/*
* Copyright © 2014 Connor Abbott
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include "nir_instr_set.h"
#include "nir_vla.h"
#define HASH(hash, data) _mesa_fnv32_1a_accumulate((hash), (data))
static uint32_t
hash_src(uint32_t hash, const nir_src *src)
{
assert(src->is_ssa);
hash = HASH(hash, src->ssa);
return hash;
}
static uint32_t
hash_alu_src(uint32_t hash, const nir_alu_src *src, unsigned num_components)
{
hash = HASH(hash, src->abs);
hash = HASH(hash, src->negate);
for (unsigned i = 0; i < num_components; i++)
hash = HASH(hash, src->swizzle[i]);
hash = hash_src(hash, &src->src);
return hash;
}
static uint32_t
hash_alu(uint32_t hash, const nir_alu_instr *instr)
{
hash = HASH(hash, instr->op);
hash = HASH(hash, instr->dest.dest.ssa.num_components);
hash = HASH(hash, instr->dest.dest.ssa.bit_size);
/* We explicitly don't hash instr->dest.dest.exact */
if (nir_op_infos[instr->op].algebraic_properties & NIR_OP_IS_COMMUTATIVE) {
assert(nir_op_infos[instr->op].num_inputs == 2);
uint32_t hash0 = hash_alu_src(hash, &instr->src[0],
nir_ssa_alu_instr_src_components(instr, 0));
uint32_t hash1 = hash_alu_src(hash, &instr->src[1],
nir_ssa_alu_instr_src_components(instr, 1));
/* For commutative operations, we need some commutative way of
* combining the hashes. One option would be to XOR them but that
* means that anything with two identical sources will hash to 0 and
* that's common enough we probably don't want the guaranteed
* collision. Either addition or multiplication will also work.
*/
hash = hash0 * hash1;
} else {
for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
hash = hash_alu_src(hash, &instr->src[i],
nir_ssa_alu_instr_src_components(instr, i));
}
}
return hash;
}
static uint32_t
hash_load_const(uint32_t hash, const nir_load_const_instr *instr)
{
hash = HASH(hash, instr->def.num_components);
unsigned size = instr->def.num_components * (instr->def.bit_size / 8);
hash = _mesa_fnv32_1a_accumulate_block(hash, instr->value.f32, size);
return hash;
}
static int
cmp_phi_src(const void *data1, const void *data2)
{
nir_phi_src *src1 = *(nir_phi_src **)data1;
nir_phi_src *src2 = *(nir_phi_src **)data2;
return src1->pred - src2->pred;
}
static uint32_t
hash_phi(uint32_t hash, const nir_phi_instr *instr)
{
hash = HASH(hash, instr->instr.block);
/* sort sources by predecessor, since the order shouldn't matter */
unsigned num_preds = instr->instr.block->predecessors->entries;
NIR_VLA(nir_phi_src *, srcs, num_preds);
unsigned i = 0;
nir_foreach_phi_src(src, instr) {
srcs[i++] = src;
}
qsort(srcs, num_preds, sizeof(nir_phi_src *), cmp_phi_src);
for (i = 0; i < num_preds; i++) {
hash = hash_src(hash, &srcs[i]->src);
hash = HASH(hash, srcs[i]->pred);
}
return hash;
}
static uint32_t
hash_intrinsic(uint32_t hash, const nir_intrinsic_instr *instr)
{
const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic];
hash = HASH(hash, instr->intrinsic);
if (info->has_dest) {
hash = HASH(hash, instr->dest.ssa.num_components);
hash = HASH(hash, instr->dest.ssa.bit_size);
}
assert(info->num_variables == 0);
hash = _mesa_fnv32_1a_accumulate_block(hash, instr->const_index,
info->num_indices
* sizeof(instr->const_index[0]));
return hash;
}
static uint32_t
hash_tex(uint32_t hash, const nir_tex_instr *instr)
{
hash = HASH(hash, instr->op);
hash = HASH(hash, instr->num_srcs);
for (unsigned i = 0; i < instr->num_srcs; i++) {
hash = HASH(hash, instr->src[i].src_type);
hash = hash_src(hash, &instr->src[i].src);
}
hash = HASH(hash, instr->coord_components);
hash = HASH(hash, instr->sampler_dim);
hash = HASH(hash, instr->is_array);
hash = HASH(hash, instr->is_shadow);
hash = HASH(hash, instr->is_new_style_shadow);
unsigned component = instr->component;
hash = HASH(hash, component);
hash = HASH(hash, instr->texture_index);
hash = HASH(hash, instr->texture_array_size);
hash = HASH(hash, instr->sampler_index);
assert(!instr->texture && !instr->sampler);
return hash;
}
/* Computes a hash of an instruction for use in a hash table. Note that this
* will only work for instructions where instr_can_rewrite() returns true, and
* it should return identical hashes for two instructions that are the same
* according nir_instrs_equal().
