the buffer or
* if \c data is \c NULL, no copy is performed.
*
* This is the default callback for \c dd_function_table::GetBufferSubData()
* Note that all GL error checking will have been done already.
*
* \param ctx GL context.
* \param target Buffer object target on which to operate.
* \param offset Offset of the first byte to be fetched.
* \param size Size, in bytes, of the data range.
* \param data Destination for data
* \param bufObj Object to be used.
*
* \sa glBufferGetSubDataARB, dd_function_table::GetBufferSubData.
*/
static void
buffer_get_subdata(struct gl_context *ctx, GLintptrARB offset,
GLsizeiptrARB size, GLvoid *data,
struct gl_buffer_object *bufObj )
{
(void) ctx;
if (bufObj->Data && ((GLsizeiptrARB) (size + offset) <= bufObj->Size)) {
memcpy( data, (GLubyte *) bufObj->Data + offset, size );
}
}
/**
* Clear a subrange of the buffer object with copies of the supplied data.
* If data is NULL the buffer is filled with zeros.
*
* This is the default callback for \c dd_function_table::ClearBufferSubData()
* Note that all GL error checking will have been done already.
*
* \param ctx GL context.
* \param offset Offset of the first byte to be cleared.
* \param size Size, in bytes, of the to be cleared range.
* \param clearValue Source of the data.
* \param clearValueSize Size, in bytes, of the supplied data.
* \param bufObj Object to be cleared.
*
* \sa glClearBufferSubData, glClearBufferData and
* dd_function_table::ClearBufferSubData.
*/
void
_mesa_ClearBufferSubData_sw(struct gl_context *ctx,
GLintptr offset, GLsizeiptr size,
const GLvoid *clearValue,
GLsizeiptr clearValueSize,
struct gl_buffer_object *bufObj)
{
GLsizeiptr i;
GLubyte *dest;
assert(ctx->Driver.MapBufferRange);
dest = ctx->Driver.MapBufferRange(ctx, offset, size,
GL_MAP_WRITE_BIT |
GL_MAP_INVALIDATE_RANGE_BIT,
bufObj, MAP_INTERNAL);
if (!dest) {
_mesa_error(ctx, GL_OUT_OF_MEMORY, "glClearBuffer[Sub]Data");
return;
}
if (clearValue == NULL) {
/* Clear with zeros, per the spec */
memset(dest, 0, size);
ctx->Driver.UnmapBuffer(ctx, bufObj, MAP_INTERNAL);
return;
}
for (i = 0; i < size/clearValueSize; ++i) {
memcpy(dest, clearValue, clearValueSize);
dest += clearValueSize;
}
ctx->Driver.UnmapBuffer(ctx, bufObj, MAP_INTERNAL);
}
/**
* Default fallback for \c dd_function_table::MapBufferRange().
* Called via glMapBufferRange().
*/
static void *
map_buffer_range_fallback(struct gl_context *ctx, GLintptr offset,
GLsizeiptr length, GLbitfield access,
struct gl_buffer_object *bufObj,
gl_map_buffer_index index)
{
(void) ctx;
assert(!_mesa_bufferobj_mapped(bufObj, index));
/* Just return a direct pointer to the data */
bufObj->Mappings[index].Pointer = bufObj->Data + offset;
bufObj->Mappings[index].Length = length;
bufObj->Mappings[index].Offset = offset;
bufObj->Mappings[index].AccessFlags = access;
return bufObj->Mappings[index].Pointer;
}
/**
* Default fallback for \c dd_function_table::FlushMappedBufferRange().
* Called via glFlushMappedBufferRange().
*/
static void
flush_mapped_buffer_range_fallback(struct gl_context *ctx,
GLintptr offset, GLsizeiptr length,
struct gl_buffer_object *obj,
gl_map_buffer_index index)
{
(void) ctx;
(void) offset;
(void) length;
(void) obj;
(void) index;
/* no-op */
}
/**
* Default callback for \c dd_function_table::UnmapBuffer().
*
* The input parameters will have been already tested for errors.
*
* \sa glUnmapBufferARB, dd_function_table::UnmapBuffer
*/
static GLboolean
unmap_buffer_fallback(struct gl_context *ctx, struct gl_buffer_object *bufObj,
gl_map_buffer_index index)
{
(void) ctx;
/* XXX we might assert here that bufObj->Pointer is non-null */
bufObj->Mappings[index].Pointer = NULL;
bufObj->Mappings[index].Length = 0;
bufObj->Mappings[index].Offset = 0;
bufObj->Mappings[index].AccessFlags = 0x0;
return GL_TRUE;
}
/**
* Default fallback for \c dd_function_table::CopyBufferSubData().
* Called via glCopyBufferSubData().
*/
static void
copy_buffer_sub_data_fallback(struct gl_context *ctx,
struct gl_buffer_object *src,
struct gl_buffer_object *dst,
GLintptr readOffset, GLintptr writeOffset,
GLsizeiptr size)
{
GLubyte *srcPtr, *dstPtr;
if (src == dst) {
srcPtr = dstPtr = ctx->Driver.MapBufferRange(ctx, 0, src->Size,
GL_MAP_READ_BIT |
GL_MAP_WRITE_BIT, src,
MAP_INTERNAL);
if (!srcPtr)
return;
srcPtr += readOffset;
dstPtr += writeOffset;
} else {
srcPtr = ctx->Driver.MapBufferRange(ctx, readOffset, size,
GL_MAP_READ_BIT, src,
MAP_INTERNAL);
dstPtr = ctx->Driver.MapBufferRange(ctx, writeOffset, size,
(GL_MAP_WRITE_BIT |
GL_MAP_INVALIDATE_RANGE_BIT), dst,
MAP_INTERNAL);
}
/* Note: the src and dst regions will never overlap. Trying to do so
* would generate GL_INVALID_VALUE earlier.
*/
if (srcPtr && dstPtr)
memcpy(dstPtr, srcPtr, size);
ctx->Driver.UnmapBuffer(ctx, src, MAP_INTERNAL);
if (dst != src)
ctx->Driver.UnmapBuffer(ctx, dst, MAP_INTERNAL);
}
/**
* Initialize the state associated with buffer objects
*/
void
_mesa_init_buffer_objects( struct gl_context *ctx )
{
GLuint i;
memset(&DummyBufferObject, 0, sizeof(DummyBufferObject));
simple_mtx_init(&DummyBufferObject.Mutex, mtx_plain);
DummyBufferObject.RefCount = 1000*1000*1000; /* never delete */
_mesa_reference_buffer_object(ctx, &ctx->Array.ArrayBufferObj,
ctx->Shared->NullBufferObj);
_mesa_reference_buffer_object(ctx, &ctx->CopyReadBuffer,
ctx->Shared->NullBufferObj);
_mesa_reference_buffer_object(ctx, &ctx->CopyWriteBuffer,
ctx->Shared->NullBufferObj);
_mesa_reference_buffer_object(ctx, &ctx->UniformBuffer,
ctx->Shared->NullBufferObj);
_mesa_reference_buffer_object(ctx, &ctx->ShaderStorageBuffer,
ctx->Shared->NullBufferObj);
_mesa_reference_buffer_object(ctx, &ctx->AtomicBuffer,
ctx->Shared->NullBufferObj);
_mesa_reference_buffer_object(ctx, &ctx->DrawIndirectBuffer,
ctx->Shared->NullBufferObj);
_mesa_reference_buffer_object(ctx, &ctx->ParameterBuffer,
ctx->Shared->NullBufferObj);
_mesa_reference_buffer_object(ctx, &ctx->DispatchIndirectBuffer,
ctx->Shared->NullBufferObj);
_mesa_reference_buffer_object(ctx, &ctx->QueryBuffer,
ctx->Shared->NullBufferObj);
for (i = 0; i < MAX_COMBINED_UNIFORM_BUFFERS; i++) {
_mesa_reference_buffer_object(ctx,
&ctx->UniformBufferBindings[i].BufferObject,
ctx->Shared->NullBufferObj);
ctx->UniformBufferBindings[i].Offset = -1;
ctx->UniformBufferBindings[i].Size = -1;
}
for (i = 0; i < MAX_COMBINED_SHADER_STORAGE_BUFFERS; i++) {
_mesa_reference_buffer_object(ctx,
&ctx->ShaderStorageBufferBindings[i].BufferObject,
ctx->Shared->NullBufferObj);
ctx->ShaderStorageBufferBindings[i].Offset = -1;
ctx->ShaderStorageBufferBindings[i].Size = -1;
}
for (i = 0; i < MAX_COMBINED_ATOMIC_BUFFERS; i++) {
_mesa_reference_buffer_object(ctx,
&ctx->AtomicBufferBindings[i].BufferObject,
ctx->Shared->NullBufferObj);
ctx->AtomicBufferBindings[i].Offset = 0;
ctx->AtomicBufferBindings[i].Size = 0;
}
}
void
_mesa_free_buffer_objects( struct gl_context *ctx )
{
GLuint i;
_mesa_reference_buffer_object(ctx, &ctx->Array.ArrayBufferObj, NULL);
_mesa_reference_buffer_object(ctx, &ctx->CopyReadBuffer, NULL);
_mesa_reference_buffer_object(ctx, &ctx->CopyWriteBuffer, NULL);
_mesa_reference_buffer_object(ctx, &ctx->UniformBuffer, NULL);
_mesa_reference_buffer_object(ctx, &ctx->ShaderStorageBuffer, NULL);
_mesa_reference_buffer_object(ctx, &ctx->AtomicBuffer, NULL);
_mesa_reference_buffer_object(ctx, &ctx->DrawIndirectBuffer, NULL);
_mesa_reference_buffer_object(ctx, &ctx->ParameterBuffer, NULL);
_mesa_reference_buffer_object(ctx, &ctx->DispatchIndirectBuffer, NULL);
_mesa_reference_buffer_object(ctx, &ctx->QueryBuffer, NULL);
for (i = 0; i < MAX_COMBINED_UNIFORM_BUFFERS; i++) {
_mesa_reference_buffer_object(ctx,
&ctx->UniformBufferBindings[i].BufferObject,
NULL);
}
for (i = 0; i < MAX_COMBINED_SHADER_STORAGE_BUFFERS; i++) {
_mesa_reference_buffer_object(ctx,
&ctx->ShaderStorageBufferBindings[i].BufferObject,
NULL);
}
for (i = 0; i < MAX_COMBINED_ATOMIC_BUFFERS; i++) {
_mesa_reference_buffer_object(ctx,
&ctx->AtomicBufferBindings[i].BufferObject,
NULL);
}
}
bool
_mesa_handle_bind_buffer_gen(struct gl_context *ctx,
GLuint buffer,
struct gl_buffer_object **buf_handle,
const char *caller)
{
struct gl_buffer_object *buf = *buf_handle;
if (!buf && (ctx->API == API_OPENGL_CORE)) {
_mesa_error(ctx, GL_INVALID_OPERATION, "%s(non-gen name)", caller);
return false;
}
if (!buf || buf == &DummyBufferObject) {
/* If this is a new buffer object id, or one which was generated but
* never used before, allocate a buffer object now.
*/
buf = ctx->Driver.NewBufferObject(ctx, buffer);
if (!buf) {
_mesa_error(ctx, GL_OUT_OF_MEMORY, "%s", caller);
return false;
}
_mesa_HashInsert(ctx->Shared->BufferObjects, buffer, buf);
*buf_handle = buf;
}
return true;
}
/**
* Bind the specified target to buffer for the specified context.
* Called by glBindBuffer() and other functions.
*/
static void
bind_buffer_object(struct gl_context *ctx,
struct gl_buffer_object **bindTarget, GLuint buffer)
{
struct gl_buffer_object *oldBufObj;
struct gl_buffer_object *newBufObj = NULL;
assert(bindTarget);
/* Get pointer to old buffer object (to be unbound) */
oldBufObj = *bindTarget;
if (oldBufObj && oldBufObj->Name == buffer && !oldBufObj->DeletePending)
return; /* rebinding the same buffer object- no change */
/*
* Get pointer to new buffer object (newBufObj)
*/
if (buffer == 0) {
/* The spec says there's not a buffer object named 0, but we use
* one internally because it simplifies things.
*/
newBufObj = ctx->Shared->NullBufferObj;
}
else {
/* non-default buffer object */
newBufObj = _mesa_lookup_bufferobj(ctx, buffer);
if (!_mesa_handle_bind_buffer_gen(ctx, buffer,
&newBufObj, "glBindBuffer"))
return;
}
/* record usage history */
if (bindTarget == &ctx->Pack.BufferObj) {
newBufObj->UsageHistory |= USAGE_PIXEL_PACK_BUFFER;
}
/* bind new buffer */
_mesa_reference_buffer_object(ctx, bindTarget, newBufObj);
}
/**
* Update the default buffer objects in the given context to reference those
* specified in the shared state and release those referencing the old
* shared state.
*/
void
_mesa_update_default_objects_buffer_objects(struct gl_context *ctx)
{
/* Bind the NullBufferObj to remove references to those
* in the shared context hash table.
*/
bind_buffer_object(ctx, &ctx->Array.ArrayBufferObj, 0);
bind_buffer_object(ctx, &ctx->Array.VAO->IndexBufferObj, 0);
bind_buffer_object(ctx, &ctx->Pack.BufferObj, 0);
bind_buffer_object(ctx, &ctx->Unpack.BufferObj, 0);
}
/**
* Return the gl_buffer_object for the given ID.
* Always return NULL for ID 0.
*/
struct gl_buffer_object *
_mesa_lookup_bufferobj(struct gl_context *ctx, GLuint buffer)
{
if (buffer == 0)
return NULL;
else
return (struct gl_buffer_object *)
_mesa_HashLookup(ctx->Shared->BufferObjects, buffer);
}
struct gl_buffer_object *
_mesa_lookup_bufferobj_locked(struct gl_context *ctx, GLuint buffer)
{
if (buffer == 0)
return NULL;
else
return (struct gl_buffer_object *)
_mesa_HashLookupLocked(ctx->Shared->BufferObjects, buffer);
}
/**
* A convenience function for direct state access functions that throws
* GL_INVALID_OPERATION if buffer is not the name of an existing
* buffer object.
*/
struct gl_buffer_object *
_mesa_lookup_bufferobj_err(struct gl_context *ctx, GLuint buffer,
const char *caller)
{
struct gl_buffer_object *bufObj;
bufObj = _mesa_lookup_bufferobj(ctx, buffer);
if (!bufObj || bufObj == &DummyBufferObject) {
_mesa_error(ctx, GL_INVALID_OPERATION,
"%s(non-existent buffer object %u)", caller, buffer);
return NULL;
}
return bufObj;
}
/**
* Look up a buffer object for a multi-bind function.
*
* Unlike _mesa_lookup_bufferobj(), this function also takes care
* of generating an error if the buffer ID is not zero or the name
* of an existing buffer object.
*
* If the buffer ID refers to an existing buffer object, a pointer
* to the buffer object is returned. If the ID is zero, a pointer
* to the shared NullBufferObj is returned. If the ID is not zero
* and does not refer to a valid buffer object, this function
* returns NULL.
*
* This function assumes that the caller has already locked the
* hash table mutex by calling
* _mesa_HashLockMutex(ctx->Shared->BufferObjects).
*/
struct gl_buffer_object *
_mesa_multi_bind_lookup_bufferobj(struct gl_context *ctx,
const GLuint *buffers,
GLuint index, const char *caller)
{
struct gl_buffer_object *bufObj;
if (buffers[index] != 0) {
bufObj = _mesa_lookup_bufferobj_locked(ctx, buffers[index]);
/* The multi-bind functions don't create the buffer objects
when they don't exist. */
if (bufObj == &DummyBufferObject)
bufObj = NULL;
} else
bufObj = ctx->Shared->NullBufferObj;
if (!bufObj) {
/* The ARB_multi_bind spec says:
*
* "An INVALID_OPERATION error is generated if any value
* in <buffers> is not zero or the name of an existing
* buffer object (per binding)."
*/
_mesa_error(ctx, GL_INVALID_OPERATION,
"%s(buffers[%u]=%u is not zero or the name "
"of an existing buffer object)",
caller, index, buffers[index]);
}
return bufObj;
}
/**
* If *ptr points to obj, set ptr = the Null/default buffer object.
* This is a helper for buffer object deletion.
* The GL spec says that deleting a buffer object causes it to get
* unbound from all arrays in the current context.
*/
static void
unbind(struct gl_context *ctx,
struct gl_vertex_array_object *vao, unsigned index,
struct gl_buffer_object *obj)
{
if (vao->BufferBinding[index].BufferObj == obj) {
_mesa_bind_vertex_buffer(ctx, vao, index, ctx->Shared->NullBufferObj,
vao->BufferBinding[index].Offset,
vao->BufferBinding[index].Stride);
}
}
/**
* Plug default/fallback buffer object functions into the device
* driver hooks.
