/*
* Copyright © 2010 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
#include "glsl_symbol_table.h"
#include "ast.h"
#include "compiler/glsl_types.h"
#include "ir.h"
#include "main/core.h" /* for MIN2 */
#include "main/shaderobj.h"
#include "builtin_functions.h"
static ir_rvalue *
convert_component(ir_rvalue *src, const glsl_type *desired_type);
static unsigned
process_parameters(exec_list *instructions, exec_list *actual_parameters,
exec_list *parameters,
struct _mesa_glsl_parse_state *state)
{
void *mem_ctx = state;
unsigned count = 0;
foreach_list_typed(ast_node, ast, link, parameters) {
/* We need to process the parameters first in order to know if we can
* raise or not a unitialized warning. Calling set_is_lhs silence the
* warning for now. Raising the warning or not will be checked at
* verify_parameter_modes.
*/
ast->set_is_lhs(true);
ir_rvalue *result = ast->hir(instructions, state);
ir_constant *const constant =
result->constant_expression_value(mem_ctx);
if (constant != NULL)
result = constant;
actual_parameters->push_tail(result);
count++;
}
return count;
}
/**
* Generate a source prototype for a function signature
*
* \param return_type Return type of the function. May be \c NULL.
* \param name Name of the function.
* \param parameters List of \c ir_instruction nodes representing the
* parameter list for the function. This may be either a
* formal (\c ir_variable) or actual (\c ir_rvalue)
* parameter list. Only the type is used.
*
* \return
* A ralloced string representing the prototype of the function.
*/
char *
prototype_string(const glsl_type *return_type, const char *name,
exec_list *parameters)
{
char *str = NULL;
if (return_type != NULL)
str = ralloc_asprintf(NULL, "%s ", return_type->name);
ralloc_asprintf_append(&str, "%s(", name);
const char *comma = "";
foreach_in_list(const ir_variable, param, parameters) {
ralloc_asprintf_append(&str, "%s%s", comma, param->type->name);
comma = ", ";
}
ralloc_strcat(&str, ")");
return str;
}
static bool
verify_image_parameter(YYLTYPE *loc, _mesa_glsl_parse_state *state,
const ir_variable *formal, const ir_variable *actual)
{
/**
* From the ARB_shader_image_load_store specification:
*
* "The values of image variables qualified with coherent,
* volatile, restrict, readonly, or writeonly may not be passed
* to functions whose formal parameters lack such
* qualifiers. [...] It is legal to have additional qualifiers
* on a formal parameter, but not to have fewer."
*/
if (actual->data.memory_coherent && !formal->data.memory_coherent) {
_mesa_glsl_error(loc, state,
"function call parameter `%s' drops "
"`coherent' qualifier", formal->name);
return false;
}
if (actual->data.memory_volatile && !formal->data.memory_volatile) {
_mesa_glsl_error(loc, state,
"function call parameter `%s' drops "
"`volatile' qualifier", formal->name);
return false;
}
if (actual->data.memory_restrict && !formal->data.memory_restrict) {
_mesa_glsl_error(loc, state,
"function call parameter `%s' drops "
"`restrict' qualifier", formal->name);
return false;
}
if (actual->data.memory_read_only && !formal->data.memory_read_only) {
_mesa_glsl_error(loc, state,
"function call parameter `%s' drops "
"`readonly' qualifier", formal->name);
return false;
}
if (actual->data.memory_write_only && !formal->data.memory_write_only) {
_mesa_glsl_error(loc, state,
"function call parameter `%s' drops "
"`writeonly' qualifier", formal->name);
return false;
}
return true;
}
static bool
verify_first_atomic_parameter(YYLTYPE *loc, _mesa_glsl_parse_state *state,
ir_variable *var)
{
if (!var ||
(!var->is_in_shader_storage_block() &&
var->data.mode != ir_var_shader_shared)) {
_mesa_glsl_error(loc, state, "First argument to atomic function "
"must be a buffer or shared variable");
return false;
}
return true;
}
static bool
is_atomic_function(const char *func_name)
{
return !strcmp(func_name, "atomicAdd") ||
!strcmp(func_name, "atomicMin") ||
!strcmp(func_name, "atomicMax") ||
!strcmp(func_name, "atomicAnd") ||
!strcmp(func_name, "atomicOr") ||
!strcmp(func_name, "atomicXor") ||
!strcmp(func_name, "atomicExchange") ||
!strcmp(func_name, "atomicCompSwap");
}
/**
* Verify that 'out' and 'inout' actual parameters are lvalues. Also, verify
* that 'const_in' formal parameters (an extension in our IR) correspond to
* ir_constant actual parameters.
*/
static bool
verify_parameter_modes(_mesa_glsl_parse_state *state,
ir_function_signature *sig,
exec_list &actual_ir_parameters,
exec_list &actual_ast_parameters)
{
exec_node *actual_ir_node = actual_ir_parameters.get_head_raw();
exec_node *actual_ast_node = actual_ast_parameters.get_head_raw();
foreach_in_list(const ir_variable, formal, &sig->parameters) {
/* The lists must be the same length. */
assert(!actual_ir_node->is_tail_sentinel());
assert(!actual_ast_node->is_tail_sentinel());
const ir_rvalue *const actual = (ir_rvalue *) actual_ir_node;
const ast_expression *const actual_ast =
exec_node_data(ast_expression, actual_ast_node, link);
/* FIXME: 'loc' is incorrect (as of 2011-01-21). It is always
* FIXME: 0:0(0).
*/
YYLTYPE loc = actual_ast->get_location();
/* Verify that 'const_in' parameters are ir_constants. */
if (formal->data.mode == ir_var_const_in &&
actual->ir_type != ir_type_constant) {
_mesa_glsl_error(&loc, state,
"parameter `in %s' must be a constant expression",
formal->name);
return false;
}
/* Verify that shader_in parameters are shader inputs */
if (formal->data.must_be_shader_input) {
const ir_rvalue *val = actual;
/* GLSL 4.40 allows swizzles, while earlier GLSL versions do not. */
if (val->ir_type == ir_type_swizzle) {
if (!state->is_version(440, 0)) {
_mesa_glsl_error(&loc, state,
"parameter `%s` must not be swizzled",
formal->name);
return false;
}
val = ((ir_swizzle *)val)->val;
}
for (;;) {
if (val->ir_type == ir_type_dereference_array) {
val = ((ir_dereference_array *)val)->array;
} else if (val->ir_type == ir_type_dereference_record &&
!state->es_shader) {
val = ((ir_dereference_record *)val)->record;
} else
break;
}
ir_variable *var = NULL;
if (const ir_dereference_variable *deref_var = val->as_dereference_variable())
var = deref_var->variable_referenced();
if (!var || var->data.mode != ir_var_shader_in) {
_mesa_glsl_error(&loc, state,
"parameter `%s` must be a shader input",
formal->name);
return false;
}
var->data.must_be_shader_input = 1;
}
/* Verify that 'out' and 'inout' actual parameters are lvalues. */
if (formal->data.mode == ir_var_function_out
|| formal->data.mode == ir_var_function_inout) {
const char *mode = NULL;
switch (formal->data.mode) {
case ir_var_function_out: mode = "out"; break;
case ir_var_function_inout: mode = "inout"; break;
default: assert(false); break;
}
/* This AST-based check catches errors like f(i++). The IR-based
* is_lvalue() is insufficient because the actual parameter at the
* IR-level is just a temporary value, which is an l-value.
*/
if (actual_ast->non_lvalue_description != NULL) {
_mesa_glsl_error(&loc, state,
"function parameter '%s %s' references a %s",
mode, formal->name,
actual_ast->non_lvalue_description);
return false;
}
ir_variable *var = actual->variable_referenced();
if (var && formal->data.mode == ir_var_function_inout) {
if ((var->data.mode == ir_var_auto ||
var->data.mode == ir_var_shader_out) &&
!var->data.assigned &&
!is_gl_identifier(var->name)) {
_mesa_glsl_warning(&loc, state, "`%s' used uninitialized",
var->name);
}
}
if (var)
var->data.assigned = true;
if (var && var->data.read_only) {
_mesa_glsl_error(&loc, state,
"function parameter '%s %s' references the "
"read-only variable '%s'",
mode, formal->name,
actual->variable_referenced()->name);
return false;
} else if (!actual->is_lvalue(state)) {
_mesa_glsl_error(&loc, state,
"function parameter '%s %s' is not an lvalue",
mode, formal->name);
return false;
}
} else {
assert(formal->data.mode == ir_var_function_in ||
formal->data.mode == ir_var_const_in);
ir_variable *var = actual->variable_referenced();
if (var) {
if ((var->data.mode == ir_var_auto ||
var->data.mode == ir_var_shader_out) &&
!var->data.assigned &&
!is_gl_identifier(var->name)) {
_mesa_glsl_warning(&loc, state, "`%s' used uninitialized",
var->name);
}
}
}
if (formal->type->is_image() &&
actual->variable_referenced()) {
if (!verify_image_parameter(&loc, state, formal,
actual->variable_referenced()))
return false;
}
actual_ir_node = actual_ir_node->next;
actual_ast_node = actual_ast_node->next;
}
/* The first parameter of atomic functions must be a buffer variable */
const char *func_name = sig->function_name();
bool is_atomic = is_atomic_function(func_name);
if (is_atomic) {
const ir_rvalue *const actual =
(ir_rvalue *) actual_ir_parameters.get_head_raw();
const ast_expression *const actual_ast =
exec_node_data(ast_expression,
actual_ast_parameters.get_head_raw(), link);
YYLTYPE loc = actual_ast->get_location();
if (!verify_first_atomic_parameter(&loc, state,
actual->variable_referenced())) {
return false;
}
}
return true;
}
static void
fix_parameter(void *mem_ctx, ir_rvalue *actual, const glsl_type *formal_type,
exec_list *before_instructions, exec_list *after_instructions,
bool parameter_is_inout)
{
ir_expression *const expr = actual->as_expression();
/* If the types match exactly and the parameter is not a vector-extract,
* nothing needs to be done to fix the parameter.