*/
static uint32_t
hash_instr(const void *data)
{
const nir_instr *instr = data;
uint32_t hash = _mesa_fnv32_1a_offset_bias;
switch (instr->type) {
case nir_instr_type_alu:
hash = hash_alu(hash, nir_instr_as_alu(instr));
break;
case nir_instr_type_load_const:
hash = hash_load_const(hash, nir_instr_as_load_const(instr));
break;
case nir_instr_type_phi:
hash = hash_phi(hash, nir_instr_as_phi(instr));
break;
case nir_instr_type_intrinsic:
hash = hash_intrinsic(hash, nir_instr_as_intrinsic(instr));
break;
case nir_instr_type_tex:
hash = hash_tex(hash, nir_instr_as_tex(instr));
break;
default:
unreachable("Invalid instruction type");
}
return hash;
}
bool
nir_srcs_equal(nir_src src1, nir_src src2)
{
if (src1.is_ssa) {
if (src2.is_ssa) {
return src1.ssa == src2.ssa;
} else {
return false;
}
} else {
if (src2.is_ssa) {
return false;
} else {
if ((src1.reg.indirect == NULL) != (src2.reg.indirect == NULL))
return false;
if (src1.reg.indirect) {
if (!nir_srcs_equal(*src1.reg.indirect, *src2.reg.indirect))
return false;
}
return src1.reg.reg == src2.reg.reg &&
src1.reg.base_offset == src2.reg.base_offset;
}
}
}
bool
nir_alu_srcs_equal(const nir_alu_instr *alu1, const nir_alu_instr *alu2,
unsigned src1, unsigned src2)
{
if (alu1->src[src1].abs != alu2->src[src2].abs ||
alu1->src[src1].negate != alu2->src[src2].negate)
return false;
for (unsigned i = 0; i < nir_ssa_alu_instr_src_components(alu1, src1); i++) {
if (alu1->src[src1].swizzle[i] != alu2->src[src2].swizzle[i])
return false;
}
return nir_srcs_equal(alu1->src[src1].src, alu2->src[src2].src);
}
/* Returns "true" if two instructions are equal. Note that this will only
* work for the subset of instructions defined by instr_can_rewrite(). Also,
* it should only return "true" for instructions that hash_instr() will return
* the same hash for (ignoring collisions, of course).