*/
void
_mesa_init_buffer_object_functions(struct dd_function_table *driver)
{
/* GL_ARB_vertex/pixel_buffer_object */
driver->NewBufferObject = _mesa_new_buffer_object;
driver->DeleteBuffer = _mesa_delete_buffer_object;
driver->BufferData = buffer_data_fallback;
driver->BufferSubData = buffer_sub_data_fallback;
driver->GetBufferSubData = buffer_get_subdata;
driver->UnmapBuffer = unmap_buffer_fallback;
/* GL_ARB_clear_buffer_object */
driver->ClearBufferSubData = _mesa_ClearBufferSubData_sw;
/* GL_ARB_map_buffer_range */
driver->MapBufferRange = map_buffer_range_fallback;
driver->FlushMappedBufferRange = flush_mapped_buffer_range_fallback;
/* GL_ARB_copy_buffer */
driver->CopyBufferSubData = copy_buffer_sub_data_fallback;
}
void
_mesa_buffer_unmap_all_mappings(struct gl_context *ctx,
struct gl_buffer_object *bufObj)
{
for (int i = 0; i < MAP_COUNT; i++) {
if (_mesa_bufferobj_mapped(bufObj, i)) {
ctx->Driver.UnmapBuffer(ctx, bufObj, i);
assert(bufObj->Mappings[i].Pointer == NULL);
bufObj->Mappings[i].AccessFlags = 0;
}
}
}
/**********************************************************************/
/* API Functions */
/**********************************************************************/
void GLAPIENTRY
_mesa_BindBuffer_no_error(GLenum target, GLuint buffer)
{
GET_CURRENT_CONTEXT(ctx);
struct gl_buffer_object **bindTarget = get_buffer_target(ctx, target);
bind_buffer_object(ctx, bindTarget, buffer);
}
void GLAPIENTRY
_mesa_BindBuffer(GLenum target, GLuint buffer)
{
GET_CURRENT_CONTEXT(ctx);
if (MESA_VERBOSE & VERBOSE_API) {
_mesa_debug(ctx, "glBindBuffer(%s, %u)\n",
_mesa_enum_to_string(target), buffer);
}
struct gl_buffer_object **bindTarget = get_buffer_target(ctx, target);
if (!bindTarget) {
_mesa_error(ctx, GL_INVALID_ENUM, "glBindBufferARB(target %s)",
_mesa_enum_to_string(target));
return;
}
bind_buffer_object(ctx, bindTarget, buffer);
}
/**
* Binds a buffer object to a binding point.
*
* The caller is responsible for validating the offset,
* flushing the vertices and updating NewDriverState.
*/
static void
set_buffer_binding(struct gl_context *ctx,
struct gl_buffer_binding *binding,
struct gl_buffer_object *bufObj,
GLintptr offset,
GLsizeiptr size,
bool autoSize, gl_buffer_usage usage)
{
_mesa_reference_buffer_object(ctx, &binding->BufferObject, bufObj);
binding->Offset = offset;
binding->Size = size;
binding->AutomaticSize = autoSize;
/* If this is a real buffer object, mark it has having been used
* at some point as an atomic counter buffer.
*/
if (size >= 0)
bufObj->UsageHistory |= usage;
}
static void
set_buffer_multi_binding(struct gl_context *ctx,
const GLuint *buffers,
int idx,
const char *caller,
struct gl_buffer_binding *binding,
GLintptr offset,
GLsizeiptr size,
bool range,
gl_buffer_usage usage)
{
struct gl_buffer_object *bufObj;
if (binding->BufferObject && binding->BufferObject->Name == buffers[idx])
bufObj = binding->BufferObject;
else
bufObj = _mesa_multi_bind_lookup_bufferobj(ctx, buffers, idx, caller);
if (bufObj) {
if (bufObj == ctx->Shared->NullBufferObj)
set_buffer_binding(ctx, binding, bufObj, -1, -1, !range, usage);
else
set_buffer_binding(ctx, binding, bufObj, offset, size, !range, usage);
}
}
static void
bind_buffer(struct gl_context *ctx,
struct gl_buffer_binding *binding,
struct gl_buffer_object *bufObj,
GLintptr offset,
GLsizeiptr size,
GLboolean autoSize,
uint64_t driver_state,
gl_buffer_usage usage)
{
if (binding->BufferObject == bufObj &&
binding->Offset == offset &&
binding->Size == size &&
binding->AutomaticSize == autoSize) {
return;
}
FLUSH_VERTICES(ctx, 0);
ctx->NewDriverState |= driver_state;
set_buffer_binding(ctx, binding, bufObj, offset, size, autoSize, usage);
}
/**
* Binds a buffer object to a uniform buffer binding point.
*
* Unlike set_buffer_binding(), this function also flushes vertices
* and updates NewDriverState. It also checks if the binding
* has actually changed before updating it.
*/
static void
bind_uniform_buffer(struct gl_context *ctx,
GLuint index,
struct gl_buffer_object *bufObj,
GLintptr offset,
GLsizeiptr size,
GLboolean autoSize)
{
bind_buffer(ctx, &ctx->UniformBufferBindings[index],
bufObj, offset, size, autoSize,
ctx->DriverFlags.NewUniformBuffer,
USAGE_UNIFORM_BUFFER);
}
/**
* Binds a buffer object to a shader storage buffer binding point.
*
* Unlike set_ssbo_binding(), this function also flushes vertices
* and updates NewDriverState. It also checks if the binding
* has actually changed before updating it.
*/
static void
bind_shader_storage_buffer(struct gl_context *ctx,
GLuint index,
struct gl_buffer_object *bufObj,
GLintptr offset,
GLsizeiptr size,
GLboolean autoSize)
{
bind_buffer(ctx, &ctx->ShaderStorageBufferBindings[index],
bufObj, offset, size, autoSize,
ctx->DriverFlags.NewShaderStorageBuffer,
USAGE_SHADER_STORAGE_BUFFER);
}
/**
* Binds a buffer object to an atomic buffer binding point.
*
* Unlike set_atomic_binding(), this function also flushes vertices
* and updates NewDriverState. It also checks if the binding
* has actually changed before updating it.
*/
static void
bind_atomic_buffer(struct gl_context *ctx, unsigned index,
struct gl_buffer_object *bufObj, GLintptr offset,
GLsizeiptr size, GLboolean autoSize)
{
bind_buffer(ctx, &ctx->AtomicBufferBindings[index],
bufObj, offset, size, autoSize,
ctx->DriverFlags.NewAtomicBuffer,
USAGE_ATOMIC_COUNTER_BUFFER);
}
/**
* Bind a buffer object to a uniform block binding point.
* As above, but offset = 0.
*/
static void
bind_buffer_base_uniform_buffer(struct gl_context *ctx,
GLuint index,
struct gl_buffer_object *bufObj)
{
if (index >= ctx->Const.MaxUniformBufferBindings) {
_mesa_error(ctx, GL_INVALID_VALUE, "glBindBufferBase(index=%d)", index);
return;
}
_mesa_reference_buffer_object(ctx, &ctx->UniformBuffer, bufObj);
if (bufObj == ctx->Shared->NullBufferObj)
bind_uniform_buffer(ctx, index, bufObj, -1, -1, GL_TRUE);
else
bind_uniform_buffer(ctx, index, bufObj, 0, 0, GL_TRUE);
}
/**
* Bind a buffer object to a shader storage block binding point.
* As above, but offset = 0.
*/
static void
bind_buffer_base_shader_storage_buffer(struct gl_context *ctx,
GLuint index,
struct gl_buffer_object *bufObj)
{
if (index >= ctx->Const.MaxShaderStorageBufferBindings) {
_mesa_error(ctx, GL_INVALID_VALUE, "glBindBufferBase(index=%d)", index);
return;
}
_mesa_reference_buffer_object(ctx, &ctx->ShaderStorageBuffer, bufObj);
if (bufObj == ctx->Shared->NullBufferObj)
bind_shader_storage_buffer(ctx, index, bufObj, -1, -1, GL_TRUE);
else
bind_shader_storage_buffer(ctx, index, bufObj, 0, 0, GL_TRUE);
}
/**
* Bind a buffer object to a shader storage block binding point.
* As above, but offset = 0.
*/
static void
bind_buffer_base_atomic_buffer(struct gl_context *ctx,
GLuint index,
struct gl_buffer_object *bufObj)
{
if (index >= ctx->Const.MaxAtomicBufferBindings) {
_mesa_error(ctx, GL_INVALID_VALUE, "glBindBufferBase(index=%d)", index);
return;
}
_mesa_reference_buffer_object(ctx, &ctx->AtomicBuffer, bufObj);
if (bufObj == ctx->Shared->NullBufferObj)
bind_atomic_buffer(ctx, index, bufObj, -1, -1, GL_TRUE);
else
bind_atomic_buffer(ctx, index, bufObj, 0, 0, GL_TRUE);
}
/**
* Delete a set of buffer objects.
*
* \param n Number of buffer objects to delete.
* \param ids Array of \c n buffer object IDs.
*/
static void
delete_buffers(struct gl_context *ctx, GLsizei n, const GLuint *ids)
{
FLUSH_VERTICES(ctx, 0);
_mesa_HashLockMutex(ctx->Shared->BufferObjects);
for (GLsizei i = 0; i < n; i++) {
struct gl_buffer_object *bufObj =
_mesa_lookup_bufferobj_locked(ctx, ids[i]);
if (bufObj) {
struct gl_vertex_array_object *vao = ctx->Array.VAO;
GLuint j;
assert(bufObj->Name == ids[i] || bufObj == &DummyBufferObject);
_mesa_buffer_unmap_all_mappings(ctx, bufObj);
/* unbind any vertex pointers bound to this buffer */
for (j = 0; j < ARRAY_SIZE(vao->BufferBinding); j++) {
unbind(ctx, vao, j, bufObj);
}
if (ctx->Array.ArrayBufferObj == bufObj) {
bind_buffer_object(ctx, &ctx->Array.ArrayBufferObj, 0);
}
if (vao->IndexBufferObj == bufObj) {
bind_buffer_object(ctx, &vao->IndexBufferObj, 0);
}
/* unbind ARB_draw_indirect binding point */
if (ctx->DrawIndirectBuffer == bufObj) {
bind_buffer_object(ctx, &ctx->DrawIndirectBuffer, 0);
}
/* unbind ARB_indirect_parameters binding point */
if (ctx->ParameterBuffer == bufObj) {
bind_buffer_object(ctx, &ctx->ParameterBuffer, 0);
}
/* unbind ARB_compute_shader binding point */
if (ctx->DispatchIndirectBuffer == bufObj) {
bind_buffer_object(ctx, &ctx->DispatchIndirectBuffer, 0);
}
/* unbind ARB_copy_buffer binding points */
if (ctx->CopyReadBuffer == bufObj) {
bind_buffer_object(ctx, &ctx->CopyReadBuffer, 0);
}
if (ctx->CopyWriteBuffer == bufObj) {
bind_buffer_object(ctx, &ctx->CopyWriteBuffer, 0);
}
/* unbind transform feedback binding points */
if (ctx->TransformFeedback.CurrentBuffer == bufObj) {
bind_buffer_object(ctx, &ctx->TransformFeedback.CurrentBuffer, 0);
}
for (j = 0; j < MAX_FEEDBACK_BUFFERS; j++) {
if (ctx->TransformFeedback.CurrentObject->Buffers[j] == bufObj) {
_mesa_bind_buffer_base_transform_feedback(ctx,
ctx->TransformFeedback.CurrentObject,
j, ctx->Shared->NullBufferObj,
false);
}
}
/* unbind UBO binding points */
for (j = 0; j < ctx->Const.MaxUniformBufferBindings; j++) {
if (ctx->UniformBufferBindings[j].BufferObject == bufObj) {
bind_buffer_base_uniform_buffer(ctx, j,
ctx->Shared->NullBufferObj);
}
}
if (ctx->UniformBuffer == bufObj) {
bind_buffer_object(ctx, &ctx->UniformBuffer, 0);
}
/* unbind SSBO binding points */
for (j = 0; j < ctx->Const.MaxShaderStorageBufferBindings; j++) {
if (ctx->ShaderStorageBufferBindings[j].BufferObject == bufObj) {
bind_buffer_base_shader_storage_buffer(ctx, j,
ctx->Shared->NullBufferObj);
}
}
if (ctx->ShaderStorageBuffer == bufObj) {
bind_buffer_object(ctx, &ctx->ShaderStorageBuffer, 0);
}
/* unbind Atomci Buffer binding points */
for (j = 0; j < ctx->Const.MaxAtomicBufferBindings; j++) {
if (ctx->AtomicBufferBindings[j].BufferObject == bufObj) {
bind_buffer_base_atomic_buffer(ctx, j,
ctx->Shared->NullBufferObj);
}
}
if (ctx->AtomicBuffer == bufObj) {
bind_buffer_object(ctx, &ctx->AtomicBuffer, 0);
}
/* unbind any pixel pack/unpack pointers bound to this buffer */
if (ctx->Pack.BufferObj == bufObj) {
bind_buffer_object(ctx, &ctx->Pack.BufferObj, 0);
}
if (ctx->Unpack.BufferObj == bufObj) {
bind_buffer_object(ctx, &ctx->Unpack.BufferObj, 0);
}
if (ctx->Texture.BufferObject == bufObj) {
bind_buffer_object(ctx, &ctx->Texture.BufferObject, 0);
}
if (ctx->ExternalVirtualMemoryBuffer == bufObj) {
bind_buffer_object(ctx, &ctx->ExternalVirtualMemoryBuffer, 0);
}
/* unbind query buffer binding point */
if (ctx->QueryBuffer == bufObj) {
bind_buffer_object(ctx, &ctx->QueryBuffer, 0);
}
/* The ID is immediately freed for re-use */
_mesa_HashRemoveLocked(ctx->Shared->BufferObjects, ids[i]);
/* Make sure we do not run into the classic ABA problem on bind.
* We don't want to allow re-binding a buffer object that's been
* "deleted" by glDeleteBuffers().
*
* The explicit rebinding to the default object in the current context
* prevents the above in the current context, but another context
* sharing the same objects might suffer from this problem.
* The alternative would be to do the hash lookup in any case on bind
* which would introduce more runtime overhead than this.
*/
bufObj->DeletePending = GL_TRUE;
_mesa_reference_buffer_object(ctx, &bufObj, NULL);
}
}
_mesa_HashUnlockMutex(ctx->Shared->BufferObjects);
}
void GLAPIENTRY
_mesa_DeleteBuffers_no_error(GLsizei n, const GLuint *ids)
{
GET_CURRENT_CONTEXT(ctx);
delete_buffers(ctx, n, ids);
}
void GLAPIENTRY
_mesa_DeleteBuffers(GLsizei n, const GLuint *ids)
{
GET_CURRENT_CONTEXT(ctx);
if (n < 0) {
_mesa_error(ctx, GL_INVALID_VALUE, "glDeleteBuffersARB(n)");
return;
}
delete_buffers(ctx, n, ids);
}
/**
* This is the implementation for glGenBuffers and glCreateBuffers. It is not
* exposed to the rest of Mesa to encourage the use of nameless buffers in
* driver internals.
*/
static void
create_buffers(struct gl_context *ctx, GLsizei n, GLuint *buffers, bool dsa)
{
GLuint first;
struct gl_buffer_object *buf;
if (!buffers)
return;
/*
* This must be atomic (generation and allocation of buffer object IDs)
*/
_mesa_HashLockMutex(ctx->Shared->BufferObjects);
first = _mesa_HashFindFreeKeyBlock(ctx->Shared->BufferObjects, n);
/* Insert the ID and pointer into the hash table. If non-DSA, insert a
* DummyBufferObject. Otherwise, create a new buffer object and insert
* it.
*/
for (int i = 0; i < n; i++) {
buffers[i] = first + i;
if (dsa) {
assert(ctx->Driver.NewBufferObject);
buf = ctx->Driver.NewBufferObject(ctx, buffers[i]);
if (!buf) {
_mesa_error(ctx, GL_OUT_OF_MEMORY, "glCreateBuffers");
_mesa_HashUnlockMutex(ctx->Shared->BufferObjects);
return;
}
}
else
buf = &DummyBufferObject;
_mesa_HashInsertLocked(ctx->Shared->BufferObjects, buffers[i], buf);
}
_mesa_HashUnlockMutex(ctx->Shared->BufferObjects);
}
static void
create_buffers_err(struct gl_context *ctx, GLsizei n, GLuint *buffers, bool dsa)
{
const char *func = dsa ? "glCreateBuffers" : "glGenBuffers";
if (MESA_VERBOSE & VERBOSE_API)
_mesa_debug(ctx, "%s(%d)\n", func, n);
if (n < 0) {
_mesa_error(ctx, GL_INVALID_VALUE, "%s(n %d < 0)", func, n);
return;
}
create_buffers(ctx, n, buffers, dsa);
}
/**
* Generate a set of unique buffer object IDs and store them in \c buffers.
