/**
* \file blend.c
* Blending operations.
*/
/*
* Mesa 3-D graphics library
*
* Copyright (C) 1999-2006 Brian Paul All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*/
#include "glheader.h"
#include "blend.h"
#include "context.h"
#include "enums.h"
#include "macros.h"
#include "mtypes.h"
/**
* Check if given blend source factor is legal.
* \return GL_TRUE if legal, GL_FALSE otherwise.
*/
static GLboolean
legal_src_factor(const struct gl_context *ctx, GLenum factor)
{
switch (factor) {
case GL_SRC_COLOR:
case GL_ONE_MINUS_SRC_COLOR:
case GL_ZERO:
case GL_ONE:
case GL_DST_COLOR:
case GL_ONE_MINUS_DST_COLOR:
case GL_SRC_ALPHA:
case GL_ONE_MINUS_SRC_ALPHA:
case GL_DST_ALPHA:
case GL_ONE_MINUS_DST_ALPHA:
case GL_SRC_ALPHA_SATURATE:
return GL_TRUE;
case GL_CONSTANT_COLOR:
case GL_ONE_MINUS_CONSTANT_COLOR:
case GL_CONSTANT_ALPHA:
case GL_ONE_MINUS_CONSTANT_ALPHA:
return _mesa_is_desktop_gl(ctx) || ctx->API == API_OPENGLES2;
case GL_SRC1_COLOR:
case GL_SRC1_ALPHA:
case GL_ONE_MINUS_SRC1_COLOR:
case GL_ONE_MINUS_SRC1_ALPHA:
return ctx->API != API_OPENGLES
&& ctx->Extensions.ARB_blend_func_extended;
default:
return GL_FALSE;
}
}
/**
* Check if given blend destination factor is legal.
* \return GL_TRUE if legal, GL_FALSE otherwise.
*/
static GLboolean
legal_dst_factor(const struct gl_context *ctx, GLenum factor)
{
switch (factor) {
case GL_DST_COLOR:
case GL_ONE_MINUS_DST_COLOR:
case GL_ZERO:
case GL_ONE:
case GL_SRC_COLOR:
case GL_ONE_MINUS_SRC_COLOR:
case GL_SRC_ALPHA:
case GL_ONE_MINUS_SRC_ALPHA:
case GL_DST_ALPHA:
case GL_ONE_MINUS_DST_ALPHA:
return GL_TRUE;
case GL_CONSTANT_COLOR:
case GL_ONE_MINUS_CONSTANT_COLOR:
case GL_CONSTANT_ALPHA:
case GL_ONE_MINUS_CONSTANT_ALPHA:
return _mesa_is_desktop_gl(ctx) || ctx->API == API_OPENGLES2;
case GL_SRC_ALPHA_SATURATE:
return (ctx->API != API_OPENGLES
&& ctx->Extensions.ARB_blend_func_extended)
|| _mesa_is_gles3(ctx);
case GL_SRC1_COLOR:
case GL_SRC1_ALPHA:
case GL_ONE_MINUS_SRC1_COLOR:
case GL_ONE_MINUS_SRC1_ALPHA:
return ctx->API != API_OPENGLES
&& ctx->Extensions.ARB_blend_func_extended;
default:
return GL_FALSE;
}
}
/**
* Check if src/dest RGB/A blend factors are legal. If not generate
* a GL error.
* \return GL_TRUE if factors are legal, GL_FALSE otherwise.
*/
static GLboolean
validate_blend_factors(struct gl_context *ctx, const char *func,
GLenum sfactorRGB, GLenum dfactorRGB,
GLenum sfactorA, GLenum dfactorA)
{
if (!legal_src_factor(ctx, sfactorRGB)) {
_mesa_error(ctx, GL_INVALID_ENUM,
"%s(sfactorRGB = %s)", func,
_mesa_enum_to_string(sfactorRGB));
return GL_FALSE;
}
if (!legal_dst_factor(ctx, dfactorRGB)) {
_mesa_error(ctx, GL_INVALID_ENUM,
"%s(dfactorRGB = %s)", func,
_mesa_enum_to_string(dfactorRGB));
return GL_FALSE;
}
if (sfactorA != sfactorRGB && !legal_src_factor(ctx, sfactorA)) {
_mesa_error(ctx, GL_INVALID_ENUM,
"%s(sfactorA = %s)", func,
_mesa_enum_to_string(sfactorA));
return GL_FALSE;
}
if (dfactorA != dfactorRGB && !legal_dst_factor(ctx, dfactorA)) {
_mesa_error(ctx, GL_INVALID_ENUM,
"%s(dfactorA = %s)", func,
_mesa_enum_to_string(dfactorA));
return GL_FALSE;
}
return GL_TRUE;
}
static GLboolean
blend_factor_is_dual_src(GLenum factor)
{
return (factor == GL_SRC1_COLOR ||
factor == GL_SRC1_ALPHA ||
factor == GL_ONE_MINUS_SRC1_COLOR ||
factor == GL_ONE_MINUS_SRC1_ALPHA);
}
static void
update_uses_dual_src(struct gl_context *ctx, int buf)
{
ctx->Color.Blend[buf]._UsesDualSrc =
(blend_factor_is_dual_src(ctx->Color.Blend[buf].SrcRGB) ||
blend_factor_is_dual_src(ctx->Color.Blend[buf].DstRGB) ||
blend_factor_is_dual_src(ctx->Color.Blend[buf].SrcA) ||
blend_factor_is_dual_src(ctx->Color.Blend[buf].DstA));
}
/**
* Return the number of per-buffer blend states to update in
* glBlendFunc, glBlendFuncSeparate, glBlendEquation, etc.
