/*
* Copyright © 2016 Bas Nieuwenhuizen
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include "ac_nir_to_llvm.h"
#include "ac_llvm_build.h"
#include "ac_llvm_util.h"
#include "ac_binary.h"
#include "sid.h"
#include "nir/nir.h"
#include "../vulkan/radv_descriptor_set.h"
#include "util/bitscan.h"
#include <llvm-c/Transforms/Scalar.h>
#include "ac_shader_abi.h"
#include "ac_shader_info.h"
#include "ac_shader_util.h"
#include "ac_exp_param.h"
enum radeon_llvm_calling_convention {
RADEON_LLVM_AMDGPU_VS = 87,
RADEON_LLVM_AMDGPU_GS = 88,
RADEON_LLVM_AMDGPU_PS = 89,
RADEON_LLVM_AMDGPU_CS = 90,
RADEON_LLVM_AMDGPU_HS = 93,
};
#define CONST_ADDR_SPACE 2
#define LOCAL_ADDR_SPACE 3
#define RADEON_LLVM_MAX_INPUTS (VARYING_SLOT_VAR31 + 1)
#define RADEON_LLVM_MAX_OUTPUTS (VARYING_SLOT_VAR31 + 1)
struct nir_to_llvm_context;
struct ac_nir_context {
struct ac_llvm_context ac;
struct ac_shader_abi *abi;
gl_shader_stage stage;
struct hash_table *defs;
struct hash_table *phis;
struct hash_table *vars;
LLVMValueRef main_function;
LLVMBasicBlockRef continue_block;
LLVMBasicBlockRef break_block;
LLVMValueRef outputs[RADEON_LLVM_MAX_OUTPUTS * 4];
int num_locals;
LLVMValueRef *locals;
struct nir_to_llvm_context *nctx; /* TODO get rid of this */
};
struct nir_to_llvm_context {
struct ac_llvm_context ac;
const struct ac_nir_compiler_options *options;
struct ac_shader_variant_info *shader_info;
struct ac_shader_abi abi;
struct ac_nir_context *nir;
unsigned max_workgroup_size;
LLVMContextRef context;
LLVMModuleRef module;
LLVMBuilderRef builder;
LLVMValueRef main_function;
struct hash_table *defs;
struct hash_table *phis;
LLVMValueRef descriptor_sets[AC_UD_MAX_SETS];
LLVMValueRef ring_offsets;
LLVMValueRef push_constants;
LLVMValueRef view_index;
LLVMValueRef num_work_groups;
LLVMValueRef workgroup_ids[3];
LLVMValueRef local_invocation_ids;
LLVMValueRef tg_size;
LLVMValueRef vertex_buffers;
LLVMValueRef rel_auto_id;
LLVMValueRef vs_prim_id;
LLVMValueRef ls_out_layout;
LLVMValueRef es2gs_offset;
LLVMValueRef tcs_offchip_layout;
LLVMValueRef tcs_out_offsets;
LLVMValueRef tcs_out_layout;
LLVMValueRef tcs_in_layout;
LLVMValueRef oc_lds;
LLVMValueRef merged_wave_info;
LLVMValueRef tess_factor_offset;
LLVMValueRef tes_rel_patch_id;
LLVMValueRef tes_u;
LLVMValueRef tes_v;
LLVMValueRef gsvs_ring_stride;
LLVMValueRef gsvs_num_entries;
LLVMValueRef gs2vs_offset;
LLVMValueRef gs_wave_id;
LLVMValueRef gs_vtx_offset[6];
LLVMValueRef esgs_ring;
LLVMValueRef gsvs_ring;
LLVMValueRef hs_ring_tess_offchip;
LLVMValueRef hs_ring_tess_factor;
LLVMValueRef prim_mask;
LLVMValueRef sample_pos_offset;
LLVMValueRef persp_sample, persp_center, persp_centroid;
LLVMValueRef linear_sample, linear_center, linear_centroid;
gl_shader_stage stage;
LLVMValueRef inputs[RADEON_LLVM_MAX_INPUTS * 4];
uint64_t input_mask;
uint64_t output_mask;
uint8_t num_output_clips;
uint8_t num_output_culls;
bool is_gs_copy_shader;
LLVMValueRef gs_next_vertex;
unsigned gs_max_out_vertices;
unsigned tes_primitive_mode;
uint64_t tess_outputs_written;
uint64_t tess_patch_outputs_written;
uint32_t tcs_patch_outputs_read;
uint64_t tcs_outputs_read;
};
static inline struct nir_to_llvm_context *
nir_to_llvm_context_from_abi(struct ac_shader_abi *abi)
{
struct nir_to_llvm_context *ctx = NULL;
return container_of(abi, ctx, abi);
}
static LLVMTypeRef
nir2llvmtype(struct ac_nir_context *ctx,
const struct glsl_type *type)
{
switch (glsl_get_base_type(glsl_without_array(type))) {
case GLSL_TYPE_UINT:
case GLSL_TYPE_INT:
return ctx->ac.i32;
case GLSL_TYPE_UINT64:
case GLSL_TYPE_INT64:
return ctx->ac.i64;
case GLSL_TYPE_DOUBLE:
return ctx->ac.f64;
case GLSL_TYPE_FLOAT:
return ctx->ac.f32;
default:
assert(!"Unsupported type in nir2llvmtype()");
break;
}
return 0;
}
static LLVMValueRef get_sampler_desc(struct ac_nir_context *ctx,
const nir_deref_var *deref,
enum ac_descriptor_type desc_type,
const nir_tex_instr *instr,
bool image, bool write);
static unsigned radeon_llvm_reg_index_soa(unsigned index, unsigned chan)
{
return (index * 4) + chan;
}
static unsigned shader_io_get_unique_index(gl_varying_slot slot)
{
/* handle patch indices separate */
if (slot == VARYING_SLOT_TESS_LEVEL_OUTER)
return 0;
if (slot == VARYING_SLOT_TESS_LEVEL_INNER)
return 1;
if (slot >= VARYING_SLOT_PATCH0 && slot <= VARYING_SLOT_TESS_MAX)
return 2 + (slot - VARYING_SLOT_PATCH0);
if (slot == VARYING_SLOT_POS)
return 0;
if (slot == VARYING_SLOT_PSIZ)
return 1;
if (slot == VARYING_SLOT_CLIP_DIST0)
return 2;
/* 3 is reserved for clip dist as well */
if (slot >= VARYING_SLOT_VAR0 && slot <= VARYING_SLOT_VAR31)
return 4 + (slot - VARYING_SLOT_VAR0);
unreachable("illegal slot in get unique index\n");
}
static void set_llvm_calling_convention(LLVMValueRef func,
gl_shader_stage stage)
{
enum radeon_llvm_calling_convention calling_conv;
switch (stage) {
case MESA_SHADER_VERTEX:
case MESA_SHADER_TESS_EVAL:
calling_conv = RADEON_LLVM_AMDGPU_VS;
break;
case MESA_SHADER_GEOMETRY:
calling_conv = RADEON_LLVM_AMDGPU_GS;
break;
case MESA_SHADER_TESS_CTRL:
calling_conv = HAVE_LLVM >= 0x0500 ? RADEON_LLVM_AMDGPU_HS : RADEON_LLVM_AMDGPU_VS;
break;
case MESA_SHADER_FRAGMENT:
calling_conv = RADEON_LLVM_AMDGPU_PS;
break;
case MESA_SHADER_COMPUTE:
calling_conv = RADEON_LLVM_AMDGPU_CS;
break;
default:
unreachable("Unhandle shader type");
}
LLVMSetFunctionCallConv(func, calling_conv);
}
#define MAX_ARGS 23
struct arg_info {
LLVMTypeRef types[MAX_ARGS];
LLVMValueRef *assign[MAX_ARGS];
unsigned array_params_mask;
uint8_t count;
uint8_t sgpr_count;
uint8_t num_sgprs_used;
uint8_t num_vgprs_used;
};
enum ac_arg_regfile {
ARG_SGPR,
ARG_VGPR,
};
static void
add_arg(struct arg_info *info, enum ac_arg_regfile regfile, LLVMTypeRef type,
LLVMValueRef *param_ptr)
{
assert(info->count < MAX_ARGS);
info->assign[info->count] = param_ptr;
info->types[info->count] = type;
info->count++;
if (regfile == ARG_SGPR) {
info->num_sgprs_used += ac_get_type_size(type) / 4;
info->sgpr_count++;
} else {
assert(regfile == ARG_VGPR);
info->num_vgprs_used += ac_get_type_size(type) / 4;
}
}
static inline void
add_array_arg(struct arg_info *info, LLVMTypeRef type, LLVMValueRef *param_ptr)
{
info->array_params_mask |= (1 << info->count);
add_arg(info, ARG_SGPR, type, param_ptr);
}
static void assign_arguments(LLVMValueRef main_function,
struct arg_info *info)
{
unsigned i;
for (i = 0; i < info->count; i++) {
if (info->assign[i])
*info->assign[i] = LLVMGetParam(main_function, i);
}
}
static LLVMValueRef
create_llvm_function(LLVMContextRef ctx, LLVMModuleRef module,
LLVMBuilderRef builder, LLVMTypeRef *return_types,
unsigned num_return_elems,
struct arg_info *args,
unsigned max_workgroup_size,
bool unsafe_math)
{
LLVMTypeRef main_function_type, ret_type;
LLVMBasicBlockRef main_function_body;
if (num_return_elems)
ret_type = LLVMStructTypeInContext(ctx, return_types,
num_return_elems, true);
else
ret_type = LLVMVoidTypeInContext(ctx);
/* Setup the function */
main_function_type =
LLVMFunctionType(ret_type, args->types, args->count, 0);
LLVMValueRef main_function =
LLVMAddFunction(module, "main", main_function_type);
main_function_body =
LLVMAppendBasicBlockInContext(ctx, main_function, "main_body");
LLVMPositionBuilderAtEnd(builder, main_function_body);
LLVMSetFunctionCallConv(main_function, RADEON_LLVM_AMDGPU_CS);
for (unsigned i = 0; i < args->sgpr_count; ++i) {
if (args->array_params_mask & (1 << i)) {
LLVMValueRef P = LLVMGetParam(main_function, i);
ac_add_function_attr(ctx, main_function, i + 1, AC_FUNC_ATTR_BYVAL);
ac_add_attr_dereferenceable(P, UINT64_MAX);
}
else {
ac_add_function_attr(ctx, main_function, i + 1, AC_FUNC_ATTR_INREG);
}
}
if (max_workgroup_size) {
ac_llvm_add_target_dep_function_attr(main_function,
"amdgpu-max-work-group-size",
max_workgroup_size);
}
if (unsafe_math) {
/* These were copied from some LLVM test. */
LLVMAddTargetDependentFunctionAttr(main_function,
"less-precise-fpmad",
"true");
LLVMAddTargetDependentFunctionAttr(main_function,
"no-infs-fp-math",
"true");
LLVMAddTargetDependentFunctionAttr(main_function,
"no-nans-fp-math",
"true");
LLVMAddTargetDependentFunctionAttr(main_function,
"unsafe-fp-math",
"true");
LLVMAddTargetDependentFunctionAttr(main_function,
"no-signed-zeros-fp-math",
"true");
}
return main_function;
}
static LLVMTypeRef const_array(LLVMTypeRef elem_type, int num_elements)
{
return LLVMPointerType(LLVMArrayType(elem_type, num_elements),
CONST_ADDR_SPACE);
}
static int get_elem_bits(struct ac_llvm_context *ctx, LLVMTypeRef type)
{
if (LLVMGetTypeKind(type) == LLVMVectorTypeKind)
type = LLVMGetElementType(type);
if (LLVMGetTypeKind(type) == LLVMIntegerTypeKind)
return LLVMGetIntTypeWidth(type);
if (type == ctx->f16)
return 16;
if (type == ctx->f32)
return 32;
if (type == ctx->f64)
return 64;
unreachable("Unhandled type kind in get_elem_bits");
}
static LLVMValueRef unpack_param(struct ac_llvm_context *ctx,
LLVMValueRef param, unsigned rshift,
unsigned bitwidth)
{
LLVMValueRef value = param;
if (rshift)
value = LLVMBuildLShr(ctx->builder, value,
LLVMConstInt(ctx->i32, rshift, false), "");
if (rshift + bitwidth < 32) {
unsigned mask = (1 << bitwidth) - 1;
value = LLVMBuildAnd(ctx->builder, value,
LLVMConstInt(ctx->i32, mask, false), "");
}
return value;
}
static LLVMValueRef get_rel_patch_id(struct nir_to_llvm_context *ctx)
{
switch (ctx->stage) {
case MESA_SHADER_TESS_CTRL:
return unpack_param(&ctx->ac, ctx->abi.tcs_rel_ids, 0, 8);
case MESA_SHADER_TESS_EVAL:
return ctx->tes_rel_patch_id;
break;
default:
unreachable("Illegal stage");
}
}
/* Tessellation shaders pass outputs to the next shader using LDS.
*
* LS outputs = TCS inputs
* TCS outputs = TES inputs
*
* The LDS layout is:
* - TCS inputs for patch 0
* - TCS inputs for patch 1
* - TCS inputs for patch 2 = get_tcs_in_current_patch_offset (if RelPatchID==2)
* - ...
* - TCS outputs for patch 0 = get_tcs_out_patch0_offset
* - Per-patch TCS outputs for patch 0 = get_tcs_out_patch0_patch_data_offset
* - TCS outputs for patch 1
* - Per-patch TCS outputs for patch 1
* - TCS outputs for patch 2 = get_tcs_out_current_patch_offset (if RelPatchID==2)
* - Per-patch TCS outputs for patch 2 = get_tcs_out_current_patch_data_offset (if RelPatchID==2)
* - ...
*
* All three shaders VS(LS), TCS, TES share the same LDS space.
*/
static LLVMValueRef
get_tcs_in_patch_stride(struct nir_to_llvm_context *ctx)
{
if (ctx->stage == MESA_SHADER_VERTEX)
return unpack_param(&ctx->ac, ctx->ls_out_layout, 0, 13);
else if (ctx->stage == MESA_SHADER_TESS_CTRL)
return unpack_param(&ctx->ac, ctx->tcs_in_layout, 0, 13);
else {
assert(0);
return NULL;
}
}
static LLVMValueRef
get_tcs_out_patch_stride(struct nir_to_llvm_context *ctx)
{
return unpack_param(&ctx->ac, ctx->tcs_out_layout, 0, 13);
}
static LLVMValueRef
get_tcs_out_patch0_offset(struct nir_to_llvm_context *ctx)
{
return LLVMBuildMul(ctx->builder,
unpack_param(&ctx->ac, ctx->tcs_out_offsets, 0, 16),
LLVMConstInt(ctx->ac.i32, 4, false), "");
}
static LLVMValueRef
get_tcs_out_patch0_patch_data_offset(struct nir_to_llvm_context *ctx)
{
return LLVMBuildMul(ctx->builder,
unpack_param(&ctx->ac, ctx->tcs_out_offsets, 16, 16),
LLVMConstInt(ctx->ac.i32, 4, false), "");
}
static LLVMValueRef
get_tcs_in_current_patch_offset(struct nir_to_llvm_context *ctx)
{
LLVMValueRef patch_stride = get_tcs_in_patch_stride(ctx);
LLVMValueRef rel_patch_id = get_rel_patch_id(ctx);
return LLVMBuildMul(ctx->builder, patch_stride, rel_patch_id, "");
}
static LLVMValueRef
get_tcs_out_current_patch_offset(struct nir_to_llvm_context *ctx)
{
LLVMValueRef patch0_offset = get_tcs_out_patch0_offset(ctx);
LLVMValueRef patch_stride = get_tcs_out_patch_stride(ctx);
LLVMValueRef rel_patch_id = get_rel_patch_id(ctx);
return LLVMBuildAdd(ctx->builder, patch0_offset,
LLVMBuildMul(ctx->builder, patch_stride,
rel_patch_id, ""),
"");
}
static LLVMValueRef
get_tcs_out_current_patch_data_offset(struct nir_to_llvm_context *ctx)
{
LLVMValueRef patch0_patch_data_offset =
get_tcs_out_patch0_patch_data_offset(ctx);
LLVMValueRef patch_stride = get_tcs_out_patch_stride(ctx);
LLVMValueRef rel_patch_id = get_rel_patch_id(ctx);
return LLVMBuildAdd(ctx->builder, patch0_patch_data_offset,
LLVMBuildMul(ctx->builder, patch_stride,
rel_patch_id, ""),
"");
}
static void
set_loc(struct ac_userdata_info *ud_info, uint8_t *sgpr_idx, uint8_t num_sgprs,
uint32_t indirect_offset)
{
ud_info->sgpr_idx = *sgpr_idx;
ud_info->num_sgprs = num_sgprs;
ud_info->indirect = indirect_offset > 0;
ud_info->indirect_offset = indirect_offset;
*sgpr_idx += num_sgprs;
}
static void
set_loc_shader(struct nir_to_llvm_context *ctx, int idx, uint8_t *sgpr_idx,
uint8_t num_sgprs)
{
struct ac_userdata_info *ud_info =
&ctx->shader_info->user_sgprs_locs.shader_data[idx];
assert(ud_info);
set_loc(ud_info, sgpr_idx, num_sgprs, 0);
}
static void
set_loc_desc(struct nir_to_llvm_context *ctx, int idx, uint8_t *sgpr_idx,
uint32_t indirect_offset)
{
struct ac_userdata_info *ud_info =
&ctx->shader_info->user_sgprs_locs.descriptor_sets[idx];
assert(ud_info);
set_loc(ud_info, sgpr_idx, 2, indirect_offset);
}
struct user_sgpr_info {
bool need_ring_offsets;
uint8_t sgpr_count;
bool indirect_all_descriptor_sets;
};
static bool needs_view_index_sgpr(struct nir_to_llvm_context *ctx,
gl_shader_stage stage)
{
switch (stage) {
case MESA_SHADER_VERTEX:
if (ctx->shader_info->info.needs_multiview_view_index ||
(!ctx->options->key.vs.as_es && !ctx->options->key.vs.as_ls && ctx->options->key.has_multiview_view_index))
return true;
break;
case MESA_SHADER_TESS_EVAL:
if (ctx->shader_info->info.needs_multiview_view_index || (!ctx->options->key.tes.as_es && ctx->options->key.has_multiview_view_index))
return true;
case MESA_SHADER_GEOMETRY:
case MESA_SHADER_TESS_CTRL:
if (ctx->shader_info->info.needs_multiview_view_index)
return true;
default:
break;
}
return false;
}
static void allocate_user_sgprs(struct nir_to_llvm_context *ctx,
gl_shader_stage stage,
bool needs_view_index,
struct user_sgpr_info *user_sgpr_info)
{
memset(user_sgpr_info, 0, sizeof(struct user_sgpr_info));
/* until we sort out scratch/global buffers always assign ring offsets for gs/vs/es */
if (stage == MESA_SHADER_GEOMETRY ||
stage == MESA_SHADER_VERTEX ||
stage == MESA_SHADER_TESS_CTRL ||
stage == MESA_SHADER_TESS_EVAL ||
ctx->is_gs_copy_shader)
user_sgpr_info->need_ring_offsets = true;
if (stage == MESA_SHADER_FRAGMENT &&
ctx->shader_info->info.ps.needs_sample_positions)
user_sgpr_info->need_ring_offsets = true;
/* 2 user sgprs will nearly always be allocated for scratch/rings */
if (ctx->options->supports_spill || user_sgpr_info->need_ring_offsets) {
user_sgpr_info->sgpr_count += 2;
}
/* FIXME: fix the number of user sgprs for merged shaders on GFX9 */
switch (stage) {
case MESA_SHADER_COMPUTE:
if (ctx->shader_info->info.cs.uses_grid_size)
user_sgpr_info->sgpr_count += 3;
break;
case MESA_SHADER_FRAGMENT:
user_sgpr_info->sgpr_count += ctx->shader_info->info.ps.needs_sample_positions;
break;
case MESA_SHADER_VERTEX:
if (!ctx->is_gs_copy_shader) {
user_sgpr_info->sgpr_count += ctx->shader_info->info.vs.has_vertex_buffers ? 2 : 0;
if (ctx->shader_info->info.vs.needs_draw_id) {
user_sgpr_info->sgpr_count += 3;
} else {
user_sgpr_info->sgpr_count += 2;
}
}
if (ctx->options->key.vs.as_ls)
user_sgpr_info->sgpr_count++;
break;
case MESA_SHADER_TESS_CTRL:
user_sgpr_info->sgpr_count += 4;
break;
case MESA_SHADER_TESS_EVAL:
user_sgpr_info->sgpr_count += 1;
break;
case MESA_SHADER_GEOMETRY:
user_sgpr_info->sgpr_count += 2;
break;
default:
break;
}
if (needs_view_index)
user_sgpr_info->sgpr_count++;
if (ctx->shader_info->info.loads_push_constants)
user_sgpr_info->sgpr_count += 2;
uint32_t available_sgprs = ctx->options->chip_class >= GFX9 ? 32 : 16;
uint32_t remaining_sgprs = available_sgprs - user_sgpr_info->sgpr_count;
if (remaining_sgprs / 2 < util_bitcount(ctx->shader_info->info.desc_set_used_mask)) {
user_sgpr_info->sgpr_count += 2;
user_sgpr_info->indirect_all_descriptor_sets = true;
} else {
user_sgpr_info->sgpr_count += util_bitcount(ctx->shader_info->info.desc_set_used_mask) * 2;
}
}
static void
declare_global_input_sgprs(struct nir_to_llvm_context *ctx,
gl_shader_stage stage,
bool has_previous_stage,
gl_shader_stage previous_stage,
const struct user_sgpr_info *user_sgpr_info,
struct arg_info *args,
LLVMValueRef *desc_sets)
{
LLVMTypeRef type = const_array(ctx->ac.i8, 1024 * 1024);
unsigned num_sets = ctx->options->layout ?