*
* \param n Number of IDs to generate.
* \param buffers Array of \c n locations to store the IDs.
*/
void GLAPIENTRY
_mesa_GenBuffers_no_error(GLsizei n, GLuint *buffers)
{
GET_CURRENT_CONTEXT(ctx);
create_buffers(ctx, n, buffers, false);
}
void GLAPIENTRY
_mesa_GenBuffers(GLsizei n, GLuint *buffers)
{
GET_CURRENT_CONTEXT(ctx);
create_buffers_err(ctx, n, buffers, false);
}
/**
* Create a set of buffer objects and store their unique IDs in \c buffers.
*
* \param n Number of IDs to generate.
* \param buffers Array of \c n locations to store the IDs.
*/
void GLAPIENTRY
_mesa_CreateBuffers_no_error(GLsizei n, GLuint *buffers)
{
GET_CURRENT_CONTEXT(ctx);
create_buffers(ctx, n, buffers, true);
}
void GLAPIENTRY
_mesa_CreateBuffers(GLsizei n, GLuint *buffers)
{
GET_CURRENT_CONTEXT(ctx);
create_buffers_err(ctx, n, buffers, true);
}
/**
* Determine if ID is the name of a buffer object.
*
* \param id ID of the potential buffer object.
* \return \c GL_TRUE if \c id is the name of a buffer object,
* \c GL_FALSE otherwise.
*/
GLboolean GLAPIENTRY
_mesa_IsBuffer(GLuint id)
{
struct gl_buffer_object *bufObj;
GET_CURRENT_CONTEXT(ctx);
ASSERT_OUTSIDE_BEGIN_END_WITH_RETVAL(ctx, GL_FALSE);
bufObj = _mesa_lookup_bufferobj(ctx, id);
return bufObj && bufObj != &DummyBufferObject;
}
static bool
validate_buffer_storage(struct gl_context *ctx,
struct gl_buffer_object *bufObj, GLsizeiptr size,
GLbitfield flags, const char *func)
{
if (size <= 0) {
_mesa_error(ctx, GL_INVALID_VALUE, "%s(size <= 0)", func);
return false;
}
GLbitfield valid_flags = GL_MAP_READ_BIT |
GL_MAP_WRITE_BIT |
GL_MAP_PERSISTENT_BIT |
GL_MAP_COHERENT_BIT |
GL_DYNAMIC_STORAGE_BIT |
GL_CLIENT_STORAGE_BIT;
if (ctx->Extensions.ARB_sparse_buffer)
valid_flags |= GL_SPARSE_STORAGE_BIT_ARB;
if (flags & ~valid_flags) {
_mesa_error(ctx, GL_INVALID_VALUE, "%s(invalid flag bits set)", func);
return false;
}
/* The Errors section of the GL_ARB_sparse_buffer spec says:
*
* "INVALID_VALUE is generated by BufferStorage if <flags> contains
* SPARSE_STORAGE_BIT_ARB and <flags> also contains any combination of
* MAP_READ_BIT or MAP_WRITE_BIT."
*/
if (flags & GL_SPARSE_STORAGE_BIT_ARB &&
flags & (GL_MAP_READ_BIT | GL_MAP_WRITE_BIT)) {
_mesa_error(ctx, GL_INVALID_VALUE, "%s(SPARSE_STORAGE and READ/WRITE)", func);
return false;
}
if (flags & GL_MAP_PERSISTENT_BIT &&
!(flags & (GL_MAP_READ_BIT | GL_MAP_WRITE_BIT))) {
_mesa_error(ctx, GL_INVALID_VALUE,
"%s(PERSISTENT and flags!=READ/WRITE)", func);
return false;
}
if (flags & GL_MAP_COHERENT_BIT && !(flags & GL_MAP_PERSISTENT_BIT)) {
_mesa_error(ctx, GL_INVALID_VALUE,
"%s(COHERENT and flags!=PERSISTENT)", func);
return false;
}
if (bufObj->Immutable || bufObj->HandleAllocated) {
_mesa_error(ctx, GL_INVALID_OPERATION, "%s(immutable)", func);
return false;
}
return true;
}
static void
buffer_storage(struct gl_context *ctx, struct gl_buffer_object *bufObj,
struct gl_memory_object *memObj, GLenum target,
GLsizeiptr size, const GLvoid *data, GLbitfield flags,
GLuint64 offset, const char *func)
{
GLboolean res;
/* Unmap the existing buffer. We'll replace it now. Not an error. */
_mesa_buffer_unmap_all_mappings(ctx, bufObj);
FLUSH_VERTICES(ctx, 0);
bufObj->Written = GL_TRUE;
bufObj->Immutable = GL_TRUE;
bufObj->MinMaxCacheDirty = true;
if (memObj) {
assert(ctx->Driver.BufferDataMem);
res = ctx->Driver.BufferDataMem(ctx, target, size, memObj, offset,
GL_DYNAMIC_DRAW, bufObj);
}
else {
assert(ctx->Driver.BufferData);
res = ctx->Driver.BufferData(ctx, target, size, data, GL_DYNAMIC_DRAW,
flags, bufObj);
}
if (!res) {
if (target == GL_EXTERNAL_VIRTUAL_MEMORY_BUFFER_AMD) {
/* Even though the interaction between AMD_pinned_memory and
* glBufferStorage is not described in the spec, Graham Sellers
* said that it should behave the same as glBufferData.
*/
_mesa_error(ctx, GL_INVALID_OPERATION, "%s", func);
}
else {
_mesa_error(ctx, GL_OUT_OF_MEMORY, "%s", func);
}
}
}
static ALWAYS_INLINE void
inlined_buffer_storage(GLenum target, GLuint buffer, GLsizeiptr size,
const GLvoid *data, GLbitfield flags,
GLuint memory, GLuint64 offset,
bool dsa, bool mem, bool no_error, const char *func)
{
GET_CURRENT_CONTEXT(ctx);
struct gl_buffer_object *bufObj;
struct gl_memory_object *memObj = NULL;
if (mem) {
if (!no_error) {
if (!ctx->Extensions.EXT_memory_object) {
_mesa_error(ctx, GL_INVALID_OPERATION, "%s(unsupported)", func);
return;
}
/* From the EXT_external_objects spec:
*
* "An INVALID_VALUE error is generated by BufferStorageMemEXT and
* NamedBufferStorageMemEXT if <memory> is 0, or ..."
*/
if (memory == 0) {
_mesa_error(ctx, GL_INVALID_VALUE, "%s(memory == 0)", func);
}
}
memObj = _mesa_lookup_memory_object(ctx, memory);
if (!memObj)
return;
/* From the EXT_external_objects spec:
*
* "An INVALID_OPERATION error is generated if <memory> names a
* valid memory object which has no associated memory."
*/
if (!no_error && !memObj->Immutable) {
_mesa_error(ctx, GL_INVALID_OPERATION, "%s(no associated memory)",
func);
return;
}
}
if (dsa) {
if (no_error) {
bufObj = _mesa_lookup_bufferobj(ctx, buffer);
} else {
bufObj = _mesa_lookup_bufferobj_err(ctx, buffer, func);
if (!bufObj)
return;
}
} else {
if (no_error) {
struct gl_buffer_object **bufObjPtr = get_buffer_target(ctx, target);
bufObj = *bufObjPtr;
} else {
bufObj = get_buffer(ctx, func, target, GL_INVALID_OPERATION);
if (!bufObj)
return;
}
}
if (no_error || validate_buffer_storage(ctx, bufObj, size, flags, func))
buffer_storage(ctx, bufObj, memObj, target, size, data, flags, offset, func);
}
void GLAPIENTRY
_mesa_BufferStorage_no_error(GLenum target, GLsizeiptr size,
const GLvoid *data, GLbitfield flags)
{
inlined_buffer_storage(target, 0, size, data, flags, GL_NONE, 0,
false, false, true, "glBufferStorage");
}
void GLAPIENTRY
_mesa_BufferStorage(GLenum target, GLsizeiptr size, const GLvoid *data,
GLbitfield flags)
{
inlined_buffer_storage(target, 0, size, data, flags, GL_NONE, 0,
false, false, false, "glBufferStorage");
}
void GLAPIENTRY
_mesa_BufferStorageMemEXT(GLenum target, GLsizeiptr size,
GLuint memory, GLuint64 offset)
{
inlined_buffer_storage(target, 0, size, NULL, 0, memory, offset,
false, true, false, "glBufferStorageMemEXT");
}
void GLAPIENTRY
_mesa_BufferStorageMemEXT_no_error(GLenum target, GLsizeiptr size,
GLuint memory, GLuint64 offset)
{
inlined_buffer_storage(target, 0, size, NULL, 0, memory, offset,
false, true, true, "glBufferStorageMemEXT");
}
void GLAPIENTRY
_mesa_NamedBufferStorage_no_error(GLuint buffer, GLsizeiptr size,
const GLvoid *data, GLbitfield flags)
{
/* In direct state access, buffer objects have an unspecified target
* since they are not required to be bound.
*/
inlined_buffer_storage(GL_NONE, buffer, size, data, flags, GL_NONE, 0,
true, false, true, "glNamedBufferStorage");
}
void GLAPIENTRY
_mesa_NamedBufferStorage(GLuint buffer, GLsizeiptr size, const GLvoid *data,
GLbitfield flags)
{
/* In direct state access, buffer objects have an unspecified target
* since they are not required to be bound.
*/
inlined_buffer_storage(GL_NONE, buffer, size, data, flags, GL_NONE, 0,
true, false, false, "glNamedBufferStorage");
}
void GLAPIENTRY
_mesa_NamedBufferStorageMemEXT(GLuint buffer, GLsizeiptr size,
GLuint memory, GLuint64 offset)
{
inlined_buffer_storage(GL_NONE, buffer, size, GL_NONE, 0, memory, offset,
true, true, false, "glNamedBufferStorageMemEXT");
}
void GLAPIENTRY
_mesa_NamedBufferStorageMemEXT_no_error(GLuint buffer, GLsizeiptr size,
GLuint memory, GLuint64 offset)
{
inlined_buffer_storage(GL_NONE, buffer, size, GL_NONE, 0, memory, offset,
true, true, true, "glNamedBufferStorageMemEXT");
}
static ALWAYS_INLINE void
buffer_data(struct gl_context *ctx, struct gl_buffer_object *bufObj,
GLenum target, GLsizeiptr size, const GLvoid *data, GLenum usage,
const char *func, bool no_error)
{
bool valid_usage;
if (MESA_VERBOSE & VERBOSE_API) {
_mesa_debug(ctx, "%s(%s, %ld, %p, %s)\n",
func,
_mesa_enum_to_string(target),
(long int) size, data,
_mesa_enum_to_string(usage));
}
if (!no_error) {
if (size < 0) {
_mesa_error(ctx, GL_INVALID_VALUE, "%s(size < 0)", func);
return;
}
switch (usage) {
case GL_STREAM_DRAW_ARB:
valid_usage = (ctx->API != API_OPENGLES);
break;
case GL_STATIC_DRAW_ARB:
case GL_DYNAMIC_DRAW_ARB:
valid_usage = true;
break;
case GL_STREAM_READ_ARB:
case GL_STREAM_COPY_ARB:
case GL_STATIC_READ_ARB:
case GL_STATIC_COPY_ARB:
case GL_DYNAMIC_READ_ARB:
case GL_DYNAMIC_COPY_ARB:
valid_usage = _mesa_is_desktop_gl(ctx) || _mesa_is_gles3(ctx);
break;
default:
valid_usage = false;
break;
}
if (!valid_usage) {
_mesa_error(ctx, GL_INVALID_ENUM, "%s(invalid usage: %s)", func,
_mesa_enum_to_string(usage));
return;
}
if (bufObj->Immutable || bufObj->HandleAllocated) {
_mesa_error(ctx, GL_INVALID_OPERATION, "%s(immutable)", func);
return;
}
}
/* Unmap the existing buffer. We'll replace it now. Not an error. */
_mesa_buffer_unmap_all_mappings(ctx, bufObj);
FLUSH_VERTICES(ctx, 0);
bufObj->Written = GL_TRUE;
bufObj->MinMaxCacheDirty = true;
#ifdef VBO_DEBUG
printf("glBufferDataARB(%u, sz %ld, from %p, usage 0x%x)\n",
bufObj->Name, size, data, usage);
#endif
#ifdef BOUNDS_CHECK
size += 100;
#endif
assert(ctx->Driver.BufferData);
if (!ctx->Driver.BufferData(ctx, target, size, data, usage,
GL_MAP_READ_BIT |
GL_MAP_WRITE_BIT |
GL_DYNAMIC_STORAGE_BIT,
bufObj)) {
if (target == GL_EXTERNAL_VIRTUAL_MEMORY_BUFFER_AMD) {
if (!no_error) {
/* From GL_AMD_pinned_memory:
*
* INVALID_OPERATION is generated by BufferData if <target> is
* EXTERNAL_VIRTUAL_MEMORY_BUFFER_AMD, and the store cannot be
* mapped to the GPU address space.
*/
_mesa_error(ctx, GL_INVALID_OPERATION, "%s", func);
}
} else {
_mesa_error(ctx, GL_OUT_OF_MEMORY, "%s", func);
}
}
}
static void
buffer_data_error(struct gl_context *ctx, struct gl_buffer_object *bufObj,
GLenum target, GLsizeiptr size, const GLvoid *data,
GLenum usage, const char *func)
{
buffer_data(ctx, bufObj, target, size, data, usage, func, false);
}
static void
buffer_data_no_error(struct gl_context *ctx, struct gl_buffer_object *bufObj,
GLenum target, GLsizeiptr size, const GLvoid *data,
GLenum usage, const char *func)
{
buffer_data(ctx, bufObj, target, size, data, usage, func, true);
}
void
_mesa_buffer_data(struct gl_context *ctx, struct gl_buffer_object *bufObj,
GLenum target, GLsizeiptr size, const GLvoid *data,
GLenum usage, const char *func)
{
buffer_data_error(ctx, bufObj, target, size, data, usage, func);
}
void GLAPIENTRY
_mesa_BufferData_no_error(GLenum target, GLsizeiptr size, const GLvoid *data,
GLenum usage)
{
GET_CURRENT_CONTEXT(ctx);
struct gl_buffer_object **bufObj = get_buffer_target(ctx, target);
buffer_data_no_error(ctx, *bufObj, target, size, data, usage,
"glBufferData");
}
void GLAPIENTRY
_mesa_BufferData(GLenum target, GLsizeiptr size,
const GLvoid *data, GLenum usage)
{
GET_CURRENT_CONTEXT(ctx);
struct gl_buffer_object *bufObj;
bufObj = get_buffer(ctx, "glBufferData", target, GL_INVALID_OPERATION);
if (!bufObj)
return;
_mesa_buffer_data(ctx, bufObj, target, size, data, usage,
"glBufferData");
}
void GLAPIENTRY
_mesa_NamedBufferData_no_error(GLuint buffer, GLsizeiptr size,
const GLvoid *data, GLenum usage)
{
GET_CURRENT_CONTEXT(ctx);
struct gl_buffer_object *bufObj = _mesa_lookup_bufferobj(ctx, buffer);
buffer_data_no_error(ctx, bufObj, GL_NONE, size, data, usage,
"glNamedBufferData");
}
void GLAPIENTRY
_mesa_NamedBufferData(GLuint buffer, GLsizeiptr size, const GLvoid *data,
GLenum usage)
{
GET_CURRENT_CONTEXT(ctx);
struct gl_buffer_object *bufObj;
bufObj = _mesa_lookup_bufferobj_err(ctx, buffer, "glNamedBufferData");
if (!bufObj)
return;
/* In direct state access, buffer objects have an unspecified target since
* they are not required to be bound.
*/
_mesa_buffer_data(ctx, bufObj, GL_NONE, size, data, usage,
"glNamedBufferData");
}
static bool
validate_buffer_sub_data(struct gl_context *ctx,
struct gl_buffer_object *bufObj,
GLintptr offset, GLsizeiptr size,
const char *func)
{
if (!buffer_object_subdata_range_good(ctx, bufObj, offset, size,
true, func)) {
/* error already recorded */
return false;
}
if (bufObj->Immutable &&
!(bufObj->StorageFlags & GL_DYNAMIC_STORAGE_BIT)) {
_mesa_error(ctx, GL_INVALID_OPERATION, "%s", func);
return false;
}
if ((bufObj->Usage == GL_STATIC_DRAW ||
bufObj->Usage == GL_STATIC_COPY) &&
bufObj->NumSubDataCalls >= BUFFER_WARNING_CALL_COUNT - 1) {
/* If the application declared the buffer as static draw/copy or stream
* draw, it should not be frequently modified with glBufferSubData.