*/
static inline unsigned
num_buffers(const struct gl_context *ctx)
{
return ctx->Extensions.ARB_draw_buffers_blend
? ctx->Const.MaxDrawBuffers : 1;
}
/* Returns true if there was no change */
static bool
skip_blend_state_update(const struct gl_context *ctx,
GLenum sfactorRGB, GLenum dfactorRGB,
GLenum sfactorA, GLenum dfactorA)
{
/* Check if we're really changing any state. If not, return early. */
if (ctx->Color._BlendFuncPerBuffer) {
const unsigned numBuffers = num_buffers(ctx);
/* Check all per-buffer states */
for (unsigned buf = 0; buf < numBuffers; buf++) {
if (ctx->Color.Blend[buf].SrcRGB != sfactorRGB ||
ctx->Color.Blend[buf].DstRGB != dfactorRGB ||
ctx->Color.Blend[buf].SrcA != sfactorA ||
ctx->Color.Blend[buf].DstA != dfactorA) {
return false;
}
}
}
else {
/* only need to check 0th per-buffer state */
if (ctx->Color.Blend[0].SrcRGB != sfactorRGB ||
ctx->Color.Blend[0].DstRGB != dfactorRGB ||
ctx->Color.Blend[0].SrcA != sfactorA ||
ctx->Color.Blend[0].DstA != dfactorA) {
return false;
}
}
return true;
}
static void
blend_func_separate(struct gl_context *ctx,
GLenum sfactorRGB, GLenum dfactorRGB,
GLenum sfactorA, GLenum dfactorA)
{
FLUSH_VERTICES(ctx, ctx->DriverFlags.NewBlend ? 0 : _NEW_COLOR);
ctx->NewDriverState |= ctx->DriverFlags.NewBlend;
const unsigned numBuffers = num_buffers(ctx);
for (unsigned buf = 0; buf < numBuffers; buf++) {
ctx->Color.Blend[buf].SrcRGB = sfactorRGB;
ctx->Color.Blend[buf].DstRGB = dfactorRGB;
ctx->Color.Blend[buf].SrcA = sfactorA;
ctx->Color.Blend[buf].DstA = dfactorA;
}
update_uses_dual_src(ctx, 0);
for (unsigned buf = 1; buf < numBuffers; buf++) {
ctx->Color.Blend[buf]._UsesDualSrc = ctx->Color.Blend[0]._UsesDualSrc;
}
ctx->Color._BlendFuncPerBuffer = GL_FALSE;
if (ctx->Driver.BlendFuncSeparate) {
ctx->Driver.BlendFuncSeparate(ctx, sfactorRGB, dfactorRGB,
sfactorA, dfactorA);
}
}
/**
* Specify the blending operation.
*
* \param sfactor source factor operator.
* \param dfactor destination factor operator.
*
* \sa glBlendFunc, glBlendFuncSeparateEXT
*/
void GLAPIENTRY
_mesa_BlendFunc( GLenum sfactor, GLenum dfactor )
{
GET_CURRENT_CONTEXT(ctx);
if (skip_blend_state_update(ctx, sfactor, dfactor, sfactor, dfactor))
return;
if (!validate_blend_factors(ctx, "glBlendFunc",
sfactor, dfactor, sfactor, dfactor)) {
return;
}
blend_func_separate(ctx, sfactor, dfactor, sfactor, dfactor);
}
void GLAPIENTRY
_mesa_BlendFunc_no_error(GLenum sfactor, GLenum dfactor)
{
GET_CURRENT_CONTEXT(ctx);
if (skip_blend_state_update(ctx, sfactor, dfactor, sfactor, dfactor))
return;
blend_func_separate(ctx, sfactor, dfactor, sfactor, dfactor);
}
/**
* Set the separate blend source/dest factors for all draw buffers.
*
* \param sfactorRGB RGB source factor operator.
* \param dfactorRGB RGB destination factor operator.
* \param sfactorA alpha source factor operator.
* \param dfactorA alpha destination factor operator.