ctx->options->layout->num_sets : 0;
unsigned stage_mask = 1 << stage;
if (has_previous_stage)
stage_mask |= 1 << previous_stage;
/* 1 for each descriptor set */
if (!user_sgpr_info->indirect_all_descriptor_sets) {
for (unsigned i = 0; i < num_sets; ++i) {
if (ctx->options->layout->set[i].layout->shader_stages & stage_mask) {
add_array_arg(args, type,
&ctx->descriptor_sets[i]);
}
}
} else {
add_array_arg(args, const_array(type, 32), desc_sets);
}
if (ctx->shader_info->info.loads_push_constants) {
/* 1 for push constants and dynamic descriptors */
add_array_arg(args, type, &ctx->push_constants);
}
}
static void
declare_vs_specific_input_sgprs(struct nir_to_llvm_context *ctx,
gl_shader_stage stage,
bool has_previous_stage,
gl_shader_stage previous_stage,
struct arg_info *args)
{
if (!ctx->is_gs_copy_shader &&
(stage == MESA_SHADER_VERTEX ||
(has_previous_stage && previous_stage == MESA_SHADER_VERTEX))) {
if (ctx->shader_info->info.vs.has_vertex_buffers) {
add_arg(args, ARG_SGPR, const_array(ctx->ac.v4i32, 16),
&ctx->vertex_buffers);
}
add_arg(args, ARG_SGPR, ctx->ac.i32, &ctx->abi.base_vertex);
add_arg(args, ARG_SGPR, ctx->ac.i32, &ctx->abi.start_instance);
if (ctx->shader_info->info.vs.needs_draw_id) {
add_arg(args, ARG_SGPR, ctx->ac.i32, &ctx->abi.draw_id);
}
}
}
static void
declare_vs_input_vgprs(struct nir_to_llvm_context *ctx, struct arg_info *args)
{
add_arg(args, ARG_VGPR, ctx->ac.i32, &ctx->abi.vertex_id);
if (!ctx->is_gs_copy_shader) {
if (ctx->options->key.vs.as_ls) {
add_arg(args, ARG_VGPR, ctx->ac.i32, &ctx->rel_auto_id);
add_arg(args, ARG_VGPR, ctx->ac.i32, &ctx->abi.instance_id);
} else {
add_arg(args, ARG_VGPR, ctx->ac.i32, &ctx->abi.instance_id);
add_arg(args, ARG_VGPR, ctx->ac.i32, &ctx->vs_prim_id);
}
add_arg(args, ARG_VGPR, ctx->ac.i32, NULL); /* unused */
}
}
static void
declare_tes_input_vgprs(struct nir_to_llvm_context *ctx, struct arg_info *args)
{
add_arg(args, ARG_VGPR, ctx->ac.f32, &ctx->tes_u);
add_arg(args, ARG_VGPR, ctx->ac.f32, &ctx->tes_v);
add_arg(args, ARG_VGPR, ctx->ac.i32, &ctx->tes_rel_patch_id);
add_arg(args, ARG_VGPR, ctx->ac.i32, &ctx->abi.tes_patch_id);
}
static void
set_global_input_locs(struct nir_to_llvm_context *ctx, gl_shader_stage stage,
bool has_previous_stage, gl_shader_stage previous_stage,
const struct user_sgpr_info *user_sgpr_info,
LLVMValueRef desc_sets, uint8_t *user_sgpr_idx)
{
unsigned num_sets = ctx->options->layout ?
ctx->options->layout->num_sets : 0;
unsigned stage_mask = 1 << stage;
if (has_previous_stage)
stage_mask |= 1 << previous_stage;
if (!user_sgpr_info->indirect_all_descriptor_sets) {
for (unsigned i = 0; i < num_sets; ++i) {
if (ctx->options->layout->set[i].layout->shader_stages & stage_mask) {
set_loc_desc(ctx, i, user_sgpr_idx, 0);
} else
ctx->descriptor_sets[i] = NULL;
}
} else {
set_loc_shader(ctx, AC_UD_INDIRECT_DESCRIPTOR_SETS,
user_sgpr_idx, 2);
for (unsigned i = 0; i < num_sets; ++i) {
if (ctx->options->layout->set[i].layout->shader_stages & stage_mask) {
set_loc_desc(ctx, i, user_sgpr_idx, i * 8);
ctx->descriptor_sets[i] =
ac_build_load_to_sgpr(&ctx->ac,
desc_sets,
LLVMConstInt(ctx->ac.i32, i, false));
} else
ctx->descriptor_sets[i] = NULL;
}
ctx->shader_info->need_indirect_descriptor_sets = true;
}
if (ctx->shader_info->info.loads_push_constants) {
set_loc_shader(ctx, AC_UD_PUSH_CONSTANTS, user_sgpr_idx, 2);
}
}
static void
set_vs_specific_input_locs(struct nir_to_llvm_context *ctx,
gl_shader_stage stage, bool has_previous_stage,
gl_shader_stage previous_stage,
uint8_t *user_sgpr_idx)
{
if (!ctx->is_gs_copy_shader &&
(stage == MESA_SHADER_VERTEX ||
(has_previous_stage && previous_stage == MESA_SHADER_VERTEX))) {
if (ctx->shader_info->info.vs.has_vertex_buffers) {
set_loc_shader(ctx, AC_UD_VS_VERTEX_BUFFERS,
user_sgpr_idx, 2);
}
unsigned vs_num = 2;
if (ctx->shader_info->info.vs.needs_draw_id)
vs_num++;
set_loc_shader(ctx, AC_UD_VS_BASE_VERTEX_START_INSTANCE,
user_sgpr_idx, vs_num);
}
}
static void create_function(struct nir_to_llvm_context *ctx,
gl_shader_stage stage,
bool has_previous_stage,
gl_shader_stage previous_stage)
{
uint8_t user_sgpr_idx;
struct user_sgpr_info user_sgpr_info;
struct arg_info args = {};
LLVMValueRef desc_sets;
bool needs_view_index = needs_view_index_sgpr(ctx, stage);
allocate_user_sgprs(ctx, stage, needs_view_index, &user_sgpr_info);
if (user_sgpr_info.need_ring_offsets && !ctx->options->supports_spill) {
add_arg(&args, ARG_SGPR, const_array(ctx->ac.v4i32, 16),
&ctx->ring_offsets);
}
switch (stage) {
case MESA_SHADER_COMPUTE:
declare_global_input_sgprs(ctx, stage, has_previous_stage,
previous_stage, &user_sgpr_info,
&args, &desc_sets);
if (ctx->shader_info->info.cs.uses_grid_size) {
add_arg(&args, ARG_SGPR, ctx->ac.v3i32,
&ctx->num_work_groups);
}
for (int i = 0; i < 3; i++) {
ctx->workgroup_ids[i] = NULL;
if (ctx->shader_info->info.cs.uses_block_id[i]) {
add_arg(&args, ARG_SGPR, ctx->ac.i32,
&ctx->workgroup_ids[i]);
}
}
if (ctx->shader_info->info.cs.uses_local_invocation_idx)
add_arg(&args, ARG_SGPR, ctx->ac.i32, &ctx->tg_size);
add_arg(&args, ARG_VGPR, ctx->ac.v3i32,
&ctx->local_invocation_ids);
break;
case MESA_SHADER_VERTEX:
declare_global_input_sgprs(ctx, stage, has_previous_stage,
previous_stage, &user_sgpr_info,
&args, &desc_sets);
declare_vs_specific_input_sgprs(ctx, stage, has_previous_stage,
previous_stage, &args);
if (needs_view_index)
add_arg(&args, ARG_SGPR, ctx->ac.i32, &ctx->view_index);
if (ctx->options->key.vs.as_es)
add_arg(&args, ARG_SGPR, ctx->ac.i32,
&ctx->es2gs_offset);
else if (ctx->options->key.vs.as_ls)
add_arg(&args, ARG_SGPR, ctx->ac.i32,
&ctx->ls_out_layout);
declare_vs_input_vgprs(ctx, &args);
break;
case MESA_SHADER_TESS_CTRL:
if (has_previous_stage) {
// First 6 system regs
add_arg(&args, ARG_SGPR, ctx->ac.i32, &ctx->oc_lds);
add_arg(&args, ARG_SGPR, ctx->ac.i32,
&ctx->merged_wave_info);
add_arg(&args, ARG_SGPR, ctx->ac.i32,
&ctx->tess_factor_offset);
add_arg(&args, ARG_SGPR, ctx->ac.i32, NULL); // scratch offset
add_arg(&args, ARG_SGPR, ctx->ac.i32, NULL); // unknown
add_arg(&args, ARG_SGPR, ctx->ac.i32, NULL); // unknown
declare_global_input_sgprs(ctx, stage,
has_previous_stage,
previous_stage,
&user_sgpr_info, &args,
&desc_sets);
declare_vs_specific_input_sgprs(ctx, stage,
has_previous_stage,
previous_stage, &args);
add_arg(&args, ARG_SGPR, ctx->ac.i32,
&ctx->ls_out_layout);
add_arg(&args, ARG_SGPR, ctx->ac.i32,
&ctx->tcs_offchip_layout);
add_arg(&args, ARG_SGPR, ctx->ac.i32,
&ctx->tcs_out_offsets);
add_arg(&args, ARG_SGPR, ctx->ac.i32,
&ctx->tcs_out_layout);
add_arg(&args, ARG_SGPR, ctx->ac.i32,
&ctx->tcs_in_layout);
if (needs_view_index)
add_arg(&args, ARG_SGPR, ctx->ac.i32,
&ctx->view_index);
add_arg(&args, ARG_VGPR, ctx->ac.i32,
&ctx->abi.tcs_patch_id);
add_arg(&args, ARG_VGPR, ctx->ac.i32,
&ctx->abi.tcs_rel_ids);
declare_vs_input_vgprs(ctx, &args);
} else {
declare_global_input_sgprs(ctx, stage,
has_previous_stage,
previous_stage,
&user_sgpr_info, &args,
&desc_sets);
add_arg(&args, ARG_SGPR, ctx->ac.i32,
&ctx->tcs_offchip_layout);
add_arg(&args, ARG_SGPR, ctx->ac.i32,
&ctx->tcs_out_offsets);
add_arg(&args, ARG_SGPR, ctx->ac.i32,
&ctx->tcs_out_layout);
add_arg(&args, ARG_SGPR, ctx->ac.i32,
&ctx->tcs_in_layout);
if (needs_view_index)
add_arg(&args, ARG_SGPR, ctx->ac.i32,
&ctx->view_index);
add_arg(&args, ARG_SGPR, ctx->ac.i32, &ctx->oc_lds);
add_arg(&args, ARG_SGPR, ctx->ac.i32,
&ctx->tess_factor_offset);
add_arg(&args, ARG_VGPR, ctx->ac.i32,
&ctx->abi.tcs_patch_id);
add_arg(&args, ARG_VGPR, ctx->ac.i32,
&ctx->abi.tcs_rel_ids);
}
break;
case MESA_SHADER_TESS_EVAL:
declare_global_input_sgprs(ctx, stage, has_previous_stage,
previous_stage, &user_sgpr_info,
&args, &desc_sets);
add_arg(&args, ARG_SGPR, ctx->ac.i32, &ctx->tcs_offchip_layout);
if (needs_view_index)
add_arg(&args, ARG_SGPR, ctx->ac.i32, &ctx->view_index);
if (ctx->options->key.tes.as_es) {
add_arg(&args, ARG_SGPR, ctx->ac.i32, &ctx->oc_lds);
add_arg(&args, ARG_SGPR, ctx->ac.i32, NULL);
add_arg(&args, ARG_SGPR, ctx->ac.i32,
&ctx->es2gs_offset);
} else {
add_arg(&args, ARG_SGPR, ctx->ac.i32, NULL);
add_arg(&args, ARG_SGPR, ctx->ac.i32, &ctx->oc_lds);
}
declare_tes_input_vgprs(ctx, &args);
break;
case MESA_SHADER_GEOMETRY:
if (has_previous_stage) {
// First 6 system regs
add_arg(&args, ARG_SGPR, ctx->ac.i32,
&ctx->gs2vs_offset);
add_arg(&args, ARG_SGPR, ctx->ac.i32,
&ctx->merged_wave_info);
add_arg(&args, ARG_SGPR, ctx->ac.i32, &ctx->oc_lds);
add_arg(&args, ARG_SGPR, ctx->ac.i32, NULL); // scratch offset
add_arg(&args, ARG_SGPR, ctx->ac.i32, NULL); // unknown
add_arg(&args, ARG_SGPR, ctx->ac.i32, NULL); // unknown
declare_global_input_sgprs(ctx, stage,
has_previous_stage,
previous_stage,
&user_sgpr_info, &args,
&desc_sets);
if (previous_stage == MESA_SHADER_TESS_EVAL) {
add_arg(&args, ARG_SGPR, ctx->ac.i32,
&ctx->tcs_offchip_layout);
} else {
declare_vs_specific_input_sgprs(ctx, stage,
has_previous_stage,
previous_stage,
&args);
}
add_arg(&args, ARG_SGPR, ctx->ac.i32,
&ctx->gsvs_ring_stride);
add_arg(&args, ARG_SGPR, ctx->ac.i32,
&ctx->gsvs_num_entries);
if (needs_view_index)
add_arg(&args, ARG_SGPR, ctx->ac.i32,
&ctx->view_index);
add_arg(&args, ARG_VGPR, ctx->ac.i32,
&ctx->gs_vtx_offset[0]);
add_arg(&args, ARG_VGPR, ctx->ac.i32,
&ctx->gs_vtx_offset[2]);
add_arg(&args, ARG_VGPR, ctx->ac.i32,
&ctx->abi.gs_prim_id);
add_arg(&args, ARG_VGPR, ctx->ac.i32,
&ctx->abi.gs_invocation_id);
add_arg(&args, ARG_VGPR, ctx->ac.i32,
&ctx->gs_vtx_offset[4]);
if (previous_stage == MESA_SHADER_VERTEX) {
declare_vs_input_vgprs(ctx, &args);
} else {
declare_tes_input_vgprs(ctx, &args);
}
} else {
declare_global_input_sgprs(ctx, stage,
has_previous_stage,
previous_stage,
&user_sgpr_info, &args,
&desc_sets);
add_arg(&args, ARG_SGPR, ctx->ac.i32,
&ctx->gsvs_ring_stride);
add_arg(&args, ARG_SGPR, ctx->ac.i32,
&ctx->gsvs_num_entries);
if (needs_view_index)
add_arg(&args, ARG_SGPR, ctx->ac.i32,
&ctx->view_index);
add_arg(&args, ARG_SGPR, ctx->ac.i32, &ctx->gs2vs_offset);
add_arg(&args, ARG_SGPR, ctx->ac.i32, &ctx->gs_wave_id);
add_arg(&args, ARG_VGPR, ctx->ac.i32,
&ctx->gs_vtx_offset[0]);
add_arg(&args, ARG_VGPR, ctx->ac.i32,
&ctx->gs_vtx_offset[1]);
add_arg(&args, ARG_VGPR, ctx->ac.i32,
&ctx->abi.gs_prim_id);
add_arg(&args, ARG_VGPR, ctx->ac.i32,
&ctx->gs_vtx_offset[2]);
add_arg(&args, ARG_VGPR, ctx->ac.i32,
&ctx->gs_vtx_offset[3]);
add_arg(&args, ARG_VGPR, ctx->ac.i32,
&ctx->gs_vtx_offset[4]);
add_arg(&args, ARG_VGPR, ctx->ac.i32,
&ctx->gs_vtx_offset[5]);
add_arg(&args, ARG_VGPR, ctx->ac.i32,
&ctx->abi.gs_invocation_id);
}
break;
case MESA_SHADER_FRAGMENT:
declare_global_input_sgprs(ctx, stage, has_previous_stage,
previous_stage, &user_sgpr_info,
&args, &desc_sets);
if (ctx->shader_info->info.ps.needs_sample_positions)
add_arg(&args, ARG_SGPR, ctx->ac.i32,
&ctx->sample_pos_offset);
add_arg(&args, ARG_SGPR, ctx->ac.i32, &ctx->prim_mask);
add_arg(&args, ARG_VGPR, ctx->ac.v2i32, &ctx->persp_sample);
add_arg(&args, ARG_VGPR, ctx->ac.v2i32, &ctx->persp_center);
add_arg(&args, ARG_VGPR, ctx->ac.v2i32, &ctx->persp_centroid);
add_arg(&args, ARG_VGPR, ctx->ac.v3i32, NULL); /* persp pull model */
add_arg(&args, ARG_VGPR, ctx->ac.v2i32, &ctx->linear_sample);
add_arg(&args, ARG_VGPR, ctx->ac.v2i32, &ctx->linear_center);
add_arg(&args, ARG_VGPR, ctx->ac.v2i32, &ctx->linear_centroid);
add_arg(&args, ARG_VGPR, ctx->ac.f32, NULL); /* line stipple tex */
add_arg(&args, ARG_VGPR, ctx->ac.f32, &ctx->abi.frag_pos[0]);
add_arg(&args, ARG_VGPR, ctx->ac.f32, &ctx->abi.frag_pos[1]);
add_arg(&args, ARG_VGPR, ctx->ac.f32, &ctx->abi.frag_pos[2]);
add_arg(&args, ARG_VGPR, ctx->ac.f32, &ctx->abi.frag_pos[3]);
add_arg(&args, ARG_VGPR, ctx->ac.i32, &ctx->abi.front_face);
add_arg(&args, ARG_VGPR, ctx->ac.i32, &ctx->abi.ancillary);
add_arg(&args, ARG_VGPR, ctx->ac.i32, &ctx->abi.sample_coverage);
add_arg(&args, ARG_VGPR, ctx->ac.i32, NULL); /* fixed pt */
break;
default:
unreachable("Shader stage not implemented");
}
ctx->main_function = create_llvm_function(
ctx->context, ctx->module, ctx->builder, NULL, 0, &args,
ctx->max_workgroup_size,
ctx->options->unsafe_math);
set_llvm_calling_convention(ctx->main_function, stage);
ctx->shader_info->num_input_vgprs = 0;
ctx->shader_info->num_input_sgprs = ctx->options->supports_spill ? 2 : 0;
ctx->shader_info->num_input_sgprs += args.num_sgprs_used;
if (ctx->stage != MESA_SHADER_FRAGMENT)