*/
BUFFER_USAGE_WARNING(ctx,
"using %s(buffer %u, offset %u, size %u) to "
"update a %s buffer",
func, bufObj->Name, offset, size,
_mesa_enum_to_string(bufObj->Usage));
}
return true;
}
/**
* Implementation for glBufferSubData and glNamedBufferSubData.
*
* \param ctx GL context.
* \param bufObj The buffer object.
* \param offset Offset of the first byte of the subdata range.
* \param size Size, in bytes, of the subdata range.
* \param data The data store.
* \param func Name of calling function for recording errors.
*
*/
void
_mesa_buffer_sub_data(struct gl_context *ctx, struct gl_buffer_object *bufObj,
GLintptr offset, GLsizeiptr size, const GLvoid *data)
{
if (size == 0)
return;
bufObj->NumSubDataCalls++;
bufObj->Written = GL_TRUE;
bufObj->MinMaxCacheDirty = true;
assert(ctx->Driver.BufferSubData);
ctx->Driver.BufferSubData(ctx, offset, size, data, bufObj);
}
static ALWAYS_INLINE void
buffer_sub_data(GLenum target, GLuint buffer, GLintptr offset,
GLsizeiptr size, const GLvoid *data,
bool dsa, bool no_error, const char *func)
{
GET_CURRENT_CONTEXT(ctx);
struct gl_buffer_object *bufObj;
if (dsa) {
if (no_error) {
bufObj = _mesa_lookup_bufferobj(ctx, buffer);
} else {
bufObj = _mesa_lookup_bufferobj_err(ctx, buffer, func);
if (!bufObj)
return;
}
} else {
if (no_error) {
struct gl_buffer_object **bufObjPtr = get_buffer_target(ctx, target);
bufObj = *bufObjPtr;
} else {
bufObj = get_buffer(ctx, func, target, GL_INVALID_OPERATION);
if (!bufObj)
return;
}
}
if (no_error || validate_buffer_sub_data(ctx, bufObj, offset, size, func))
_mesa_buffer_sub_data(ctx, bufObj, offset, size, data);
}
void GLAPIENTRY
_mesa_BufferSubData_no_error(GLenum target, GLintptr offset,
GLsizeiptr size, const GLvoid *data)
{
buffer_sub_data(target, 0, offset, size, data, false, true,
"glBufferSubData");
}
void GLAPIENTRY
_mesa_BufferSubData(GLenum target, GLintptr offset,
GLsizeiptr size, const GLvoid *data)
{
buffer_sub_data(target, 0, offset, size, data, false, false,
"glBufferSubData");
}
void GLAPIENTRY
_mesa_NamedBufferSubData_no_error(GLuint buffer, GLintptr offset,
GLsizeiptr size, const GLvoid *data)
{
buffer_sub_data(0, buffer, offset, size, data, true, true,
"glNamedBufferSubData");
}
void GLAPIENTRY
_mesa_NamedBufferSubData(GLuint buffer, GLintptr offset,
GLsizeiptr size, const GLvoid *data)
{
buffer_sub_data(0, buffer, offset, size, data, true, false,
"glNamedBufferSubData");
}
void GLAPIENTRY
_mesa_GetBufferSubData(GLenum target, GLintptr offset,
GLsizeiptr size, GLvoid *data)
{
GET_CURRENT_CONTEXT(ctx);
struct gl_buffer_object *bufObj;
bufObj = get_buffer(ctx, "glGetBufferSubData", target,
GL_INVALID_OPERATION);
if (!bufObj)
return;
if (!buffer_object_subdata_range_good(ctx, bufObj, offset, size, false,
"glGetBufferSubData")) {
return;
}
assert(ctx->Driver.GetBufferSubData);
ctx->Driver.GetBufferSubData(ctx, offset, size, data, bufObj);
}
void GLAPIENTRY
_mesa_GetNamedBufferSubData(GLuint buffer, GLintptr offset,
GLsizeiptr size, GLvoid *data)
{
GET_CURRENT_CONTEXT(ctx);
struct gl_buffer_object *bufObj;
bufObj = _mesa_lookup_bufferobj_err(ctx, buffer,
"glGetNamedBufferSubData");
if (!bufObj)
return;
if (!buffer_object_subdata_range_good(ctx, bufObj, offset, size, false,
"glGetNamedBufferSubData")) {
return;
}
assert(ctx->Driver.GetBufferSubData);
ctx->Driver.GetBufferSubData(ctx, offset, size, data, bufObj);
}
/**
* \param subdata true if caller is *SubData, false if *Data
*/
static ALWAYS_INLINE void
clear_buffer_sub_data(struct gl_context *ctx, struct gl_buffer_object *bufObj,
GLenum internalformat, GLintptr offset, GLsizeiptr size,
GLenum format, GLenum type, const GLvoid *data,
const char *func, bool subdata, bool no_error)
{
mesa_format mesaFormat;
GLubyte clearValue[MAX_PIXEL_BYTES];
GLsizeiptr clearValueSize;
/* This checks for disallowed mappings. */
if (!no_error && !buffer_object_subdata_range_good(ctx, bufObj, offset, size,
subdata, func)) {
return;
}
if (no_error) {
mesaFormat = _mesa_get_texbuffer_format(ctx, internalformat);
} else {
mesaFormat = validate_clear_buffer_format(ctx, internalformat,
format, type, func);
}
if (mesaFormat == MESA_FORMAT_NONE)
return;
clearValueSize = _mesa_get_format_bytes(mesaFormat);
if (!no_error &&
(offset % clearValueSize != 0 || size % clearValueSize != 0)) {
_mesa_error(ctx, GL_INVALID_VALUE,
"%s(offset or size is not a multiple of "
"internalformat size)", func);
return;
}
/* Bail early. Negative size has already been checked. */
if (size == 0)
return;
bufObj->MinMaxCacheDirty = true;
if (data == NULL) {
/* clear to zeros, per the spec */
ctx->Driver.ClearBufferSubData(ctx, offset, size,
NULL, clearValueSize, bufObj);
return;
}
if (!convert_clear_buffer_data(ctx, mesaFormat, clearValue,
format, type, data, func)) {
return;
}
ctx->Driver.ClearBufferSubData(ctx, offset, size,
clearValue, clearValueSize, bufObj);
}
static void
clear_buffer_sub_data_error(struct gl_context *ctx,
struct gl_buffer_object *bufObj,
GLenum internalformat, GLintptr offset,
GLsizeiptr size, GLenum format, GLenum type,
const GLvoid *data, const char *func, bool subdata)
{
clear_buffer_sub_data(ctx, bufObj, internalformat, offset, size, format,
type, data, func, subdata, false);
}
static void
clear_buffer_sub_data_no_error(struct gl_context *ctx,
struct gl_buffer_object *bufObj,
GLenum internalformat, GLintptr offset,
GLsizeiptr size, GLenum format, GLenum type,
const GLvoid *data, const char *func,
bool subdata)
{
clear_buffer_sub_data(ctx, bufObj, internalformat, offset, size, format,
type, data, func, subdata, true);
}
void GLAPIENTRY
_mesa_ClearBufferData_no_error(GLenum target, GLenum internalformat,
GLenum format, GLenum type, const GLvoid *data)
{
GET_CURRENT_CONTEXT(ctx);
struct gl_buffer_object **bufObj = get_buffer_target(ctx, target);
clear_buffer_sub_data_no_error(ctx, *bufObj, internalformat, 0,
(*bufObj)->Size, format, type, data,
"glClearBufferData", false);
}
void GLAPIENTRY
_mesa_ClearBufferData(GLenum target, GLenum internalformat, GLenum format,
GLenum type, const GLvoid *data)
{
GET_CURRENT_CONTEXT(ctx);
struct gl_buffer_object *bufObj;
bufObj = get_buffer(ctx, "glClearBufferData", target, GL_INVALID_VALUE);
if (!bufObj)
return;
clear_buffer_sub_data_error(ctx, bufObj, internalformat, 0, bufObj->Size,
format, type, data, "glClearBufferData", false);
}
void GLAPIENTRY
_mesa_ClearNamedBufferData_no_error(GLuint buffer, GLenum internalformat,
GLenum format, GLenum type,
const GLvoid *data)
{
GET_CURRENT_CONTEXT(ctx);
struct gl_buffer_object *bufObj = _mesa_lookup_bufferobj(ctx, buffer);
clear_buffer_sub_data_no_error(ctx, bufObj, internalformat, 0, bufObj->Size,
format, type, data, "glClearNamedBufferData",
false);
}
void GLAPIENTRY
_mesa_ClearNamedBufferData(GLuint buffer, GLenum internalformat,
GLenum format, GLenum type, const GLvoid *data)
{
GET_CURRENT_CONTEXT(ctx);
struct gl_buffer_object *bufObj;
bufObj = _mesa_lookup_bufferobj_err(ctx, buffer, "glClearNamedBufferData");
if (!bufObj)
return;
clear_buffer_sub_data_error(ctx, bufObj, internalformat, 0, bufObj->Size,
format, type, data, "glClearNamedBufferData",
false);
}
void GLAPIENTRY
_mesa_ClearBufferSubData_no_error(GLenum target, GLenum internalformat,
GLintptr offset, GLsizeiptr size,
GLenum format, GLenum type,
const GLvoid *data)
{
GET_CURRENT_CONTEXT(ctx);
struct gl_buffer_object **bufObj = get_buffer_target(ctx, target);
clear_buffer_sub_data_no_error(ctx, *bufObj, internalformat, offset, size,
format, type, data, "glClearBufferSubData",
true);
}
void GLAPIENTRY
_mesa_ClearBufferSubData(GLenum target, GLenum internalformat,
GLintptr offset, GLsizeiptr size,
GLenum format, GLenum type,
const GLvoid *data)
{
GET_CURRENT_CONTEXT(ctx);
struct gl_buffer_object *bufObj;
bufObj = get_buffer(ctx, "glClearBufferSubData", target, GL_INVALID_VALUE);
if (!bufObj)
return;
clear_buffer_sub_data_error(ctx, bufObj, internalformat, offset, size,
format, type, data, "glClearBufferSubData",
true);
}
void GLAPIENTRY
_mesa_ClearNamedBufferSubData_no_error(GLuint buffer, GLenum internalformat,
GLintptr offset, GLsizeiptr size,
GLenum format, GLenum type,
const GLvoid *data)
{
GET_CURRENT_CONTEXT(ctx);
struct gl_buffer_object *bufObj = _mesa_lookup_bufferobj(ctx, buffer);
clear_buffer_sub_data_no_error(ctx, bufObj, internalformat, offset, size,
format, type, data,
"glClearNamedBufferSubData", true);
}
void GLAPIENTRY
_mesa_ClearNamedBufferSubData(GLuint buffer, GLenum internalformat,
GLintptr offset, GLsizeiptr size,
GLenum format, GLenum type,
const GLvoid *data)
{
GET_CURRENT_CONTEXT(ctx);
struct gl_buffer_object *bufObj;
bufObj = _mesa_lookup_bufferobj_err(ctx, buffer,
"glClearNamedBufferSubData");
if (!bufObj)
return;
clear_buffer_sub_data_error(ctx, bufObj, internalformat, offset, size,
format, type, data, "glClearNamedBufferSubData",
true);
}
static GLboolean
unmap_buffer(struct gl_context *ctx, struct gl_buffer_object *bufObj)
{
GLboolean status = ctx->Driver.UnmapBuffer(ctx, bufObj, MAP_USER);
bufObj->Mappings[MAP_USER].AccessFlags = 0;
assert(bufObj->Mappings[MAP_USER].Pointer == NULL);
assert(bufObj->Mappings[MAP_USER].Offset == 0);
assert(bufObj->Mappings[MAP_USER].Length == 0);
return status;
}
static GLboolean
validate_and_unmap_buffer(struct gl_context *ctx,
struct gl_buffer_object *bufObj,
const char *func)
{
ASSERT_OUTSIDE_BEGIN_END_WITH_RETVAL(ctx, GL_FALSE);
if (!_mesa_bufferobj_mapped(bufObj, MAP_USER)) {
_mesa_error(ctx, GL_INVALID_OPERATION,
"%s(buffer is not mapped)", func);
return GL_FALSE;
}
#ifdef BOUNDS_CHECK
if (bufObj->Access != GL_READ_ONLY_ARB) {
GLubyte *buf = (GLubyte *) bufObj->Pointer;
GLuint i;
/* check that last 100 bytes are still = magic value */
for (i = 0; i < 100; i++) {
GLuint pos = bufObj->Size - i - 1;
if (buf[pos] != 123) {
_mesa_warning(ctx, "Out of bounds buffer object write detected"
" at position %d (value = %u)\n",
pos, buf[pos]);
}
}
}
#endif
#ifdef VBO_DEBUG
if (bufObj->AccessFlags & GL_MAP_WRITE_BIT) {
GLuint i, unchanged = 0;
GLubyte *b = (GLubyte *) bufObj->Pointer;
GLint pos = -1;
/* check which bytes changed */
for (i = 0; i < bufObj->Size - 1; i++) {
if (b[i] == (i & 0xff) && b[i+1] == ((i+1) & 0xff)) {
unchanged++;
if (pos == -1)
pos = i;
}
}
if (unchanged) {
printf("glUnmapBufferARB(%u): %u of %ld unchanged, starting at %d\n",
bufObj->Name, unchanged, bufObj->Size, pos);
}
}
#endif
return unmap_buffer(ctx, bufObj);
}
GLboolean GLAPIENTRY
_mesa_UnmapBuffer_no_error(GLenum target)
{
GET_CURRENT_CONTEXT(ctx);
struct gl_buffer_object **bufObjPtr = get_buffer_target(ctx, target);
struct gl_buffer_object *bufObj = *bufObjPtr;
return unmap_buffer(ctx, bufObj);
}
GLboolean GLAPIENTRY
_mesa_UnmapBuffer(GLenum target)
{
GET_CURRENT_CONTEXT(ctx);
struct gl_buffer_object *bufObj;
bufObj = get_buffer(ctx, "glUnmapBuffer", target, GL_INVALID_OPERATION);
if (!bufObj)
return GL_FALSE;
return validate_and_unmap_buffer(ctx, bufObj, "glUnmapBuffer");
}
GLboolean GLAPIENTRY
_mesa_UnmapNamedBuffer_no_error(GLuint buffer)
{
GET_CURRENT_CONTEXT(ctx);
struct gl_buffer_object *bufObj = _mesa_lookup_bufferobj(ctx, buffer);
return unmap_buffer(ctx, bufObj);
}
GLboolean GLAPIENTRY
_mesa_UnmapNamedBuffer(GLuint buffer)
{
GET_CURRENT_CONTEXT(ctx);
struct gl_buffer_object *bufObj;
bufObj = _mesa_lookup_bufferobj_err(ctx, buffer, "glUnmapNamedBuffer");
if (!bufObj)
return GL_FALSE;
return validate_and_unmap_buffer(ctx, bufObj, "glUnmapNamedBuffer");
}
static bool
get_buffer_parameter(struct gl_context *ctx,
struct gl_buffer_object *bufObj, GLenum pname,
GLint64 *params, const char *func)
{
switch (pname) {
case GL_BUFFER_SIZE_ARB:
*params = bufObj->Size;
break;
case GL_BUFFER_USAGE_ARB:
*params = bufObj->Usage;
break;
case GL_BUFFER_ACCESS_ARB:
*params = simplified_access_mode(ctx,
bufObj->Mappings[MAP_USER].AccessFlags);
break;
case GL_BUFFER_MAPPED_ARB:
*params = _mesa_bufferobj_mapped(bufObj, MAP_USER);
break;
case GL_BUFFER_ACCESS_FLAGS:
if (!ctx->Extensions.ARB_map_buffer_range)
goto invalid_pname;
*params = bufObj->Mappings[MAP_USER].AccessFlags;
break;
case GL_BUFFER_MAP_OFFSET:
if (!ctx->Extensions.ARB_map_buffer_range)
goto invalid_pname;
*params = bufObj->Mappings[MAP_USER].Offset;
break;
case GL_BUFFER_MAP_LENGTH:
if (!ctx->Extensions.ARB_map_buffer_range)
goto invalid_pname;
*params = bufObj->Mappings[MAP_USER].Length;
break;
case GL_BUFFER_IMMUTABLE_STORAGE:
if (!ctx->Extensions.ARB_buffer_storage)
goto invalid_pname;
*params = bufObj->Immutable;
break;
case GL_BUFFER_STORAGE_FLAGS:
if (!ctx->Extensions.ARB_buffer_storage)
goto invalid_pname;
*params = bufObj->StorageFlags;
break;
default:
goto invalid_pname;
}
return true;
invalid_pname:
_mesa_error(ctx, GL_INVALID_ENUM, "%s(invalid pname: %s)", func,
_mesa_enum_to_string(pname));
return false;
}
void GLAPIENTRY
_mesa_GetBufferParameteriv(GLenum target, GLenum pname, GLint *params)
{
GET_CURRENT_CONTEXT(ctx);
struct gl_buffer_object *bufObj;
GLint64 parameter;
bufObj = get_buffer(ctx, "glGetBufferParameteriv", target,