*/
void GLAPIENTRY
_mesa_BlendFuncSeparate( GLenum sfactorRGB, GLenum dfactorRGB,
GLenum sfactorA, GLenum dfactorA )
{
GET_CURRENT_CONTEXT(ctx);
if (MESA_VERBOSE & VERBOSE_API)
_mesa_debug(ctx, "glBlendFuncSeparate %s %s %s %s\n",
_mesa_enum_to_string(sfactorRGB),
_mesa_enum_to_string(dfactorRGB),
_mesa_enum_to_string(sfactorA),
_mesa_enum_to_string(dfactorA));
if (skip_blend_state_update(ctx, sfactorRGB, dfactorRGB, sfactorA, dfactorA))
return;
if (!validate_blend_factors(ctx, "glBlendFuncSeparate",
sfactorRGB, dfactorRGB,
sfactorA, dfactorA)) {
return;
}
blend_func_separate(ctx, sfactorRGB, dfactorRGB, sfactorA, dfactorA);
}
void GLAPIENTRY
_mesa_BlendFuncSeparate_no_error(GLenum sfactorRGB, GLenum dfactorRGB,
GLenum sfactorA, GLenum dfactorA)
{
GET_CURRENT_CONTEXT(ctx);
if (skip_blend_state_update(ctx, sfactorRGB, dfactorRGB, sfactorA, dfactorA))
return;
blend_func_separate(ctx, sfactorRGB, dfactorRGB, sfactorA, dfactorA);
}
void GLAPIENTRY
_mesa_BlendFunciARB_no_error(GLuint buf, GLenum sfactor, GLenum dfactor)
{
_mesa_BlendFuncSeparateiARB_no_error(buf, sfactor, dfactor, sfactor,
dfactor);
}
/**
* Set blend source/dest factors for one color buffer/target.
*/
void GLAPIENTRY
_mesa_BlendFunciARB(GLuint buf, GLenum sfactor, GLenum dfactor)
{
_mesa_BlendFuncSeparateiARB(buf, sfactor, dfactor, sfactor, dfactor);
}
static ALWAYS_INLINE void
blend_func_separatei(GLuint buf, GLenum sfactorRGB, GLenum dfactorRGB,
GLenum sfactorA, GLenum dfactorA, bool no_error)
{
GET_CURRENT_CONTEXT(ctx);
if (!no_error) {
if (!ctx->Extensions.ARB_draw_buffers_blend) {
_mesa_error(ctx, GL_INVALID_OPERATION, "glBlendFunc[Separate]i()");
return;
}
if (buf >= ctx->Const.MaxDrawBuffers) {
_mesa_error(ctx, GL_INVALID_VALUE, "glBlendFuncSeparatei(buffer=%u)",
buf);
return;
}
}
if (ctx->Color.Blend[buf].SrcRGB == sfactorRGB &&
ctx->Color.Blend[buf].DstRGB == dfactorRGB &&
ctx->Color.Blend[buf].SrcA == sfactorA &&
ctx->Color.Blend[buf].DstA == dfactorA)
return; /* no change */
if (!no_error && !validate_blend_factors(ctx, "glBlendFuncSeparatei",
sfactorRGB, dfactorRGB,
sfactorA, dfactorA)) {
return;
}
FLUSH_VERTICES(ctx, ctx->DriverFlags.NewBlend ? 0 : _NEW_COLOR);
ctx->NewDriverState |= ctx->DriverFlags.NewBlend;
ctx->Color.Blend[buf].SrcRGB = sfactorRGB;
ctx->Color.Blend[buf].DstRGB = dfactorRGB;
ctx->Color.Blend[buf].SrcA = sfactorA;
ctx->Color.Blend[buf].DstA = dfactorA;
update_uses_dual_src(ctx, buf);
ctx->Color._BlendFuncPerBuffer = GL_TRUE;
}
void GLAPIENTRY
_mesa_BlendFuncSeparateiARB_no_error(GLuint buf, GLenum sfactorRGB,
GLenum dfactorRGB, GLenum sfactorA,
GLenum dfactorA)
{
blend_func_separatei(buf, sfactorRGB, dfactorRGB, sfactorA, dfactorA,
true);
}
/**
* Set separate blend source/dest factors for one color buffer/target.
*/
void GLAPIENTRY
_mesa_BlendFuncSeparateiARB(GLuint buf, GLenum sfactorRGB, GLenum dfactorRGB,
GLenum sfactorA, GLenum dfactorA)
{
blend_func_separatei(buf, sfactorRGB, dfactorRGB, sfactorA, dfactorA,
false);
}
/**
* Return true if \p mode is a legal blending equation, excluding
* GL_KHR_blend_equation_advanced modes.
*/
static bool
legal_simple_blend_equation(const struct gl_context *ctx, GLenum mode)
{
switch (mode) {
case GL_FUNC_ADD:
case GL_FUNC_SUBTRACT:
case GL_FUNC_REVERSE_SUBTRACT:
return GL_TRUE;
case GL_MIN:
case GL_MAX:
return ctx->Extensions.EXT_blend_minmax;
default:
return GL_FALSE;
}
}
static enum gl_advanced_blend_mode
advanced_blend_mode_from_gl_enum(GLenum mode)
{
switch (mode) {
case GL_MULTIPLY_KHR:
return BLEND_MULTIPLY;
case GL_SCREEN_KHR:
return BLEND_SCREEN;
case GL_OVERLAY_KHR:
return BLEND_OVERLAY;
case GL_DARKEN_KHR:
return BLEND_DARKEN;
case GL_LIGHTEN_KHR:
return BLEND_LIGHTEN;
case GL_COLORDODGE_KHR:
return BLEND_COLORDODGE;
case GL_COLORBURN_KHR:
return BLEND_COLORBURN;
case GL_HARDLIGHT_KHR:
return BLEND_HARDLIGHT;
case GL_SOFTLIGHT_KHR:
return BLEND_SOFTLIGHT;
case GL_DIFFERENCE_KHR:
return BLEND_DIFFERENCE;
case GL_EXCLUSION_KHR:
return BLEND_EXCLUSION;
case GL_HSL_HUE_KHR:
return BLEND_HSL_HUE;
case GL_HSL_SATURATION_KHR:
return BLEND_HSL_SATURATION;
case GL_HSL_COLOR_KHR:
return BLEND_HSL_COLOR;
case GL_HSL_LUMINOSITY_KHR:
return BLEND_HSL_LUMINOSITY;
default:
return BLEND_NONE;
}
}
/**
* If \p mode is one of the advanced blending equations defined by
* GL_KHR_blend_equation_advanced (and the extension is supported),
* return the corresponding BLEND_* enum. Otherwise, return BLEND_NONE
* (which can also be treated as false).