ctx->shader_info->num_input_vgprs = args.num_vgprs_used;
assign_arguments(ctx->main_function, &args);
user_sgpr_idx = 0;
if (ctx->options->supports_spill || user_sgpr_info.need_ring_offsets) {
set_loc_shader(ctx, AC_UD_SCRATCH_RING_OFFSETS,
&user_sgpr_idx, 2);
if (ctx->options->supports_spill) {
ctx->ring_offsets = ac_build_intrinsic(&ctx->ac, "llvm.amdgcn.implicit.buffer.ptr",
LLVMPointerType(ctx->ac.i8, CONST_ADDR_SPACE),
NULL, 0, AC_FUNC_ATTR_READNONE);
ctx->ring_offsets = LLVMBuildBitCast(ctx->builder, ctx->ring_offsets,
const_array(ctx->ac.v4i32, 16), "");
}
}
/* For merged shaders the user SGPRs start at 8, with 8 system SGPRs in front (including
* the rw_buffers at s0/s1. With user SGPR0 = s8, lets restart the count from 0 */
if (has_previous_stage)
user_sgpr_idx = 0;
set_global_input_locs(ctx, stage, has_previous_stage, previous_stage,
&user_sgpr_info, desc_sets, &user_sgpr_idx);
switch (stage) {
case MESA_SHADER_COMPUTE:
if (ctx->shader_info->info.cs.uses_grid_size) {
set_loc_shader(ctx, AC_UD_CS_GRID_SIZE,
&user_sgpr_idx, 3);
}
break;
case MESA_SHADER_VERTEX:
set_vs_specific_input_locs(ctx, stage, has_previous_stage,
previous_stage, &user_sgpr_idx);
if (ctx->view_index)
set_loc_shader(ctx, AC_UD_VIEW_INDEX, &user_sgpr_idx, 1);
if (ctx->options->key.vs.as_ls) {
set_loc_shader(ctx, AC_UD_VS_LS_TCS_IN_LAYOUT,
&user_sgpr_idx, 1);
}
if (ctx->options->key.vs.as_ls)
ac_declare_lds_as_pointer(&ctx->ac);
break;
case MESA_SHADER_TESS_CTRL:
set_vs_specific_input_locs(ctx, stage, has_previous_stage,
previous_stage, &user_sgpr_idx);
if (has_previous_stage)
set_loc_shader(ctx, AC_UD_VS_LS_TCS_IN_LAYOUT,
&user_sgpr_idx, 1);
set_loc_shader(ctx, AC_UD_TCS_OFFCHIP_LAYOUT, &user_sgpr_idx, 4);
if (ctx->view_index)
set_loc_shader(ctx, AC_UD_VIEW_INDEX, &user_sgpr_idx, 1);
ac_declare_lds_as_pointer(&ctx->ac);
break;
case MESA_SHADER_TESS_EVAL:
set_loc_shader(ctx, AC_UD_TES_OFFCHIP_LAYOUT, &user_sgpr_idx, 1);
if (ctx->view_index)
set_loc_shader(ctx, AC_UD_VIEW_INDEX, &user_sgpr_idx, 1);
break;
case MESA_SHADER_GEOMETRY:
if (has_previous_stage) {
if (previous_stage == MESA_SHADER_VERTEX)
set_vs_specific_input_locs(ctx, stage,
has_previous_stage,
previous_stage,
&user_sgpr_idx);
else
set_loc_shader(ctx, AC_UD_TES_OFFCHIP_LAYOUT,
&user_sgpr_idx, 1);
}
set_loc_shader(ctx, AC_UD_GS_VS_RING_STRIDE_ENTRIES,
&user_sgpr_idx, 2);
if (ctx->view_index)
set_loc_shader(ctx, AC_UD_VIEW_INDEX, &user_sgpr_idx, 1);
if (has_previous_stage)
ac_declare_lds_as_pointer(&ctx->ac);
break;
case MESA_SHADER_FRAGMENT:
if (ctx->shader_info->info.ps.needs_sample_positions) {
set_loc_shader(ctx, AC_UD_PS_SAMPLE_POS_OFFSET,
&user_sgpr_idx, 1);
}
break;
default:
unreachable("Shader stage not implemented");
}
ctx->shader_info->num_user_sgprs = user_sgpr_idx;
}
static LLVMValueRef trim_vector(struct ac_llvm_context *ctx,
LLVMValueRef value, unsigned count)
{
unsigned num_components = ac_get_llvm_num_components(value);
if (count == num_components)
return value;
LLVMValueRef masks[] = {
LLVMConstInt(ctx->i32, 0, false), LLVMConstInt(ctx->i32, 1, false),
LLVMConstInt(ctx->i32, 2, false), LLVMConstInt(ctx->i32, 3, false)};
if (count == 1)
return LLVMBuildExtractElement(ctx->builder, value, masks[0],
"");
LLVMValueRef swizzle = LLVMConstVector(masks, count);
return LLVMBuildShuffleVector(ctx->builder, value, value, swizzle, "");
}
static void
build_store_values_extended(struct ac_llvm_context *ac,
LLVMValueRef *values,
unsigned value_count,
unsigned value_stride,
LLVMValueRef vec)
{
LLVMBuilderRef builder = ac->builder;
unsigned i;
for (i = 0; i < value_count; i++) {
LLVMValueRef ptr = values[i * value_stride];
LLVMValueRef index = LLVMConstInt(ac->i32, i, false);
LLVMValueRef value = LLVMBuildExtractElement(builder, vec, index, "");
LLVMBuildStore(builder, value, ptr);
}
}
static LLVMTypeRef get_def_type(struct ac_nir_context *ctx,
const nir_ssa_def *def)
{
LLVMTypeRef type = LLVMIntTypeInContext(ctx->ac.context, def->bit_size);
if (def->num_components > 1) {
type = LLVMVectorType(type, def->num_components);
}
return type;
}
static LLVMValueRef get_src(struct ac_nir_context *nir, nir_src src)
{
assert(src.is_ssa);
struct hash_entry *entry = _mesa_hash_table_search(nir->defs, src.ssa);
return (LLVMValueRef)entry->data;
}
static LLVMBasicBlockRef get_block(struct ac_nir_context *nir,
const struct nir_block *b)
{
struct hash_entry *entry = _mesa_hash_table_search(nir->defs, b);
return (LLVMBasicBlockRef)entry->data;
}
static LLVMValueRef get_alu_src(struct ac_nir_context *ctx,
nir_alu_src src,
unsigned num_components)
{
LLVMValueRef value = get_src(ctx, src.src);
bool need_swizzle = false;
assert(value);
LLVMTypeRef type = LLVMTypeOf(value);
unsigned src_components = LLVMGetTypeKind(type) == LLVMVectorTypeKind
? LLVMGetVectorSize(type)
: 1;
for (unsigned i = 0; i < num_components; ++i) {
assert(src.swizzle[i] < src_components);
if (src.swizzle[i] != i)
need_swizzle = true;
}
if (need_swizzle || num_components != src_components) {
LLVMValueRef masks[] = {
LLVMConstInt(ctx->ac.i32, src.swizzle[0], false),
LLVMConstInt(ctx->ac.i32, src.swizzle[1], false),
LLVMConstInt(ctx->ac.i32, src.swizzle[2], false),
LLVMConstInt(ctx->ac.i32, src.swizzle[3], false)};
if (src_components > 1 && num_components == 1) {
value = LLVMBuildExtractElement(ctx->ac.builder, value,
masks[0], "");
} else if (src_components == 1 && num_components > 1) {
LLVMValueRef values[] = {value, value, value, value};
value = ac_build_gather_values(&ctx->ac, values, num_components);
} else {
LLVMValueRef swizzle = LLVMConstVector(masks, num_components);
value = LLVMBuildShuffleVector(ctx->ac.builder, value, value,
swizzle, "");
}
}
assert(!src.negate);
assert(!src.abs);
return value;
}
static LLVMValueRef emit_int_cmp(struct ac_llvm_context *ctx,
LLVMIntPredicate pred, LLVMValueRef src0,
LLVMValueRef src1)
{
LLVMValueRef result = LLVMBuildICmp(ctx->builder, pred, src0, src1, "");
return LLVMBuildSelect(ctx->builder, result,
LLVMConstInt(ctx->i32, 0xFFFFFFFF, false),
ctx->i32_0, "");
}
static LLVMValueRef emit_float_cmp(struct ac_llvm_context *ctx,
LLVMRealPredicate pred, LLVMValueRef src0,
LLVMValueRef src1)
{
LLVMValueRef result;
src0 = ac_to_float(ctx, src0);
src1 = ac_to_float(ctx, src1);
result = LLVMBuildFCmp(ctx->builder, pred, src0, src1, "");
return LLVMBuildSelect(ctx->builder, result,
LLVMConstInt(ctx->i32, 0xFFFFFFFF, false),
ctx->i32_0, "");
}
static LLVMValueRef emit_intrin_1f_param(struct ac_llvm_context *ctx,
const char *intrin,
LLVMTypeRef result_type,
LLVMValueRef src0)
{
char name[64];
LLVMValueRef params[] = {
ac_to_float(ctx, src0),
};
MAYBE_UNUSED const int length = snprintf(name, sizeof(name), "%s.f%d", intrin,
get_elem_bits(ctx, result_type));
assert(length < sizeof(name));
return ac_build_intrinsic(ctx, name, result_type, params, 1, AC_FUNC_ATTR_READNONE);
}
static LLVMValueRef emit_intrin_2f_param(struct ac_llvm_context *ctx,
const char *intrin,
LLVMTypeRef result_type,
LLVMValueRef src0, LLVMValueRef src1)
{
char name[64];
LLVMValueRef params[] = {
ac_to_float(ctx, src0),
ac_to_float(ctx, src1),
};
MAYBE_UNUSED const int length = snprintf(name, sizeof(name), "%s.f%d", intrin,
get_elem_bits(ctx, result_type));
assert(length < sizeof(name));
return ac_build_intrinsic(ctx, name, result_type, params, 2, AC_FUNC_ATTR_READNONE);
}
static LLVMValueRef emit_intrin_3f_param(struct ac_llvm_context *ctx,
const char *intrin,
LLVMTypeRef result_type,
LLVMValueRef src0, LLVMValueRef src1, LLVMValueRef src2)
{
char name[64];
LLVMValueRef params[] = {
ac_to_float(ctx, src0),
ac_to_float(ctx, src1),
ac_to_float(ctx, src2),
};
MAYBE_UNUSED const int length = snprintf(name, sizeof(name), "%s.f%d", intrin,
get_elem_bits(ctx, result_type));
assert(length < sizeof(name));
return ac_build_intrinsic(ctx, name, result_type, params, 3, AC_FUNC_ATTR_READNONE);
}
static LLVMValueRef emit_bcsel(struct ac_llvm_context *ctx,
LLVMValueRef src0, LLVMValueRef src1, LLVMValueRef src2)
{
LLVMValueRef v = LLVMBuildICmp(ctx->builder, LLVMIntNE, src0,
ctx->i32_0, "");
return LLVMBuildSelect(ctx->builder, v, ac_to_integer(ctx, src1),
ac_to_integer(ctx, src2), "");
}
static LLVMValueRef emit_minmax_int(struct ac_llvm_context *ctx,
LLVMIntPredicate pred,
LLVMValueRef src0, LLVMValueRef src1)
{
return LLVMBuildSelect(ctx->builder,
LLVMBuildICmp(ctx->builder, pred, src0, src1, ""),
src0,
src1, "");
}
static LLVMValueRef emit_iabs(struct ac_llvm_context *ctx,
LLVMValueRef src0)
{
return emit_minmax_int(ctx, LLVMIntSGT, src0,
LLVMBuildNeg(ctx->builder, src0, ""));
}
static LLVMValueRef emit_fsign(struct ac_llvm_context *ctx,
LLVMValueRef src0,
unsigned bitsize)
{
LLVMValueRef cmp, val, zero, one;
LLVMTypeRef type;
if (bitsize == 32) {
type = ctx->f32;
zero = ctx->f32_0;
one = ctx->f32_1;
} else {
type = ctx->f64;
zero = ctx->f64_0;
one = ctx->f64_1;
}
cmp = LLVMBuildFCmp(ctx->builder, LLVMRealOGT, src0, zero, "");
val = LLVMBuildSelect(ctx->builder, cmp, one, src0, "");
cmp = LLVMBuildFCmp(ctx->builder, LLVMRealOGE, val, zero, "");
val = LLVMBuildSelect(ctx->builder, cmp, val, LLVMConstReal(type, -1.0), "");
return val;
}
static LLVMValueRef emit_isign(struct ac_llvm_context *ctx,
LLVMValueRef src0, unsigned bitsize)
{
LLVMValueRef cmp, val, zero, one;
LLVMTypeRef type;
if (bitsize == 32) {
type = ctx->i32;
zero = ctx->i32_0;
one = ctx->i32_1;
} else {
type = ctx->i64;
zero = ctx->i64_0;
one = ctx->i64_1;
}
cmp = LLVMBuildICmp(ctx->builder, LLVMIntSGT, src0, zero, "");
val = LLVMBuildSelect(ctx->builder, cmp, one, src0, "");
cmp = LLVMBuildICmp(ctx->builder, LLVMIntSGE, val, zero, "");
val = LLVMBuildSelect(ctx->builder, cmp, val, LLVMConstInt(type, -1, true), "");
return val;
}
static LLVMValueRef emit_ffract(struct ac_llvm_context *ctx,
LLVMValueRef src0)
{
const char *intr = "llvm.floor.f32";
LLVMValueRef fsrc0 = ac_to_float(ctx, src0);
LLVMValueRef params[] = {
fsrc0,
};
LLVMValueRef floor = ac_build_intrinsic(ctx, intr,
ctx->f32, params, 1,
AC_FUNC_ATTR_READNONE);
return LLVMBuildFSub(ctx->builder, fsrc0, floor, "");
}
static LLVMValueRef emit_uint_carry(struct ac_llvm_context *ctx,
const char *intrin,
LLVMValueRef src0, LLVMValueRef src1)
{
LLVMTypeRef ret_type;
LLVMTypeRef types[] = { ctx->i32, ctx->i1 };
LLVMValueRef res;
LLVMValueRef params[] = { src0, src1 };
ret_type = LLVMStructTypeInContext(ctx->context, types,
2, true);
res = ac_build_intrinsic(ctx, intrin, ret_type,
params, 2, AC_FUNC_ATTR_READNONE);
res = LLVMBuildExtractValue(ctx->builder, res, 1, "");
res = LLVMBuildZExt(ctx->builder, res, ctx->i32, "");
return res;
}
static LLVMValueRef emit_b2f(struct ac_llvm_context *ctx,
LLVMValueRef src0)
{
return LLVMBuildAnd(ctx->builder, src0, LLVMBuildBitCast(ctx->builder, LLVMConstReal(ctx->f32, 1.0), ctx->i32, ""), "");
}
static LLVMValueRef emit_f2b(struct ac_llvm_context *ctx,
LLVMValueRef src0)
{
src0 = ac_to_float(ctx, src0);
return LLVMBuildSExt(ctx->builder,
LLVMBuildFCmp(ctx->builder, LLVMRealUNE, src0, ctx->f32_0, ""),
ctx->i32, "");
}
static LLVMValueRef emit_b2i(struct ac_llvm_context *ctx,
LLVMValueRef src0,
unsigned bitsize)
{
LLVMValueRef result = LLVMBuildAnd(ctx->builder, src0, ctx->i32_1, "");
if (bitsize == 32)
return result;
return LLVMBuildZExt(ctx->builder, result, ctx->i64, "");
}
static LLVMValueRef emit_i2b(struct ac_llvm_context *ctx,
LLVMValueRef src0)
{
return LLVMBuildSExt(ctx->builder,
LLVMBuildICmp(ctx->builder, LLVMIntNE, src0, ctx->i32_0, ""),
ctx->i32, "");
}
static LLVMValueRef emit_f2f16(struct nir_to_llvm_context *ctx,
LLVMValueRef src0)
{
LLVMValueRef result;
LLVMValueRef cond = NULL;
src0 = ac_to_float(&ctx->ac, src0);
result = LLVMBuildFPTrunc(ctx->builder, src0, ctx->ac.f16, "");
if (ctx->options->chip_class >= VI) {
LLVMValueRef args[2];
/* Check if the result is a denormal - and flush to 0 if so. */
args[0] = result;
args[1] = LLVMConstInt(ctx->ac.i32, N_SUBNORMAL | P_SUBNORMAL, false);
cond = ac_build_intrinsic(&ctx->ac, "llvm.amdgcn.class.f16", ctx->ac.i1, args, 2, AC_FUNC_ATTR_READNONE);
}
/* need to convert back up to f32 */
result = LLVMBuildFPExt(ctx->builder, result, ctx->ac.f32, "");
if (ctx->options->chip_class >= VI)
result = LLVMBuildSelect(ctx->builder, cond, ctx->ac.f32_0, result, "");
else {
/* for SI/CIK */
/* 0x38800000 is smallest half float value (2^-14) in 32-bit float,
* so compare the result and flush to 0 if it's smaller.