*/
static bool
nir_instrs_equal(const nir_instr *instr1, const nir_instr *instr2)
{
if (instr1->type != instr2->type)
return false;
switch (instr1->type) {
case nir_instr_type_alu: {
nir_alu_instr *alu1 = nir_instr_as_alu(instr1);
nir_alu_instr *alu2 = nir_instr_as_alu(instr2);
if (alu1->op != alu2->op)
return false;
/* TODO: We can probably acutally do something more inteligent such
* as allowing different numbers and taking a maximum or something
* here */
if (alu1->dest.dest.ssa.num_components != alu2->dest.dest.ssa.num_components)
return false;
if (alu1->dest.dest.ssa.bit_size != alu2->dest.dest.ssa.bit_size)
return false;
/* We explicitly don't hash instr->dest.dest.exact */
if (nir_op_infos[alu1->op].algebraic_properties & NIR_OP_IS_COMMUTATIVE) {
assert(nir_op_infos[alu1->op].num_inputs == 2);
return (nir_alu_srcs_equal(alu1, alu2, 0, 0) &&
nir_alu_srcs_equal(alu1, alu2, 1, 1)) ||
(nir_alu_srcs_equal(alu1, alu2, 0, 1) &&
nir_alu_srcs_equal(alu1, alu2, 1, 0));
} else {
for (unsigned i = 0; i < nir_op_infos[alu1->op].num_inputs; i++) {
if (!nir_alu_srcs_equal(alu1, alu2, i, i))
return false;
}
}
return true;
}
case nir_instr_type_tex: {
nir_tex_instr *tex1 = nir_instr_as_tex(instr1);
nir_tex_instr *tex2 = nir_instr_as_tex(instr2);
if (tex1->op != tex2->op)
return false;
if (tex1->num_srcs != tex2->num_srcs)
return false;
for (unsigned i = 0; i < tex1->num_srcs; i++) {
if (tex1->src[i].src_type != tex2->src[i].src_type ||
!nir_srcs_equal(tex1->src[i].src, tex2->src[i].src)) {
return false;
}
}
if (tex1->coord_components != tex2->coord_components ||
tex1->sampler_dim != tex2->sampler_dim ||
tex1->is_array != tex2->is_array ||
tex1->is_shadow != tex2->is_shadow ||
tex1->is_new_style_shadow != tex2->is_new_style_shadow ||
tex1->component != tex2->component ||
tex1->texture_index != tex2->texture_index ||
tex1->texture_array_size != tex2->texture_array_size ||
tex1->sampler_index != tex2->sampler_index) {
return false;
}
/* Don't support un-lowered sampler derefs currently. */
assert(!tex1->texture && !tex1->sampler &&
!tex2->texture && !tex2->sampler);
return true;
}
case nir_instr_type_load_const: {
nir_load_const_instr *load1 = nir_instr_as_load_const(instr1);
nir_load_const_instr *load2 = nir_instr_as_load_const(instr2);
if (load1->def.num_components != load2->def.num_components)
return false;
if (load1->def.bit_size != load2->def.bit_size)
return false;
return memcmp(load1->value.f32, load2->value.f32,
load1->def.num_components * (load1->def.bit_size / 8u)) == 0;
}
case nir_instr_type_phi: {
nir_phi_instr *phi1 = nir_instr_as_phi(instr1);
nir_phi_instr *phi2 = nir_instr_as_phi(instr2);
if (phi1->instr.block != phi2->instr.block)
return false;
nir_foreach_phi_src(src1, phi1) {
nir_foreach_phi_src(src2, phi2) {
if (src1->pred == src2->pred) {
if (!nir_srcs_equal(src1->src, src2->src))
return false;
break;
}
}
}
return true;
}
case nir_instr_type_intrinsic: {
nir_intrinsic_instr *intrinsic1 = nir_instr_as_intrinsic(instr1);
nir_intrinsic_instr *intrinsic2 = nir_instr_as_intrinsic(instr2);
const nir_intrinsic_info *info =
&nir_intrinsic_infos[intrinsic1->intrinsic];
if (intrinsic1->intrinsic != intrinsic2->intrinsic ||
intrinsic1->num_components != intrinsic2->num_components)
return false;
if (info->has_dest && intrinsic1->dest.ssa.num_components !=
intrinsic2->dest.ssa.num_components)
return false;
if (info->has_dest && intrinsic1->dest.ssa.bit_size !=
intrinsic2->dest.ssa.bit_size)
return false;
for (unsigned i = 0; i < info->num_srcs; i++) {
if (!nir_srcs_equal(intrinsic1->src[i], intrinsic2->src[i]))
return false;
}
assert(info->num_variables == 0);
for (unsigned i = 0; i < info->num_indices; i++) {
if (intrinsic1->const_index[i] != intrinsic2->const_index[i])
return false;
}
return true;
}
case nir_instr_type_call:
case nir_instr_type_jump:
case nir_instr_type_ssa_undef:
case nir_instr_type_parallel_copy:
default:
unreachable("Invalid instruction type");
}
return false;
}
static bool
src_is_ssa(nir_src *src, void *data)
{
(void) data;
return src->is_ssa;
}
static bool
dest_is_ssa(nir_dest *dest, void *data)
{
(void) data;
return dest->is_ssa;
}
/* This function determines if uses of an instruction can safely be rewritten
* to use another identical instruction instead. Note that this function must
* be kept in sync with hash_instr() and nir_instrs_equal() -- only
* instructions that pass this test will be handed on to those functions, and
* conversely they must handle everything that this function returns true for.