*/
if (formal_type == actual->type
&& (expr == NULL || expr->operation != ir_binop_vector_extract))
return;
/* To convert an out parameter, we need to create a temporary variable to
* hold the value before conversion, and then perform the conversion after
* the function call returns.
*
* This has the effect of transforming code like this:
*
* void f(out int x);
* float value;
* f(value);
*
* Into IR that's equivalent to this:
*
* void f(out int x);
* float value;
* int out_parameter_conversion;
* f(out_parameter_conversion);
* value = float(out_parameter_conversion);
*
* If the parameter is an ir_expression of ir_binop_vector_extract,
* additional conversion is needed in the post-call re-write.
*/
ir_variable *tmp =
new(mem_ctx) ir_variable(formal_type, "inout_tmp", ir_var_temporary);
before_instructions->push_tail(tmp);
/* If the parameter is an inout parameter, copy the value of the actual
* parameter to the new temporary. Note that no type conversion is allowed
* here because inout parameters must match types exactly.
*/
if (parameter_is_inout) {
/* Inout parameters should never require conversion, since that would
* require an implicit conversion to exist both to and from the formal
* parameter type, and there are no bidirectional implicit conversions.
*/
assert (actual->type == formal_type);
ir_dereference_variable *const deref_tmp_1 =
new(mem_ctx) ir_dereference_variable(tmp);
ir_assignment *const assignment =
new(mem_ctx) ir_assignment(deref_tmp_1, actual);
before_instructions->push_tail(assignment);
}
/* Replace the parameter in the call with a dereference of the new
* temporary.
*/
ir_dereference_variable *const deref_tmp_2 =
new(mem_ctx) ir_dereference_variable(tmp);
actual->replace_with(deref_tmp_2);
/* Copy the temporary variable to the actual parameter with optional
* type conversion applied.
*/
ir_rvalue *rhs = new(mem_ctx) ir_dereference_variable(tmp);
if (actual->type != formal_type)
rhs = convert_component(rhs, actual->type);
ir_rvalue *lhs = actual;
if (expr != NULL && expr->operation == ir_binop_vector_extract) {
lhs = new(mem_ctx) ir_dereference_array(expr->operands[0]->clone(mem_ctx,
NULL),
expr->operands[1]->clone(mem_ctx,
NULL));
}
ir_assignment *const assignment_2 = new(mem_ctx) ir_assignment(lhs, rhs);
after_instructions->push_tail(assignment_2);
}
/**
* Generate a function call.
*
* For non-void functions, this returns a dereference of the temporary
* variable which stores the return value for the call. For void functions,
* this returns NULL.
*/
static ir_rvalue *
generate_call(exec_list *instructions, ir_function_signature *sig,
exec_list *actual_parameters,
ir_variable *sub_var,
ir_rvalue *array_idx,
struct _mesa_glsl_parse_state *state)
{
void *ctx = state;
exec_list post_call_conversions;
/* Perform implicit conversion of arguments. For out parameters, we need
* to place them in a temporary variable and do the conversion after the
* call takes place. Since we haven't emitted the call yet, we'll place
* the post-call conversions in a temporary exec_list, and emit them later.
*/
foreach_two_lists(formal_node, &sig->parameters,
actual_node, actual_parameters) {
ir_rvalue *actual = (ir_rvalue *) actual_node;
ir_variable *formal = (ir_variable *) formal_node;
if (formal->type->is_numeric() || formal->type->is_boolean()) {
switch (formal->data.mode) {
case ir_var_const_in:
case ir_var_function_in: {
ir_rvalue *converted
= convert_component(actual, formal->type);
actual->replace_with(converted);
break;
}
case ir_var_function_out:
case ir_var_function_inout:
fix_parameter(ctx, actual, formal->type,
instructions, &post_call_conversions,
formal->data.mode == ir_var_function_inout);
break;
default:
assert (!"Illegal formal parameter mode");
break;
}
}
}
/* Section 4.3.2 (Const) of the GLSL 1.10.59 spec says:
*
* "Initializers for const declarations must be formed from literal
* values, other const variables (not including function call
* paramaters), or expressions of these.
*
* Constructors may be used in such expressions, but function calls may
* not."
*
* Section 4.3.3 (Constant Expressions) of the GLSL 1.20.8 spec says:
*
* "A constant expression is one of
*
* ...
*
* - a built-in function call whose arguments are all constant
* expressions, with the exception of the texture lookup
* functions, the noise functions, and ftransform. The built-in
* functions dFdx, dFdy, and fwidth must return 0 when evaluated
* inside an initializer with an argument that is a constant
* expression."
*
* Section 5.10 (Constant Expressions) of the GLSL ES 1.00.17 spec says:
*
* "A constant expression is one of
*
* ...
*
* - a built-in function call whose arguments are all constant
* expressions, with the exception of the texture lookup
* functions."
*
* Section 4.3.3 (Constant Expressions) of the GLSL ES 3.00.4 spec says:
*
* "A constant expression is one of
*
* ...
*
* - a built-in function call whose arguments are all constant
* expressions, with the exception of the texture lookup
* functions. The built-in functions dFdx, dFdy, and fwidth must
* return 0 when evaluated inside an initializer with an argument
* that is a constant expression."
*
* If the function call is a constant expression, don't generate any
* instructions; just generate an ir_constant.
*/
if (state->is_version(120, 100)) {
ir_constant *value = sig->constant_expression_value(ctx,
actual_parameters,
NULL);
if (value != NULL) {
return value;
}
}
ir_dereference_variable *deref = NULL;
if (!sig->return_type->is_void()) {
/* Create a new temporary to hold the return value. */
char *const name = ir_variable::temporaries_allocate_names
? ralloc_asprintf(ctx, "%s_retval", sig->function_name())
: NULL;
ir_variable *var;
var = new(ctx) ir_variable(sig->return_type, name, ir_var_temporary);
instructions->push_tail(var);
ralloc_free(name);
deref = new(ctx) ir_dereference_variable(var);
}
ir_call *call = new(ctx) ir_call(sig, deref,
actual_parameters, sub_var, array_idx);
instructions->push_tail(call);
if (sig->is_builtin()) {
/* inline immediately */
call->generate_inline(call);
call->remove();
}
/* Also emit any necessary out-parameter conversions. */
instructions->append_list(&post_call_conversions);
return deref ? deref->clone(ctx, NULL) : NULL;
}
/**
* Given a function name and parameter list, find the matching signature.
*/
static ir_function_signature *
match_function_by_name(const char *name,
exec_list *actual_parameters,
struct _mesa_glsl_parse_state *state)
{
ir_function *f = state->symbols->get_function(name);
ir_function_signature *local_sig = NULL;
ir_function_signature *sig = NULL;
/* Is the function hidden by a record type constructor? */
if (state->symbols->get_type(name))
return sig; /* no match */
/* Is the function hidden by a variable (impossible in 1.10)? */
if (!state->symbols->separate_function_namespace
&& state->symbols->get_variable(name))
return sig; /* no match */
if (f != NULL) {
/* In desktop GL, the presence of a user-defined signature hides any
* built-in signatures, so we must ignore them. In contrast, in ES2
* user-defined signatures add new overloads, so we must consider them.