*/
LLVMValueRef temp, cond2;
temp = emit_intrin_1f_param(&ctx->ac, "llvm.fabs",
ctx->ac.f32, result);
cond = LLVMBuildFCmp(ctx->builder, LLVMRealUGT,
LLVMBuildBitCast(ctx->builder, LLVMConstInt(ctx->ac.i32, 0x38800000, false), ctx->ac.f32, ""),
temp, "");
cond2 = LLVMBuildFCmp(ctx->builder, LLVMRealUNE,
temp, ctx->ac.f32_0, "");
cond = LLVMBuildAnd(ctx->builder, cond, cond2, "");
result = LLVMBuildSelect(ctx->builder, cond, ctx->ac.f32_0, result, "");
}
return result;
}
static LLVMValueRef emit_umul_high(struct ac_llvm_context *ctx,
LLVMValueRef src0, LLVMValueRef src1)
{
LLVMValueRef dst64, result;
src0 = LLVMBuildZExt(ctx->builder, src0, ctx->i64, "");
src1 = LLVMBuildZExt(ctx->builder, src1, ctx->i64, "");
dst64 = LLVMBuildMul(ctx->builder, src0, src1, "");
dst64 = LLVMBuildLShr(ctx->builder, dst64, LLVMConstInt(ctx->i64, 32, false), "");
result = LLVMBuildTrunc(ctx->builder, dst64, ctx->i32, "");
return result;
}
static LLVMValueRef emit_imul_high(struct ac_llvm_context *ctx,
LLVMValueRef src0, LLVMValueRef src1)
{
LLVMValueRef dst64, result;
src0 = LLVMBuildSExt(ctx->builder, src0, ctx->i64, "");
src1 = LLVMBuildSExt(ctx->builder, src1, ctx->i64, "");
dst64 = LLVMBuildMul(ctx->builder, src0, src1, "");
dst64 = LLVMBuildAShr(ctx->builder, dst64, LLVMConstInt(ctx->i64, 32, false), "");
result = LLVMBuildTrunc(ctx->builder, dst64, ctx->i32, "");
return result;
}
static LLVMValueRef emit_bitfield_extract(struct ac_llvm_context *ctx,
bool is_signed,
const LLVMValueRef srcs[3])
{
LLVMValueRef result;
LLVMValueRef icond = LLVMBuildICmp(ctx->builder, LLVMIntEQ, srcs[2], LLVMConstInt(ctx->i32, 32, false), "");
result = ac_build_bfe(ctx, srcs[0], srcs[1], srcs[2], is_signed);
result = LLVMBuildSelect(ctx->builder, icond, srcs[0], result, "");
return result;
}
static LLVMValueRef emit_bitfield_insert(struct ac_llvm_context *ctx,
LLVMValueRef src0, LLVMValueRef src1,
LLVMValueRef src2, LLVMValueRef src3)
{
LLVMValueRef bfi_args[3], result;
bfi_args[0] = LLVMBuildShl(ctx->builder,
LLVMBuildSub(ctx->builder,
LLVMBuildShl(ctx->builder,
ctx->i32_1,
src3, ""),
ctx->i32_1, ""),
src2, "");
bfi_args[1] = LLVMBuildShl(ctx->builder, src1, src2, "");
bfi_args[2] = src0;
LLVMValueRef icond = LLVMBuildICmp(ctx->builder, LLVMIntEQ, src3, LLVMConstInt(ctx->i32, 32, false), "");
/* Calculate:
* (arg0 & arg1) | (~arg0 & arg2) = arg2 ^ (arg0 & (arg1 ^ arg2)
* Use the right-hand side, which the LLVM backend can convert to V_BFI.
*/
result = LLVMBuildXor(ctx->builder, bfi_args[2],
LLVMBuildAnd(ctx->builder, bfi_args[0],
LLVMBuildXor(ctx->builder, bfi_args[1], bfi_args[2], ""), ""), "");
result = LLVMBuildSelect(ctx->builder, icond, src1, result, "");
return result;
}
static LLVMValueRef emit_pack_half_2x16(struct ac_llvm_context *ctx,
LLVMValueRef src0)
{
LLVMValueRef comp[2];
src0 = ac_to_float(ctx, src0);
comp[0] = LLVMBuildExtractElement(ctx->builder, src0, ctx->i32_0, "");
comp[1] = LLVMBuildExtractElement(ctx->builder, src0, ctx->i32_1, "");
return ac_build_cvt_pkrtz_f16(ctx, comp);
}
static LLVMValueRef emit_unpack_half_2x16(struct ac_llvm_context *ctx,
LLVMValueRef src0)
{
LLVMValueRef const16 = LLVMConstInt(ctx->i32, 16, false);
LLVMValueRef temps[2], result, val;
int i;
for (i = 0; i < 2; i++) {
val = i == 1 ? LLVMBuildLShr(ctx->builder, src0, const16, "") : src0;
val = LLVMBuildTrunc(ctx->builder, val, ctx->i16, "");
val = LLVMBuildBitCast(ctx->builder, val, ctx->f16, "");
temps[i] = LLVMBuildFPExt(ctx->builder, val, ctx->f32, "");
}
result = LLVMBuildInsertElement(ctx->builder, LLVMGetUndef(ctx->v2f32), temps[0],
ctx->i32_0, "");
result = LLVMBuildInsertElement(ctx->builder, result, temps[1],
ctx->i32_1, "");
return result;
}
static LLVMValueRef emit_ddxy(struct ac_nir_context *ctx,
nir_op op,
LLVMValueRef src0)
{
unsigned mask;
int idx;
LLVMValueRef result;
if (op == nir_op_fddx_fine || op == nir_op_fddx)
mask = AC_TID_MASK_LEFT;
else if (op == nir_op_fddy_fine || op == nir_op_fddy)
mask = AC_TID_MASK_TOP;
else
mask = AC_TID_MASK_TOP_LEFT;
/* for DDX we want to next X pixel, DDY next Y pixel. */
if (op == nir_op_fddx_fine ||
op == nir_op_fddx_coarse ||
op == nir_op_fddx)
idx = 1;
else
idx = 2;
result = ac_build_ddxy(&ctx->ac, mask, idx, src0);
return result;
}
/*
* this takes an I,J coordinate pair,
* and works out the X and Y derivatives.
* it returns DDX(I), DDX(J), DDY(I), DDY(J).
*/
static LLVMValueRef emit_ddxy_interp(
struct ac_nir_context *ctx,
LLVMValueRef interp_ij)
{
LLVMValueRef result[4], a;
unsigned i;
for (i = 0; i < 2; i++) {
a = LLVMBuildExtractElement(ctx->ac.builder, interp_ij,
LLVMConstInt(ctx->ac.i32, i, false), "");
result[i] = emit_ddxy(ctx, nir_op_fddx, a);
result[2+i] = emit_ddxy(ctx, nir_op_fddy, a);
}
return ac_build_gather_values(&ctx->ac, result, 4);
}
static void visit_alu(struct ac_nir_context *ctx, const nir_alu_instr *instr)
{
LLVMValueRef src[4], result = NULL;
unsigned num_components = instr->dest.dest.ssa.num_components;
unsigned src_components;
LLVMTypeRef def_type = get_def_type(ctx, &instr->dest.dest.ssa);
assert(nir_op_infos[instr->op].num_inputs <= ARRAY_SIZE(src));
switch (instr->op) {
case nir_op_vec2:
case nir_op_vec3:
case nir_op_vec4:
src_components = 1;
break;
case nir_op_pack_half_2x16:
src_components = 2;
break;
case nir_op_unpack_half_2x16:
src_components = 1;
break;
default:
src_components = num_components;
break;
}
for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++)
src[i] = get_alu_src(ctx, instr->src[i], src_components);
switch (instr->op) {
case nir_op_fmov:
case nir_op_imov:
result = src[0];
break;
case nir_op_fneg:
src[0] = ac_to_float(&ctx->ac, src[0]);
result = LLVMBuildFNeg(ctx->ac.builder, src[0], "");
break;
case nir_op_ineg:
result = LLVMBuildNeg(ctx->ac.builder, src[0], "");
break;
case nir_op_inot:
result = LLVMBuildNot(ctx->ac.builder, src[0], "");
break;
case nir_op_iadd:
result = LLVMBuildAdd(ctx->ac.builder, src[0], src[1], "");
break;
case nir_op_fadd:
src[0] = ac_to_float(&ctx->ac, src[0]);
src[1] = ac_to_float(&ctx->ac, src[1]);
result = LLVMBuildFAdd(ctx->ac.builder, src[0], src[1], "");
break;
case nir_op_fsub:
src[0] = ac_to_float(&ctx->ac, src[0]);
src[1] = ac_to_float(&ctx->ac, src[1]);
result = LLVMBuildFSub(ctx->ac.builder, src[0], src[1], "");
break;
case nir_op_isub:
result = LLVMBuildSub(ctx->ac.builder, src[0], src[1], "");
break;
case nir_op_imul:
result = LLVMBuildMul(ctx->ac.builder, src[0], src[1], "");
break;
case nir_op_imod:
result = LLVMBuildSRem(ctx->ac.builder, src[0], src[1], "");
break;
case nir_op_umod:
result = LLVMBuildURem(ctx->ac.builder, src[0], src[1], "");
break;
case nir_op_fmod:
src[0] = ac_to_float(&ctx->ac, src[0]);
src[1] = ac_to_float(&ctx->ac, src[1]);
result = ac_build_fdiv(&ctx->ac, src[0], src[1]);
result = emit_intrin_1f_param(&ctx->ac, "llvm.floor",
ac_to_float_type(&ctx->ac, def_type), result);
result = LLVMBuildFMul(ctx->ac.builder, src[1] , result, "");
result = LLVMBuildFSub(ctx->ac.builder, src[0], result, "");
break;
case nir_op_frem:
src[0] = ac_to_float(&ctx->ac, src[0]);
src[1] = ac_to_float(&ctx->ac, src[1]);
result = LLVMBuildFRem(ctx->ac.builder, src[0], src[1], "");
break;
case nir_op_irem:
result = LLVMBuildSRem(ctx->ac.builder, src[0], src[1], "");
break;
case nir_op_idiv:
result = LLVMBuildSDiv(ctx->ac.builder, src[0], src[1], "");
break;
case nir_op_udiv:
result = LLVMBuildUDiv(ctx->ac.builder, src[0], src[1], "");
break;
case nir_op_fmul:
src[0] = ac_to_float(&ctx->ac, src[0]);
src[1] = ac_to_float(&ctx->ac, src[1]);
result = LLVMBuildFMul(ctx->ac.builder, src[0], src[1], "");
break;
case nir_op_fdiv:
src[0] = ac_to_float(&ctx->ac, src[0]);
src[1] = ac_to_float(&ctx->ac, src[1]);
result = ac_build_fdiv(&ctx->ac, src[0], src[1]);
break;
case nir_op_frcp:
src[0] = ac_to_float(&ctx->ac, src[0]);
result = ac_build_fdiv(&ctx->ac, instr->dest.dest.ssa.bit_size == 32 ? ctx->ac.f32_1 : ctx->ac.f64_1,
src[0]);
break;
case nir_op_iand:
result = LLVMBuildAnd(ctx->ac.builder, src[0], src[1], "");
break;
case nir_op_ior:
result = LLVMBuildOr(ctx->ac.builder, src[0], src[1], "");
break;
case nir_op_ixor:
result = LLVMBuildXor(ctx->ac.builder, src[0], src[1], "");
break;
case nir_op_ishl:
result = LLVMBuildShl(ctx->ac.builder, src[0],
LLVMBuildZExt(ctx->ac.builder, src[1],
LLVMTypeOf(src[0]), ""),
"");
break;
case nir_op_ishr:
result = LLVMBuildAShr(ctx->ac.builder, src[0],
LLVMBuildZExt(ctx->ac.builder, src[1],
LLVMTypeOf(src[0]), ""),
"");
break;
case nir_op_ushr:
result = LLVMBuildLShr(ctx->ac.builder, src[0],
LLVMBuildZExt(ctx->ac.builder, src[1],
LLVMTypeOf(src[0]), ""),
"");
break;
case nir_op_ilt:
result = emit_int_cmp(&ctx->ac, LLVMIntSLT, src[0], src[1]);
break;
case nir_op_ine:
result = emit_int_cmp(&ctx->ac, LLVMIntNE, src[0], src[1]);
break;
case nir_op_ieq:
result = emit_int_cmp(&ctx->ac, LLVMIntEQ, src[0], src[1]);
break;
case nir_op_ige:
result = emit_int_cmp(&ctx->ac, LLVMIntSGE, src[0], src[1]);
break;
case nir_op_ult:
result = emit_int_cmp(&ctx->ac, LLVMIntULT, src[0], src[1]);
break;
case nir_op_uge:
result = emit_int_cmp(&ctx->ac, LLVMIntUGE, src[0], src[1]);
break;
case nir_op_feq:
result = emit_float_cmp(&ctx->ac, LLVMRealOEQ, src[0], src[1]);
break;
case nir_op_fne:
result = emit_float_cmp(&ctx->ac, LLVMRealUNE, src[0], src[1]);
break;
case nir_op_flt:
result = emit_float_cmp(&ctx->ac, LLVMRealOLT, src[0], src[1]);
break;
case nir_op_fge:
result = emit_float_cmp(&ctx->ac, LLVMRealOGE, src[0], src[1]);
break;
case nir_op_fabs:
result = emit_intrin_1f_param(&ctx->ac, "llvm.fabs",
ac_to_float_type(&ctx->ac, def_type), src[0]);
break;
case nir_op_iabs:
result = emit_iabs(&ctx->ac, src[0]);
break;
case nir_op_imax:
result = emit_minmax_int(&ctx->ac, LLVMIntSGT, src[0], src[1]);
break;
case nir_op_imin:
result = emit_minmax_int(&ctx->ac, LLVMIntSLT, src[0], src[1]);
break;
case nir_op_umax:
result = emit_minmax_int(&ctx->ac, LLVMIntUGT, src[0], src[1]);
break;
case nir_op_umin:
result = emit_minmax_int(&ctx->ac, LLVMIntULT, src[0], src[1]);
break;
case nir_op_isign:
result = emit_isign(&ctx->ac, src[0], instr->dest.dest.ssa.bit_size);
break;
case nir_op_fsign:
src[0] = ac_to_float(&ctx->ac, src[0]);
result = emit_fsign(&ctx->ac, src[0], instr->dest.dest.ssa.bit_size);
break;
case nir_op_ffloor:
result = emit_intrin_1f_param(&ctx->ac, "llvm.floor",
ac_to_float_type(&ctx->ac, def_type), src[0]);
break;
case nir_op_ftrunc:
result = emit_intrin_1f_param(&ctx->ac, "llvm.trunc",
ac_to_float_type(&ctx->ac, def_type), src[0]);
break;
case nir_op_fceil:
result = emit_intrin_1f_param(&ctx->ac, "llvm.ceil",
ac_to_float_type(&ctx->ac, def_type), src[0]);
break;
case nir_op_fround_even:
result = emit_intrin_1f_param(&ctx->ac, "llvm.rint",
ac_to_float_type(&ctx->ac, def_type),src[0]);
break;
case nir_op_ffract:
result = emit_ffract(&ctx->ac, src[0]);
break;
case nir_op_fsin:
result = emit_intrin_1f_param(&ctx->ac, "llvm.sin",
ac_to_float_type(&ctx->ac, def_type), src[0]);
break;
case nir_op_fcos:
result = emit_intrin_1f_param(&ctx->ac, "llvm.cos",
ac_to_float_type(&ctx->ac, def_type), src[0]);
break;
case nir_op_fsqrt:
result = emit_intrin_1f_param(&ctx->ac, "llvm.sqrt",