GL_INVALID_OPERATION);
if (!bufObj)
return;
if (!get_buffer_parameter(ctx, bufObj, pname, ¶meter,
"glGetBufferParameteriv"))
return; /* Error already recorded. */
*params = (GLint) parameter;
}
void GLAPIENTRY
_mesa_GetBufferParameteri64v(GLenum target, GLenum pname, GLint64 *params)
{
GET_CURRENT_CONTEXT(ctx);
struct gl_buffer_object *bufObj;
GLint64 parameter;
bufObj = get_buffer(ctx, "glGetBufferParameteri64v", target,
GL_INVALID_OPERATION);
if (!bufObj)
return;
if (!get_buffer_parameter(ctx, bufObj, pname, ¶meter,
"glGetBufferParameteri64v"))
return; /* Error already recorded. */
*params = parameter;
}
void GLAPIENTRY
_mesa_GetNamedBufferParameteriv(GLuint buffer, GLenum pname, GLint *params)
{
GET_CURRENT_CONTEXT(ctx);
struct gl_buffer_object *bufObj;
GLint64 parameter;
bufObj = _mesa_lookup_bufferobj_err(ctx, buffer,
"glGetNamedBufferParameteriv");
if (!bufObj)
return;
if (!get_buffer_parameter(ctx, bufObj, pname, ¶meter,
"glGetNamedBufferParameteriv"))
return; /* Error already recorded. */
*params = (GLint) parameter;
}
void GLAPIENTRY
_mesa_GetNamedBufferParameteri64v(GLuint buffer, GLenum pname,
GLint64 *params)
{
GET_CURRENT_CONTEXT(ctx);
struct gl_buffer_object *bufObj;
GLint64 parameter;
bufObj = _mesa_lookup_bufferobj_err(ctx, buffer,
"glGetNamedBufferParameteri64v");
if (!bufObj)
return;
if (!get_buffer_parameter(ctx, bufObj, pname, ¶meter,
"glGetNamedBufferParameteri64v"))
return; /* Error already recorded. */
*params = parameter;
}
void GLAPIENTRY
_mesa_GetBufferPointerv(GLenum target, GLenum pname, GLvoid **params)
{
GET_CURRENT_CONTEXT(ctx);
struct gl_buffer_object *bufObj;
if (pname != GL_BUFFER_MAP_POINTER) {
_mesa_error(ctx, GL_INVALID_ENUM, "glGetBufferPointerv(pname != "
"GL_BUFFER_MAP_POINTER)");
return;
}
bufObj = get_buffer(ctx, "glGetBufferPointerv", target,
GL_INVALID_OPERATION);
if (!bufObj)
return;
*params = bufObj->Mappings[MAP_USER].Pointer;
}
void GLAPIENTRY
_mesa_GetNamedBufferPointerv(GLuint buffer, GLenum pname, GLvoid **params)
{
GET_CURRENT_CONTEXT(ctx);
struct gl_buffer_object *bufObj;
if (pname != GL_BUFFER_MAP_POINTER) {
_mesa_error(ctx, GL_INVALID_ENUM, "glGetNamedBufferPointerv(pname != "
"GL_BUFFER_MAP_POINTER)");
return;
}
bufObj = _mesa_lookup_bufferobj_err(ctx, buffer,
"glGetNamedBufferPointerv");
if (!bufObj)
return;
*params = bufObj->Mappings[MAP_USER].Pointer;
}
static void
copy_buffer_sub_data(struct gl_context *ctx, struct gl_buffer_object *src,
struct gl_buffer_object *dst, GLintptr readOffset,
GLintptr writeOffset, GLsizeiptr size, const char *func)
{
if (_mesa_check_disallowed_mapping(src)) {
_mesa_error(ctx, GL_INVALID_OPERATION,
"%s(readBuffer is mapped)", func);
return;
}
if (_mesa_check_disallowed_mapping(dst)) {
_mesa_error(ctx, GL_INVALID_OPERATION,
"%s(writeBuffer is mapped)", func);
return;
}
if (readOffset < 0) {
_mesa_error(ctx, GL_INVALID_VALUE,
"%s(readOffset %d < 0)", func, (int) readOffset);
return;
}
if (writeOffset < 0) {
_mesa_error(ctx, GL_INVALID_VALUE,
"%s(writeOffset %d < 0)", func, (int) writeOffset);
return;
}
if (size < 0) {
_mesa_error(ctx, GL_INVALID_VALUE,
"%s(size %d < 0)", func, (int) size);
return;
}
if (readOffset + size > src->Size) {
_mesa_error(ctx, GL_INVALID_VALUE,
"%s(readOffset %d + size %d > src_buffer_size %d)", func,
(int) readOffset, (int) size, (int) src->Size);
return;
}
if (writeOffset + size > dst->Size) {
_mesa_error(ctx, GL_INVALID_VALUE,
"%s(writeOffset %d + size %d > dst_buffer_size %d)", func,
(int) writeOffset, (int) size, (int) dst->Size);
return;
}
if (src == dst) {
if (readOffset + size <= writeOffset) {
/* OK */
}
else if (writeOffset + size <= readOffset) {
/* OK */
}
else {
/* overlapping src/dst is illegal */
_mesa_error(ctx, GL_INVALID_VALUE,
"%s(overlapping src/dst)", func);
return;
}
}
dst->MinMaxCacheDirty = true;
ctx->Driver.CopyBufferSubData(ctx, src, dst, readOffset, writeOffset, size);
}
void GLAPIENTRY
_mesa_CopyBufferSubData_no_error(GLenum readTarget, GLenum writeTarget,
GLintptr readOffset, GLintptr writeOffset,
GLsizeiptr size)
{
GET_CURRENT_CONTEXT(ctx);
struct gl_buffer_object **src_ptr = get_buffer_target(ctx, readTarget);
struct gl_buffer_object *src = *src_ptr;
struct gl_buffer_object **dst_ptr = get_buffer_target(ctx, writeTarget);
struct gl_buffer_object *dst = *dst_ptr;
dst->MinMaxCacheDirty = true;
ctx->Driver.CopyBufferSubData(ctx, src, dst, readOffset, writeOffset,
size);
}
void GLAPIENTRY
_mesa_CopyBufferSubData(GLenum readTarget, GLenum writeTarget,
GLintptr readOffset, GLintptr writeOffset,
GLsizeiptr size)
{
GET_CURRENT_CONTEXT(ctx);
struct gl_buffer_object *src, *dst;
src = get_buffer(ctx, "glCopyBufferSubData", readTarget,
GL_INVALID_OPERATION);
if (!src)
return;
dst = get_buffer(ctx, "glCopyBufferSubData", writeTarget,
GL_INVALID_OPERATION);
if (!dst)
return;
copy_buffer_sub_data(ctx, src, dst, readOffset, writeOffset, size,
"glCopyBufferSubData");
}
void GLAPIENTRY
_mesa_CopyNamedBufferSubData_no_error(GLuint readBuffer, GLuint writeBuffer,
GLintptr readOffset,
GLintptr writeOffset, GLsizeiptr size)
{
GET_CURRENT_CONTEXT(ctx);
struct gl_buffer_object *src = _mesa_lookup_bufferobj(ctx, readBuffer);
struct gl_buffer_object *dst = _mesa_lookup_bufferobj(ctx, writeBuffer);
dst->MinMaxCacheDirty = true;
ctx->Driver.CopyBufferSubData(ctx, src, dst, readOffset, writeOffset,
size);
}
void GLAPIENTRY
_mesa_CopyNamedBufferSubData(GLuint readBuffer, GLuint writeBuffer,
GLintptr readOffset, GLintptr writeOffset,
GLsizeiptr size)
{
GET_CURRENT_CONTEXT(ctx);
struct gl_buffer_object *src, *dst;
src = _mesa_lookup_bufferobj_err(ctx, readBuffer,
"glCopyNamedBufferSubData");
if (!src)
return;
dst = _mesa_lookup_bufferobj_err(ctx, writeBuffer,
"glCopyNamedBufferSubData");
if (!dst)
return;
copy_buffer_sub_data(ctx, src, dst, readOffset, writeOffset, size,
"glCopyNamedBufferSubData");
}
static bool
validate_map_buffer_range(struct gl_context *ctx,
struct gl_buffer_object *bufObj, GLintptr offset,
GLsizeiptr length, GLbitfield access,
const char *func)
{
GLbitfield allowed_access;
ASSERT_OUTSIDE_BEGIN_END_WITH_RETVAL(ctx, false);
if (offset < 0) {
_mesa_error(ctx, GL_INVALID_VALUE,
"%s(offset %ld < 0)", func, (long) offset);
return false;
}
if (length < 0) {
_mesa_error(ctx, GL_INVALID_VALUE,
"%s(length %ld < 0)", func, (long) length);
return false;
}
/* Page 38 of the PDF of the OpenGL ES 3.0 spec says:
*
* "An INVALID_OPERATION error is generated for any of the following
* conditions:
*
* * <length> is zero."
*
* Additionally, page 94 of the PDF of the OpenGL 4.5 core spec
* (30.10.2014) also says this, so it's no longer allowed for desktop GL,
* either.
*/
if (length == 0) {
_mesa_error(ctx, GL_INVALID_OPERATION, "%s(length = 0)", func);
return false;
}
allowed_access = GL_MAP_READ_BIT |
GL_MAP_WRITE_BIT |
GL_MAP_INVALIDATE_RANGE_BIT |
GL_MAP_INVALIDATE_BUFFER_BIT |
GL_MAP_FLUSH_EXPLICIT_BIT |
GL_MAP_UNSYNCHRONIZED_BIT;
if (ctx->Extensions.ARB_buffer_storage) {
allowed_access |= GL_MAP_PERSISTENT_BIT |
GL_MAP_COHERENT_BIT;
}
if (access & ~allowed_access) {
/* generate an error if any bits other than those allowed are set */
_mesa_error(ctx, GL_INVALID_VALUE,
"%s(access has undefined bits set)", func);
return false;
}
if ((access & (GL_MAP_READ_BIT | GL_MAP_WRITE_BIT)) == 0) {
_mesa_error(ctx, GL_INVALID_OPERATION,
"%s(access indicates neither read or write)", func);
return false;
}
if ((access & GL_MAP_READ_BIT) &&
(access & (GL_MAP_INVALIDATE_RANGE_BIT |
GL_MAP_INVALIDATE_BUFFER_BIT |
GL_MAP_UNSYNCHRONIZED_BIT))) {
_mesa_error(ctx, GL_INVALID_OPERATION,
"%s(read access with disallowed bits)", func);
return false;
}
if ((access & GL_MAP_FLUSH_EXPLICIT_BIT) &&
((access & GL_MAP_WRITE_BIT) == 0)) {
_mesa_error(ctx, GL_INVALID_OPERATION,
"%s(access has flush explicit without write)", func);
return false;
}
if (access & GL_MAP_READ_BIT &&
!(bufObj->StorageFlags & GL_MAP_READ_BIT)) {
_mesa_error(ctx, GL_INVALID_OPERATION,
"%s(buffer does not allow read access)", func);
return false;
}
if (access & GL_MAP_WRITE_BIT &&
!(bufObj->StorageFlags & GL_MAP_WRITE_BIT)) {
_mesa_error(ctx, GL_INVALID_OPERATION,
"%s(buffer does not allow write access)", func);
return false;
}
if (access & GL_MAP_COHERENT_BIT &&
!(bufObj->StorageFlags & GL_MAP_COHERENT_BIT)) {
_mesa_error(ctx, GL_INVALID_OPERATION,
"%s(buffer does not allow coherent access)", func);
return false;
}
if (access & GL_MAP_PERSISTENT_BIT &&
!(bufObj->StorageFlags & GL_MAP_PERSISTENT_BIT)) {
_mesa_error(ctx, GL_INVALID_OPERATION,
"%s(buffer does not allow persistent access)", func);
return false;
}
if (offset + length > bufObj->Size) {
_mesa_error(ctx, GL_INVALID_VALUE,
"%s(offset %lu + length %lu > buffer_size %lu)", func,
(unsigned long) offset, (unsigned long) length,
(unsigned long) bufObj->Size);
return false;
}
if (_mesa_bufferobj_mapped(bufObj, MAP_USER)) {
_mesa_error(ctx, GL_INVALID_OPERATION,
"%s(buffer already mapped)", func);
return false;
}
if (access & GL_MAP_WRITE_BIT) {
bufObj->NumMapBufferWriteCalls++;
if ((bufObj->Usage == GL_STATIC_DRAW ||
bufObj->Usage == GL_STATIC_COPY) &&
bufObj->NumMapBufferWriteCalls >= BUFFER_WARNING_CALL_COUNT) {
BUFFER_USAGE_WARNING(ctx,
"using %s(buffer %u, offset %u, length %u) to "
"update a %s buffer",
func, bufObj->Name, offset, length,
_mesa_enum_to_string(bufObj->Usage));
}
}
return true;
}
static void *
map_buffer_range(struct gl_context *ctx, struct gl_buffer_object *bufObj,
GLintptr offset, GLsizeiptr length, GLbitfield access,
const char *func)
{
if (!bufObj->Size) {
_mesa_error(ctx, GL_OUT_OF_MEMORY, "%s(buffer size = 0)", func);
return NULL;
}
assert(ctx->Driver.MapBufferRange);
void *map = ctx->Driver.MapBufferRange(ctx, offset, length, access, bufObj,
MAP_USER);
if (!map) {
_mesa_error(ctx, GL_OUT_OF_MEMORY, "%s(map failed)", func);
}
else {
/* The driver callback should have set all these fields.
* This is important because other modules (like VBO) might call
* the driver function directly.
*/
assert(bufObj->Mappings[MAP_USER].Pointer == map);
assert(bufObj->Mappings[MAP_USER].Length == length);
assert(bufObj->Mappings[MAP_USER].Offset == offset);
assert(bufObj->Mappings[MAP_USER].AccessFlags == access);
}
if (access & GL_MAP_WRITE_BIT) {
bufObj->Written = GL_TRUE;
bufObj->MinMaxCacheDirty = true;
}
#ifdef VBO_DEBUG
if (strstr(func, "Range") == NULL) { /* If not MapRange */
printf("glMapBuffer(%u, sz %ld, access 0x%x)\n",
bufObj->Name, bufObj->Size, access);
/* Access must be write only */
if ((access & GL_MAP_WRITE_BIT) && (!(access & ~GL_MAP_WRITE_BIT))) {
GLuint i;
GLubyte *b = (GLubyte *) bufObj->Pointer;
for (i = 0; i < bufObj->Size; i++)
b[i] = i & 0xff;
}
}
#endif
#ifdef BOUNDS_CHECK
if (strstr(func, "Range") == NULL) { /* If not MapRange */
GLubyte *buf = (GLubyte *) bufObj->Pointer;
GLuint i;
/* buffer is 100 bytes larger than requested, fill with magic value */
for (i = 0; i < 100; i++) {
buf[bufObj->Size - i - 1] = 123;
}
}
#endif
return map;
}
void * GLAPIENTRY
_mesa_MapBufferRange_no_error(GLenum target, GLintptr offset,
GLsizeiptr length, GLbitfield access)
{
GET_CURRENT_CONTEXT(ctx);
struct gl_buffer_object **bufObjPtr = get_buffer_target(ctx, target);
struct gl_buffer_object *bufObj = *bufObjPtr;
return map_buffer_range(ctx, bufObj, offset, length, access,
"glMapBufferRange");
}
void * GLAPIENTRY
_mesa_MapBufferRange(GLenum target, GLintptr offset, GLsizeiptr length,
GLbitfield access)
{
GET_CURRENT_CONTEXT(ctx);
struct gl_buffer_object *bufObj;
if (!ctx->Extensions.ARB_map_buffer_range) {
_mesa_error(ctx, GL_INVALID_OPERATION,
"glMapBufferRange(ARB_map_buffer_range not supported)");
return NULL;
}
bufObj = get_buffer(ctx, "glMapBufferRange", target, GL_INVALID_OPERATION);
if (!bufObj)
return NULL;
if (!validate_map_buffer_range(ctx, bufObj, offset, length, access,
"glMapBufferRange"))
return NULL;
return map_buffer_range(ctx, bufObj, offset, length, access,
"glMapBufferRange");
}
void * GLAPIENTRY
_mesa_MapNamedBufferRange_no_error(GLuint buffer, GLintptr offset,
GLsizeiptr length, GLbitfield access)
{
GET_CURRENT_CONTEXT(ctx);
struct gl_buffer_object *bufObj = _mesa_lookup_bufferobj(ctx, buffer);
return map_buffer_range(ctx, bufObj, offset, length, access,
"glMapNamedBufferRange");
}
void * GLAPIENTRY
_mesa_MapNamedBufferRange(GLuint buffer, GLintptr offset, GLsizeiptr length,
GLbitfield access)
{
GET_CURRENT_CONTEXT(ctx);
struct gl_buffer_object *bufObj;
if (!ctx->Extensions.ARB_map_buffer_range) {
_mesa_error(ctx, GL_INVALID_OPERATION,
"glMapNamedBufferRange("
"ARB_map_buffer_range not supported)");
return NULL;
}
bufObj = _mesa_lookup_bufferobj_err(ctx, buffer, "glMapNamedBufferRange");
if (!bufObj)
return NULL;
if (!validate_map_buffer_range(ctx, bufObj, offset, length, access,
"glMapNamedBufferRange"))
return NULL;
return map_buffer_range(ctx, bufObj, offset, length, access,
"glMapNamedBufferRange");
}
/**
* Converts GLenum access from MapBuffer and MapNamedBuffer into
* flags for input to map_buffer_range.