*/
bool allow_builtins = state->es_shader || !f->has_user_signature();
/* Look for a match in the local shader. If exact, we're done. */
bool is_exact = false;
sig = local_sig = f->matching_signature(state, actual_parameters,
allow_builtins, &is_exact);
if (is_exact)
return sig;
if (!allow_builtins)
return sig;
}
/* Local shader has no exact candidates; check the built-ins. */
_mesa_glsl_initialize_builtin_functions();
sig = _mesa_glsl_find_builtin_function(state, name, actual_parameters);
return sig;
}
static ir_function_signature *
match_subroutine_by_name(const char *name,
exec_list *actual_parameters,
struct _mesa_glsl_parse_state *state,
ir_variable **var_r)
{
void *ctx = state;
ir_function_signature *sig = NULL;
ir_function *f, *found = NULL;
const char *new_name;
ir_variable *var;
bool is_exact = false;
new_name =
ralloc_asprintf(ctx, "%s_%s",
_mesa_shader_stage_to_subroutine_prefix(state->stage),
name);
var = state->symbols->get_variable(new_name);
if (!var)
return NULL;
for (int i = 0; i < state->num_subroutine_types; i++) {
f = state->subroutine_types[i];
if (strcmp(f->name, var->type->without_array()->name))
continue;
found = f;
break;
}
if (!found)
return NULL;
*var_r = var;
sig = found->matching_signature(state, actual_parameters,
false, &is_exact);
return sig;
}
static ir_rvalue *
generate_array_index(void *mem_ctx, exec_list *instructions,
struct _mesa_glsl_parse_state *state, YYLTYPE loc,
const ast_expression *array, ast_expression *idx,
const char **function_name, exec_list *actual_parameters)
{
if (array->oper == ast_array_index) {
/* This handles arrays of arrays */
ir_rvalue *outer_array = generate_array_index(mem_ctx, instructions,
state, loc,
array->subexpressions[0],
array->subexpressions[1],
function_name,
actual_parameters);
ir_rvalue *outer_array_idx = idx->hir(instructions, state);
YYLTYPE index_loc = idx->get_location();
return _mesa_ast_array_index_to_hir(mem_ctx, state, outer_array,
outer_array_idx, loc,
index_loc);
} else {
ir_variable *sub_var = NULL;
*function_name = array->primary_expression.identifier;
if (!match_subroutine_by_name(*function_name, actual_parameters,
state, &sub_var)) {
_mesa_glsl_error(&loc, state, "Unknown subroutine `%s'",
*function_name);
*function_name = NULL; /* indicate error condition to caller */
return NULL;
}
ir_rvalue *outer_array_idx = idx->hir(instructions, state);
return new(mem_ctx) ir_dereference_array(sub_var, outer_array_idx);
}
}
static void
print_function_prototypes(_mesa_glsl_parse_state *state, YYLTYPE *loc,
ir_function *f)
{
if (f == NULL)
return;
foreach_in_list(ir_function_signature, sig, &f->signatures) {
if (sig->is_builtin() && !sig->is_builtin_available(state))
continue;
char *str = prototype_string(sig->return_type, f->name,
&sig->parameters);
_mesa_glsl_error(loc, state, " %s", str);
ralloc_free(str);
}
}
/**
* Raise a "no matching function" error, listing all possible overloads the
* compiler considered so developers can figure out what went wrong.
*/
static void
no_matching_function_error(const char *name,
YYLTYPE *loc,
exec_list *actual_parameters,
_mesa_glsl_parse_state *state)
{
gl_shader *sh = _mesa_glsl_get_builtin_function_shader();
if (state->symbols->get_function(name) == NULL
&& (!state->uses_builtin_functions
|| sh->symbols->get_function(name) == NULL)) {
_mesa_glsl_error(loc, state, "no function with name '%s'", name);
} else {
char *str = prototype_string(NULL, name, actual_parameters);
_mesa_glsl_error(loc, state,
"no matching function for call to `%s';"
" candidates are:",
str);
ralloc_free(str);
print_function_prototypes(state, loc,
state->symbols->get_function(name));
if (state->uses_builtin_functions) {
print_function_prototypes(state, loc,
sh->symbols->get_function(name));
}
}
}
/**
* Perform automatic type conversion of constructor parameters
*
* This implements the rules in the "Conversion and Scalar Constructors"
* section (GLSL 1.10 section 5.4.1), not the "Implicit Conversions" rules.
*/
static ir_rvalue *
convert_component(ir_rvalue *src, const glsl_type *desired_type)
{
void *ctx = ralloc_parent(src);
const unsigned a = desired_type->base_type;
const unsigned b = src->type->base_type;
ir_expression *result = NULL;
if (src->type->is_error())
return src;
assert(a <= GLSL_TYPE_IMAGE);
assert(b <= GLSL_TYPE_IMAGE);
if (a == b)
return src;
switch (a) {
case GLSL_TYPE_UINT:
switch (b) {
case GLSL_TYPE_INT:
result = new(ctx) ir_expression(ir_unop_i2u, src);
break;
case GLSL_TYPE_FLOAT:
result = new(ctx) ir_expression(ir_unop_f2u, src);
break;
case GLSL_TYPE_BOOL:
result = new(ctx) ir_expression(ir_unop_i2u,
new(ctx) ir_expression(ir_unop_b2i,
src));
break;
case GLSL_TYPE_DOUBLE:
result = new(ctx) ir_expression(ir_unop_d2u, src);
break;
case GLSL_TYPE_UINT64:
result = new(ctx) ir_expression(ir_unop_u642u, src);
break;
case GLSL_TYPE_INT64:
result = new(ctx) ir_expression(ir_unop_i642u, src);
break;
case GLSL_TYPE_SAMPLER:
result = new(ctx) ir_expression(ir_unop_unpack_sampler_2x32, src);
break;
case GLSL_TYPE_IMAGE:
result = new(ctx) ir_expression(ir_unop_unpack_image_2x32, src);
break;
}
break;
case GLSL_TYPE_INT:
switch (b) {
case GLSL_TYPE_UINT:
result = new(ctx) ir_expression(ir_unop_u2i, src);
break;
case GLSL_TYPE_FLOAT:
result = new(ctx) ir_expression(ir_unop_f2i, src);
break;
case GLSL_TYPE_BOOL:
result = new(ctx) ir_expression(ir_unop_b2i, src);
break;
case GLSL_TYPE_DOUBLE:
result = new(ctx) ir_expression(ir_unop_d2i, src);
break;
case GLSL_TYPE_UINT64:
result = new(ctx) ir_expression(ir_unop_u642i, src);
break;
case GLSL_TYPE_INT64:
result = new(ctx) ir_expression(ir_unop_i642i, src);
break;
}
break;
case GLSL_TYPE_FLOAT:
switch (b) {
case GLSL_TYPE_UINT:
result = new(ctx) ir_expression(ir_unop_u2f, desired_type, src, NULL);
break;
case GLSL_TYPE_INT:
result = new(ctx) ir_expression(ir_unop_i2f, desired_type, src, NULL);
break;
case GLSL_TYPE_BOOL:
result = new(ctx) ir_expression(ir_unop_b2f, desired_type, src, NULL);
break;
case GLSL_TYPE_DOUBLE:
result = new(ctx) ir_expression(ir_unop_d2f, desired_type, src, NULL);
break;
case GLSL_TYPE_UINT64:
result = new(ctx) ir_expression(ir_unop_u642f, desired_type, src, NULL);
break;
case GLSL_TYPE_INT64:
result = new(ctx) ir_expression(ir_unop_i642f, desired_type, src, NULL);
break;
}
break;
case GLSL_TYPE_BOOL:
switch (b) {
case GLSL_TYPE_UINT:
result = new(ctx) ir_expression(ir_unop_i2b,
new(ctx) ir_expression(ir_unop_u2i,
src));
break;
case GLSL_TYPE_INT:
result = new(ctx) ir_expression(ir_unop_i2b, desired_type, src, NULL);
break;
case GLSL_TYPE_FLOAT:
result = new(ctx) ir_expression(ir_unop_f2b, desired_type, src, NULL);
break;
case GLSL_TYPE_DOUBLE:
result = new(ctx) ir_expression(ir_unop_d2b, desired_type, src, NULL);
break;
case GLSL_TYPE_UINT64:
result = new(ctx) ir_expression(ir_unop_i642b,
new(ctx) ir_expression(ir_unop_u642i64,
src));
break;
case GLSL_TYPE_INT64:
result = new(ctx) ir_expression(ir_unop_i642b, desired_type, src, NULL);
break;
}
break;
case GLSL_TYPE_DOUBLE:
switch (b) {
case GLSL_TYPE_INT:
result = new(ctx) ir_expression(ir_unop_i2d, src);
break;
case GLSL_TYPE_UINT:
result = new(ctx) ir_expression(ir_unop_u2d, src);
break;
case GLSL_TYPE_BOOL:
result = new(ctx) ir_expression(ir_unop_f2d,
new(ctx) ir_expression(ir_unop_b2f,
src));
break;
case GLSL_TYPE_FLOAT:
result = new(ctx) ir_expression(ir_unop_f2d, desired_type, src, NULL);
break;
case GLSL_TYPE_UINT64:
result = new(ctx) ir_expression(ir_unop_u642d, desired_type, src, NULL);
break;
case GLSL_TYPE_INT64:
result = new(ctx) ir_expression(ir_unop_i642d, desired_type, src, NULL);
break;
}
break;
case GLSL_TYPE_UINT64:
switch (b) {
case GLSL_TYPE_INT:
result = new(ctx) ir_expression(ir_unop_i2u64, src);
break;
case GLSL_TYPE_UINT:
result = new(ctx) ir_expression(ir_unop_u2u64, src);
break;
case GLSL_TYPE_BOOL:
result = new(ctx) ir_expression(ir_unop_i642u64,
new(ctx) ir_expression(ir_unop_b2i64,
src));
break;
case GLSL_TYPE_FLOAT:
result = new(ctx) ir_expression(ir_unop_f2u64, src);
break;
case GLSL_TYPE_DOUBLE:
result = new(ctx) ir_expression(ir_unop_d2u64, src);
break;
case GLSL_TYPE_INT64:
result = new(ctx) ir_expression(ir_unop_i642u64, src);
break;
}
break;
case GLSL_TYPE_INT64:
switch (b) {
case GLSL_TYPE_INT:
result = new(ctx) ir_expression(ir_unop_i2i64, src);
break;
case GLSL_TYPE_UINT:
result = new(ctx) ir_expression(ir_unop_u2i64, src);
break;
case GLSL_TYPE_BOOL:
result = new(ctx) ir_expression(ir_unop_b2i64, src);
break;
case GLSL_TYPE_FLOAT:
result = new(ctx) ir_expression(ir_unop_f2i64, src);
break;
case GLSL_TYPE_DOUBLE:
result = new(ctx) ir_expression(ir_unop_d2i64, src);
break;
case GLSL_TYPE_UINT64:
result = new(ctx) ir_expression(ir_unop_u642i64, src);
break;
}
break;
case GLSL_TYPE_SAMPLER:
switch (b) {
case GLSL_TYPE_UINT:
result = new(ctx)
ir_expression(ir_unop_pack_sampler_2x32, desired_type, src);
break;
}
break;
case GLSL_TYPE_IMAGE:
switch (b) {
case GLSL_TYPE_UINT:
result = new(ctx)
ir_expression(ir_unop_pack_image_2x32, desired_type, src);
break;
}
break;
}
assert(result != NULL);
assert(result->type == desired_type);
/* Try constant folding; it may fold in the conversion we just added. */
ir_constant *const constant = result->constant_expression_value(ctx);
return (constant != NULL) ? (ir_rvalue *) constant : (ir_rvalue *) result;
}
/**
* Perform automatic type and constant conversion of constructor parameters
*
* This implements the rules in the "Implicit Conversions" rules, not the
* "Conversion and Scalar Constructors".