*/
static enum gl_advanced_blend_mode
advanced_blend_mode(const struct gl_context *ctx, GLenum mode)
{
return _mesa_has_KHR_blend_equation_advanced(ctx) ?
advanced_blend_mode_from_gl_enum(mode) : BLEND_NONE;
}
/* This is really an extension function! */
void GLAPIENTRY
_mesa_BlendEquation( GLenum mode )
{
GET_CURRENT_CONTEXT(ctx);
const unsigned numBuffers = num_buffers(ctx);
unsigned buf;
bool changed = false;
enum gl_advanced_blend_mode advanced_mode = advanced_blend_mode(ctx, mode);
if (MESA_VERBOSE & VERBOSE_API)
_mesa_debug(ctx, "glBlendEquation(%s)\n",
_mesa_enum_to_string(mode));
if (ctx->Color._BlendEquationPerBuffer) {
/* Check all per-buffer states */
for (buf = 0; buf < numBuffers; buf++) {
if (ctx->Color.Blend[buf].EquationRGB != mode ||
ctx->Color.Blend[buf].EquationA != mode) {
changed = true;
break;
}
}
}
else {
/* only need to check 0th per-buffer state */
if (ctx->Color.Blend[0].EquationRGB != mode ||
ctx->Color.Blend[0].EquationA != mode) {
changed = true;
}
}
if (!changed)
return;
if (!legal_simple_blend_equation(ctx, mode) && !advanced_mode) {
_mesa_error(ctx, GL_INVALID_ENUM, "glBlendEquation");
return;
}
_mesa_flush_vertices_for_blend_state(ctx);
for (buf = 0; buf < numBuffers; buf++) {
ctx->Color.Blend[buf].EquationRGB = mode;
ctx->Color.Blend[buf].EquationA = mode;
}
ctx->Color._BlendEquationPerBuffer = GL_FALSE;
ctx->Color._AdvancedBlendMode = advanced_mode;
if (ctx->Driver.BlendEquationSeparate)
ctx->Driver.BlendEquationSeparate(ctx, mode, mode);
}
/**
* Set blend equation for one color buffer/target.
*/
static void
blend_equationi(struct gl_context *ctx, GLuint buf, GLenum mode,
enum gl_advanced_blend_mode advanced_mode)
{
if (ctx->Color.Blend[buf].EquationRGB == mode &&
ctx->Color.Blend[buf].EquationA == mode)
return; /* no change */
_mesa_flush_vertices_for_blend_state(ctx);
ctx->Color.Blend[buf].EquationRGB = mode;
ctx->Color.Blend[buf].EquationA = mode;
ctx->Color._BlendEquationPerBuffer = GL_TRUE;
if (buf == 0)
ctx->Color._AdvancedBlendMode = advanced_mode;
}
void GLAPIENTRY
_mesa_BlendEquationiARB_no_error(GLuint buf, GLenum mode)
{
GET_CURRENT_CONTEXT(ctx);
enum gl_advanced_blend_mode advanced_mode = advanced_blend_mode(ctx, mode);
blend_equationi(ctx, buf, mode, advanced_mode);
}
void GLAPIENTRY
_mesa_BlendEquationiARB(GLuint buf, GLenum mode)
{
GET_CURRENT_CONTEXT(ctx);
enum gl_advanced_blend_mode advanced_mode = advanced_blend_mode(ctx, mode);
if (MESA_VERBOSE & VERBOSE_API)
_mesa_debug(ctx, "glBlendEquationi(%u, %s)\n",
buf, _mesa_enum_to_string(mode));
if (buf >= ctx->Const.MaxDrawBuffers) {
_mesa_error(ctx, GL_INVALID_VALUE, "glBlendEquationi(buffer=%u)",
buf);
return;
}
if (!legal_simple_blend_equation(ctx, mode) && !advanced_mode) {
_mesa_error(ctx, GL_INVALID_ENUM, "glBlendEquationi");
return;
}
blend_equationi(ctx, buf, mode, advanced_mode);
}
static void
blend_equation_separate(struct gl_context *ctx, GLenum modeRGB, GLenum modeA,
bool no_error)
{
const unsigned numBuffers = num_buffers(ctx);
unsigned buf;
bool changed = false;
if (ctx->Color._BlendEquationPerBuffer) {
/* Check all per-buffer states */
for (buf = 0; buf < numBuffers; buf++) {
if (ctx->Color.Blend[buf].EquationRGB != modeRGB ||
ctx->Color.Blend[buf].EquationA != modeA) {
changed = true;
break;
}
}
} else {
/* only need to check 0th per-buffer state */
if (ctx->Color.Blend[0].EquationRGB != modeRGB ||
ctx->Color.Blend[0].EquationA != modeA) {
changed = true;
}
}
if (!changed)
return;
if (!no_error) {
if ((modeRGB != modeA) && !ctx->Extensions.EXT_blend_equation_separate) {
_mesa_error(ctx, GL_INVALID_OPERATION,
"glBlendEquationSeparateEXT not supported by driver");
return;
}
/* Only allow simple blending equations.