*
* \return true if the type of requested access is permissible.
*/
static bool
get_map_buffer_access_flags(struct gl_context *ctx, GLenum access,
GLbitfield *flags)
{
switch (access) {
case GL_READ_ONLY_ARB:
*flags = GL_MAP_READ_BIT;
return _mesa_is_desktop_gl(ctx);
case GL_WRITE_ONLY_ARB:
*flags = GL_MAP_WRITE_BIT;
return true;
case GL_READ_WRITE_ARB:
*flags = GL_MAP_READ_BIT | GL_MAP_WRITE_BIT;
return _mesa_is_desktop_gl(ctx);
default:
*flags = 0;
return false;
}
}
void * GLAPIENTRY
_mesa_MapBuffer_no_error(GLenum target, GLenum access)
{
GET_CURRENT_CONTEXT(ctx);
GLbitfield accessFlags;
get_map_buffer_access_flags(ctx, access, &accessFlags);
struct gl_buffer_object **bufObjPtr = get_buffer_target(ctx, target);
struct gl_buffer_object *bufObj = *bufObjPtr;
return map_buffer_range(ctx, bufObj, 0, bufObj->Size, accessFlags,
"glMapBuffer");
}
void * GLAPIENTRY
_mesa_MapBuffer(GLenum target, GLenum access)
{
GET_CURRENT_CONTEXT(ctx);
struct gl_buffer_object *bufObj;
GLbitfield accessFlags;
if (!get_map_buffer_access_flags(ctx, access, &accessFlags)) {
_mesa_error(ctx, GL_INVALID_ENUM, "glMapBuffer(invalid access)");
return NULL;
}
bufObj = get_buffer(ctx, "glMapBuffer", target, GL_INVALID_OPERATION);
if (!bufObj)
return NULL;
if (!validate_map_buffer_range(ctx, bufObj, 0, bufObj->Size, accessFlags,
"glMapBuffer"))
return NULL;
return map_buffer_range(ctx, bufObj, 0, bufObj->Size, accessFlags,
"glMapBuffer");
}
void * GLAPIENTRY
_mesa_MapNamedBuffer_no_error(GLuint buffer, GLenum access)
{
GET_CURRENT_CONTEXT(ctx);
GLbitfield accessFlags;
get_map_buffer_access_flags(ctx, access, &accessFlags);
struct gl_buffer_object *bufObj = _mesa_lookup_bufferobj(ctx, buffer);
return map_buffer_range(ctx, bufObj, 0, bufObj->Size, accessFlags,
"glMapNamedBuffer");
}
void * GLAPIENTRY
_mesa_MapNamedBuffer(GLuint buffer, GLenum access)
{
GET_CURRENT_CONTEXT(ctx);
struct gl_buffer_object *bufObj;
GLbitfield accessFlags;
if (!get_map_buffer_access_flags(ctx, access, &accessFlags)) {
_mesa_error(ctx, GL_INVALID_ENUM, "glMapNamedBuffer(invalid access)");
return NULL;
}
bufObj = _mesa_lookup_bufferobj_err(ctx, buffer, "glMapNamedBuffer");
if (!bufObj)
return NULL;
if (!validate_map_buffer_range(ctx, bufObj, 0, bufObj->Size, accessFlags,
"glMapNamedBuffer"))
return NULL;
return map_buffer_range(ctx, bufObj, 0, bufObj->Size, accessFlags,
"glMapNamedBuffer");
}
static void
flush_mapped_buffer_range(struct gl_context *ctx,
struct gl_buffer_object *bufObj,
GLintptr offset, GLsizeiptr length,
const char *func)
{
if (!ctx->Extensions.ARB_map_buffer_range) {
_mesa_error(ctx, GL_INVALID_OPERATION,
"%s(ARB_map_buffer_range not supported)", func);
return;
}
if (offset < 0) {
_mesa_error(ctx, GL_INVALID_VALUE,
"%s(offset %ld < 0)", func, (long) offset);
return;
}
if (length < 0) {
_mesa_error(ctx, GL_INVALID_VALUE,
"%s(length %ld < 0)", func, (long) length);
return;
}
if (!_mesa_bufferobj_mapped(bufObj, MAP_USER)) {
/* buffer is not mapped */
_mesa_error(ctx, GL_INVALID_OPERATION,
"%s(buffer is not mapped)", func);
return;
}
if ((bufObj->Mappings[MAP_USER].AccessFlags &
GL_MAP_FLUSH_EXPLICIT_BIT) == 0) {
_mesa_error(ctx, GL_INVALID_OPERATION,
"%s(GL_MAP_FLUSH_EXPLICIT_BIT not set)", func);
return;
}
if (offset + length > bufObj->Mappings[MAP_USER].Length) {
_mesa_error(ctx, GL_INVALID_VALUE,
"%s(offset %ld + length %ld > mapped length %ld)", func,
(long) offset, (long) length,
(long) bufObj->Mappings[MAP_USER].Length);
return;
}
assert(bufObj->Mappings[MAP_USER].AccessFlags & GL_MAP_WRITE_BIT);
if (ctx->Driver.FlushMappedBufferRange)
ctx->Driver.FlushMappedBufferRange(ctx, offset, length, bufObj,
MAP_USER);
}
void GLAPIENTRY
_mesa_FlushMappedBufferRange_no_error(GLenum target, GLintptr offset,
GLsizeiptr length)
{
GET_CURRENT_CONTEXT(ctx);
struct gl_buffer_object **bufObjPtr = get_buffer_target(ctx, target);
struct gl_buffer_object *bufObj = *bufObjPtr;
if (ctx->Driver.FlushMappedBufferRange)
ctx->Driver.FlushMappedBufferRange(ctx, offset, length, bufObj,
MAP_USER);
}
void GLAPIENTRY
_mesa_FlushMappedBufferRange(GLenum target, GLintptr offset,
GLsizeiptr length)
{
GET_CURRENT_CONTEXT(ctx);
struct gl_buffer_object *bufObj;
bufObj = get_buffer(ctx, "glFlushMappedBufferRange", target,
GL_INVALID_OPERATION);
if (!bufObj)
return;
flush_mapped_buffer_range(ctx, bufObj, offset, length,
"glFlushMappedBufferRange");
}
void GLAPIENTRY
_mesa_FlushMappedNamedBufferRange_no_error(GLuint buffer, GLintptr offset,
GLsizeiptr length)
{
GET_CURRENT_CONTEXT(ctx);
struct gl_buffer_object *bufObj = _mesa_lookup_bufferobj(ctx, buffer);
if (ctx->Driver.FlushMappedBufferRange)
ctx->Driver.FlushMappedBufferRange(ctx, offset, length, bufObj,
MAP_USER);
}
void GLAPIENTRY
_mesa_FlushMappedNamedBufferRange(GLuint buffer, GLintptr offset,
GLsizeiptr length)
{
GET_CURRENT_CONTEXT(ctx);
struct gl_buffer_object *bufObj;
bufObj = _mesa_lookup_bufferobj_err(ctx, buffer,
"glFlushMappedNamedBufferRange");
if (!bufObj)
return;
flush_mapped_buffer_range(ctx, bufObj, offset, length,
"glFlushMappedNamedBufferRange");
}
static void
bind_buffer_range_uniform_buffer(struct gl_context *ctx, GLuint index,
struct gl_buffer_object *bufObj,
GLintptr offset, GLsizeiptr size)
{
if (bufObj == ctx->Shared->NullBufferObj) {
offset = -1;
size = -1;
}
_mesa_reference_buffer_object(ctx, &ctx->UniformBuffer, bufObj);
bind_uniform_buffer(ctx, index, bufObj, offset, size, GL_FALSE);
}
/**
* Bind a region of a buffer object to a uniform block binding point.
* \param index the uniform buffer binding point index
* \param bufObj the buffer object
* \param offset offset to the start of buffer object region
* \param size size of the buffer object region
*/
static void
bind_buffer_range_uniform_buffer_err(struct gl_context *ctx, GLuint index,
struct gl_buffer_object *bufObj,
GLintptr offset, GLsizeiptr size)
{
if (index >= ctx->Const.MaxUniformBufferBindings) {
_mesa_error(ctx, GL_INVALID_VALUE, "glBindBufferRange(index=%d)", index);
return;
}
if (offset & (ctx->Const.UniformBufferOffsetAlignment - 1)) {
_mesa_error(ctx, GL_INVALID_VALUE,
"glBindBufferRange(offset misaligned %d/%d)", (int) offset,
ctx->Const.UniformBufferOffsetAlignment);
return;
}
bind_buffer_range_uniform_buffer(ctx, index, bufObj, offset, size);
}
static void
bind_buffer_range_shader_storage_buffer(struct gl_context *ctx,
GLuint index,
struct gl_buffer_object *bufObj,
GLintptr offset,
GLsizeiptr size)
{
if (bufObj == ctx->Shared->NullBufferObj) {
offset = -1;
size = -1;
}
_mesa_reference_buffer_object(ctx, &ctx->ShaderStorageBuffer, bufObj);
bind_shader_storage_buffer(ctx, index, bufObj, offset, size, GL_FALSE);
}
/**
* Bind a region of a buffer object to a shader storage block binding point.
* \param index the shader storage buffer binding point index
* \param bufObj the buffer object
* \param offset offset to the start of buffer object region
* \param size size of the buffer object region
*/
static void
bind_buffer_range_shader_storage_buffer_err(struct gl_context *ctx,
GLuint index,
struct gl_buffer_object *bufObj,
GLintptr offset, GLsizeiptr size)
{
if (index >= ctx->Const.MaxShaderStorageBufferBindings) {
_mesa_error(ctx, GL_INVALID_VALUE, "glBindBufferRange(index=%d)", index);
return;
}
if (offset & (ctx->Const.ShaderStorageBufferOffsetAlignment - 1)) {
_mesa_error(ctx, GL_INVALID_VALUE,
"glBindBufferRange(offset misaligned %d/%d)", (int) offset,
ctx->Const.ShaderStorageBufferOffsetAlignment);
return;
}
bind_buffer_range_shader_storage_buffer(ctx, index, bufObj, offset, size);
}
static void
bind_buffer_range_atomic_buffer(struct gl_context *ctx, GLuint index,
struct gl_buffer_object *bufObj,
GLintptr offset, GLsizeiptr size)
{
if (bufObj == ctx->Shared->NullBufferObj) {
offset = -1;
size = -1;
}
_mesa_reference_buffer_object(ctx, &ctx->AtomicBuffer, bufObj);
bind_atomic_buffer(ctx, index, bufObj, offset, size, GL_FALSE);
}
/**
* Bind a region of a buffer object to an atomic storage block binding point.
* \param index the shader storage buffer binding point index
* \param bufObj the buffer object
* \param offset offset to the start of buffer object region
* \param size size of the buffer object region
*/
static void
bind_buffer_range_atomic_buffer_err(struct gl_context *ctx,
GLuint index,
struct gl_buffer_object *bufObj,
GLintptr offset, GLsizeiptr size)
{
if (index >= ctx->Const.MaxAtomicBufferBindings) {
_mesa_error(ctx, GL_INVALID_VALUE, "glBindBufferRange(index=%d)", index);
return;
}
if (offset & (ATOMIC_COUNTER_SIZE - 1)) {
_mesa_error(ctx, GL_INVALID_VALUE,
"glBindBufferRange(offset misaligned %d/%d)", (int) offset,
ATOMIC_COUNTER_SIZE);
return;
}
bind_buffer_range_atomic_buffer(ctx, index, bufObj, offset, size);
}
static inline bool
bind_buffers_check_offset_and_size(struct gl_context *ctx,
GLuint index,
const GLintptr *offsets,
const GLsizeiptr *sizes)
{
if (offsets[index] < 0) {
/* The ARB_multi_bind spec says:
*
* "An INVALID_VALUE error is generated by BindBuffersRange if any
* value in <offsets> is less than zero (per binding)."
*/
_mesa_error(ctx, GL_INVALID_VALUE,
"glBindBuffersRange(offsets[%u]=%" PRId64 " < 0)",
index, (int64_t) offsets[index]);
return false;
}
if (sizes[index] <= 0) {
/* The ARB_multi_bind spec says:
*
* "An INVALID_VALUE error is generated by BindBuffersRange if any
* value in <sizes> is less than or equal to zero (per binding)."
*/
_mesa_error(ctx, GL_INVALID_VALUE,
"glBindBuffersRange(sizes[%u]=%" PRId64 " <= 0)",
index, (int64_t) sizes[index]);
return false;
}
return true;
}
static bool
error_check_bind_uniform_buffers(struct gl_context *ctx,
GLuint first, GLsizei count,
const char *caller)
{
if (!ctx->Extensions.ARB_uniform_buffer_object) {
_mesa_error(ctx, GL_INVALID_ENUM,
"%s(target=GL_UNIFORM_BUFFER)", caller);
return false;
}
/* The ARB_multi_bind_spec says:
*
* "An INVALID_OPERATION error is generated if <first> + <count> is
* greater than the number of target-specific indexed binding points,
* as described in section 6.7.1."
*/
if (first + count > ctx->Const.MaxUniformBufferBindings) {
_mesa_error(ctx, GL_INVALID_OPERATION,
"%s(first=%u + count=%d > the value of "
"GL_MAX_UNIFORM_BUFFER_BINDINGS=%u)",
caller, first, count,
ctx->Const.MaxUniformBufferBindings);
return false;
}
return true;
}
static bool
error_check_bind_shader_storage_buffers(struct gl_context *ctx,
GLuint first, GLsizei count,
const char *caller)
{
if (!ctx->Extensions.ARB_shader_storage_buffer_object) {
_mesa_error(ctx, GL_INVALID_ENUM,
"%s(target=GL_SHADER_STORAGE_BUFFER)", caller);
return false;
}
/* The ARB_multi_bind_spec says:
*
* "An INVALID_OPERATION error is generated if <first> + <count> is
* greater than the number of target-specific indexed binding points,
* as described in section 6.7.1."
*/
if (first + count > ctx->Const.MaxShaderStorageBufferBindings) {
_mesa_error(ctx, GL_INVALID_OPERATION,
"%s(first=%u + count=%d > the value of "
"GL_MAX_SHADER_STORAGE_BUFFER_BINDINGS=%u)",
caller, first, count,
ctx->Const.MaxShaderStorageBufferBindings);
return false;
}
return true;
}
/**
* Unbind all uniform buffers in the range
* <first> through <first>+<count>-1
*/
static void
unbind_uniform_buffers(struct gl_context *ctx, GLuint first, GLsizei count)
{
struct gl_buffer_object *bufObj = ctx->Shared->NullBufferObj;
for (int i = 0; i < count; i++)
set_buffer_binding(ctx, &ctx->UniformBufferBindings[first + i],
bufObj, -1, -1, GL_TRUE, 0);
}
/**
* Unbind all shader storage buffers in the range
* <first> through <first>+<count>-1
*/
static void
unbind_shader_storage_buffers(struct gl_context *ctx, GLuint first,
GLsizei count)
{
struct gl_buffer_object *bufObj = ctx->Shared->NullBufferObj;
for (int i = 0; i < count; i++)
set_buffer_binding(ctx, &ctx->ShaderStorageBufferBindings[first + i],
bufObj, -1, -1, GL_TRUE, 0);
}
static void
bind_uniform_buffers(struct gl_context *ctx, GLuint first, GLsizei count,
const GLuint *buffers,
bool range,
const GLintptr *offsets, const GLsizeiptr *sizes,
const char *caller)
{
if (!error_check_bind_uniform_buffers(ctx, first, count, caller))
return;
/* Assume that at least one binding will be changed */
FLUSH_VERTICES(ctx, 0);
ctx->NewDriverState |= ctx->DriverFlags.NewUniformBuffer;
if (!buffers) {
/* The ARB_multi_bind spec says:
*
* "If <buffers> is NULL, all bindings from <first> through
* <first>+<count>-1 are reset to their unbound (zero) state.