*
* After attempting the implicit conversion, an attempt to convert into a
* constant valued expression is also done.
*
* The \c from \c ir_rvalue is converted "in place".
*
* \param from Operand that is being converted
* \param to Base type the operand will be converted to
* \param state GLSL compiler state
*
* \return
* If the attempt to convert into a constant expression succeeds, \c true is
* returned. Otherwise \c false is returned.
*/
static bool
implicitly_convert_component(ir_rvalue * &from, const glsl_base_type to,
struct _mesa_glsl_parse_state *state)
{
void *mem_ctx = state;
ir_rvalue *result = from;
if (to != from->type->base_type) {
const glsl_type *desired_type =
glsl_type::get_instance(to,
from->type->vector_elements,
from->type->matrix_columns);
if (from->type->can_implicitly_convert_to(desired_type, state)) {
/* Even though convert_component() implements the constructor
* conversion rules (not the implicit conversion rules), its safe
* to use it here because we already checked that the implicit
* conversion is legal.
*/
result = convert_component(from, desired_type);
}
}
ir_rvalue *const constant = result->constant_expression_value(mem_ctx);
if (constant != NULL)
result = constant;
if (from != result) {
from->replace_with(result);
from = result;
}
return constant != NULL;
}
/**
* Dereference a specific component from a scalar, vector, or matrix
*/
static ir_rvalue *
dereference_component(ir_rvalue *src, unsigned component)
{
void *ctx = ralloc_parent(src);
assert(component < src->type->components());
/* If the source is a constant, just create a new constant instead of a
* dereference of the existing constant.
*/
ir_constant *constant = src->as_constant();
if (constant)
return new(ctx) ir_constant(constant, component);
if (src->type->is_scalar()) {
return src;
} else if (src->type->is_vector()) {
return new(ctx) ir_swizzle(src, component, 0, 0, 0, 1);
} else {
assert(src->type->is_matrix());
/* Dereference a row of the matrix, then call this function again to get
* a specific element from that row.
*/
const int c = component / src->type->column_type()->vector_elements;
const int r = component % src->type->column_type()->vector_elements;
ir_constant *const col_index = new(ctx) ir_constant(c);
ir_dereference *const col = new(ctx) ir_dereference_array(src,
col_index);
col->type = src->type->column_type();
return dereference_component(col, r);
}
assert(!"Should not get here.");
return NULL;
}
static ir_rvalue *
process_vec_mat_constructor(exec_list *instructions,
const glsl_type *constructor_type,
YYLTYPE *loc, exec_list *parameters,
struct _mesa_glsl_parse_state *state)
{
void *ctx = state;
/* The ARB_shading_language_420pack spec says:
*
* "If an initializer is a list of initializers enclosed in curly braces,
* the variable being declared must be a vector, a matrix, an array, or a
* structure.
*
* int i = { 1 }; // illegal, i is not an aggregate"
*/
if (constructor_type->vector_elements <= 1) {
_mesa_glsl_error(loc, state, "aggregates can only initialize vectors, "
"matrices, arrays, and structs");
return ir_rvalue::error_value(ctx);
}
exec_list actual_parameters;
const unsigned parameter_count =
process_parameters(instructions, &actual_parameters, parameters, state);
if (parameter_count == 0
|| (constructor_type->is_vector() &&
constructor_type->vector_elements != parameter_count)
|| (constructor_type->is_matrix() &&
constructor_type->matrix_columns != parameter_count)) {
_mesa_glsl_error(loc, state, "%s constructor must have %u parameters",
constructor_type->is_vector() ? "vector" : "matrix",
constructor_type->vector_elements);
return ir_rvalue::error_value(ctx);
}
bool all_parameters_are_constant = true;
/* Type cast each parameter and, if possible, fold constants. */
foreach_in_list_safe(ir_rvalue, ir, &actual_parameters) {
/* Apply implicit conversions (not the scalar constructor rules, see the
* spec quote above!) and attempt to convert the parameter to a constant
* valued expression. After doing so, track whether or not all the
* parameters to the constructor are trivially constant valued
* expressions.
*/
all_parameters_are_constant &=
implicitly_convert_component(ir, constructor_type->base_type, state);
if (constructor_type->is_matrix()) {
if (ir->type != constructor_type->column_type()) {
_mesa_glsl_error(loc, state, "type error in matrix constructor: "
"expected: %s, found %s",
constructor_type->column_type()->name,
ir->type->name);
return ir_rvalue::error_value(ctx);
}
} else if (ir->type != constructor_type->get_scalar_type()) {
_mesa_glsl_error(loc, state, "type error in vector constructor: "
"expected: %s, found %s",
constructor_type->get_scalar_type()->name,
ir->type->name);
return ir_rvalue::error_value(ctx);
}
}
if (all_parameters_are_constant)
return new(ctx) ir_constant(constructor_type, &actual_parameters);
ir_variable *var = new(ctx) ir_variable(constructor_type, "vec_mat_ctor",
ir_var_temporary);
instructions->push_tail(var);
int i = 0;
foreach_in_list(ir_rvalue, rhs, &actual_parameters) {
ir_instruction *assignment = NULL;
if (var->type->is_matrix()) {
ir_rvalue *lhs =
new(ctx) ir_dereference_array(var, new(ctx) ir_constant(i));
assignment = new(ctx) ir_assignment(lhs, rhs);
} else {
/* use writemask rather than index for vector */
assert(var->type->is_vector());
assert(i < 4);
ir_dereference *lhs = new(ctx) ir_dereference_variable(var);
assignment = new(ctx) ir_assignment(lhs, rhs, NULL,
(unsigned)(1 << i));
}
instructions->push_tail(assignment);
i++;
}
return new(ctx) ir_dereference_variable(var);
}
static ir_rvalue *
process_array_constructor(exec_list *instructions,
const glsl_type *constructor_type,
YYLTYPE *loc, exec_list *parameters,
struct _mesa_glsl_parse_state *state)
{
void *ctx = state;
/* Array constructors come in two forms: sized and unsized. Sized array
* constructors look like 'vec4[2](a, b)', where 'a' and 'b' are vec4
* variables. In this case the number of parameters must exactly match the
* specified size of the array.
*
* Unsized array constructors look like 'vec4[](a, b)', where 'a' and 'b'
* are vec4 variables. In this case the size of the array being constructed
* is determined by the number of parameters.
*
* From page 52 (page 58 of the PDF) of the GLSL 1.50 spec:
*
* "There must be exactly the same number of arguments as the size of
* the array being constructed. If no size is present in the
* constructor, then the array is explicitly sized to the number of
* arguments provided. The arguments are assigned in order, starting at
* element 0, to the elements of the constructed array. Each argument
* must be the same type as the element type of the array, or be a type
* that can be converted to the element type of the array according to
* Section 4.1.10 "Implicit Conversions.""
*/
exec_list actual_parameters;
const unsigned parameter_count =
process_parameters(instructions, &actual_parameters, parameters, state);
bool is_unsized_array = constructor_type->is_unsized_array();
if ((parameter_count == 0) ||
(!is_unsized_array && (constructor_type->length != parameter_count))) {
const unsigned min_param = is_unsized_array
? 1 : constructor_type->length;
_mesa_glsl_error(loc, state, "array constructor must have %s %u "
"parameter%s",
is_unsized_array ? "at least" : "exactly",
min_param, (min_param <= 1) ? "" : "s");
return ir_rvalue::error_value(ctx);
}
if (is_unsized_array) {
constructor_type =
glsl_type::get_array_instance(constructor_type->fields.array,
parameter_count);
assert(constructor_type != NULL);
assert(constructor_type->length == parameter_count);
}
bool all_parameters_are_constant = true;
const glsl_type *element_type = constructor_type->fields.array;
/* Type cast each parameter and, if possible, fold constants. */
foreach_in_list_safe(ir_rvalue, ir, &actual_parameters) {
/* Apply implicit conversions (not the scalar constructor rules, see the
* spec quote above!) and attempt to convert the parameter to a constant
* valued expression. After doing so, track whether or not all the
* parameters to the constructor are trivially constant valued
* expressions.
*/
all_parameters_are_constant &=
implicitly_convert_component(ir, element_type->base_type, state);
if (constructor_type->fields.array->is_unsized_array()) {
/* As the inner parameters of the constructor are created without
* knowledge of each other we need to check to make sure unsized
* parameters of unsized constructors all end up with the same size.