ac_to_float_type(&ctx->ac, def_type), src[0]);
break;
case nir_op_fexp2:
result = emit_intrin_1f_param(&ctx->ac, "llvm.exp2",
ac_to_float_type(&ctx->ac, def_type), src[0]);
break;
case nir_op_flog2:
result = emit_intrin_1f_param(&ctx->ac, "llvm.log2",
ac_to_float_type(&ctx->ac, def_type), src[0]);
break;
case nir_op_frsq:
result = emit_intrin_1f_param(&ctx->ac, "llvm.sqrt",
ac_to_float_type(&ctx->ac, def_type), src[0]);
result = ac_build_fdiv(&ctx->ac, instr->dest.dest.ssa.bit_size == 32 ? ctx->ac.f32_1 : ctx->ac.f64_1,
result);
break;
case nir_op_fpow:
result = emit_intrin_2f_param(&ctx->ac, "llvm.pow",
ac_to_float_type(&ctx->ac, def_type), src[0], src[1]);
break;
case nir_op_fmax:
result = emit_intrin_2f_param(&ctx->ac, "llvm.maxnum",
ac_to_float_type(&ctx->ac, def_type), src[0], src[1]);
if (instr->dest.dest.ssa.bit_size == 32)
result = emit_intrin_1f_param(&ctx->ac, "llvm.canonicalize",
ac_to_float_type(&ctx->ac, def_type),
result);
break;
case nir_op_fmin:
result = emit_intrin_2f_param(&ctx->ac, "llvm.minnum",
ac_to_float_type(&ctx->ac, def_type), src[0], src[1]);
if (instr->dest.dest.ssa.bit_size == 32)
result = emit_intrin_1f_param(&ctx->ac, "llvm.canonicalize",
ac_to_float_type(&ctx->ac, def_type),
result);
break;
case nir_op_ffma:
result = emit_intrin_3f_param(&ctx->ac, "llvm.fmuladd",
ac_to_float_type(&ctx->ac, def_type), src[0], src[1], src[2]);
break;
case nir_op_ibitfield_extract:
result = emit_bitfield_extract(&ctx->ac, true, src);
break;
case nir_op_ubitfield_extract:
result = emit_bitfield_extract(&ctx->ac, false, src);
break;
case nir_op_bitfield_insert:
result = emit_bitfield_insert(&ctx->ac, src[0], src[1], src[2], src[3]);
break;
case nir_op_bitfield_reverse:
result = ac_build_intrinsic(&ctx->ac, "llvm.bitreverse.i32", ctx->ac.i32, src, 1, AC_FUNC_ATTR_READNONE);
break;
case nir_op_bit_count:
result = ac_build_intrinsic(&ctx->ac, "llvm.ctpop.i32", ctx->ac.i32, src, 1, AC_FUNC_ATTR_READNONE);
break;
case nir_op_vec2:
case nir_op_vec3:
case nir_op_vec4:
for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++)
src[i] = ac_to_integer(&ctx->ac, src[i]);
result = ac_build_gather_values(&ctx->ac, src, num_components);
break;
case nir_op_f2i32:
case nir_op_f2i64:
src[0] = ac_to_float(&ctx->ac, src[0]);
result = LLVMBuildFPToSI(ctx->ac.builder, src[0], def_type, "");
break;
case nir_op_f2u32:
case nir_op_f2u64:
src[0] = ac_to_float(&ctx->ac, src[0]);
result = LLVMBuildFPToUI(ctx->ac.builder, src[0], def_type, "");
break;
case nir_op_i2f32:
case nir_op_i2f64:
src[0] = ac_to_integer(&ctx->ac, src[0]);
result = LLVMBuildSIToFP(ctx->ac.builder, src[0], ac_to_float_type(&ctx->ac, def_type), "");
break;
case nir_op_u2f32:
case nir_op_u2f64:
src[0] = ac_to_integer(&ctx->ac, src[0]);
result = LLVMBuildUIToFP(ctx->ac.builder, src[0], ac_to_float_type(&ctx->ac, def_type), "");
break;
case nir_op_f2f64:
src[0] = ac_to_float(&ctx->ac, src[0]);
result = LLVMBuildFPExt(ctx->ac.builder, src[0], ac_to_float_type(&ctx->ac, def_type), "");
break;
case nir_op_f2f32:
result = LLVMBuildFPTrunc(ctx->ac.builder, src[0], ac_to_float_type(&ctx->ac, def_type), "");
break;
case nir_op_u2u32:
case nir_op_u2u64:
src[0] = ac_to_integer(&ctx->ac, src[0]);
if (get_elem_bits(&ctx->ac, LLVMTypeOf(src[0])) < get_elem_bits(&ctx->ac, def_type))
result = LLVMBuildZExt(ctx->ac.builder, src[0], def_type, "");
else
result = LLVMBuildTrunc(ctx->ac.builder, src[0], def_type, "");
break;
case nir_op_i2i32:
case nir_op_i2i64:
src[0] = ac_to_integer(&ctx->ac, src[0]);
if (get_elem_bits(&ctx->ac, LLVMTypeOf(src[0])) < get_elem_bits(&ctx->ac, def_type))
result = LLVMBuildSExt(ctx->ac.builder, src[0], def_type, "");
else
result = LLVMBuildTrunc(ctx->ac.builder, src[0], def_type, "");
break;
case nir_op_bcsel:
result = emit_bcsel(&ctx->ac, src[0], src[1], src[2]);
break;
case nir_op_find_lsb:
src[0] = ac_to_integer(&ctx->ac, src[0]);
result = ac_find_lsb(&ctx->ac, ctx->ac.i32, src[0]);
break;
case nir_op_ufind_msb:
src[0] = ac_to_integer(&ctx->ac, src[0]);
result = ac_build_umsb(&ctx->ac, src[0], ctx->ac.i32);
break;
case nir_op_ifind_msb:
src[0] = ac_to_integer(&ctx->ac, src[0]);
result = ac_build_imsb(&ctx->ac, src[0], ctx->ac.i32);
break;
case nir_op_uadd_carry:
src[0] = ac_to_integer(&ctx->ac, src[0]);
src[1] = ac_to_integer(&ctx->ac, src[1]);
result = emit_uint_carry(&ctx->ac, "llvm.uadd.with.overflow.i32", src[0], src[1]);
break;
case nir_op_usub_borrow:
src[0] = ac_to_integer(&ctx->ac, src[0]);
src[1] = ac_to_integer(&ctx->ac, src[1]);
result = emit_uint_carry(&ctx->ac, "llvm.usub.with.overflow.i32", src[0], src[1]);
break;
case nir_op_b2f:
result = emit_b2f(&ctx->ac, src[0]);
break;
case nir_op_f2b:
result = emit_f2b(&ctx->ac, src[0]);
break;
case nir_op_b2i:
result = emit_b2i(&ctx->ac, src[0], instr->dest.dest.ssa.bit_size);
break;
case nir_op_i2b:
src[0] = ac_to_integer(&ctx->ac, src[0]);
result = emit_i2b(&ctx->ac, src[0]);
break;
case nir_op_fquantize2f16:
result = emit_f2f16(ctx->nctx, src[0]);
break;
case nir_op_umul_high:
src[0] = ac_to_integer(&ctx->ac, src[0]);
src[1] = ac_to_integer(&ctx->ac, src[1]);
result = emit_umul_high(&ctx->ac, src[0], src[1]);
break;
case nir_op_imul_high:
src[0] = ac_to_integer(&ctx->ac, src[0]);
src[1] = ac_to_integer(&ctx->ac, src[1]);
result = emit_imul_high(&ctx->ac, src[0], src[1]);
break;
case nir_op_pack_half_2x16:
result = emit_pack_half_2x16(&ctx->ac, src[0]);
break;
case nir_op_unpack_half_2x16:
result = emit_unpack_half_2x16(&ctx->ac, src[0]);
break;
case nir_op_fddx:
case nir_op_fddy:
case nir_op_fddx_fine:
case nir_op_fddy_fine:
case nir_op_fddx_coarse:
case nir_op_fddy_coarse:
result = emit_ddxy(ctx, instr->op, src[0]);
break;
case nir_op_unpack_64_2x32_split_x: {
assert(instr->src[0].src.ssa->num_components == 1);
LLVMValueRef tmp = LLVMBuildBitCast(ctx->ac.builder, src[0],
ctx->ac.v2i32,
"");
result = LLVMBuildExtractElement(ctx->ac.builder, tmp,
ctx->ac.i32_0, "");
break;
}
case nir_op_unpack_64_2x32_split_y: {
assert(instr->src[0].src.ssa->num_components == 1);
LLVMValueRef tmp = LLVMBuildBitCast(ctx->ac.builder, src[0],
ctx->ac.v2i32,
"");
result = LLVMBuildExtractElement(ctx->ac.builder, tmp,
ctx->ac.i32_1, "");
break;
}
case nir_op_pack_64_2x32_split: {
LLVMValueRef tmp = LLVMGetUndef(ctx->ac.v2i32);
tmp = LLVMBuildInsertElement(ctx->ac.builder, tmp,
src[0], ctx->ac.i32_0, "");
tmp = LLVMBuildInsertElement(ctx->ac.builder, tmp,
src[1], ctx->ac.i32_1, "");
result = LLVMBuildBitCast(ctx->ac.builder, tmp, ctx->ac.i64, "");
break;
}
default:
fprintf(stderr, "Unknown NIR alu instr: ");
nir_print_instr(&instr->instr, stderr);
fprintf(stderr, "\n");
abort();
}
if (result) {
assert(instr->dest.dest.is_ssa);
result = ac_to_integer(&ctx->ac, result);
_mesa_hash_table_insert(ctx->defs, &instr->dest.dest.ssa,
result);
}
}
static void visit_load_const(struct ac_nir_context *ctx,
const nir_load_const_instr *instr)
{
LLVMValueRef values[4], value = NULL;
LLVMTypeRef element_type =
LLVMIntTypeInContext(ctx->ac.context, instr->def.bit_size);
for (unsigned i = 0; i < instr->def.num_components; ++i) {
switch (instr->def.bit_size) {
case 32:
values[i] = LLVMConstInt(element_type,
instr->value.u32[i], false);
break;
case 64:
values[i] = LLVMConstInt(element_type,
instr->value.u64[i], false);
break;
default:
fprintf(stderr,
"unsupported nir load_const bit_size: %d\n",
instr->def.bit_size);
abort();
}
}
if (instr->def.num_components > 1) {
value = LLVMConstVector(values, instr->def.num_components);
} else
value = values[0];
_mesa_hash_table_insert(ctx->defs, &instr->def, value);
}
static LLVMValueRef cast_ptr(struct nir_to_llvm_context *ctx, LLVMValueRef ptr,
LLVMTypeRef type)
{
int addr_space = LLVMGetPointerAddressSpace(LLVMTypeOf(ptr));
return LLVMBuildBitCast(ctx->builder, ptr,
LLVMPointerType(type, addr_space), "");
}
static LLVMValueRef
get_buffer_size(struct ac_nir_context *ctx, LLVMValueRef descriptor, bool in_elements)
{
LLVMValueRef size =
LLVMBuildExtractElement(ctx->ac.builder, descriptor,
LLVMConstInt(ctx->ac.i32, 2, false), "");
/* VI only */
if (ctx->ac.chip_class == VI && in_elements) {
/* On VI, the descriptor contains the size in bytes,
* but TXQ must return the size in elements.
* The stride is always non-zero for resources using TXQ.
*/
LLVMValueRef stride =
LLVMBuildExtractElement(ctx->ac.builder, descriptor,
ctx->ac.i32_1, "");
stride = LLVMBuildLShr(ctx->ac.builder, stride,
LLVMConstInt(ctx->ac.i32, 16, false), "");
stride = LLVMBuildAnd(ctx->ac.builder, stride,
LLVMConstInt(ctx->ac.i32, 0x3fff, false), "");
size = LLVMBuildUDiv(ctx->ac.builder, size, stride, "");
}
return size;
}
/**
* Given the i32 or vNi32 \p type, generate the textual name (e.g. for use with
* intrinsic names).
*/
static void build_int_type_name(
LLVMTypeRef type,
char *buf, unsigned bufsize)
{
assert(bufsize >= 6);
if (LLVMGetTypeKind(type) == LLVMVectorTypeKind)
snprintf(buf, bufsize, "v%ui32",
LLVMGetVectorSize(type));
else
strcpy(buf, "i32");
}
static LLVMValueRef radv_lower_gather4_integer(struct ac_llvm_context *ctx,
struct ac_image_args *args,
const nir_tex_instr *instr)
{
enum glsl_base_type stype = glsl_get_sampler_result_type(instr->texture->var->type);
LLVMValueRef coord = args->addr;
LLVMValueRef half_texel[2];
LLVMValueRef compare_cube_wa = NULL;
LLVMValueRef result;
int c;
unsigned coord_vgpr_index = (unsigned)args->offset + (unsigned)args->compare;
//TODO Rect
{
struct ac_image_args txq_args = { 0 };
txq_args.da = instr->is_array || instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE;
txq_args.opcode = ac_image_get_resinfo;
txq_args.dmask = 0xf;
txq_args.addr = ctx->i32_0;
txq_args.resource = args->resource;
LLVMValueRef size = ac_build_image_opcode(ctx, &txq_args);
for (c = 0; c < 2; c++) {
half_texel[c] = LLVMBuildExtractElement(ctx->builder, size,
LLVMConstInt(ctx->i32, c, false), "");
half_texel[c] = LLVMBuildUIToFP(ctx->builder, half_texel[c], ctx->f32, "");
half_texel[c] = ac_build_fdiv(ctx, ctx->f32_1, half_texel[c]);
half_texel[c] = LLVMBuildFMul(ctx->builder, half_texel[c],
LLVMConstReal(ctx->f32, -0.5), "");
}
}
LLVMValueRef orig_coords = args->addr;
for (c = 0; c < 2; c++) {
LLVMValueRef tmp;
LLVMValueRef index = LLVMConstInt(ctx->i32, coord_vgpr_index + c, 0);
tmp = LLVMBuildExtractElement(ctx->builder, coord, index, "");
tmp = LLVMBuildBitCast(ctx->builder, tmp, ctx->f32, "");
tmp = LLVMBuildFAdd(ctx->builder, tmp, half_texel[c], "");
tmp = LLVMBuildBitCast(ctx->builder, tmp, ctx->i32, "");
coord = LLVMBuildInsertElement(ctx->builder, coord, tmp, index, "");
}
/*
* Apparantly cube has issue with integer types that the workaround doesn't solve,
* so this tests if the format is 8_8_8_8 and an integer type do an alternate
* workaround by sampling using a scaled type and converting.
* This is taken from amdgpu-pro shaders.
*/
/* NOTE this produces some ugly code compared to amdgpu-pro,
* LLVM ends up dumping SGPRs into VGPRs to deal with the compare/select,
* and then reads them back. -pro generates two selects,
* one s_cmp for the descriptor rewriting
* one v_cmp for the coordinate and result changes.