* The GL_KHR_blend_equation_advanced spec says:
*
* "NOTE: These enums are not accepted by the <modeRGB> or <modeAlpha>
* parameters of BlendEquationSeparate or BlendEquationSeparatei."
*/
if (!legal_simple_blend_equation(ctx, modeRGB)) {
_mesa_error(ctx, GL_INVALID_ENUM,
"glBlendEquationSeparateEXT(modeRGB)");
return;
}
if (!legal_simple_blend_equation(ctx, modeA)) {
_mesa_error(ctx, GL_INVALID_ENUM, "glBlendEquationSeparateEXT(modeA)");
return;
}
}
_mesa_flush_vertices_for_blend_state(ctx);
for (buf = 0; buf < numBuffers; buf++) {
ctx->Color.Blend[buf].EquationRGB = modeRGB;
ctx->Color.Blend[buf].EquationA = modeA;
}
ctx->Color._BlendEquationPerBuffer = GL_FALSE;
ctx->Color._AdvancedBlendMode = BLEND_NONE;
if (ctx->Driver.BlendEquationSeparate)
ctx->Driver.BlendEquationSeparate(ctx, modeRGB, modeA);
}
void GLAPIENTRY
_mesa_BlendEquationSeparate_no_error(GLenum modeRGB, GLenum modeA)
{
GET_CURRENT_CONTEXT(ctx);
blend_equation_separate(ctx, modeRGB, modeA, true);
}
void GLAPIENTRY
_mesa_BlendEquationSeparate(GLenum modeRGB, GLenum modeA)
{
GET_CURRENT_CONTEXT(ctx);
if (MESA_VERBOSE & VERBOSE_API)
_mesa_debug(ctx, "glBlendEquationSeparateEXT(%s %s)\n",
_mesa_enum_to_string(modeRGB),
_mesa_enum_to_string(modeA));
blend_equation_separate(ctx, modeRGB, modeA, false);
}
static ALWAYS_INLINE void
blend_equation_separatei(struct gl_context *ctx, GLuint buf, GLenum modeRGB,
GLenum modeA, bool no_error)
{
if (ctx->Color.Blend[buf].EquationRGB == modeRGB &&
ctx->Color.Blend[buf].EquationA == modeA)
return; /* no change */
if (!no_error) {
/* Only allow simple blending equations.
* The GL_KHR_blend_equation_advanced spec says:
*
* "NOTE: These enums are not accepted by the <modeRGB> or <modeAlpha>
* parameters of BlendEquationSeparate or BlendEquationSeparatei."
*/
if (!legal_simple_blend_equation(ctx, modeRGB)) {
_mesa_error(ctx, GL_INVALID_ENUM, "glBlendEquationSeparatei(modeRGB)");
return;
}
if (!legal_simple_blend_equation(ctx, modeA)) {
_mesa_error(ctx, GL_INVALID_ENUM, "glBlendEquationSeparatei(modeA)");
return;
}
}
_mesa_flush_vertices_for_blend_state(ctx);
ctx->Color.Blend[buf].EquationRGB = modeRGB;
ctx->Color.Blend[buf].EquationA = modeA;
ctx->Color._BlendEquationPerBuffer = GL_TRUE;
ctx->Color._AdvancedBlendMode = BLEND_NONE;
}
void GLAPIENTRY
_mesa_BlendEquationSeparateiARB_no_error(GLuint buf, GLenum modeRGB,
GLenum modeA)
{
GET_CURRENT_CONTEXT(ctx);
blend_equation_separatei(ctx, buf, modeRGB, modeA, true);
}
/**
* Set separate blend equations for one color buffer/target.
*/
void GLAPIENTRY
_mesa_BlendEquationSeparateiARB(GLuint buf, GLenum modeRGB, GLenum modeA)
{
GET_CURRENT_CONTEXT(ctx);
if (MESA_VERBOSE & VERBOSE_API)
_mesa_debug(ctx, "glBlendEquationSeparatei(%u, %s %s)\n", buf,
_mesa_enum_to_string(modeRGB),
_mesa_enum_to_string(modeA));
if (buf >= ctx->Const.MaxDrawBuffers) {
_mesa_error(ctx, GL_INVALID_VALUE, "glBlendEquationSeparatei(buffer=%u)",
buf);
return;
}
blend_equation_separatei(ctx, buf, modeRGB, modeA, false);
}
/**
* Set the blending color.
*
* \param red red color component.
* \param green green color component.
* \param blue blue color component.
* \param alpha alpha color component.
*
* \sa glBlendColor().
*
* Clamps the parameters and updates gl_colorbuffer_attrib::BlendColor. On a
* change, flushes the vertices and notifies the driver via
* dd_function_table::BlendColor callback.