*
* e.g we make sure to fail for a constructor like this:
* vec4[][] a = vec4[][](vec4[](vec4(0.0), vec4(1.0)),
* vec4[](vec4(0.0), vec4(1.0), vec4(1.0)),
* vec4[](vec4(0.0), vec4(1.0)));
*/
if (element_type->is_unsized_array()) {
/* This is the first parameter so just get the type */
element_type = ir->type;
} else if (element_type != ir->type) {
_mesa_glsl_error(loc, state, "type error in array constructor: "
"expected: %s, found %s",
element_type->name,
ir->type->name);
return ir_rvalue::error_value(ctx);
}
} else if (ir->type != constructor_type->fields.array) {
_mesa_glsl_error(loc, state, "type error in array constructor: "
"expected: %s, found %s",
constructor_type->fields.array->name,
ir->type->name);
return ir_rvalue::error_value(ctx);
} else {
element_type = ir->type;
}
}
if (constructor_type->fields.array->is_unsized_array()) {
constructor_type =
glsl_type::get_array_instance(element_type,
parameter_count);
assert(constructor_type != NULL);
assert(constructor_type->length == parameter_count);
}
if (all_parameters_are_constant)
return new(ctx) ir_constant(constructor_type, &actual_parameters);
ir_variable *var = new(ctx) ir_variable(constructor_type, "array_ctor",
ir_var_temporary);
instructions->push_tail(var);
int i = 0;
foreach_in_list(ir_rvalue, rhs, &actual_parameters) {
ir_rvalue *lhs = new(ctx) ir_dereference_array(var,
new(ctx) ir_constant(i));
ir_instruction *assignment = new(ctx) ir_assignment(lhs, rhs);
instructions->push_tail(assignment);
i++;
}
return new(ctx) ir_dereference_variable(var);
}
/**
* Determine if a list consists of a single scalar r-value
*/
static bool
single_scalar_parameter(exec_list *parameters)
{
const ir_rvalue *const p = (ir_rvalue *) parameters->get_head_raw();
assert(((ir_rvalue *)p)->as_rvalue() != NULL);
return (p->type->is_scalar() && p->next->is_tail_sentinel());
}
/**
* Generate inline code for a vector constructor
*
* The generated constructor code will consist of a temporary variable
* declaration of the same type as the constructor. A sequence of assignments
* from constructor parameters to the temporary will follow.
*
* \return
* An \c ir_dereference_variable of the temprorary generated in the constructor
* body.
*/
static ir_rvalue *
emit_inline_vector_constructor(const glsl_type *type,
exec_list *instructions,
exec_list *parameters,
void *ctx)
{
assert(!parameters->is_empty());
ir_variable *var = new(ctx) ir_variable(type, "vec_ctor", ir_var_temporary);
instructions->push_tail(var);
/* There are three kinds of vector constructors.
*
* - Construct a vector from a single scalar by replicating that scalar to
* all components of the vector.
*
* - Construct a vector from at least a matrix. This case should already
* have been taken care of in ast_function_expression::hir by breaking
* down the matrix into a series of column vectors.
*
* - Construct a vector from an arbirary combination of vectors and
* scalars. The components of the constructor parameters are assigned
* to the vector in order until the vector is full.
*/
const unsigned lhs_components = type->components();
if (single_scalar_parameter(parameters)) {
ir_rvalue *first_param = (ir_rvalue *)parameters->get_head_raw();
ir_rvalue *rhs = new(ctx) ir_swizzle(first_param, 0, 0, 0, 0,
lhs_components);
ir_dereference_variable *lhs = new(ctx) ir_dereference_variable(var);
const unsigned mask = (1U << lhs_components) - 1;
assert(rhs->type == lhs->type);
ir_instruction *inst = new(ctx) ir_assignment(lhs, rhs, NULL, mask);
instructions->push_tail(inst);
} else {
unsigned base_component = 0;
unsigned base_lhs_component = 0;
ir_constant_data data;
unsigned constant_mask = 0, constant_components = 0;
memset(&data, 0, sizeof(data));
foreach_in_list(ir_rvalue, param, parameters) {
unsigned rhs_components = param->type->components();
/* Do not try to assign more components to the vector than it has! */
if ((rhs_components + base_lhs_component) > lhs_components) {
rhs_components = lhs_components - base_lhs_component;
}
const ir_constant *const c = param->as_constant();
if (c != NULL) {
for (unsigned i = 0; i < rhs_components; i++) {
switch (c->type->base_type) {
case GLSL_TYPE_UINT:
data.u[i + base_component] = c->get_uint_component(i);
break;
case GLSL_TYPE_INT:
data.i[i + base_component] = c->get_int_component(i);
break;
case GLSL_TYPE_FLOAT:
data.f[i + base_component] = c->get_float_component(i);
break;
case GLSL_TYPE_DOUBLE:
data.d[i + base_component] = c->get_double_component(i);
break;
case GLSL_TYPE_BOOL:
data.b[i + base_component] = c->get_bool_component(i);
break;
case GLSL_TYPE_UINT64:
data.u64[i + base_component] = c->get_uint64_component(i);
break;
case GLSL_TYPE_INT64:
data.i64[i + base_component] = c->get_int64_component(i);
break;
default:
assert(!"Should not get here.");
break;
}
}
/* Mask of fields to be written in the assignment. */
constant_mask |= ((1U << rhs_components) - 1) << base_lhs_component;
constant_components += rhs_components;
base_component += rhs_components;
}
/* Advance the component index by the number of components
* that were just assigned.
*/
base_lhs_component += rhs_components;
}
if (constant_mask != 0) {
ir_dereference *lhs = new(ctx) ir_dereference_variable(var);
const glsl_type *rhs_type =
glsl_type::get_instance(var->type->base_type,
constant_components,
1);
ir_rvalue *rhs = new(ctx) ir_constant(rhs_type, &data);
ir_instruction *inst =
new(ctx) ir_assignment(lhs, rhs, NULL, constant_mask);
instructions->push_tail(inst);
}
base_component = 0;
foreach_in_list(ir_rvalue, param, parameters) {
unsigned rhs_components = param->type->components();
/* Do not try to assign more components to the vector than it has! */
if ((rhs_components + base_component) > lhs_components) {
rhs_components = lhs_components - base_component;
}
/* If we do not have any components left to copy, break out of the
* loop. This can happen when initializing a vec4 with a mat3 as the
* mat3 would have been broken into a series of column vectors.
*/
if (rhs_components == 0) {
break;
}
const ir_constant *const c = param->as_constant();
if (c == NULL) {
/* Mask of fields to be written in the assignment. */
const unsigned write_mask = ((1U << rhs_components) - 1)
<< base_component;
ir_dereference *lhs = new(ctx) ir_dereference_variable(var);
/* Generate a swizzle so that LHS and RHS sizes match. */
ir_rvalue *rhs =
new(ctx) ir_swizzle(param, 0, 1, 2, 3, rhs_components);
ir_instruction *inst =
new(ctx) ir_assignment(lhs, rhs, NULL, write_mask);
instructions->push_tail(inst);
}
/* Advance the component index by the number of components that were
* just assigned.
*/
base_component += rhs_components;
}
}
return new(ctx) ir_dereference_variable(var);
}
/**
* Generate assignment of a portion of a vector to a portion of a matrix column
*
* \param src_base First component of the source to be used in assignment
* \param column Column of destination to be assiged
* \param row_base First component of the destination column to be assigned
* \param count Number of components to be assigned
*
* \note
* \c src_base + \c count must be less than or equal to the number of
* components in the source vector.
*/
static ir_instruction *
assign_to_matrix_column(ir_variable *var, unsigned column, unsigned row_base,
ir_rvalue *src, unsigned src_base, unsigned count,
void *mem_ctx)
{
ir_constant *col_idx = new(mem_ctx) ir_constant(column);
ir_dereference *column_ref = new(mem_ctx) ir_dereference_array(var,
col_idx);
assert(column_ref->type->components() >= (row_base + count));
assert(src->type->components() >= (src_base + count));
/* Generate a swizzle that extracts the number of components from the source
* that are to be assigned to the column of the matrix.
*/
if (count < src->type->vector_elements) {
src = new(mem_ctx) ir_swizzle(src,
src_base + 0, src_base + 1,
src_base + 2, src_base + 3,
count);
}
/* Mask of fields to be written in the assignment. */
const unsigned write_mask = ((1U << count) - 1) << row_base;
return new(mem_ctx) ir_assignment(column_ref, src, NULL, write_mask);
}
/**
* Generate inline code for a matrix constructor
*
* The generated constructor code will consist of a temporary variable
* declaration of the same type as the constructor. A sequence of assignments
* from constructor parameters to the temporary will follow.
*
* \return
* An \c ir_dereference_variable of the temprorary generated in the constructor
* body.
*/
static ir_rvalue *
emit_inline_matrix_constructor(const glsl_type *type,
exec_list *instructions,
exec_list *parameters,
void *ctx)
{
assert(!parameters->is_empty());
ir_variable *var = new(ctx) ir_variable(type, "mat_ctor", ir_var_temporary);
instructions->push_tail(var);
/* There are three kinds of matrix constructors.
*
* - Construct a matrix from a single scalar by replicating that scalar to
* along the diagonal of the matrix and setting all other components to
* zero.