*/
static bool
instr_can_rewrite(nir_instr *instr)
{
/* We only handle SSA. */
if (!nir_foreach_dest(instr, dest_is_ssa, NULL) ||
!nir_foreach_src(instr, src_is_ssa, NULL))
return false;
switch (instr->type) {
case nir_instr_type_alu:
case nir_instr_type_load_const:
case nir_instr_type_phi:
return true;
case nir_instr_type_tex: {
nir_tex_instr *tex = nir_instr_as_tex(instr);
/* Don't support un-lowered sampler derefs currently. */
if (tex->texture || tex->sampler)
return false;
return true;
}
case nir_instr_type_intrinsic: {
const nir_intrinsic_info *info =
&nir_intrinsic_infos[nir_instr_as_intrinsic(instr)->intrinsic];
return (info->flags & NIR_INTRINSIC_CAN_ELIMINATE) &&
(info->flags & NIR_INTRINSIC_CAN_REORDER) &&
info->num_variables == 0; /* not implemented yet */
}
case nir_instr_type_call:
case nir_instr_type_jump:
case nir_instr_type_ssa_undef:
return false;
case nir_instr_type_parallel_copy:
default:
unreachable("Invalid instruction type");
}
return false;
}
static nir_ssa_def *
nir_instr_get_dest_ssa_def(nir_instr *instr)
{
switch (instr->type) {
case nir_instr_type_alu:
assert(nir_instr_as_alu(instr)->dest.dest.is_ssa);
return &nir_instr_as_alu(instr)->dest.dest.ssa;
case nir_instr_type_load_const:
return &nir_instr_as_load_const(instr)->def;
case nir_instr_type_phi:
assert(nir_instr_as_phi(instr)->dest.is_ssa);
return &nir_instr_as_phi(instr)->dest.ssa;
case nir_instr_type_intrinsic:
assert(nir_instr_as_intrinsic(instr)->dest.is_ssa);
return &nir_instr_as_intrinsic(instr)->dest.ssa;
case nir_instr_type_tex:
assert(nir_instr_as_tex(instr)->dest.is_ssa);
return &nir_instr_as_tex(instr)->dest.ssa;
default:
unreachable("We never ask for any of these");
}
}
static bool
cmp_func(const void *data1, const void *data2)
{
return nir_instrs_equal(data1, data2);
}
struct set *
nir_instr_set_create(void *mem_ctx)
{
return _mesa_set_create(mem_ctx, hash_instr, cmp_func);
}
void
nir_instr_set_destroy(struct set *instr_set)
{
_mesa_set_destroy(instr_set, NULL);
}
bool
nir_instr_set_add_or_rewrite(struct set *instr_set, nir_instr *instr)
{
if (!instr_can_rewrite(instr))
return false;
struct set_entry *entry = _mesa_set_search(instr_set, instr);
if (entry) {
nir_ssa_def *def = nir_instr_get_dest_ssa_def(instr);
nir_instr *match = (nir_instr *) entry->key;
nir_ssa_def *new_def = nir_instr_get_dest_ssa_def(match);
/* It's safe to replace an exact instruction with an inexact one as
* long as we make it exact. If we got here, the two instructions are
* exactly identical in every other way so, once we've set the exact
* bit, they are the same.
*/
if (instr->type == nir_instr_type_alu && nir_instr_as_alu(instr)->exact)
nir_instr_as_alu(match)->exact = true;
nir_ssa_def_rewrite_uses(def, nir_src_for_ssa(new_def));
return true;
}
_mesa_set_add(instr_set, instr);
return false;
}
void
nir_instr_set_remove(struct set *instr_set, nir_instr *instr)
{
if (!instr_can_rewrite(instr))
return;
struct set_entry *entry = _mesa_set_search(instr_set, instr);
if (entry)
_mesa_set_remove(instr_set, entry);
}