*/
if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE) {
LLVMValueRef tmp, tmp2;
/* workaround 8/8/8/8 uint/sint cube gather bug */
/* first detect it then change to a scaled read and f2i */
tmp = LLVMBuildExtractElement(ctx->builder, args->resource, ctx->i32_1, "");
tmp2 = tmp;
/* extract the DATA_FORMAT */
tmp = ac_build_bfe(ctx, tmp, LLVMConstInt(ctx->i32, 20, false),
LLVMConstInt(ctx->i32, 6, false), false);
/* is the DATA_FORMAT == 8_8_8_8 */
compare_cube_wa = LLVMBuildICmp(ctx->builder, LLVMIntEQ, tmp, LLVMConstInt(ctx->i32, V_008F14_IMG_DATA_FORMAT_8_8_8_8, false), "");
if (stype == GLSL_TYPE_UINT)
/* Create a NUM FORMAT - 0x2 or 0x4 - USCALED or UINT */
tmp = LLVMBuildSelect(ctx->builder, compare_cube_wa, LLVMConstInt(ctx->i32, 0x8000000, false),
LLVMConstInt(ctx->i32, 0x10000000, false), "");
else
/* Create a NUM FORMAT - 0x3 or 0x5 - SSCALED or SINT */
tmp = LLVMBuildSelect(ctx->builder, compare_cube_wa, LLVMConstInt(ctx->i32, 0xc000000, false),
LLVMConstInt(ctx->i32, 0x14000000, false), "");
/* replace the NUM FORMAT in the descriptor */
tmp2 = LLVMBuildAnd(ctx->builder, tmp2, LLVMConstInt(ctx->i32, C_008F14_NUM_FORMAT_GFX6, false), "");
tmp2 = LLVMBuildOr(ctx->builder, tmp2, tmp, "");
args->resource = LLVMBuildInsertElement(ctx->builder, args->resource, tmp2, ctx->i32_1, "");
/* don't modify the coordinates for this case */
coord = LLVMBuildSelect(ctx->builder, compare_cube_wa, orig_coords, coord, "");
}
args->addr = coord;
result = ac_build_image_opcode(ctx, args);
if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE) {
LLVMValueRef tmp, tmp2;
/* if the cube workaround is in place, f2i the result. */
for (c = 0; c < 4; c++) {
tmp = LLVMBuildExtractElement(ctx->builder, result, LLVMConstInt(ctx->i32, c, false), "");
if (stype == GLSL_TYPE_UINT)
tmp2 = LLVMBuildFPToUI(ctx->builder, tmp, ctx->i32, "");
else
tmp2 = LLVMBuildFPToSI(ctx->builder, tmp, ctx->i32, "");
tmp = LLVMBuildBitCast(ctx->builder, tmp, ctx->i32, "");
tmp2 = LLVMBuildBitCast(ctx->builder, tmp2, ctx->i32, "");
tmp = LLVMBuildSelect(ctx->builder, compare_cube_wa, tmp2, tmp, "");
tmp = LLVMBuildBitCast(ctx->builder, tmp, ctx->f32, "");
result = LLVMBuildInsertElement(ctx->builder, result, tmp, LLVMConstInt(ctx->i32, c, false), "");
}
}
return result;
}
static LLVMValueRef build_tex_intrinsic(struct ac_nir_context *ctx,
const nir_tex_instr *instr,
bool lod_is_zero,
struct ac_image_args *args)
{
if (instr->sampler_dim == GLSL_SAMPLER_DIM_BUF) {
if (ctx->abi->gfx9_stride_size_workaround) {
return ac_build_buffer_load_format_gfx9_safe(&ctx->ac,
args->resource,
args->addr,
ctx->ac.i32_0,
true);
} else {
return ac_build_buffer_load_format(&ctx->ac,
args->resource,
args->addr,
ctx->ac.i32_0,
true);
}
}
args->opcode = ac_image_sample;
args->compare = instr->is_shadow;
switch (instr->op) {
case nir_texop_txf:
case nir_texop_txf_ms:
case nir_texop_samples_identical:
args->opcode = lod_is_zero ||
instr->sampler_dim == GLSL_SAMPLER_DIM_MS ?
ac_image_load : ac_image_load_mip;
args->compare = false;
args->offset = false;
break;
case nir_texop_txb:
args->bias = true;
break;
case nir_texop_txl:
if (lod_is_zero)
args->level_zero = true;
else
args->lod = true;
break;
case nir_texop_txs:
case nir_texop_query_levels:
args->opcode = ac_image_get_resinfo;
break;
case nir_texop_tex:
if (ctx->stage != MESA_SHADER_FRAGMENT)
args->level_zero = true;
break;
case nir_texop_txd:
args->deriv = true;
break;
case nir_texop_tg4:
args->opcode = ac_image_gather4;
args->level_zero = true;
break;
case nir_texop_lod:
args->opcode = ac_image_get_lod;
args->compare = false;
args->offset = false;
break;
default:
break;
}
if (instr->op == nir_texop_tg4 && ctx->ac.chip_class <= VI) {
enum glsl_base_type stype = glsl_get_sampler_result_type(instr->texture->var->type);
if (stype == GLSL_TYPE_UINT || stype == GLSL_TYPE_INT) {
return radv_lower_gather4_integer(&ctx->ac, args, instr);
}
}
return ac_build_image_opcode(&ctx->ac, args);
}
static LLVMValueRef visit_vulkan_resource_index(struct nir_to_llvm_context *ctx,
nir_intrinsic_instr *instr)
{
LLVMValueRef index = get_src(ctx->nir, instr->src[0]);
unsigned desc_set = nir_intrinsic_desc_set(instr);
unsigned binding = nir_intrinsic_binding(instr);
LLVMValueRef desc_ptr = ctx->descriptor_sets[desc_set];
struct radv_pipeline_layout *pipeline_layout = ctx->options->layout;
struct radv_descriptor_set_layout *layout = pipeline_layout->set[desc_set].layout;
unsigned base_offset = layout->binding[binding].offset;
LLVMValueRef offset, stride;
if (layout->binding[binding].type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC ||
layout->binding[binding].type == VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC) {
unsigned idx = pipeline_layout->set[desc_set].dynamic_offset_start +
layout->binding[binding].dynamic_offset_offset;
desc_ptr = ctx->push_constants;
base_offset = pipeline_layout->push_constant_size + 16 * idx;
stride = LLVMConstInt(ctx->ac.i32, 16, false);
} else
stride = LLVMConstInt(ctx->ac.i32, layout->binding[binding].size, false);
offset = LLVMConstInt(ctx->ac.i32, base_offset, false);
index = LLVMBuildMul(ctx->builder, index, stride, "");
offset = LLVMBuildAdd(ctx->builder, offset, index, "");
desc_ptr = ac_build_gep0(&ctx->ac, desc_ptr, offset);
desc_ptr = cast_ptr(ctx, desc_ptr, ctx->ac.v4i32);
LLVMSetMetadata(desc_ptr, ctx->ac.uniform_md_kind, ctx->ac.empty_md);
return desc_ptr;
}
static LLVMValueRef visit_vulkan_resource_reindex(struct nir_to_llvm_context *ctx,
nir_intrinsic_instr *instr)
{
LLVMValueRef ptr = get_src(ctx->nir, instr->src[0]);
LLVMValueRef index = get_src(ctx->nir, instr->src[1]);
LLVMValueRef result = LLVMBuildGEP(ctx->builder, ptr, &index, 1, "");
LLVMSetMetadata(result, ctx->ac.uniform_md_kind, ctx->ac.empty_md);
return result;
}
static LLVMValueRef visit_load_push_constant(struct nir_to_llvm_context *ctx,
nir_intrinsic_instr *instr)
{
LLVMValueRef ptr, addr;
addr = LLVMConstInt(ctx->ac.i32, nir_intrinsic_base(instr), 0);
addr = LLVMBuildAdd(ctx->builder, addr, get_src(ctx->nir, instr->src[0]), "");
ptr = ac_build_gep0(&ctx->ac, ctx->push_constants, addr);
ptr = cast_ptr(ctx, ptr, get_def_type(ctx->nir, &instr->dest.ssa));
return LLVMBuildLoad(ctx->builder, ptr, "");
}
static LLVMValueRef visit_get_buffer_size(struct ac_nir_context *ctx,
const nir_intrinsic_instr *instr)
{
LLVMValueRef index = get_src(ctx, instr->src[0]);
return get_buffer_size(ctx, ctx->abi->load_ssbo(ctx->abi, index, false), false);
}
static uint32_t widen_mask(uint32_t mask, unsigned multiplier)
{
uint32_t new_mask = 0;
for(unsigned i = 0; i < 32 && (1u << i) <= mask; ++i)
if (mask & (1u << i))
new_mask |= ((1u << multiplier) - 1u) << (i * multiplier);
return new_mask;
}
static LLVMValueRef extract_vector_range(struct ac_llvm_context *ctx, LLVMValueRef src,
unsigned start, unsigned count)
{
LLVMTypeRef type = LLVMTypeOf(src);
if (LLVMGetTypeKind(type) != LLVMVectorTypeKind) {
assert(start == 0);
assert(count == 1);
return src;
}
unsigned src_elements = LLVMGetVectorSize(type);
assert(start < src_elements);
assert(start + count <= src_elements);
if (start == 0 && count == src_elements)
return src;
if (count == 1)
return LLVMBuildExtractElement(ctx->builder, src, LLVMConstInt(ctx->i32, start, false), "");
assert(count <= 8);
LLVMValueRef indices[8];
for (unsigned i = 0; i < count; ++i)
indices[i] = LLVMConstInt(ctx->i32, start + i, false);
LLVMValueRef swizzle = LLVMConstVector(indices, count);
return LLVMBuildShuffleVector(ctx->builder, src, src, swizzle, "");
}
static void visit_store_ssbo(struct ac_nir_context *ctx,
nir_intrinsic_instr *instr)
{
const char *store_name;
LLVMValueRef src_data = get_src(ctx, instr->src[0]);
LLVMTypeRef data_type = ctx->ac.f32;
int elem_size_mult = get_elem_bits(&ctx->ac, LLVMTypeOf(src_data)) / 32;
int components_32bit = elem_size_mult * instr->num_components;
unsigned writemask = nir_intrinsic_write_mask(instr);
LLVMValueRef base_data, base_offset;
LLVMValueRef params[6];
params[1] = ctx->abi->load_ssbo(ctx->abi,
get_src(ctx, instr->src[1]), true);
params[2] = ctx->ac.i32_0; /* vindex */
params[4] = ctx->ac.i1false; /* glc */
params[5] = ctx->ac.i1false; /* slc */
if (components_32bit > 1)
data_type = LLVMVectorType(ctx->ac.f32, components_32bit);
writemask = widen_mask(writemask, elem_size_mult);
base_data = ac_to_float(&ctx->ac, src_data);
base_data = trim_vector(&ctx->ac, base_data, instr->num_components);
base_data = LLVMBuildBitCast(ctx->ac.builder, base_data,
data_type, "");
base_offset = get_src(ctx, instr->src[2]); /* voffset */
while (writemask) {
int start, count;
LLVMValueRef data;
LLVMValueRef offset;
u_bit_scan_consecutive_range(&writemask, &start, &count);
/* Due to an LLVM limitation, split 3-element writes
* into a 2-element and a 1-element write. */
if (count == 3) {
writemask |= 1 << (start + 2);
count = 2;
}
if (count > 4) {
writemask |= ((1u << (count - 4)) - 1u) << (start + 4);
count = 4;
}
if (count == 4) {
store_name = "llvm.amdgcn.buffer.store.v4f32";
} else if (count == 2) {
store_name = "llvm.amdgcn.buffer.store.v2f32";
} else {
assert(count == 1);
store_name = "llvm.amdgcn.buffer.store.f32";
}
data = extract_vector_range(&ctx->ac, base_data, start, count);
offset = base_offset;
if (start != 0) {
offset = LLVMBuildAdd(ctx->ac.builder, offset, LLVMConstInt(ctx->ac.i32, start * 4, false), "");
}
params[0] = data;
params[3] = offset;
ac_build_intrinsic(&ctx->ac, store_name,
ctx->ac.voidt, params, 6, 0);
}
}
static LLVMValueRef visit_atomic_ssbo(struct ac_nir_context *ctx,
const nir_intrinsic_instr *instr)
{
const char *name;
LLVMValueRef params[6];
int arg_count = 0;
if (instr->intrinsic == nir_intrinsic_ssbo_atomic_comp_swap) {
params[arg_count++] = ac_llvm_extract_elem(&ctx->ac, get_src(ctx, instr->src[3]), 0);
}
params[arg_count++] = ac_llvm_extract_elem(&ctx->ac, get_src(ctx, instr->src[2]), 0);
params[arg_count++] = ctx->abi->load_ssbo(ctx->abi,
get_src(ctx, instr->src[0]),
true);
params[arg_count++] = ctx->ac.i32_0; /* vindex */
params[arg_count++] = get_src(ctx, instr->src[1]); /* voffset */
params[arg_count++] = LLVMConstInt(ctx->ac.i1, 0, false); /* slc */
switch (instr->intrinsic) {
case nir_intrinsic_ssbo_atomic_add:
name = "llvm.amdgcn.buffer.atomic.add";
break;
case nir_intrinsic_ssbo_atomic_imin:
name = "llvm.amdgcn.buffer.atomic.smin";
break;
case nir_intrinsic_ssbo_atomic_umin:
name = "llvm.amdgcn.buffer.atomic.umin";
break;
case nir_intrinsic_ssbo_atomic_imax:
name = "llvm.amdgcn.buffer.atomic.smax";
break;
case nir_intrinsic_ssbo_atomic_umax:
name = "llvm.amdgcn.buffer.atomic.umax";
break;
case nir_intrinsic_ssbo_atomic_and:
name = "llvm.amdgcn.buffer.atomic.and";
break;
case nir_intrinsic_ssbo_atomic_or:
name = "llvm.amdgcn.buffer.atomic.or";
break;
case nir_intrinsic_ssbo_atomic_xor:
name = "llvm.amdgcn.buffer.atomic.xor";
break;
case nir_intrinsic_ssbo_atomic_exchange:
name = "llvm.amdgcn.buffer.atomic.swap";
break;
case nir_intrinsic_ssbo_atomic_comp_swap:
name = "llvm.amdgcn.buffer.atomic.cmpswap";
break;
default:
abort();
}
return ac_build_intrinsic(&ctx->ac, name, ctx->ac.i32, params, arg_count, 0);
}
static LLVMValueRef visit_load_buffer(struct ac_nir_context *ctx,
const nir_intrinsic_instr *instr)
{
LLVMValueRef results[2];
int load_components;
int num_components = instr->num_components;
if (instr->dest.ssa.bit_size == 64)
num_components *= 2;
for (int i = 0; i < num_components; i += load_components) {
load_components = MIN2(num_components - i, 4);
const char *load_name;
LLVMTypeRef data_type = ctx->ac.f32;
LLVMValueRef offset = LLVMConstInt(ctx->ac.i32, i * 4, false);
offset = LLVMBuildAdd(ctx->ac.builder, get_src(ctx, instr->src[1]), offset, "");
if (load_components == 3)
data_type = LLVMVectorType(ctx->ac.f32, 4);
else if (load_components > 1)
data_type = LLVMVectorType(ctx->ac.f32, load_components);
if (load_components >= 3)
load_name = "llvm.amdgcn.buffer.load.v4f32";
else if (load_components == 2)
load_name = "llvm.amdgcn.buffer.load.v2f32";
else if (load_components == 1)
load_name = "llvm.amdgcn.buffer.load.f32";
else
unreachable("unhandled number of components");
LLVMValueRef params[] = {
ctx->abi->load_ssbo(ctx->abi,
get_src(ctx, instr->src[0]),
false),
ctx->ac.i32_0,
offset,
ctx->ac.i1false,
ctx->ac.i1false,
};
results[i > 0 ? 1 : 0] = ac_build_intrinsic(&ctx->ac, load_name, data_type, params, 5, 0);
}
assume(results[0]);
LLVMValueRef ret = results[0];
if (num_components > 4 || num_components == 3) {
LLVMValueRef masks[] = {
LLVMConstInt(ctx->ac.i32, 0, false), LLVMConstInt(ctx->ac.i32, 1, false),
LLVMConstInt(ctx->ac.i32, 2, false), LLVMConstInt(ctx->ac.i32, 3, false),
LLVMConstInt(ctx->ac.i32, 4, false), LLVMConstInt(ctx->ac.i32, 5, false),
LLVMConstInt(ctx->ac.i32, 6, false), LLVMConstInt(ctx->ac.i32, 7, false)
};
LLVMValueRef swizzle = LLVMConstVector(masks, num_components);
ret = LLVMBuildShuffleVector(ctx->ac.builder, results[0],
results[num_components > 4 ? 1 : 0], swizzle, "");
}
return LLVMBuildBitCast(ctx->ac.builder, ret,
get_def_type(ctx, &instr->dest.ssa), "");
}
static LLVMValueRef visit_load_ubo_buffer(struct ac_nir_context *ctx,
const nir_intrinsic_instr *instr)
{
LLVMValueRef ret;
LLVMValueRef rsrc = get_src(ctx, instr->src[0]);
LLVMValueRef offset = get_src(ctx, instr->src[1]);
int num_components = instr->num_components;
if (ctx->abi->load_ubo)
rsrc = ctx->abi->load_ubo(ctx->abi, rsrc);
if (instr->dest.ssa.bit_size == 64)
num_components *= 2;
ret = ac_build_buffer_load(&ctx->ac, rsrc, num_components, NULL, offset,
NULL, 0, false, false, true, true);
ret = trim_vector(&ctx->ac, ret, num_components);
return LLVMBuildBitCast(ctx->ac.builder, ret,
get_def_type(ctx, &instr->dest.ssa), "");
}
static void
get_deref_offset(struct ac_nir_context *ctx, nir_deref_var *deref,
bool vs_in, unsigned *vertex_index_out,
LLVMValueRef *vertex_index_ref,
unsigned *const_out, LLVMValueRef *indir_out)
{
unsigned const_offset = 0;
nir_deref *tail = &deref->deref;
LLVMValueRef offset = NULL;
if (vertex_index_out != NULL || vertex_index_ref != NULL) {
tail = tail->child;
nir_deref_array *deref_array = nir_deref_as_array(tail);
if (vertex_index_out)
*vertex_index_out = deref_array->base_offset;
if (vertex_index_ref) {
LLVMValueRef vtx = LLVMConstInt(ctx->ac.i32, deref_array->base_offset, false);
if (deref_array->deref_array_type == nir_deref_array_type_indirect) {
vtx = LLVMBuildAdd(ctx->ac.builder, vtx, get_src(ctx, deref_array->indirect), "");
}
*vertex_index_ref = vtx;
}
}
if (deref->var->data.compact) {
assert(tail->child->deref_type == nir_deref_type_array);
assert(glsl_type_is_scalar(glsl_without_array(deref->var->type)));
nir_deref_array *deref_array = nir_deref_as_array(tail->child);
/* We always lower indirect dereferences for "compact" array vars. */
assert(deref_array->deref_array_type == nir_deref_array_type_direct);
const_offset = deref_array->base_offset;
goto out;
}
while (tail->child != NULL) {
const struct glsl_type *parent_type = tail->type;
tail = tail->child;
if (tail->deref_type == nir_deref_type_array) {
nir_deref_array *deref_array = nir_deref_as_array(tail);
LLVMValueRef index, stride, local_offset;
unsigned size = glsl_count_attribute_slots(tail->type, vs_in);
const_offset += size * deref_array->base_offset;
if (deref_array->deref_array_type == nir_deref_array_type_direct)
continue;
assert(deref_array->deref_array_type == nir_deref_array_type_indirect);
index = get_src(ctx, deref_array->indirect);
stride = LLVMConstInt(ctx->ac.i32, size, 0);
local_offset = LLVMBuildMul(ctx->ac.builder, stride, index, "");
if (offset)
offset = LLVMBuildAdd(ctx->ac.builder, offset, local_offset, "");
else
offset = local_offset;
} else if (tail->deref_type == nir_deref_type_struct) {
nir_deref_struct *deref_struct = nir_deref_as_struct(tail);
for (unsigned i = 0; i < deref_struct->index; i++) {
const struct glsl_type *ft = glsl_get_struct_field(parent_type, i);
const_offset += glsl_count_attribute_slots(ft, vs_in);
}
} else
unreachable("unsupported deref type");
}
out:
if (const_offset && offset)
offset = LLVMBuildAdd(ctx->ac.builder, offset,
LLVMConstInt(ctx->ac.i32, const_offset, 0),
"");
*const_out = const_offset;
*indir_out = offset;
}
/* The offchip buffer layout for TCS->TES is
*
* - attribute 0 of patch 0 vertex 0
* - attribute 0 of patch 0 vertex 1
* - attribute 0 of patch 0 vertex 2
* ...