*/
void GLAPIENTRY
_mesa_BlendColor( GLclampf red, GLclampf green, GLclampf blue, GLclampf alpha )
{
GLfloat tmp[4];
GET_CURRENT_CONTEXT(ctx);
tmp[0] = red;
tmp[1] = green;
tmp[2] = blue;
tmp[3] = alpha;
if (TEST_EQ_4V(tmp, ctx->Color.BlendColorUnclamped))
return;
FLUSH_VERTICES(ctx, ctx->DriverFlags.NewBlendColor ? 0 : _NEW_COLOR);
ctx->NewDriverState |= ctx->DriverFlags.NewBlendColor;
COPY_4FV( ctx->Color.BlendColorUnclamped, tmp );
ctx->Color.BlendColor[0] = CLAMP(tmp[0], 0.0F, 1.0F);
ctx->Color.BlendColor[1] = CLAMP(tmp[1], 0.0F, 1.0F);
ctx->Color.BlendColor[2] = CLAMP(tmp[2], 0.0F, 1.0F);
ctx->Color.BlendColor[3] = CLAMP(tmp[3], 0.0F, 1.0F);
if (ctx->Driver.BlendColor)
ctx->Driver.BlendColor(ctx, ctx->Color.BlendColor);
}
/**
* Specify the alpha test function.
*
* \param func alpha comparison function.
* \param ref reference value.
*
* Verifies the parameters and updates gl_colorbuffer_attrib.
* On a change, flushes the vertices and notifies the driver via
* dd_function_table::AlphaFunc callback.
*/
void GLAPIENTRY
_mesa_AlphaFunc( GLenum func, GLclampf ref )
{
GET_CURRENT_CONTEXT(ctx);
if (MESA_VERBOSE & VERBOSE_API)
_mesa_debug(ctx, "glAlphaFunc(%s, %f)\n",
_mesa_enum_to_string(func), ref);
if (ctx->Color.AlphaFunc == func && ctx->Color.AlphaRefUnclamped == ref)
return; /* no change */
switch (func) {
case GL_NEVER:
case GL_LESS:
case GL_EQUAL:
case GL_LEQUAL:
case GL_GREATER:
case GL_NOTEQUAL:
case GL_GEQUAL:
case GL_ALWAYS:
FLUSH_VERTICES(ctx, ctx->DriverFlags.NewAlphaTest ? 0 : _NEW_COLOR);
ctx->NewDriverState |= ctx->DriverFlags.NewAlphaTest;
ctx->Color.AlphaFunc = func;
ctx->Color.AlphaRefUnclamped = ref;
ctx->Color.AlphaRef = CLAMP(ref, 0.0F, 1.0F);
if (ctx->Driver.AlphaFunc)
ctx->Driver.AlphaFunc(ctx, func, ctx->Color.AlphaRef);
return;
default:
_mesa_error( ctx, GL_INVALID_ENUM, "glAlphaFunc(func)" );
return;
}
}
static ALWAYS_INLINE void
logic_op(struct gl_context *ctx, GLenum opcode, bool no_error)
{
if (ctx->Color.LogicOp == opcode)
return;
if (!no_error) {
switch (opcode) {
case GL_CLEAR:
case GL_SET:
case GL_COPY:
case GL_COPY_INVERTED:
case GL_NOOP:
case GL_INVERT:
case GL_AND:
case GL_NAND:
case GL_OR:
case GL_NOR:
case GL_XOR:
case GL_EQUIV:
case GL_AND_REVERSE:
case GL_AND_INVERTED:
case GL_OR_REVERSE:
case GL_OR_INVERTED:
break;
default:
_mesa_error( ctx, GL_INVALID_ENUM, "glLogicOp" );
return;
}
}
FLUSH_VERTICES(ctx, ctx->DriverFlags.NewLogicOp ? 0 : _NEW_COLOR);
ctx->NewDriverState |= ctx->DriverFlags.NewLogicOp;
ctx->Color.LogicOp = opcode;
if (ctx->Driver.LogicOpcode)
ctx->Driver.LogicOpcode(ctx, opcode);
}
/**
* Specify a logic pixel operation for color index rendering.
*
* \param opcode operation.
*
* Verifies that \p opcode is a valid enum and updates
* gl_colorbuffer_attrib::LogicOp.
* On a change, flushes the vertices and notifies the driver via the
* dd_function_table::LogicOpcode callback.
*/
void GLAPIENTRY
_mesa_LogicOp( GLenum opcode )
{
GET_CURRENT_CONTEXT(ctx);
if (MESA_VERBOSE & VERBOSE_API)
_mesa_debug(ctx, "glLogicOp(%s)\n", _mesa_enum_to_string(opcode));
logic_op(ctx, opcode, false);
}
void GLAPIENTRY
_mesa_LogicOp_no_error(GLenum opcode)
{
GET_CURRENT_CONTEXT(ctx);
logic_op(ctx, opcode, true);
}
void GLAPIENTRY
_mesa_IndexMask( GLuint mask )
{
GET_CURRENT_CONTEXT(ctx);
if (ctx->Color.IndexMask == mask)
return;
FLUSH_VERTICES(ctx, ctx->DriverFlags.NewColorMask ? 0 : _NEW_COLOR);
ctx->NewDriverState |= ctx->DriverFlags.NewColorMask;
ctx->Color.IndexMask = mask;
}
/**
* Enable or disable writing of frame buffer color components.