*
* - Construct a matrix from an arbirary combination of vectors and
* scalars. The components of the constructor parameters are assigned
* to the matrix in column-major order until the matrix is full.
*
* - Construct a matrix from a single matrix. The source matrix is copied
* to the upper left portion of the constructed matrix, and the remaining
* elements take values from the identity matrix.
*/
ir_rvalue *const first_param = (ir_rvalue *) parameters->get_head_raw();
if (single_scalar_parameter(parameters)) {
/* Assign the scalar to the X component of a vec4, and fill the remaining
* components with zero.
*/
glsl_base_type param_base_type = first_param->type->base_type;
assert(first_param->type->is_float() || first_param->type->is_double());
ir_variable *rhs_var =
new(ctx) ir_variable(glsl_type::get_instance(param_base_type, 4, 1),
"mat_ctor_vec",
ir_var_temporary);
instructions->push_tail(rhs_var);
ir_constant_data zero;
for (unsigned i = 0; i < 4; i++)
if (first_param->type->is_float())
zero.f[i] = 0.0;
else
zero.d[i] = 0.0;
ir_instruction *inst =
new(ctx) ir_assignment(new(ctx) ir_dereference_variable(rhs_var),
new(ctx) ir_constant(rhs_var->type, &zero));
instructions->push_tail(inst);
ir_dereference *const rhs_ref =
new(ctx) ir_dereference_variable(rhs_var);
inst = new(ctx) ir_assignment(rhs_ref, first_param, NULL, 0x01);
instructions->push_tail(inst);
/* Assign the temporary vector to each column of the destination matrix
* with a swizzle that puts the X component on the diagonal of the
* matrix. In some cases this may mean that the X component does not
* get assigned into the column at all (i.e., when the matrix has more
* columns than rows).
*/
static const unsigned rhs_swiz[4][4] = {
{ 0, 1, 1, 1 },
{ 1, 0, 1, 1 },
{ 1, 1, 0, 1 },
{ 1, 1, 1, 0 }
};
const unsigned cols_to_init = MIN2(type->matrix_columns,
type->vector_elements);
for (unsigned i = 0; i < cols_to_init; i++) {
ir_constant *const col_idx = new(ctx) ir_constant(i);
ir_rvalue *const col_ref = new(ctx) ir_dereference_array(var,
col_idx);
ir_rvalue *const rhs_ref = new(ctx) ir_dereference_variable(rhs_var);
ir_rvalue *const rhs = new(ctx) ir_swizzle(rhs_ref, rhs_swiz[i],
type->vector_elements);
inst = new(ctx) ir_assignment(col_ref, rhs);
instructions->push_tail(inst);
}
for (unsigned i = cols_to_init; i < type->matrix_columns; i++) {
ir_constant *const col_idx = new(ctx) ir_constant(i);
ir_rvalue *const col_ref = new(ctx) ir_dereference_array(var,
col_idx);
ir_rvalue *const rhs_ref = new(ctx) ir_dereference_variable(rhs_var);
ir_rvalue *const rhs = new(ctx) ir_swizzle(rhs_ref, 1, 1, 1, 1,
type->vector_elements);
inst = new(ctx) ir_assignment(col_ref, rhs);
instructions->push_tail(inst);
}
} else if (first_param->type->is_matrix()) {
/* From page 50 (56 of the PDF) of the GLSL 1.50 spec:
*
* "If a matrix is constructed from a matrix, then each component
* (column i, row j) in the result that has a corresponding
* component (column i, row j) in the argument will be initialized
* from there. All other components will be initialized to the
* identity matrix. If a matrix argument is given to a matrix
* constructor, it is an error to have any other arguments."
*/
assert(first_param->next->is_tail_sentinel());
ir_rvalue *const src_matrix = first_param;
/* If the source matrix is smaller, pre-initialize the relavent parts of
* the destination matrix to the identity matrix.
*/
if ((src_matrix->type->matrix_columns < var->type->matrix_columns) ||
(src_matrix->type->vector_elements < var->type->vector_elements)) {
/* If the source matrix has fewer rows, every column of the
* destination must be initialized. Otherwise only the columns in
* the destination that do not exist in the source must be
* initialized.
*/
unsigned col =
(src_matrix->type->vector_elements < var->type->vector_elements)
? 0 : src_matrix->type->matrix_columns;
const glsl_type *const col_type = var->type->column_type();
for (/* empty */; col < var->type->matrix_columns; col++) {
ir_constant_data ident;
if (!col_type->is_double()) {
ident.f[0] = 0.0f;
ident.f[1] = 0.0f;
ident.f[2] = 0.0f;
ident.f[3] = 0.0f;
ident.f[col] = 1.0f;
} else {
ident.d[0] = 0.0;
ident.d[1] = 0.0;
ident.d[2] = 0.0;
ident.d[3] = 0.0;
ident.d[col] = 1.0;
}
ir_rvalue *const rhs = new(ctx) ir_constant(col_type, &ident);
ir_rvalue *const lhs =
new(ctx) ir_dereference_array(var, new(ctx) ir_constant(col));
ir_instruction *inst = new(ctx) ir_assignment(lhs, rhs);
instructions->push_tail(inst);
}
}
/* Assign columns from the source matrix to the destination matrix.
*
* Since the parameter will be used in the RHS of multiple assignments,
* generate a temporary and copy the paramter there.
*/
ir_variable *const rhs_var =
new(ctx) ir_variable(first_param->type, "mat_ctor_mat",
ir_var_temporary);
instructions->push_tail(rhs_var);
ir_dereference *const rhs_var_ref =
new(ctx) ir_dereference_variable(rhs_var);
ir_instruction *const inst =
new(ctx) ir_assignment(rhs_var_ref, first_param);
instructions->push_tail(inst);
const unsigned last_row = MIN2(src_matrix->type->vector_elements,
var->type->vector_elements);
const unsigned last_col = MIN2(src_matrix->type->matrix_columns,
var->type->matrix_columns);
unsigned swiz[4] = { 0, 0, 0, 0 };
for (unsigned i = 1; i < last_row; i++)
swiz[i] = i;
const unsigned write_mask = (1U << last_row) - 1;
for (unsigned i = 0; i < last_col; i++) {
ir_dereference *const lhs =
new(ctx) ir_dereference_array(var, new(ctx) ir_constant(i));
ir_rvalue *const rhs_col =
new(ctx) ir_dereference_array(rhs_var, new(ctx) ir_constant(i));
/* If one matrix has columns that are smaller than the columns of the
* other matrix, wrap the column access of the larger with a swizzle
* so that the LHS and RHS of the assignment have the same size (and
* therefore have the same type).
*
* It would be perfectly valid to unconditionally generate the
* swizzles, this this will typically result in a more compact IR
* tree.
*/
ir_rvalue *rhs;
if (lhs->type->vector_elements != rhs_col->type->vector_elements) {
rhs = new(ctx) ir_swizzle(rhs_col, swiz, last_row);
} else {
rhs = rhs_col;
}
ir_instruction *inst =
new(ctx) ir_assignment(lhs, rhs, NULL, write_mask);
instructions->push_tail(inst);
}
} else {
const unsigned cols = type->matrix_columns;
const unsigned rows = type->vector_elements;
unsigned remaining_slots = rows * cols;
unsigned col_idx = 0;
unsigned row_idx = 0;
foreach_in_list(ir_rvalue, rhs, parameters) {
unsigned rhs_components = rhs->type->components();
unsigned rhs_base = 0;
if (remaining_slots == 0)
break;
/* Since the parameter might be used in the RHS of two assignments,
* generate a temporary and copy the paramter there.
*/
ir_variable *rhs_var =
new(ctx) ir_variable(rhs->type, "mat_ctor_vec", ir_var_temporary);
instructions->push_tail(rhs_var);
ir_dereference *rhs_var_ref =
new(ctx) ir_dereference_variable(rhs_var);
ir_instruction *inst = new(ctx) ir_assignment(rhs_var_ref, rhs);
instructions->push_tail(inst);
do {
/* Assign the current parameter to as many components of the matrix
* as it will fill.
*
* NOTE: A single vector parameter can span two matrix columns. A
* single vec4, for example, can completely fill a mat2.
*/
unsigned count = MIN2(rows - row_idx,
rhs_components - rhs_base);
rhs_var_ref = new(ctx) ir_dereference_variable(rhs_var);
ir_instruction *inst = assign_to_matrix_column(var, col_idx,
row_idx,
rhs_var_ref,
rhs_base,
count, ctx);
instructions->push_tail(inst);
rhs_base += count;
row_idx += count;
remaining_slots -= count;
/* Sometimes, there is still data left in the parameters and
* components left to be set in the destination but in other
* column.