* - attribute 0 of patch 1 vertex 0
* - attribute 0 of patch 1 vertex 1
* ...
* - attribute 1 of patch 0 vertex 0
* - attribute 1 of patch 0 vertex 1
* ...
* - per patch attribute 0 of patch 0
* - per patch attribute 0 of patch 1
* ...
*
* Note that every attribute has 4 components.
*/
static LLVMValueRef get_tcs_tes_buffer_address(struct nir_to_llvm_context *ctx,
LLVMValueRef vertex_index,
LLVMValueRef param_index)
{
LLVMValueRef base_addr, vertices_per_patch, num_patches, total_vertices;
LLVMValueRef param_stride, constant16;
LLVMValueRef rel_patch_id = get_rel_patch_id(ctx);
vertices_per_patch = unpack_param(&ctx->ac, ctx->tcs_offchip_layout, 9, 6);
num_patches = unpack_param(&ctx->ac, ctx->tcs_offchip_layout, 0, 9);
total_vertices = LLVMBuildMul(ctx->builder, vertices_per_patch,
num_patches, "");
constant16 = LLVMConstInt(ctx->ac.i32, 16, false);
if (vertex_index) {
base_addr = LLVMBuildMul(ctx->builder, rel_patch_id,
vertices_per_patch, "");
base_addr = LLVMBuildAdd(ctx->builder, base_addr,
vertex_index, "");
param_stride = total_vertices;
} else {
base_addr = rel_patch_id;
param_stride = num_patches;
}
base_addr = LLVMBuildAdd(ctx->builder, base_addr,
LLVMBuildMul(ctx->builder, param_index,
param_stride, ""), "");
base_addr = LLVMBuildMul(ctx->builder, base_addr, constant16, "");
if (!vertex_index) {
LLVMValueRef patch_data_offset =
unpack_param(&ctx->ac, ctx->tcs_offchip_layout, 16, 16);
base_addr = LLVMBuildAdd(ctx->builder, base_addr,
patch_data_offset, "");
}
return base_addr;
}
static LLVMValueRef get_tcs_tes_buffer_address_params(struct nir_to_llvm_context *ctx,
unsigned param,
unsigned const_index,
bool is_compact,
LLVMValueRef vertex_index,
LLVMValueRef indir_index)
{
LLVMValueRef param_index;
if (indir_index)
param_index = LLVMBuildAdd(ctx->builder, LLVMConstInt(ctx->ac.i32, param, false),
indir_index, "");
else {
if (const_index && !is_compact)
param += const_index;
param_index = LLVMConstInt(ctx->ac.i32, param, false);
}
return get_tcs_tes_buffer_address(ctx, vertex_index, param_index);
}
static void
mark_tess_output(struct nir_to_llvm_context *ctx,
bool is_patch, uint32_t param, int num_slots)
{
uint64_t slot_mask = (1ull << num_slots) - 1;
if (is_patch) {
ctx->tess_patch_outputs_written |= (slot_mask << param);
} else
ctx->tess_outputs_written |= (slot_mask<< param);
}
static LLVMValueRef
get_dw_address(struct nir_to_llvm_context *ctx,
LLVMValueRef dw_addr,
unsigned param,
unsigned const_index,
bool compact_const_index,
LLVMValueRef vertex_index,
LLVMValueRef stride,
LLVMValueRef indir_index)
{
if (vertex_index) {
dw_addr = LLVMBuildAdd(ctx->builder, dw_addr,
LLVMBuildMul(ctx->builder,
vertex_index,
stride, ""), "");
}
if (indir_index)
dw_addr = LLVMBuildAdd(ctx->builder, dw_addr,
LLVMBuildMul(ctx->builder, indir_index,
LLVMConstInt(ctx->ac.i32, 4, false), ""), "");
else if (const_index && !compact_const_index)
dw_addr = LLVMBuildAdd(ctx->builder, dw_addr,
LLVMConstInt(ctx->ac.i32, const_index * 4, false), "");
dw_addr = LLVMBuildAdd(ctx->builder, dw_addr,
LLVMConstInt(ctx->ac.i32, param * 4, false), "");
if (const_index && compact_const_index)
dw_addr = LLVMBuildAdd(ctx->builder, dw_addr,
LLVMConstInt(ctx->ac.i32, const_index, false), "");
return dw_addr;
}
static LLVMValueRef
load_tcs_varyings(struct ac_shader_abi *abi,
LLVMValueRef vertex_index,
LLVMValueRef indir_index,
unsigned const_index,
unsigned location,
unsigned driver_location,
unsigned component,
unsigned num_components,
bool is_patch,
bool is_compact,
bool load_input)
{
struct nir_to_llvm_context *ctx = nir_to_llvm_context_from_abi(abi);
LLVMValueRef dw_addr, stride;
LLVMValueRef value[4], result;
unsigned param = shader_io_get_unique_index(location);
if (load_input) {
stride = unpack_param(&ctx->ac, ctx->tcs_in_layout, 13, 8);
dw_addr = get_tcs_in_current_patch_offset(ctx);
} else {
if (!is_patch) {
stride = unpack_param(&ctx->ac, ctx->tcs_out_layout, 13, 8);
dw_addr = get_tcs_out_current_patch_offset(ctx);
} else {
dw_addr = get_tcs_out_current_patch_data_offset(ctx);
stride = NULL;
}
}
dw_addr = get_dw_address(ctx, dw_addr, param, const_index, is_compact, vertex_index, stride,
indir_index);
for (unsigned i = 0; i < num_components + component; i++) {
value[i] = ac_lds_load(&ctx->ac, dw_addr);
dw_addr = LLVMBuildAdd(ctx->builder, dw_addr,
ctx->ac.i32_1, "");
}
result = ac_build_varying_gather_values(&ctx->ac, value, num_components, component);
return result;
}
static void
store_tcs_output(struct ac_shader_abi *abi,
const nir_variable *var,
LLVMValueRef vertex_index,
LLVMValueRef param_index,
unsigned const_index,
LLVMValueRef src,
unsigned writemask)
{
struct nir_to_llvm_context *ctx = nir_to_llvm_context_from_abi(abi);
const unsigned location = var->data.location;
const unsigned component = var->data.location_frac;
const bool is_patch = var->data.patch;
const bool is_compact = var->data.compact;
const unsigned count = glsl_count_attribute_slots(var->type, false);
LLVMValueRef dw_addr;
LLVMValueRef stride = NULL;
LLVMValueRef buf_addr = NULL;
unsigned param;
bool store_lds = true;
if (is_patch) {
if (!(ctx->tcs_patch_outputs_read & (1U << (location - VARYING_SLOT_PATCH0))))
store_lds = false;
} else {
if (!(ctx->tcs_outputs_read & (1ULL << location)))
store_lds = false;
}
param = shader_io_get_unique_index(location);
if (location == VARYING_SLOT_CLIP_DIST0 &&
is_compact && const_index > 3) {
const_index -= 3;
param++;
}
if (!is_patch) {
stride = unpack_param(&ctx->ac, ctx->tcs_out_layout, 13, 8);
dw_addr = get_tcs_out_current_patch_offset(ctx);
} else {
dw_addr = get_tcs_out_current_patch_data_offset(ctx);
}
if (param_index)
mark_tess_output(ctx, is_patch, param, count);
else
mark_tess_output(ctx, is_patch, param, 1);
dw_addr = get_dw_address(ctx, dw_addr, param, const_index, is_compact, vertex_index, stride,
param_index);
buf_addr = get_tcs_tes_buffer_address_params(ctx, param, const_index, is_compact,
vertex_index, param_index);
bool is_tess_factor = false;
if (location == VARYING_SLOT_TESS_LEVEL_INNER ||
location == VARYING_SLOT_TESS_LEVEL_OUTER)
is_tess_factor = true;
unsigned base = is_compact ? const_index : 0;
for (unsigned chan = 0; chan < 8; chan++) {
if (!(writemask & (1 << chan)))
continue;
LLVMValueRef value = ac_llvm_extract_elem(&ctx->ac, src, chan - component);
if (store_lds || is_tess_factor) {
LLVMValueRef dw_addr_chan =
LLVMBuildAdd(ctx->builder, dw_addr,
LLVMConstInt(ctx->ac.i32, chan, false), "");
ac_lds_store(&ctx->ac, dw_addr_chan, value);
}
if (!is_tess_factor && writemask != 0xF)
ac_build_buffer_store_dword(&ctx->ac, ctx->hs_ring_tess_offchip, value, 1,
buf_addr, ctx->oc_lds,
4 * (base + chan), 1, 0, true, false);
}
if (writemask == 0xF) {
ac_build_buffer_store_dword(&ctx->ac, ctx->hs_ring_tess_offchip, src, 4,
buf_addr, ctx->oc_lds,
(base * 4), 1, 0, true, false);
}
}
static LLVMValueRef
load_tes_input(struct ac_shader_abi *abi,
LLVMValueRef vertex_index,
LLVMValueRef param_index,
unsigned const_index,
unsigned location,
unsigned driver_location,
unsigned component,
unsigned num_components,
bool is_patch,
bool is_compact,
bool load_input)
{
struct nir_to_llvm_context *ctx = nir_to_llvm_context_from_abi(abi);
LLVMValueRef buf_addr;
LLVMValueRef result;
unsigned param = shader_io_get_unique_index(location);
if (location == VARYING_SLOT_CLIP_DIST0 && is_compact && const_index > 3) {
const_index -= 3;
param++;
}
buf_addr = get_tcs_tes_buffer_address_params(ctx, param, const_index,
is_compact, vertex_index, param_index);
LLVMValueRef comp_offset = LLVMConstInt(ctx->ac.i32, component * 4, false);
buf_addr = LLVMBuildAdd(ctx->builder, buf_addr, comp_offset, "");
result = ac_build_buffer_load(&ctx->ac, ctx->hs_ring_tess_offchip, num_components, NULL,
buf_addr, ctx->oc_lds, is_compact ? (4 * const_index) : 0, 1, 0, true, false);
result = trim_vector(&ctx->ac, result, num_components);
return result;
}
static LLVMValueRef
load_gs_input(struct ac_shader_abi *abi,
unsigned location,
unsigned driver_location,
unsigned component,
unsigned num_components,
unsigned vertex_index,
unsigned const_index,
LLVMTypeRef type)
{
struct nir_to_llvm_context *ctx = nir_to_llvm_context_from_abi(abi);
LLVMValueRef vtx_offset;
LLVMValueRef args[9];
unsigned param, vtx_offset_param;
LLVMValueRef value[4], result;
vtx_offset_param = vertex_index;
assert(vtx_offset_param < 6);
vtx_offset = LLVMBuildMul(ctx->builder, ctx->gs_vtx_offset[vtx_offset_param],
LLVMConstInt(ctx->ac.i32, 4, false), "");
param = shader_io_get_unique_index(location);
for (unsigned i = component; i < num_components + component; i++) {
if (ctx->ac.chip_class >= GFX9) {
LLVMValueRef dw_addr = ctx->gs_vtx_offset[vtx_offset_param];
dw_addr = LLVMBuildAdd(ctx->ac.builder, dw_addr,
LLVMConstInt(ctx->ac.i32, param * 4 + i + const_index, 0), "");
value[i] = ac_lds_load(&ctx->ac, dw_addr);
} else {
args[0] = ctx->esgs_ring;
args[1] = vtx_offset;
args[2] = LLVMConstInt(ctx->ac.i32, (param * 4 + i + const_index) * 256, false);
args[3] = ctx->ac.i32_0;
args[4] = ctx->ac.i32_1; /* OFFEN */
args[5] = ctx->ac.i32_0; /* IDXEN */
args[6] = ctx->ac.i32_1; /* GLC */
args[7] = ctx->ac.i32_0; /* SLC */
args[8] = ctx->ac.i32_0; /* TFE */
value[i] = ac_build_intrinsic(&ctx->ac, "llvm.SI.buffer.load.dword.i32.i32",
ctx->ac.i32, args, 9,
AC_FUNC_ATTR_READONLY |
AC_FUNC_ATTR_LEGACY);
}
}
result = ac_build_varying_gather_values(&ctx->ac, value, num_components, component);
return result;
}
static LLVMValueRef
build_gep_for_deref(struct ac_nir_context *ctx,
nir_deref_var *deref)
{
struct hash_entry *entry = _mesa_hash_table_search(ctx->vars, deref->var);
assert(entry->data);
LLVMValueRef val = entry->data;
nir_deref *tail = deref->deref.child;
while (tail != NULL) {
LLVMValueRef offset;
switch (tail->deref_type) {
case nir_deref_type_array: {
nir_deref_array *array = nir_deref_as_array(tail);
offset = LLVMConstInt(ctx->ac.i32, array->base_offset, 0);
if (array->deref_array_type ==
nir_deref_array_type_indirect) {
offset = LLVMBuildAdd(ctx->ac.builder, offset,
get_src(ctx,
array->indirect),
"");
}
break;
}
case nir_deref_type_struct: {
nir_deref_struct *deref_struct =
nir_deref_as_struct(tail);
offset = LLVMConstInt(ctx->ac.i32,
deref_struct->index, 0);
break;
}
default:
unreachable("bad deref type");
}
val = ac_build_gep0(&ctx->ac, val, offset);
tail = tail->child;
}
return val;
}
static LLVMValueRef load_tess_varyings(struct ac_nir_context *ctx,
nir_intrinsic_instr *instr,
bool load_inputs)
{
LLVMValueRef result;
LLVMValueRef vertex_index = NULL;
LLVMValueRef indir_index = NULL;
unsigned const_index = 0;
unsigned location = instr->variables[0]->var->data.location;
unsigned driver_location = instr->variables[0]->var->data.driver_location;
const bool is_patch = instr->variables[0]->var->data.patch;
const bool is_compact = instr->variables[0]->var->data.compact;
get_deref_offset(ctx, instr->variables[0],
false, NULL, is_patch ? NULL : &vertex_index,
&const_index, &indir_index);
result = ctx->abi->load_tess_varyings(ctx->abi, vertex_index, indir_index,
const_index, location, driver_location,
instr->variables[0]->var->data.location_frac,
instr->num_components,
is_patch, is_compact, load_inputs);
return LLVMBuildBitCast(ctx->ac.builder, result, get_def_type(ctx, &instr->dest.ssa), "");
}
static LLVMValueRef visit_load_var(struct ac_nir_context *ctx,
nir_intrinsic_instr *instr)
{
LLVMValueRef values[8];
int idx = instr->variables[0]->var->data.driver_location;
int ve = instr->dest.ssa.num_components;
unsigned comp = instr->variables[0]->var->data.location_frac;
LLVMValueRef indir_index;
LLVMValueRef ret;
unsigned const_index;
unsigned stride = instr->variables[0]->var->data.compact ? 1 : 4;
bool vs_in = ctx->stage == MESA_SHADER_VERTEX &&
instr->variables[0]->var->data.mode == nir_var_shader_in;
get_deref_offset(ctx, instr->variables[0], vs_in, NULL, NULL,
&const_index, &indir_index);
if (instr->dest.ssa.bit_size == 64)
ve *= 2;
switch (instr->variables[0]->var->data.mode) {
case nir_var_shader_in:
if (ctx->stage == MESA_SHADER_TESS_CTRL ||
ctx->stage == MESA_SHADER_TESS_EVAL) {
return load_tess_varyings(ctx, instr, true);
}
if (ctx->stage == MESA_SHADER_GEOMETRY) {
LLVMValueRef indir_index;
unsigned const_index, vertex_index;
get_deref_offset(ctx, instr->variables[0],
false, &vertex_index, NULL,
&const_index, &indir_index);
return ctx->abi->load_inputs(ctx->abi, instr->variables[0]->var->data.location,
instr->variables[0]->var->data.driver_location,
instr->variables[0]->var->data.location_frac, ve,
vertex_index, const_index,
nir2llvmtype(ctx, instr->variables[0]->var->type));
}
for (unsigned chan = comp; chan < ve + comp; chan++) {
if (indir_index) {
unsigned count = glsl_count_attribute_slots(
instr->variables[0]->var->type,
ctx->stage == MESA_SHADER_VERTEX);
count -= chan / 4;
LLVMValueRef tmp_vec = ac_build_gather_values_extended(
&ctx->ac, ctx->abi->inputs + idx + chan, count,
stride, false, true);
values[chan] = LLVMBuildExtractElement(ctx->ac.builder,
tmp_vec,
indir_index, "");
} else
values[chan] = ctx->abi->inputs[idx + chan + const_index * stride];
}
break;
case nir_var_local:
for (unsigned chan = 0; chan < ve; chan++) {
if (indir_index) {
unsigned count = glsl_count_attribute_slots(
instr->variables[0]->var->type, false);
count -= chan / 4;
LLVMValueRef tmp_vec = ac_build_gather_values_extended(
&ctx->ac, ctx->locals + idx + chan, count,
stride, true, true);
values[chan] = LLVMBuildExtractElement(ctx->ac.builder,
tmp_vec,
indir_index, "");
} else {
values[chan] = LLVMBuildLoad(ctx->ac.builder, ctx->locals[idx + chan + const_index * stride], "");
}
}
break;
case nir_var_shared: {
LLVMValueRef address = build_gep_for_deref(ctx,
instr->variables[0]);
LLVMValueRef val = LLVMBuildLoad(ctx->ac.builder, address, "");