*
* \param red whether to mask writing of the red color component.
* \param green whether to mask writing of the green color component.
* \param blue whether to mask writing of the blue color component.
* \param alpha whether to mask writing of the alpha color component.
*
* \sa glColorMask().
*
* Sets the appropriate value of gl_colorbuffer_attrib::ColorMask. On a
* change, flushes the vertices and notifies the driver via the
* dd_function_table::ColorMask callback.
*/
void GLAPIENTRY
_mesa_ColorMask( GLboolean red, GLboolean green,
GLboolean blue, GLboolean alpha )
{
GET_CURRENT_CONTEXT(ctx);
GLubyte tmp[4];
GLuint i;
GLboolean flushed;
if (MESA_VERBOSE & VERBOSE_API)
_mesa_debug(ctx, "glColorMask(%d, %d, %d, %d)\n",
red, green, blue, alpha);
/* Shouldn't have any information about channel depth in core mesa
* -- should probably store these as the native booleans:
*/
tmp[RCOMP] = red ? 0xff : 0x0;
tmp[GCOMP] = green ? 0xff : 0x0;
tmp[BCOMP] = blue ? 0xff : 0x0;
tmp[ACOMP] = alpha ? 0xff : 0x0;
flushed = GL_FALSE;
for (i = 0; i < ctx->Const.MaxDrawBuffers; i++) {
if (!TEST_EQ_4V(tmp, ctx->Color.ColorMask[i])) {
if (!flushed) {
FLUSH_VERTICES(ctx, ctx->DriverFlags.NewColorMask ? 0 : _NEW_COLOR);
ctx->NewDriverState |= ctx->DriverFlags.NewColorMask;
}
flushed = GL_TRUE;
COPY_4UBV(ctx->Color.ColorMask[i], tmp);
}
}
if (ctx->Driver.ColorMask)
ctx->Driver.ColorMask( ctx, red, green, blue, alpha );
}
/**
* For GL_EXT_draw_buffers2 and GL3
*/
void GLAPIENTRY
_mesa_ColorMaski(GLuint buf, GLboolean red, GLboolean green,
GLboolean blue, GLboolean alpha)
{
GLubyte tmp[4];
GET_CURRENT_CONTEXT(ctx);
if (MESA_VERBOSE & VERBOSE_API)
_mesa_debug(ctx, "glColorMaski %u %d %d %d %d\n",
buf, red, green, blue, alpha);
if (buf >= ctx->Const.MaxDrawBuffers) {
_mesa_error(ctx, GL_INVALID_VALUE, "glColorMaski(buf=%u)", buf);
return;
}
/* Shouldn't have any information about channel depth in core mesa
* -- should probably store these as the native booleans:
*/
tmp[RCOMP] = red ? 0xff : 0x0;
tmp[GCOMP] = green ? 0xff : 0x0;
tmp[BCOMP] = blue ? 0xff : 0x0;
tmp[ACOMP] = alpha ? 0xff : 0x0;
if (TEST_EQ_4V(tmp, ctx->Color.ColorMask[buf]))
return;
FLUSH_VERTICES(ctx, ctx->DriverFlags.NewColorMask ? 0 : _NEW_COLOR);
ctx->NewDriverState |= ctx->DriverFlags.NewColorMask;
COPY_4UBV(ctx->Color.ColorMask[buf], tmp);
}
void GLAPIENTRY
_mesa_ClampColor(GLenum target, GLenum clamp)
{
GET_CURRENT_CONTEXT(ctx);
/* Check for both the extension and the GL version, since the Intel driver
* does not advertise the extension in core profiles.
*/
if (ctx->Version <= 30 && !ctx->Extensions.ARB_color_buffer_float) {
_mesa_error(ctx, GL_INVALID_OPERATION, "glClampColor()");
return;
}
if (clamp != GL_TRUE && clamp != GL_FALSE && clamp != GL_FIXED_ONLY_ARB) {
_mesa_error(ctx, GL_INVALID_ENUM, "glClampColorARB(clamp)");
return;
}
switch (target) {
case GL_CLAMP_VERTEX_COLOR_ARB:
if (ctx->API == API_OPENGL_CORE)
goto invalid_enum;
FLUSH_VERTICES(ctx, _NEW_LIGHT);
ctx->Light.ClampVertexColor = clamp;
_mesa_update_clamp_vertex_color(ctx, ctx->DrawBuffer);
break;
case GL_CLAMP_FRAGMENT_COLOR_ARB:
if (ctx->API == API_OPENGL_CORE)
goto invalid_enum;
FLUSH_VERTICES(ctx, _NEW_FRAG_CLAMP);
ctx->Color.ClampFragmentColor = clamp;
_mesa_update_clamp_fragment_color(ctx, ctx->DrawBuffer);
break;
case GL_CLAMP_READ_COLOR_ARB:
ctx->Color.ClampReadColor = clamp;
break;
default:
goto invalid_enum;
}
return;
invalid_enum:
_mesa_error(ctx, GL_INVALID_ENUM, "glClampColor(%s)",
_mesa_enum_to_string(target));
}
static GLboolean
get_clamp_color(const struct gl_framebuffer *fb, GLenum clamp)
{
if (clamp == GL_TRUE || clamp == GL_FALSE)
return clamp;
assert(clamp == GL_FIXED_ONLY);
if (!fb)
return GL_TRUE;
return fb->_AllColorBuffersFixedPoint;
}