*/
if (row_idx >= rows) {
row_idx = 0;
col_idx++;
}
} while(remaining_slots > 0 && rhs_base < rhs_components);
}
}
return new(ctx) ir_dereference_variable(var);
}
static ir_rvalue *
emit_inline_record_constructor(const glsl_type *type,
exec_list *instructions,
exec_list *parameters,
void *mem_ctx)
{
ir_variable *const var =
new(mem_ctx) ir_variable(type, "record_ctor", ir_var_temporary);
ir_dereference_variable *const d =
new(mem_ctx) ir_dereference_variable(var);
instructions->push_tail(var);
exec_node *node = parameters->get_head_raw();
for (unsigned i = 0; i < type->length; i++) {
assert(!node->is_tail_sentinel());
ir_dereference *const lhs =
new(mem_ctx) ir_dereference_record(d->clone(mem_ctx, NULL),
type->fields.structure[i].name);
ir_rvalue *const rhs = ((ir_instruction *) node)->as_rvalue();
assert(rhs != NULL);
ir_instruction *const assign = new(mem_ctx) ir_assignment(lhs, rhs);
instructions->push_tail(assign);
node = node->next;
}
return d;
}
static ir_rvalue *
process_record_constructor(exec_list *instructions,
const glsl_type *constructor_type,
YYLTYPE *loc, exec_list *parameters,
struct _mesa_glsl_parse_state *state)
{
void *ctx = state;
/* From page 32 (page 38 of the PDF) of the GLSL 1.20 spec:
*
* "The arguments to the constructor will be used to set the structure's
* fields, in order, using one argument per field. Each argument must
* be the same type as the field it sets, or be a type that can be
* converted to the field's type according to Section 4.1.10 “Implicit
* Conversions.”"
*
* From page 35 (page 41 of the PDF) of the GLSL 4.20 spec:
*
* "In all cases, the innermost initializer (i.e., not a list of
* initializers enclosed in curly braces) applied to an object must
* have the same type as the object being initialized or be a type that
* can be converted to the object's type according to section 4.1.10
* "Implicit Conversions". In the latter case, an implicit conversion
* will be done on the initializer before the assignment is done."
*/
exec_list actual_parameters;
const unsigned parameter_count =
process_parameters(instructions, &actual_parameters, parameters,
state);
if (parameter_count != constructor_type->length) {
_mesa_glsl_error(loc, state,
"%s parameters in constructor for `%s'",
parameter_count > constructor_type->length
? "too many": "insufficient",
constructor_type->name);
return ir_rvalue::error_value(ctx);
}
bool all_parameters_are_constant = true;
int i = 0;
/* Type cast each parameter and, if possible, fold constants. */
foreach_in_list_safe(ir_rvalue, ir, &actual_parameters) {
const glsl_struct_field *struct_field =
&constructor_type->fields.structure[i];
/* Apply implicit conversions (not the scalar constructor rules, see the
* spec quote above!) and attempt to convert the parameter to a constant
* valued expression. After doing so, track whether or not all the
* parameters to the constructor are trivially constant valued
* expressions.
*/
all_parameters_are_constant &=
implicitly_convert_component(ir, struct_field->type->base_type,
state);
if (ir->type != struct_field->type) {
_mesa_glsl_error(loc, state,
"parameter type mismatch in constructor for `%s.%s' "
"(%s vs %s)",
constructor_type->name,
struct_field->name,
ir->type->name,
struct_field->type->name);
return ir_rvalue::error_value(ctx);
}
i++;
}
if (all_parameters_are_constant) {
return new(ctx) ir_constant(constructor_type, &actual_parameters);
} else {
return emit_inline_record_constructor(constructor_type, instructions,
&actual_parameters, state);
}
}
ir_rvalue *
ast_function_expression::handle_method(exec_list *instructions,
struct _mesa_glsl_parse_state *state)
{
const ast_expression *field = subexpressions[0];
ir_rvalue *op;
ir_rvalue *result;
void *ctx = state;
/* Handle "method calls" in GLSL 1.20 - namely, array.length() */
YYLTYPE loc = get_location();
state->check_version(120, 300, &loc, "methods not supported");
const char *method;
method = field->primary_expression.identifier;
/* This would prevent to raise "uninitialized variable" warnings when
* calling array.length.
*/
field->subexpressions[0]->set_is_lhs(true);
op = field->subexpressions[0]->hir(instructions, state);
if (strcmp(method, "length") == 0) {
if (!this->expressions.is_empty()) {
_mesa_glsl_error(&loc, state, "length method takes no arguments");
goto fail;
}
if (op->type->is_array()) {
if (op->type->is_unsized_array()) {
if (!state->has_shader_storage_buffer_objects()) {
_mesa_glsl_error(&loc, state,
"length called on unsized array"
" only available with"
" ARB_shader_storage_buffer_object");
}
/* Calculate length of an unsized array in run-time */
result = new(ctx) ir_expression(ir_unop_ssbo_unsized_array_length,
op);
} else {
result = new(ctx) ir_constant(op->type->array_size());
}
} else if (op->type->is_vector()) {
if (state->has_420pack()) {
/* .length() returns int. */
result = new(ctx) ir_constant((int) op->type->vector_elements);
} else {
_mesa_glsl_error(&loc, state, "length method on matrix only"
" available with ARB_shading_language_420pack");
goto fail;
}
} else if (op->type->is_matrix()) {
if (state->has_420pack()) {
/* .length() returns int. */
result = new(ctx) ir_constant((int) op->type->matrix_columns);
} else {
_mesa_glsl_error(&loc, state, "length method on matrix only"
" available with ARB_shading_language_420pack");
goto fail;
}
} else {
_mesa_glsl_error(&loc, state, "length called on scalar.");
goto fail;
}
} else {
_mesa_glsl_error(&loc, state, "unknown method: `%s'", method);
goto fail;
}
return result;
fail:
return ir_rvalue::error_value(ctx);
}
static inline bool is_valid_constructor(const glsl_type *type,
struct _mesa_glsl_parse_state *state)
{
return type->is_numeric() || type->is_boolean() ||
(state->has_bindless() && (type->is_sampler() || type->is_image()));
}
ir_rvalue *
ast_function_expression::hir(exec_list *instructions,
struct _mesa_glsl_parse_state *state)
{
void *ctx = state;
/* There are three sorts of function calls.
*
* 1. constructors - The first subexpression is an ast_type_specifier.
* 2. methods - Only the .length() method of array types.
* 3. functions - Calls to regular old functions.
*
*/
if (is_constructor()) {
const ast_type_specifier *type =
(ast_type_specifier *) subexpressions[0];
YYLTYPE loc = type->get_location();
const char *name;
const glsl_type *const constructor_type = type->glsl_type(& name, state);
/* constructor_type can be NULL if a variable with the same name as the
* structure has come into scope.
*/
if (constructor_type == NULL) {
_mesa_glsl_error(& loc, state, "unknown type `%s' (structure name "
"may be shadowed by a variable with the same name)",
type->type_name);
return ir_rvalue::error_value(ctx);
}
/* Constructors for opaque types are illegal.
*
* From section 4.1.7 of the ARB_bindless_texture spec:
*
* "Samplers are represented using 64-bit integer handles, and may be "
* converted to and from 64-bit integers using constructors."
*
* From section 4.1.X of the ARB_bindless_texture spec:
*
* "Images are represented using 64-bit integer handles, and may be
* converted to and from 64-bit integers using constructors."
*/
if (constructor_type->contains_atomic() ||
(!state->has_bindless() && constructor_type->contains_opaque())) {
_mesa_glsl_error(& loc, state, "cannot construct %s type `%s'",
state->has_bindless() ? "atomic" : "opaque",
constructor_type->name);
return ir_rvalue::error_value(ctx);
}
if (constructor_type->is_subroutine()) {
_mesa_glsl_error(& loc, state,
"subroutine name cannot be a constructor `%s'",
constructor_type->name);
return ir_rvalue::error_value(ctx);
}
if (constructor_type->is_array()) {
if (!state->check_version(120, 300, &loc,
"array constructors forbidden")) {
return ir_rvalue::error_value(ctx);
}
return process_array_constructor(instructions, constructor_type,
& loc, &this->expressions, state);
}
/* There are two kinds of constructor calls. Constructors for arrays and
* structures must have the exact number of arguments with matching types
* in the correct order. These constructors follow essentially the same
* type matching rules as functions.
*
* Constructors for built-in language types, such as mat4 and vec2, are
* free form. The only requirements are that the parameters must provide
* enough values of the correct scalar type and that no arguments are
* given past the last used argument.
*
* When using the C-style initializer syntax from GLSL 4.20, constructors
* must have the exact number of arguments with matching types in the
* correct order.
*/
if (constructor_type->is_record()) {
return process_record_constructor(instructions, constructor_type,
&loc, &this->expressions,
state);
}
if (!is_valid_constructor(constructor_type, state))
return ir_rvalue::error_value(ctx);
/* Total number of components of the type being constructed. */
const unsigned type_components = constructor_type->components();
/* Number of components from parameters that have actually been
* consumed. This is used to perform several kinds of error checking.
*/
unsigned components_used = 0;
unsigned matrix_parameters = 0;
unsigned nonmatrix_parameters = 0;
exec_list actual_parameters;
foreach_list_typed(ast_node, ast, link, &this->expressions) {
ir_rvalue *result = ast->hir(instructions, state);
/* From page 50 (page 56 of the PDF) of the GLSL 1.50 spec:
*
* "It is an error to provide extra arguments beyond this
* last used argument."
*/
if (components_used >= type_components) {
_mesa_glsl_error(& loc, state, "too many parameters to `%s' "
"constructor",
constructor_type->name);
return ir_rvalue::error_value(ctx);
}
if (!is_valid_constructor(result->type, state)) {
_mesa_glsl_error(& loc, state, "cannot construct `%s' from a "
"non-numeric data type",
constructor_type->name);
return ir_rvalue::error_value(ctx);
}
/* Count the number of matrix and nonmatrix parameters. This
* is used below to enforce some of the constructor rules.