* In this case, the offsets and sizes associated with the
* binding points are set to default values, ignoring
* <offsets> and <sizes>."
*/
unbind_uniform_buffers(ctx, first, count);
return;
}
/* Note that the error semantics for multi-bind commands differ from
* those of other GL commands.
*
* The Issues section in the ARB_multi_bind spec says:
*
* "(11) Typically, OpenGL specifies that if an error is generated by a
* command, that command has no effect. This is somewhat
* unfortunate for multi-bind commands, because it would require a
* first pass to scan the entire list of bound objects for errors
* and then a second pass to actually perform the bindings.
* Should we have different error semantics?
*
* RESOLVED: Yes. In this specification, when the parameters for
* one of the <count> binding points are invalid, that binding point
* is not updated and an error will be generated. However, other
* binding points in the same command will be updated if their
* parameters are valid and no other error occurs."
*/
_mesa_HashLockMutex(ctx->Shared->BufferObjects);
for (int i = 0; i < count; i++) {
struct gl_buffer_binding *binding =
&ctx->UniformBufferBindings[first + i];
GLintptr offset = 0;
GLsizeiptr size = 0;
if (range) {
if (!bind_buffers_check_offset_and_size(ctx, i, offsets, sizes))
continue;
/* The ARB_multi_bind spec says:
*
* "An INVALID_VALUE error is generated by BindBuffersRange if any
* pair of values in <offsets> and <sizes> does not respectively
* satisfy the constraints described for those parameters for the
* specified target, as described in section 6.7.1 (per binding)."
*
* Section 6.7.1 refers to table 6.5, which says:
*
* "┌───────────────────────────────────────────────────────────────┐
* │ Uniform buffer array bindings (see sec. 7.6) │
* ├─────────────────────┬─────────────────────────────────────────┤
* │ ... │ ... │
* │ offset restriction │ multiple of value of UNIFORM_BUFFER_- │
* │ │ OFFSET_ALIGNMENT │
* │ ... │ ... │
* │ size restriction │ none │
* └─────────────────────┴─────────────────────────────────────────┘"
*/
if (offsets[i] & (ctx->Const.UniformBufferOffsetAlignment - 1)) {
_mesa_error(ctx, GL_INVALID_VALUE,
"glBindBuffersRange(offsets[%u]=%" PRId64
" is misaligned; it must be a multiple of the value of "
"GL_UNIFORM_BUFFER_OFFSET_ALIGNMENT=%u when "
"target=GL_UNIFORM_BUFFER)",
i, (int64_t) offsets[i],
ctx->Const.UniformBufferOffsetAlignment);
continue;
}
offset = offsets[i];
size = sizes[i];
}
set_buffer_multi_binding(ctx, buffers, i, caller,
binding, offset, size, range,
USAGE_UNIFORM_BUFFER);
}
_mesa_HashUnlockMutex(ctx->Shared->BufferObjects);
}
static void
bind_shader_storage_buffers(struct gl_context *ctx, GLuint first,
GLsizei count, const GLuint *buffers,
bool range,
const GLintptr *offsets,
const GLsizeiptr *sizes,
const char *caller)
{
if (!error_check_bind_shader_storage_buffers(ctx, first, count, caller))
return;
/* Assume that at least one binding will be changed */
FLUSH_VERTICES(ctx, 0);
ctx->NewDriverState |= ctx->DriverFlags.NewShaderStorageBuffer;
if (!buffers) {
/* The ARB_multi_bind spec says:
*
* "If <buffers> is NULL, all bindings from <first> through
* <first>+<count>-1 are reset to their unbound (zero) state.
* In this case, the offsets and sizes associated with the
* binding points are set to default values, ignoring
* <offsets> and <sizes>."
*/
unbind_shader_storage_buffers(ctx, first, count);
return;
}
/* Note that the error semantics for multi-bind commands differ from
* those of other GL commands.
*
* The Issues section in the ARB_multi_bind spec says:
*
* "(11) Typically, OpenGL specifies that if an error is generated by a
* command, that command has no effect. This is somewhat
* unfortunate for multi-bind commands, because it would require a
* first pass to scan the entire list of bound objects for errors
* and then a second pass to actually perform the bindings.
* Should we have different error semantics?
*
* RESOLVED: Yes. In this specification, when the parameters for
* one of the <count> binding points are invalid, that binding point
* is not updated and an error will be generated. However, other
* binding points in the same command will be updated if their
* parameters are valid and no other error occurs."
*/
_mesa_HashLockMutex(ctx->Shared->BufferObjects);
for (int i = 0; i < count; i++) {
struct gl_buffer_binding *binding =
&ctx->ShaderStorageBufferBindings[first + i];
GLintptr offset = 0;
GLsizeiptr size = 0;
if (range) {
if (!bind_buffers_check_offset_and_size(ctx, i, offsets, sizes))
continue;
/* The ARB_multi_bind spec says:
*
* "An INVALID_VALUE error is generated by BindBuffersRange if any
* pair of values in <offsets> and <sizes> does not respectively
* satisfy the constraints described for those parameters for the
* specified target, as described in section 6.7.1 (per binding)."
*
* Section 6.7.1 refers to table 6.5, which says:
*
* "┌───────────────────────────────────────────────────────────────┐
* │ Shader storage buffer array bindings (see sec. 7.8) │
* ├─────────────────────┬─────────────────────────────────────────┤
* │ ... │ ... │
* │ offset restriction │ multiple of value of SHADER_STORAGE_- │
* │ │ BUFFER_OFFSET_ALIGNMENT │
* │ ... │ ... │
* │ size restriction │ none │
* └─────────────────────┴─────────────────────────────────────────┘"
*/
if (offsets[i] & (ctx->Const.ShaderStorageBufferOffsetAlignment - 1)) {
_mesa_error(ctx, GL_INVALID_VALUE,
"glBindBuffersRange(offsets[%u]=%" PRId64
" is misaligned; it must be a multiple of the value of "
"GL_SHADER_STORAGE_BUFFER_OFFSET_ALIGNMENT=%u when "
"target=GL_SHADER_STORAGE_BUFFER)",
i, (int64_t) offsets[i],
ctx->Const.ShaderStorageBufferOffsetAlignment);
continue;
}
offset = offsets[i];
size = sizes[i];
}
set_buffer_multi_binding(ctx, buffers, i, caller,
binding, offset, size, range,
USAGE_SHADER_STORAGE_BUFFER);
}
_mesa_HashUnlockMutex(ctx->Shared->BufferObjects);
}
static bool
error_check_bind_xfb_buffers(struct gl_context *ctx,
struct gl_transform_feedback_object *tfObj,
GLuint first, GLsizei count, const char *caller)
{
if (!ctx->Extensions.EXT_transform_feedback) {
_mesa_error(ctx, GL_INVALID_ENUM,
"%s(target=GL_TRANSFORM_FEEDBACK_BUFFER)", caller);
return false;
}
/* Page 398 of the PDF of the OpenGL 4.4 (Core Profile) spec says:
*
* "An INVALID_OPERATION error is generated :
*
* ...
* • by BindBufferRange or BindBufferBase if target is TRANSFORM_-
* FEEDBACK_BUFFER and transform feedback is currently active."
*
* We assume that this is also meant to apply to BindBuffersRange
* and BindBuffersBase.
*/
if (tfObj->Active) {
_mesa_error(ctx, GL_INVALID_OPERATION,
"%s(Changing transform feedback buffers while "
"transform feedback is active)", caller);
return false;
}
/* The ARB_multi_bind_spec says:
*
* "An INVALID_OPERATION error is generated if <first> + <count> is
* greater than the number of target-specific indexed binding points,
* as described in section 6.7.1."
*/
if (first + count > ctx->Const.MaxTransformFeedbackBuffers) {
_mesa_error(ctx, GL_INVALID_OPERATION,
"%s(first=%u + count=%d > the value of "
"GL_MAX_TRANSFORM_FEEDBACK_BUFFERS=%u)",
caller, first, count,
ctx->Const.MaxTransformFeedbackBuffers);
return false;
}
return true;
}
/**
* Unbind all transform feedback buffers in the range
* <first> through <first>+<count>-1
*/
static void
unbind_xfb_buffers(struct gl_context *ctx,
struct gl_transform_feedback_object *tfObj,
GLuint first, GLsizei count)
{
struct gl_buffer_object * const bufObj = ctx->Shared->NullBufferObj;
for (int i = 0; i < count; i++)
_mesa_set_transform_feedback_binding(ctx, tfObj, first + i,
bufObj, 0, 0);
}
static void
bind_xfb_buffers(struct gl_context *ctx,
GLuint first, GLsizei count,
const GLuint *buffers,
bool range,
const GLintptr *offsets,
const GLsizeiptr *sizes,
const char *caller)
{
struct gl_transform_feedback_object *tfObj =
ctx->TransformFeedback.CurrentObject;
if (!error_check_bind_xfb_buffers(ctx, tfObj, first, count, caller))
return;
/* Assume that at least one binding will be changed */
FLUSH_VERTICES(ctx, 0);
ctx->NewDriverState |= ctx->DriverFlags.NewTransformFeedback;
if (!buffers) {
/* The ARB_multi_bind spec says:
*
* "If <buffers> is NULL, all bindings from <first> through
* <first>+<count>-1 are reset to their unbound (zero) state.
* In this case, the offsets and sizes associated with the
* binding points are set to default values, ignoring
* <offsets> and <sizes>."
*/
unbind_xfb_buffers(ctx, tfObj, first, count);
return;
}
/* Note that the error semantics for multi-bind commands differ from
* those of other GL commands.
*
* The Issues section in the ARB_multi_bind spec says:
*
* "(11) Typically, OpenGL specifies that if an error is generated by a
* command, that command has no effect. This is somewhat
* unfortunate for multi-bind commands, because it would require a
* first pass to scan the entire list of bound objects for errors
* and then a second pass to actually perform the bindings.
* Should we have different error semantics?
*
* RESOLVED: Yes. In this specification, when the parameters for
* one of the <count> binding points are invalid, that binding point
* is not updated and an error will be generated. However, other
* binding points in the same command will be updated if their
* parameters are valid and no other error occurs."
*/
_mesa_HashLockMutex(ctx->Shared->BufferObjects);
for (int i = 0; i < count; i++) {
const GLuint index = first + i;
struct gl_buffer_object * const boundBufObj = tfObj->Buffers[index];
struct gl_buffer_object *bufObj;
GLintptr offset = 0;
GLsizeiptr size = 0;
if (range) {
if (!bind_buffers_check_offset_and_size(ctx, i, offsets, sizes))
continue;
/* The ARB_multi_bind spec says:
*
* "An INVALID_VALUE error is generated by BindBuffersRange if any
* pair of values in <offsets> and <sizes> does not respectively
* satisfy the constraints described for those parameters for the
* specified target, as described in section 6.7.1 (per binding)."
*
* Section 6.7.1 refers to table 6.5, which says:
*
* "┌───────────────────────────────────────────────────────────────┐
* │ Transform feedback array bindings (see sec. 13.2.2) │
* ├───────────────────────┬───────────────────────────────────────┤
* │ ... │ ... │
* │ offset restriction │ multiple of 4 │
* │ ... │ ... │
* │ size restriction │ multiple of 4 │
* └───────────────────────┴───────────────────────────────────────┘"
*/
if (offsets[i] & 0x3) {
_mesa_error(ctx, GL_INVALID_VALUE,
"glBindBuffersRange(offsets[%u]=%" PRId64
" is misaligned; it must be a multiple of 4 when "
"target=GL_TRANSFORM_FEEDBACK_BUFFER)",
i, (int64_t) offsets[i]);
continue;
}
if (sizes[i] & 0x3) {
_mesa_error(ctx, GL_INVALID_VALUE,
"glBindBuffersRange(sizes[%u]=%" PRId64
" is misaligned; it must be a multiple of 4 when "
"target=GL_TRANSFORM_FEEDBACK_BUFFER)",
i, (int64_t) sizes[i]);
continue;
}
offset = offsets[i];
size = sizes[i];
}
if (boundBufObj && boundBufObj->Name == buffers[i])
bufObj = boundBufObj;
else
bufObj = _mesa_multi_bind_lookup_bufferobj(ctx, buffers, i, caller);
if (bufObj)
_mesa_set_transform_feedback_binding(ctx, tfObj, index, bufObj,
offset, size);
}
_mesa_HashUnlockMutex(ctx->Shared->BufferObjects);
}
static bool
error_check_bind_atomic_buffers(struct gl_context *ctx,
GLuint first, GLsizei count,
const char *caller)
{
if (!ctx->Extensions.ARB_shader_atomic_counters) {
_mesa_error(ctx, GL_INVALID_ENUM,
"%s(target=GL_ATOMIC_COUNTER_BUFFER)", caller);
return false;
}
/* The ARB_multi_bind_spec says:
*
* "An INVALID_OPERATION error is generated if <first> + <count> is
* greater than the number of target-specific indexed binding points,
* as described in section 6.7.1."
*/
if (first + count > ctx->Const.MaxAtomicBufferBindings) {
_mesa_error(ctx, GL_INVALID_OPERATION,
"%s(first=%u + count=%d > the value of "
"GL_MAX_ATOMIC_BUFFER_BINDINGS=%u)",
caller, first, count, ctx->Const.MaxAtomicBufferBindings);
return false;
}
return true;
}
/**
* Unbind all atomic counter buffers in the range
* <first> through <first>+<count>-1
*/
static void
unbind_atomic_buffers(struct gl_context *ctx, GLuint first, GLsizei count)
{
struct gl_buffer_object * const bufObj = ctx->Shared->NullBufferObj;
for (int i = 0; i < count; i++)
set_buffer_binding(ctx, &ctx->AtomicBufferBindings[first + i],
bufObj, -1, -1, GL_TRUE, 0);
}
static void
bind_atomic_buffers(struct gl_context *ctx,
GLuint first,
GLsizei count,
const GLuint *buffers,
bool range,
const GLintptr *offsets,
const GLsizeiptr *sizes,
const char *caller)
{
if (!error_check_bind_atomic_buffers(ctx, first, count, caller))
return;
/* Assume that at least one binding will be changed */
FLUSH_VERTICES(ctx, 0);
ctx->NewDriverState |= ctx->DriverFlags.NewAtomicBuffer;
if (!buffers) {
/* The ARB_multi_bind spec says:
*
* "If <buffers> is NULL, all bindings from <first> through
* <first>+<count>-1 are reset to their unbound (zero) state.
* In this case, the offsets and sizes associated with the
* binding points are set to default values, ignoring
* <offsets> and <sizes>."
*/
unbind_atomic_buffers(ctx, first, count);
return;
}
/* Note that the error semantics for multi-bind commands differ from
* those of other GL commands.
*
* The Issues section in the ARB_multi_bind spec says:
*
* "(11) Typically, OpenGL specifies that if an error is generated by a
* command, that command has no effect. This is somewhat
* unfortunate for multi-bind commands, because it would require a
* first pass to scan the entire list of bound objects for errors
* and then a second pass to actually perform the bindings.
* Should we have different error semantics?
*
* RESOLVED: Yes. In this specification, when the parameters for
* one of the <count> binding points are invalid, that binding point
* is not updated and an error will be generated. However, other
* binding points in the same command will be updated if their
* parameters are valid and no other error occurs."
*/
_mesa_HashLockMutex(ctx->Shared->BufferObjects);
for (int i = 0; i < count; i++) {
struct gl_buffer_binding *binding =
&ctx->AtomicBufferBindings[first + i];
GLintptr offset = 0;
GLsizeiptr size = 0;
if (range) {
if (!bind_buffers_check_offset_and_size(ctx, i, offsets, sizes))
continue;
/* The ARB_multi_bind spec says:
*
* "An INVALID_VALUE error is generated by BindBuffersRange if any
* pair of values in <offsets> and <sizes> does not respectively
* satisfy the constraints described for those parameters for the
* specified target, as described in section 6.7.1 (per binding)."