GLboolean
_mesa_get_clamp_fragment_color(const struct gl_context *ctx,
const struct gl_framebuffer *drawFb)
{
return get_clamp_color(drawFb, ctx->Color.ClampFragmentColor);
}
GLboolean
_mesa_get_clamp_vertex_color(const struct gl_context *ctx,
const struct gl_framebuffer *drawFb)
{
return get_clamp_color(drawFb, ctx->Light.ClampVertexColor);
}
GLboolean
_mesa_get_clamp_read_color(const struct gl_context *ctx,
const struct gl_framebuffer *readFb)
{
return get_clamp_color(readFb, ctx->Color.ClampReadColor);
}
/**
* Update the ctx->Color._ClampFragmentColor field
*/
void
_mesa_update_clamp_fragment_color(struct gl_context *ctx,
const struct gl_framebuffer *drawFb)
{
/* Don't clamp if:
* - there is no colorbuffer
* - all colorbuffers are unsigned normalized, so clamping has no effect
* - there is an integer colorbuffer
*/
if (!drawFb || !drawFb->_HasSNormOrFloatColorBuffer ||
drawFb->_IntegerBuffers)
ctx->Color._ClampFragmentColor = GL_FALSE;
else
ctx->Color._ClampFragmentColor =
_mesa_get_clamp_fragment_color(ctx, drawFb);
}
/**
* Update the ctx->Color._ClampVertexColor field
*/
void
_mesa_update_clamp_vertex_color(struct gl_context *ctx,
const struct gl_framebuffer *drawFb)
{
ctx->Light._ClampVertexColor =
_mesa_get_clamp_vertex_color(ctx, drawFb);
}
/**
* Returns an appropriate mesa_format for color rendering based on the
* GL_FRAMEBUFFER_SRGB state.
*
* Some drivers implement GL_FRAMEBUFFER_SRGB using a flag on the blend state
* (which GL_FRAMEBUFFER_SRGB maps to reasonably), but some have to do so by
* overriding the format of the surface. This is a helper for doing the
* surface format override variant.
*/
mesa_format
_mesa_get_render_format(const struct gl_context *ctx, mesa_format format)
{
if (ctx->Color.sRGBEnabled)
return format;
else
return _mesa_get_srgb_format_linear(format);
}
/**********************************************************************/
/** \name Initialization */
/*@{*/
/**
* Initialization of the context's Color attribute group.
*
* \param ctx GL context.
*
* Initializes the related fields in the context color attribute group,
* __struct gl_contextRec::Color.
*/
void _mesa_init_color( struct gl_context * ctx )
{
GLuint i;
/* Color buffer group */
ctx->Color.IndexMask = ~0u;
memset(ctx->Color.ColorMask, 0xff, sizeof(ctx->Color.ColorMask));
ctx->Color.ClearIndex = 0;
ASSIGN_4V( ctx->Color.ClearColor.f, 0, 0, 0, 0 );
ctx->Color.AlphaEnabled = GL_FALSE;
ctx->Color.AlphaFunc = GL_ALWAYS;
ctx->Color.AlphaRef = 0;
ctx->Color.BlendEnabled = 0x0;
for (i = 0; i < ARRAY_SIZE(ctx->Color.Blend); i++) {
ctx->Color.Blend[i].SrcRGB = GL_ONE;
ctx->Color.Blend[i].DstRGB = GL_ZERO;
ctx->Color.Blend[i].SrcA = GL_ONE;
ctx->Color.Blend[i].DstA = GL_ZERO;
ctx->Color.Blend[i].EquationRGB = GL_FUNC_ADD;
ctx->Color.Blend[i].EquationA = GL_FUNC_ADD;
}
ASSIGN_4V( ctx->Color.BlendColor, 0.0, 0.0, 0.0, 0.0 );
ASSIGN_4V( ctx->Color.BlendColorUnclamped, 0.0, 0.0, 0.0, 0.0 );
ctx->Color.IndexLogicOpEnabled = GL_FALSE;
ctx->Color.ColorLogicOpEnabled = GL_FALSE;
ctx->Color.LogicOp = GL_COPY;
ctx->Color.DitherFlag = GL_TRUE;
/* GL_FRONT is not possible on GLES. Instead GL_BACK will render to either
* the front or the back buffer depending on the config */
if (ctx->Visual.doubleBufferMode || _mesa_is_gles(ctx)) {
ctx->Color.DrawBuffer[0] = GL_BACK;
}
else {
ctx->Color.DrawBuffer[0] = GL_FRONT;
}
ctx->Color.ClampFragmentColor = ctx->API == API_OPENGL_COMPAT ?
GL_FIXED_ONLY_ARB : GL_FALSE;
ctx->Color._ClampFragmentColor = GL_FALSE;
ctx->Color.ClampReadColor = GL_FIXED_ONLY_ARB;
/* GLES 1/2/3 behaves as though GL_FRAMEBUFFER_SRGB is always enabled
* if EGL_KHR_gl_colorspace has been used to request sRGB.
*/
ctx->Color.sRGBEnabled = _mesa_is_gles(ctx);
ctx->Color.BlendCoherent = true;
}
/*@}*/