*/
if (result->type->is_matrix())
matrix_parameters++;
else
nonmatrix_parameters++;
actual_parameters.push_tail(result);
components_used += result->type->components();
}
/* From page 28 (page 34 of the PDF) of the GLSL 1.10 spec:
*
* "It is an error to construct matrices from other matrices. This
* is reserved for future use."
*/
if (matrix_parameters > 0
&& constructor_type->is_matrix()
&& !state->check_version(120, 100, &loc,
"cannot construct `%s' from a matrix",
constructor_type->name)) {
return ir_rvalue::error_value(ctx);
}
/* From page 50 (page 56 of the PDF) of the GLSL 1.50 spec:
*
* "If a matrix argument is given to a matrix constructor, it is
* an error to have any other arguments."
*/
if ((matrix_parameters > 0)
&& ((matrix_parameters + nonmatrix_parameters) > 1)
&& constructor_type->is_matrix()) {
_mesa_glsl_error(& loc, state, "for matrix `%s' constructor, "
"matrix must be only parameter",
constructor_type->name);
return ir_rvalue::error_value(ctx);
}
/* From page 28 (page 34 of the PDF) of the GLSL 1.10 spec:
*
* "In these cases, there must be enough components provided in the
* arguments to provide an initializer for every component in the
* constructed value."
*/
if (components_used < type_components && components_used != 1
&& matrix_parameters == 0) {
_mesa_glsl_error(& loc, state, "too few components to construct "
"`%s'",
constructor_type->name);
return ir_rvalue::error_value(ctx);
}
/* Matrices can never be consumed as is by any constructor but matrix
* constructors. If the constructor type is not matrix, always break the
* matrix up into a series of column vectors.
*/
if (!constructor_type->is_matrix()) {
foreach_in_list_safe(ir_rvalue, matrix, &actual_parameters) {
if (!matrix->type->is_matrix())
continue;
/* Create a temporary containing the matrix. */
ir_variable *var = new(ctx) ir_variable(matrix->type, "matrix_tmp",
ir_var_temporary);
instructions->push_tail(var);
instructions->push_tail(
new(ctx) ir_assignment(new(ctx) ir_dereference_variable(var),
matrix));
var->constant_value = matrix->constant_expression_value(ctx);
/* Replace the matrix with dereferences of its columns. */
for (int i = 0; i < matrix->type->matrix_columns; i++) {
matrix->insert_before(
new (ctx) ir_dereference_array(var,
new(ctx) ir_constant(i)));
}
matrix->remove();
}
}
bool all_parameters_are_constant = true;
/* Type cast each parameter and, if possible, fold constants.*/
foreach_in_list_safe(ir_rvalue, ir, &actual_parameters) {
const glsl_type *desired_type;
/* From section 5.4.1 of the ARB_bindless_texture spec:
*
* "In the following four constructors, the low 32 bits of the sampler
* type correspond to the .x component of the uvec2 and the high 32
* bits correspond to the .y component."
*
* uvec2(any sampler type) // Converts a sampler type to a
* // pair of 32-bit unsigned integers
* any sampler type(uvec2) // Converts a pair of 32-bit unsigned integers to
* // a sampler type
* uvec2(any image type) // Converts an image type to a
* // pair of 32-bit unsigned integers
* any image type(uvec2) // Converts a pair of 32-bit unsigned integers to
* // an image type
*/
if (ir->type->is_sampler() || ir->type->is_image()) {
/* Convert a sampler/image type to a pair of 32-bit unsigned
* integers as defined by ARB_bindless_texture.
*/
if (constructor_type != glsl_type::uvec2_type) {
_mesa_glsl_error(&loc, state, "sampler and image types can only "
"be converted to a pair of 32-bit unsigned "
"integers");
}
desired_type = glsl_type::uvec2_type;
} else if (constructor_type->is_sampler() ||
constructor_type->is_image()) {
/* Convert a pair of 32-bit unsigned integers to a sampler or image
* type as defined by ARB_bindless_texture.
*/
if (ir->type != glsl_type::uvec2_type) {
_mesa_glsl_error(&loc, state, "sampler and image types can only "
"be converted from a pair of 32-bit unsigned "
"integers");
}
desired_type = constructor_type;
} else {
desired_type =
glsl_type::get_instance(constructor_type->base_type,
ir->type->vector_elements,
ir->type->matrix_columns);
}
ir_rvalue *result = convert_component(ir, desired_type);
/* Attempt to convert the parameter to a constant valued expression.
* After doing so, track whether or not all the parameters to the
* constructor are trivially constant valued expressions.
*/
ir_rvalue *const constant = result->constant_expression_value(ctx);
if (constant != NULL)
result = constant;
else
all_parameters_are_constant = false;
if (result != ir) {
ir->replace_with(result);
}
}
/* If all of the parameters are trivially constant, create a
* constant representing the complete collection of parameters.
*/
if (all_parameters_are_constant) {
return new(ctx) ir_constant(constructor_type, &actual_parameters);
} else if (constructor_type->is_scalar()) {
return dereference_component((ir_rvalue *)
actual_parameters.get_head_raw(),
0);
} else if (constructor_type->is_vector()) {
return emit_inline_vector_constructor(constructor_type,
instructions,
&actual_parameters,
ctx);
} else {
assert(constructor_type->is_matrix());
return emit_inline_matrix_constructor(constructor_type,
instructions,
&actual_parameters,
ctx);
}
} else if (subexpressions[0]->oper == ast_field_selection) {
return handle_method(instructions, state);
} else {
const ast_expression *id = subexpressions[0];
const char *func_name = NULL;
YYLTYPE loc = get_location();
exec_list actual_parameters;
ir_variable *sub_var = NULL;
ir_rvalue *array_idx = NULL;
process_parameters(instructions, &actual_parameters, &this->expressions,
state);
if (id->oper == ast_array_index) {
array_idx = generate_array_index(ctx, instructions, state, loc,
id->subexpressions[0],
id->subexpressions[1], &func_name,
&actual_parameters);
} else if (id->oper == ast_identifier) {
func_name = id->primary_expression.identifier;
} else {
_mesa_glsl_error(&loc, state, "function name is not an identifier");
}
/* an error was emitted earlier */
if (!func_name)
return ir_rvalue::error_value(ctx);
ir_function_signature *sig =
match_function_by_name(func_name, &actual_parameters, state);
ir_rvalue *value = NULL;
if (sig == NULL) {
sig = match_subroutine_by_name(func_name, &actual_parameters,
state, &sub_var);
}
if (sig == NULL) {
no_matching_function_error(func_name, &loc,
&actual_parameters, state);
value = ir_rvalue::error_value(ctx);
} else if (!verify_parameter_modes(state, sig,
actual_parameters,
this->expressions)) {
/* an error has already been emitted */
value = ir_rvalue::error_value(ctx);
} else if (sig->is_builtin() && strcmp(func_name, "ftransform") == 0) {
/* ftransform refers to global variables, and we don't have any code
* for remapping the variable references in the built-in shader.
*/
ir_variable *mvp =
state->symbols->get_variable("gl_ModelViewProjectionMatrix");
ir_variable *vtx = state->symbols->get_variable("gl_Vertex");
value = new(ctx) ir_expression(ir_binop_mul, glsl_type::vec4_type,
new(ctx) ir_dereference_variable(mvp),
new(ctx) ir_dereference_variable(vtx));
} else {
if (state->stage == MESA_SHADER_TESS_CTRL &&
sig->is_builtin() && strcmp(func_name, "barrier") == 0) {
if (state->current_function == NULL ||
strcmp(state->current_function->function_name(), "main") != 0) {
_mesa_glsl_error(&loc, state,
"barrier() may only be used in main()");
}
if (state->found_return) {
_mesa_glsl_error(&loc, state,
"barrier() may not be used after return");
}
if (instructions != &state->current_function->body) {
_mesa_glsl_error(&loc, state,
"barrier() may not be used in control flow");
}
}
value = generate_call(instructions, sig, &actual_parameters, sub_var,
array_idx, state);
if (!value) {
ir_variable *const tmp = new(ctx) ir_variable(glsl_type::void_type,
"void_var",
ir_var_temporary);
instructions->push_tail(tmp);
value = new(ctx) ir_dereference_variable(tmp);
}
}
return value;
}
unreachable("not reached");
}
bool
ast_function_expression::has_sequence_subexpression() const
{
foreach_list_typed(const ast_node, ast, link, &this->expressions) {
if (ast->has_sequence_subexpression())
return true;
}
return false;
}
ir_rvalue *
ast_aggregate_initializer::hir(exec_list *instructions,
struct _mesa_glsl_parse_state *state)
{
void *ctx = state;
YYLTYPE loc = this->get_location();
if (!this->constructor_type) {
_mesa_glsl_error(&loc, state, "type of C-style initializer unknown");
return ir_rvalue::error_value(ctx);
}
const glsl_type *const constructor_type = this->constructor_type;
if (!state->has_420pack()) {
_mesa_glsl_error(&loc, state, "C-style initialization requires the "
"GL_ARB_shading_language_420pack extension");
return ir_rvalue::error_value(ctx);
}
if (constructor_type->is_array()) {
return process_array_constructor(instructions, constructor_type, &loc,
&this->expressions, state);
}
if (constructor_type->is_record()) {
return process_record_constructor(instructions, constructor_type, &loc,
&this->expressions, state);
}
return process_vec_mat_constructor(instructions, constructor_type, &loc,
&this->expressions, state);
}