*
* Section 6.7.1 refers to table 6.5, which says:
*
* "┌───────────────────────────────────────────────────────────────┐
* │ Atomic counter array bindings (see sec. 7.7.2) │
* ├───────────────────────┬───────────────────────────────────────┤
* │ ... │ ... │
* │ offset restriction │ multiple of 4 │
* │ ... │ ... │
* │ size restriction │ none │
* └───────────────────────┴───────────────────────────────────────┘"
*/
if (offsets[i] & (ATOMIC_COUNTER_SIZE - 1)) {
_mesa_error(ctx, GL_INVALID_VALUE,
"glBindBuffersRange(offsets[%u]=%" PRId64
" is misaligned; it must be a multiple of %d when "
"target=GL_ATOMIC_COUNTER_BUFFER)",
i, (int64_t) offsets[i], ATOMIC_COUNTER_SIZE);
continue;
}
offset = offsets[i];
size = sizes[i];
}
set_buffer_multi_binding(ctx, buffers, i, caller,
binding, offset, size, range,
USAGE_ATOMIC_COUNTER_BUFFER);
}
_mesa_HashUnlockMutex(ctx->Shared->BufferObjects);
}
static ALWAYS_INLINE void
bind_buffer_range(GLenum target, GLuint index, GLuint buffer, GLintptr offset,
GLsizeiptr size, bool no_error)
{
GET_CURRENT_CONTEXT(ctx);
struct gl_buffer_object *bufObj;
if (MESA_VERBOSE & VERBOSE_API) {
_mesa_debug(ctx, "glBindBufferRange(%s, %u, %u, %lu, %lu)\n",
_mesa_enum_to_string(target), index, buffer,
(unsigned long) offset, (unsigned long) size);
}
if (buffer == 0) {
bufObj = ctx->Shared->NullBufferObj;
} else {
bufObj = _mesa_lookup_bufferobj(ctx, buffer);
if (!_mesa_handle_bind_buffer_gen(ctx, buffer,
&bufObj, "glBindBufferRange"))
return;
if (!no_error && !bufObj) {
_mesa_error(ctx, GL_INVALID_OPERATION,
"glBindBufferRange(invalid buffer=%u)", buffer);
return;
}
}
if (no_error) {
switch (target) {
case GL_TRANSFORM_FEEDBACK_BUFFER:
_mesa_bind_buffer_range_xfb(ctx, ctx->TransformFeedback.CurrentObject,
index, bufObj, offset, size);
return;
case GL_UNIFORM_BUFFER:
bind_buffer_range_uniform_buffer(ctx, index, bufObj, offset, size);
return;
case GL_SHADER_STORAGE_BUFFER:
bind_buffer_range_shader_storage_buffer(ctx, index, bufObj, offset,
size);
return;
case GL_ATOMIC_COUNTER_BUFFER:
bind_buffer_range_atomic_buffer(ctx, index, bufObj, offset, size);
return;
default:
unreachable("invalid BindBufferRange target with KHR_no_error");
}
} else {
if (buffer != 0) {
if (size <= 0) {
_mesa_error(ctx, GL_INVALID_VALUE, "glBindBufferRange(size=%d)",
(int) size);
return;
}
}
switch (target) {
case GL_TRANSFORM_FEEDBACK_BUFFER:
if (!_mesa_validate_buffer_range_xfb(ctx,
ctx->TransformFeedback.CurrentObject,
index, bufObj, offset, size,
false))
return;
_mesa_bind_buffer_range_xfb(ctx, ctx->TransformFeedback.CurrentObject,
index, bufObj, offset, size);
return;
case GL_UNIFORM_BUFFER:
bind_buffer_range_uniform_buffer_err(ctx, index, bufObj, offset,
size);
return;
case GL_SHADER_STORAGE_BUFFER:
bind_buffer_range_shader_storage_buffer_err(ctx, index, bufObj,
offset, size);
return;
case GL_ATOMIC_COUNTER_BUFFER:
bind_buffer_range_atomic_buffer_err(ctx, index, bufObj,
offset, size);
return;
default:
_mesa_error(ctx, GL_INVALID_ENUM, "glBindBufferRange(target)");
return;
}
}
}
void GLAPIENTRY
_mesa_BindBufferRange_no_error(GLenum target, GLuint index, GLuint buffer,
GLintptr offset, GLsizeiptr size)
{
bind_buffer_range(target, index, buffer, offset, size, true);
}
void GLAPIENTRY
_mesa_BindBufferRange(GLenum target, GLuint index,
GLuint buffer, GLintptr offset, GLsizeiptr size)
{
bind_buffer_range(target, index, buffer, offset, size, false);
}
void GLAPIENTRY
_mesa_BindBufferBase(GLenum target, GLuint index, GLuint buffer)
{
GET_CURRENT_CONTEXT(ctx);
struct gl_buffer_object *bufObj;
if (MESA_VERBOSE & VERBOSE_API) {
_mesa_debug(ctx, "glBindBufferBase(%s, %u, %u)\n",
_mesa_enum_to_string(target), index, buffer);
}
if (buffer == 0) {
bufObj = ctx->Shared->NullBufferObj;
} else {
bufObj = _mesa_lookup_bufferobj(ctx, buffer);
if (!_mesa_handle_bind_buffer_gen(ctx, buffer,
&bufObj, "glBindBufferBase"))
return;
if (!bufObj) {
_mesa_error(ctx, GL_INVALID_OPERATION,
"glBindBufferBase(invalid buffer=%u)", buffer);
return;
}
}
/* Note that there's some oddness in the GL 3.1-GL 3.3 specifications with
* regards to BindBufferBase. It says (GL 3.1 core spec, page 63):
*
* "BindBufferBase is equivalent to calling BindBufferRange with offset
* zero and size equal to the size of buffer."
*
* but it says for glGetIntegeri_v (GL 3.1 core spec, page 230):
*
* "If the parameter (starting offset or size) was not specified when the
* buffer object was bound, zero is returned."
*
* What happens if the size of the buffer changes? Does the size of the
* buffer at the moment glBindBufferBase was called still play a role, like
* the first quote would imply, or is the size meaningless in the
* glBindBufferBase case like the second quote would suggest? The GL 4.1
* core spec page 45 says:
*
* "It is equivalent to calling BindBufferRange with offset zero, while
* size is determined by the size of the bound buffer at the time the
* binding is used."
*
* My interpretation is that the GL 4.1 spec was a clarification of the
* behavior, not a change. In particular, this choice will only make
* rendering work in cases where it would have had undefined results.
*/
switch (target) {
case GL_TRANSFORM_FEEDBACK_BUFFER:
_mesa_bind_buffer_base_transform_feedback(ctx,
ctx->TransformFeedback.CurrentObject,
index, bufObj, false);
return;
case GL_UNIFORM_BUFFER:
bind_buffer_base_uniform_buffer(ctx, index, bufObj);
return;
case GL_SHADER_STORAGE_BUFFER:
bind_buffer_base_shader_storage_buffer(ctx, index, bufObj);
return;
case GL_ATOMIC_COUNTER_BUFFER:
bind_buffer_base_atomic_buffer(ctx, index, bufObj);
return;
default:
_mesa_error(ctx, GL_INVALID_ENUM, "glBindBufferBase(target)");
return;
}
}
void GLAPIENTRY
_mesa_BindBuffersRange(GLenum target, GLuint first, GLsizei count,
const GLuint *buffers,
const GLintptr *offsets, const GLsizeiptr *sizes)
{
GET_CURRENT_CONTEXT(ctx);
if (MESA_VERBOSE & VERBOSE_API) {
_mesa_debug(ctx, "glBindBuffersRange(%s, %u, %d, %p, %p, %p)\n",
_mesa_enum_to_string(target), first, count,
buffers, offsets, sizes);
}
switch (target) {
case GL_TRANSFORM_FEEDBACK_BUFFER:
bind_xfb_buffers(ctx, first, count, buffers, true, offsets, sizes,
"glBindBuffersRange");
return;
case GL_UNIFORM_BUFFER:
bind_uniform_buffers(ctx, first, count, buffers, true, offsets, sizes,
"glBindBuffersRange");
return;
case GL_SHADER_STORAGE_BUFFER:
bind_shader_storage_buffers(ctx, first, count, buffers, true, offsets, sizes,
"glBindBuffersRange");
return;
case GL_ATOMIC_COUNTER_BUFFER:
bind_atomic_buffers(ctx, first, count, buffers, true, offsets, sizes,
"glBindBuffersRange");
return;
default:
_mesa_error(ctx, GL_INVALID_ENUM, "glBindBuffersRange(target=%s)",
_mesa_enum_to_string(target));
break;
}
}
void GLAPIENTRY
_mesa_BindBuffersBase(GLenum target, GLuint first, GLsizei count,
const GLuint *buffers)
{
GET_CURRENT_CONTEXT(ctx);
if (MESA_VERBOSE & VERBOSE_API) {
_mesa_debug(ctx, "glBindBuffersBase(%s, %u, %d, %p)\n",
_mesa_enum_to_string(target), first, count, buffers);
}
switch (target) {
case GL_TRANSFORM_FEEDBACK_BUFFER:
bind_xfb_buffers(ctx, first, count, buffers, false, NULL, NULL,
"glBindBuffersBase");
return;
case GL_UNIFORM_BUFFER:
bind_uniform_buffers(ctx, first, count, buffers, false, NULL, NULL,
"glBindBuffersBase");
return;
case GL_SHADER_STORAGE_BUFFER:
bind_shader_storage_buffers(ctx, first, count, buffers, false, NULL, NULL,
"glBindBuffersBase");
return;
case GL_ATOMIC_COUNTER_BUFFER:
bind_atomic_buffers(ctx, first, count, buffers, false, NULL, NULL,
"glBindBuffersBase");
return;
default:
_mesa_error(ctx, GL_INVALID_ENUM, "glBindBuffersBase(target=%s)",
_mesa_enum_to_string(target));
break;
}
}
static ALWAYS_INLINE void
invalidate_buffer_subdata(struct gl_context *ctx,
struct gl_buffer_object *bufObj, GLintptr offset,
GLsizeiptr length)
{
if (ctx->Driver.InvalidateBufferSubData)
ctx->Driver.InvalidateBufferSubData(ctx, bufObj, offset, length);
}
void GLAPIENTRY
_mesa_InvalidateBufferSubData_no_error(GLuint buffer, GLintptr offset,
GLsizeiptr length)
{
GET_CURRENT_CONTEXT(ctx);
struct gl_buffer_object *bufObj = _mesa_lookup_bufferobj(ctx, buffer);
invalidate_buffer_subdata(ctx, bufObj, offset, length);
}
void GLAPIENTRY
_mesa_InvalidateBufferSubData(GLuint buffer, GLintptr offset,
GLsizeiptr length)
{
GET_CURRENT_CONTEXT(ctx);
struct gl_buffer_object *bufObj;
const GLintptr end = offset + length;
/* Section 6.5 (Invalidating Buffer Data) of the OpenGL 4.5 (Compatibility
* Profile) spec says:
*
* "An INVALID_VALUE error is generated if buffer is zero or is not the
* name of an existing buffer object."
*/
bufObj = _mesa_lookup_bufferobj(ctx, buffer);
if (!bufObj || bufObj == &DummyBufferObject) {
_mesa_error(ctx, GL_INVALID_VALUE,
"glInvalidateBufferSubData(name = %u) invalid object",
buffer);
return;
}
/* The GL_ARB_invalidate_subdata spec says:
*
* "An INVALID_VALUE error is generated if <offset> or <length> is
* negative, or if <offset> + <length> is greater than the value of
* BUFFER_SIZE."
*/
if (offset < 0 || length < 0 || end > bufObj->Size) {
_mesa_error(ctx, GL_INVALID_VALUE,
"glInvalidateBufferSubData(invalid offset or length)");
return;
}
/* The OpenGL 4.4 (Core Profile) spec says:
*
* "An INVALID_OPERATION error is generated if buffer is currently
* mapped by MapBuffer or if the invalidate range intersects the range
* currently mapped by MapBufferRange, unless it was mapped
* with MAP_PERSISTENT_BIT set in the MapBufferRange access flags."
*/
if (!(bufObj->Mappings[MAP_USER].AccessFlags & GL_MAP_PERSISTENT_BIT) &&
bufferobj_range_mapped(bufObj, offset, length)) {
_mesa_error(ctx, GL_INVALID_OPERATION,
"glInvalidateBufferSubData(intersection with mapped "
"range)");
return;
}
invalidate_buffer_subdata(ctx, bufObj, offset, length);
}
void GLAPIENTRY
_mesa_InvalidateBufferData_no_error(GLuint buffer)
{
GET_CURRENT_CONTEXT(ctx);
struct gl_buffer_object *bufObj =_mesa_lookup_bufferobj(ctx, buffer);
invalidate_buffer_subdata(ctx, bufObj, 0, bufObj->Size);
}
void GLAPIENTRY
_mesa_InvalidateBufferData(GLuint buffer)
{
GET_CURRENT_CONTEXT(ctx);
struct gl_buffer_object *bufObj;
/* Section 6.5 (Invalidating Buffer Data) of the OpenGL 4.5 (Compatibility
* Profile) spec says:
*
* "An INVALID_VALUE error is generated if buffer is zero or is not the
* name of an existing buffer object."
*/
bufObj = _mesa_lookup_bufferobj(ctx, buffer);
if (!bufObj || bufObj == &DummyBufferObject) {
_mesa_error(ctx, GL_INVALID_VALUE,
"glInvalidateBufferData(name = %u) invalid object",
buffer);
return;
}
/* The OpenGL 4.4 (Core Profile) spec says:
*
* "An INVALID_OPERATION error is generated if buffer is currently
* mapped by MapBuffer or if the invalidate range intersects the range
* currently mapped by MapBufferRange, unless it was mapped
* with MAP_PERSISTENT_BIT set in the MapBufferRange access flags."
*/
if (_mesa_check_disallowed_mapping(bufObj)) {
_mesa_error(ctx, GL_INVALID_OPERATION,
"glInvalidateBufferData(intersection with mapped "
"range)");
return;
}
invalidate_buffer_subdata(ctx, bufObj, 0, bufObj->Size);
}
static void
buffer_page_commitment(struct gl_context *ctx,
struct gl_buffer_object *bufferObj,
GLintptr offset, GLsizeiptr size,
GLboolean commit, const char *func)
{
if (!(bufferObj->StorageFlags & GL_SPARSE_STORAGE_BIT_ARB)) {
_mesa_error(ctx, GL_INVALID_OPERATION, "%s(not a sparse buffer object)",
func);
return;
}
if (size < 0 || size > bufferObj->Size ||
offset < 0 || offset > bufferObj->Size - size) {
_mesa_error(ctx, GL_INVALID_VALUE, "%s(out of bounds)",
func);
return;
}
/* The GL_ARB_sparse_buffer extension specification says:
*
* "INVALID_VALUE is generated by BufferPageCommitmentARB if <offset> is
* not an integer multiple of SPARSE_BUFFER_PAGE_SIZE_ARB, or if <size>
* is not an integer multiple of SPARSE_BUFFER_PAGE_SIZE_ARB and does
* not extend to the end of the buffer's data store."
*/
if (offset % ctx->Const.SparseBufferPageSize != 0) {
_mesa_error(ctx, GL_INVALID_VALUE, "%s(offset not aligned to page size)",
func);
return;
}
if (size % ctx->Const.SparseBufferPageSize != 0 &&
offset + size != bufferObj->Size) {
_mesa_error(ctx, GL_INVALID_VALUE, "%s(size not aligned to page size)",
func);
return;
}
ctx->Driver.BufferPageCommitment(ctx, bufferObj, offset, size, commit);
}
void GLAPIENTRY
_mesa_BufferPageCommitmentARB(GLenum target, GLintptr offset, GLsizeiptr size,
GLboolean commit)
{
GET_CURRENT_CONTEXT(ctx);
struct gl_buffer_object *bufferObj;
bufferObj = get_buffer(ctx, "glBufferPageCommitmentARB", target,
GL_INVALID_ENUM);
if (!bufferObj)
return;
buffer_page_commitment(ctx, bufferObj, offset, size, commit,
"glBufferPageCommitmentARB");
}
void GLAPIENTRY
_mesa_NamedBufferPageCommitmentARB(GLuint buffer, GLintptr offset,
GLsizeiptr size, GLboolean commit)
{
GET_CURRENT_CONTEXT(ctx);
struct gl_buffer_object *bufferObj;
bufferObj = _mesa_lookup_bufferobj(ctx, buffer);
if (!bufferObj || bufferObj == &DummyBufferObject) {
/* Note: the extension spec is not clear about the excpected error value. */
_mesa_error(ctx, GL_INVALID_VALUE,
"glNamedBufferPageCommitmentARB(name = %u) invalid object",
buffer);
return;
}
buffer_page_commitment(ctx, bufferObj, offset, size, commit,
"glNamedBufferPageCommitmentARB");
}