return LLVMBuildBitCast(ctx->ac.builder, val,
get_def_type(ctx, &instr->dest.ssa),
"");
}
case nir_var_shader_out:
if (ctx->stage == MESA_SHADER_TESS_CTRL) {
return load_tess_varyings(ctx, instr, false);
}
for (unsigned chan = comp; chan < ve + comp; chan++) {
if (indir_index) {
unsigned count = glsl_count_attribute_slots(
instr->variables[0]->var->type, false);
count -= chan / 4;
LLVMValueRef tmp_vec = ac_build_gather_values_extended(
&ctx->ac, ctx->outputs + idx + chan, count,
stride, true, true);
values[chan] = LLVMBuildExtractElement(ctx->ac.builder,
tmp_vec,
indir_index, "");
} else {
values[chan] = LLVMBuildLoad(ctx->ac.builder,
ctx->outputs[idx + chan + const_index * stride],
"");
}
}
break;
default:
unreachable("unhandle variable mode");
}
ret = ac_build_varying_gather_values(&ctx->ac, values, ve, comp);
return LLVMBuildBitCast(ctx->ac.builder, ret, get_def_type(ctx, &instr->dest.ssa), "");
}
static void
visit_store_var(struct ac_nir_context *ctx,
nir_intrinsic_instr *instr)
{
LLVMValueRef temp_ptr, value;
int idx = instr->variables[0]->var->data.driver_location;
unsigned comp = instr->variables[0]->var->data.location_frac;
LLVMValueRef src = ac_to_float(&ctx->ac, get_src(ctx, instr->src[0]));
int writemask = instr->const_index[0] << comp;
LLVMValueRef indir_index;
unsigned const_index;
get_deref_offset(ctx, instr->variables[0], false,
NULL, NULL, &const_index, &indir_index);
if (get_elem_bits(&ctx->ac, LLVMTypeOf(src)) == 64) {
src = LLVMBuildBitCast(ctx->ac.builder, src,
LLVMVectorType(ctx->ac.f32, ac_get_llvm_num_components(src) * 2),
"");
writemask = widen_mask(writemask, 2);
}
switch (instr->variables[0]->var->data.mode) {
case nir_var_shader_out:
if (ctx->stage == MESA_SHADER_TESS_CTRL) {
LLVMValueRef vertex_index = NULL;
LLVMValueRef indir_index = NULL;
unsigned const_index = 0;
const bool is_patch = instr->variables[0]->var->data.patch;
get_deref_offset(ctx, instr->variables[0],
false, NULL, is_patch ? NULL : &vertex_index,
&const_index, &indir_index);
ctx->abi->store_tcs_outputs(ctx->abi, instr->variables[0]->var,
vertex_index, indir_index,
const_index, src, writemask);
return;
}
for (unsigned chan = 0; chan < 8; chan++) {
int stride = 4;
if (!(writemask & (1 << chan)))
continue;
value = ac_llvm_extract_elem(&ctx->ac, src, chan - comp);
if (instr->variables[0]->var->data.compact)
stride = 1;
if (indir_index) {
unsigned count = glsl_count_attribute_slots(
instr->variables[0]->var->type, false);
count -= chan / 4;
LLVMValueRef tmp_vec = ac_build_gather_values_extended(
&ctx->ac, ctx->outputs + idx + chan, count,
stride, true, true);
tmp_vec = LLVMBuildInsertElement(ctx->ac.builder, tmp_vec,
value, indir_index, "");
build_store_values_extended(&ctx->ac, ctx->outputs + idx + chan,
count, stride, tmp_vec);
} else {
temp_ptr = ctx->outputs[idx + chan + const_index * stride];
LLVMBuildStore(ctx->ac.builder, value, temp_ptr);
}
}
break;
case nir_var_local:
for (unsigned chan = 0; chan < 8; chan++) {
if (!(writemask & (1 << chan)))
continue;
value = ac_llvm_extract_elem(&ctx->ac, src, chan);
if (indir_index) {
unsigned count = glsl_count_attribute_slots(
instr->variables[0]->var->type, false);
count -= chan / 4;
LLVMValueRef tmp_vec = ac_build_gather_values_extended(
&ctx->ac, ctx->locals + idx + chan, count,
4, true, true);
tmp_vec = LLVMBuildInsertElement(ctx->ac.builder, tmp_vec,
value, indir_index, "");
build_store_values_extended(&ctx->ac, ctx->locals + idx + chan,
count, 4, tmp_vec);
} else {
temp_ptr = ctx->locals[idx + chan + const_index * 4];
LLVMBuildStore(ctx->ac.builder, value, temp_ptr);
}
}
break;
case nir_var_shared: {
int writemask = instr->const_index[0];
LLVMValueRef address = build_gep_for_deref(ctx,
instr->variables[0]);
LLVMValueRef val = get_src(ctx, instr->src[0]);
unsigned components =
glsl_get_vector_elements(
nir_deref_tail(&instr->variables[0]->deref)->type);
if (writemask == (1 << components) - 1) {
val = LLVMBuildBitCast(
ctx->ac.builder, val,
LLVMGetElementType(LLVMTypeOf(address)), "");
LLVMBuildStore(ctx->ac.builder, val, address);
} else {
for (unsigned chan = 0; chan < 4; chan++) {
if (!(writemask & (1 << chan)))
continue;
LLVMValueRef ptr =
LLVMBuildStructGEP(ctx->ac.builder,
address, chan, "");
LLVMValueRef src = ac_llvm_extract_elem(&ctx->ac, val,
chan);
src = LLVMBuildBitCast(
ctx->ac.builder, src,
LLVMGetElementType(LLVMTypeOf(ptr)), "");
LLVMBuildStore(ctx->ac.builder, src, ptr);
}
}
break;
}
default:
break;
}
}
static int image_type_to_components_count(enum glsl_sampler_dim dim, bool array)
{
switch (dim) {
case GLSL_SAMPLER_DIM_BUF:
return 1;
case GLSL_SAMPLER_DIM_1D:
return array ? 2 : 1;
case GLSL_SAMPLER_DIM_2D:
return array ? 3 : 2;
case GLSL_SAMPLER_DIM_MS:
return array ? 4 : 3;
case GLSL_SAMPLER_DIM_3D:
case GLSL_SAMPLER_DIM_CUBE:
return 3;
case GLSL_SAMPLER_DIM_RECT:
case GLSL_SAMPLER_DIM_SUBPASS:
return 2;
case GLSL_SAMPLER_DIM_SUBPASS_MS:
return 3;
default:
break;
}
return 0;
}
/* Adjust the sample index according to FMASK.
*
* For uncompressed MSAA surfaces, FMASK should return 0x76543210,
* which is the identity mapping. Each nibble says which physical sample
* should be fetched to get that sample.
*
* For example, 0x11111100 means there are only 2 samples stored and
* the second sample covers 3/4 of the pixel. When reading samples 0
* and 1, return physical sample 0 (determined by the first two 0s
* in FMASK), otherwise return physical sample 1.
*
* The sample index should be adjusted as follows:
* sample_index = (fmask >> (sample_index * 4)) & 0xF;
*/
static LLVMValueRef adjust_sample_index_using_fmask(struct ac_llvm_context *ctx,
LLVMValueRef coord_x, LLVMValueRef coord_y,
LLVMValueRef coord_z,
LLVMValueRef sample_index,
LLVMValueRef fmask_desc_ptr)
{
LLVMValueRef fmask_load_address[4];
LLVMValueRef res;
fmask_load_address[0] = coord_x;
fmask_load_address[1] = coord_y;
if (coord_z) {
fmask_load_address[2] = coord_z;
fmask_load_address[3] = LLVMGetUndef(ctx->i32);
}
struct ac_image_args args = {0};
args.opcode = ac_image_load;
args.da = coord_z ? true : false;
args.resource = fmask_desc_ptr;
args.dmask = 0xf;
args.addr = ac_build_gather_values(ctx, fmask_load_address, coord_z ? 4 : 2);
res = ac_build_image_opcode(ctx, &args);
res = ac_to_integer(ctx, res);
LLVMValueRef four = LLVMConstInt(ctx->i32, 4, false);
LLVMValueRef F = LLVMConstInt(ctx->i32, 0xf, false);
LLVMValueRef fmask = LLVMBuildExtractElement(ctx->builder,
res,
ctx->i32_0, "");
LLVMValueRef sample_index4 =
LLVMBuildMul(ctx->builder, sample_index, four, "");
LLVMValueRef shifted_fmask =
LLVMBuildLShr(ctx->builder, fmask, sample_index4, "");
LLVMValueRef final_sample =
LLVMBuildAnd(ctx->builder, shifted_fmask, F, "");
/* Don't rewrite the sample index if WORD1.DATA_FORMAT of the FMASK
* resource descriptor is 0 (invalid),
*/
LLVMValueRef fmask_desc =
LLVMBuildBitCast(ctx->builder, fmask_desc_ptr,
ctx->v8i32, "");
LLVMValueRef fmask_word1 =
LLVMBuildExtractElement(ctx->builder, fmask_desc,
ctx->i32_1, "");
LLVMValueRef word1_is_nonzero =
LLVMBuildICmp(ctx->builder, LLVMIntNE,
fmask_word1, ctx->i32_0, "");
/* Replace the MSAA sample index. */
sample_index =
LLVMBuildSelect(ctx->builder, word1_is_nonzero,
final_sample, sample_index, "");
return sample_index;
}
static LLVMValueRef get_image_coords(struct ac_nir_context *ctx,
const nir_intrinsic_instr *instr)
{
const struct glsl_type *type = glsl_without_array(instr->variables[0]->var->type);
LLVMValueRef src0 = get_src(ctx, instr->src[0]);
LLVMValueRef coords[4];
LLVMValueRef masks[] = {
LLVMConstInt(ctx->ac.i32, 0, false), LLVMConstInt(ctx->ac.i32, 1, false),
LLVMConstInt(ctx->ac.i32, 2, false), LLVMConstInt(ctx->ac.i32, 3, false),
};
LLVMValueRef res;
LLVMValueRef sample_index = ac_llvm_extract_elem(&ctx->ac, get_src(ctx, instr->src[1]), 0);
int count;
enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
bool is_array = glsl_sampler_type_is_array(type);
bool add_frag_pos = (dim == GLSL_SAMPLER_DIM_SUBPASS ||
dim == GLSL_SAMPLER_DIM_SUBPASS_MS);
bool is_ms = (dim == GLSL_SAMPLER_DIM_MS ||
dim == GLSL_SAMPLER_DIM_SUBPASS_MS);
bool gfx9_1d = ctx->ac.chip_class >= GFX9 && dim == GLSL_SAMPLER_DIM_1D;
count = image_type_to_components_count(dim, is_array);
if (is_ms) {
LLVMValueRef fmask_load_address[3];
int chan;
fmask_load_address[0] = LLVMBuildExtractElement(ctx->ac.builder, src0, masks[0], "");
fmask_load_address[1] = LLVMBuildExtractElement(ctx->ac.builder, src0, masks[1], "");
if (is_array)
fmask_load_address[2] = LLVMBuildExtractElement(ctx->ac.builder, src0, masks[2], "");
else
fmask_load_address[2] = NULL;
if (add_frag_pos) {
for (chan = 0; chan < 2; ++chan)
fmask_load_address[chan] =
LLVMBuildAdd(ctx->ac.builder, fmask_load_address[chan],
LLVMBuildFPToUI(ctx->ac.builder, ctx->abi->frag_pos[chan],
ctx->ac.i32, ""), "");
fmask_load_address[2] = ac_to_integer(&ctx->ac, ctx->abi->inputs[radeon_llvm_reg_index_soa(VARYING_SLOT_LAYER, 0)]);
}
sample_index = adjust_sample_index_using_fmask(&ctx->ac,
fmask_load_address[0],
fmask_load_address[1],
fmask_load_address[2],
sample_index,
get_sampler_desc(ctx, instr->variables[0], AC_DESC_FMASK, NULL, true, false));
}
if (count == 1 && !gfx9_1d) {
if (instr->src[0].ssa->num_components)
res = LLVMBuildExtractElement(ctx->ac.builder, src0, masks[0], "");
else
res = src0;
} else {
int chan;
if (is_ms)
count--;
for (chan = 0; chan < count; ++chan) {
coords[chan] = ac_llvm_extract_elem(&ctx->ac, src0, chan);
}
if (add_frag_pos) {
for (chan = 0; chan < 2; ++chan)
coords[chan] = LLVMBuildAdd(ctx->ac.builder, coords[chan], LLVMBuildFPToUI(ctx->ac.builder, ctx->abi->frag_pos[chan],
ctx->ac.i32, ""), "");
coords[2] = ac_to_integer(&ctx->ac, ctx->abi->inputs[radeon_llvm_reg_index_soa(VARYING_SLOT_LAYER, 0)]);
count++;
}
if (gfx9_1d) {
if (is_array) {
coords[2] = coords[1];
coords[1] = ctx->ac.i32_0;
} else
coords[1] = ctx->ac.i32_0;
count++;
}
if (is_ms) {
coords[count] = sample_index;
count++;
}
if (count == 3) {
coords[3] = LLVMGetUndef(ctx->ac.i32);
count = 4;
}
res = ac_build_gather_values(&ctx->ac, coords, count);
}
return res;
}
static LLVMValueRef get_image_buffer_descriptor(struct ac_nir_context *ctx,
const nir_intrinsic_instr *instr, bool write)
{
LLVMValueRef rsrc = get_sampler_desc(ctx, instr->variables[0], AC_DESC_BUFFER, NULL, true, write);
if (ctx->abi->gfx9_stride_size_workaround) {
LLVMValueRef elem_count = LLVMBuildExtractElement(ctx->ac.builder, rsrc, LLVMConstInt(ctx->ac.i32, 2, 0), "");
LLVMValueRef stride = LLVMBuildExtractElement(ctx->ac.builder, rsrc, LLVMConstInt(ctx->ac.i32, 1, 0), "");
stride = LLVMBuildLShr(ctx->ac.builder, stride, LLVMConstInt(ctx->ac.i32, 16, 0), "");
LLVMValueRef new_elem_count = LLVMBuildSelect(ctx->ac.builder,
LLVMBuildICmp(ctx->ac.builder, LLVMIntUGT, elem_count, stride, ""),
elem_count, stride, "");
rsrc = LLVMBuildInsertElement(ctx->ac.builder, rsrc, new_elem_count,
LLVMConstInt(ctx->ac.i32, 2, 0), "");
}
return rsrc;
}
static LLVMValueRef visit_image_load(struct ac_nir_context *ctx,
const nir_intrinsic_instr *instr)
{
LLVMValueRef params[7];
LLVMValueRef res;
char intrinsic_name[64];
const nir_variable *var = instr->variables[0]->var;
const struct glsl_type *type = var->type;
if(instr->variables[0]->deref.child)
type = instr->variables[0]->deref.child->type;
type = glsl_without_array(type);
if (glsl_get_sampler_dim(type) == GLSL_SAMPLER_DIM_BUF) {
params[0] = get_image_buffer_descriptor(ctx, instr, false);
params[1] = LLVMBuildExtractElement(ctx->ac.builder, get_src(ctx, instr->src[0]),
ctx->ac.i32_0, ""); /* vindex */
params[2] = ctx->ac.i32_0; /* voffset */
params[3] = ctx->ac.i1false; /* glc */
params[4] = ctx->ac.i1false; /* slc */
res = ac_build_intrinsic(&ctx->ac, "llvm.amdgcn.buffer.load.format.v4f32", ctx->ac.v4f32,
params, 5, 0);
res = trim_vector(&ctx->ac, res, instr->dest.ssa.num_components);
res = ac_to_integer(&ctx->ac, res);
} else {
bool is_da = glsl_sampler_type_is_array(type) ||
glsl_get_sampler_dim(type) == GLSL_SAMPLER_DIM_CUBE ||
glsl_get_sampler_dim(type) == GLSL_SAMPLER_DIM_3D ||
glsl_get_sampler_dim(type) == GLSL_SAMPLER_DIM_SUBPASS ||
glsl_get_sampler_dim(type) == GLSL_SAMPLER_DIM_SUBPASS_MS;
LLVMValueRef da = is_da ? ctx->ac.i1true : ctx->ac.i1false;
LLVMValueRef glc = ctx->ac.i1false;
LLVMValueRef slc = ctx->ac.i1false;
params[0] = get_image_coords(ctx, instr);
params[1] = get_sampler_desc(ctx, instr->variables[0], AC_DESC_IMAGE, NULL, true, false);
params[2] = LLVMConstInt(ctx->ac.i32, 15, false); /* dmask */
if (HAVE_LLVM <= 0x0309) {
params[3] = ctx->ac.i1false; /* r128 */
params[4] = da;
params[5] = glc;
params[6] = slc;
} else {
LLVMValueRef lwe = ctx->ac.i1false;
params[3] = glc;
params[4] = slc;
params[5] = lwe;
params[6] = da;
}
ac_get_image_intr_name("llvm.amdgcn.image.load",
ctx->ac.v4f32, /* vdata */
LLVMTypeOf(params[0]), /* coords */
LLVMTypeOf(params[1]), /* rsrc */
intrinsic_name, sizeof(intrinsic_name));
res = ac_build_intrinsic(&ctx->ac, intrinsic_name, ctx->ac.v4f32,
params, 7, AC_FUNC_ATTR_READONLY);
}
return ac_to_integer(&ctx->ac, res);
}
static void visit_image_store(struct ac_nir_context *ctx,
nir_intrinsic_instr *instr)
{
LLVMValueRef params[8];
char intrinsic_name[64];
const nir_variable *var = instr->variables[0]->var;
const struct glsl_type *type = glsl_without_array(var->type);
LLVMValueRef glc = ctx->ac.i1false;
bool force_glc = ctx->ac.chip_class == SI;
if (force_glc)
glc = ctx->ac.i1true;
if (glsl_get_sampler_dim(type) == GLSL_SAMPLER_DIM_BUF) {
LLVMValueRef rsrc = get_image_buffer_descriptor(ctx, instr, true);
params[0] = ac_to_float(&ctx->ac, get_src(ctx, instr->src[2])); /* data */
params[1] = rsrc;
params[2] = LLVMBuildExtractElement(ctx->ac.builder, get_src(ctx, instr->src[0]),
ctx->ac.i32_0, ""); /* vindex */
params[3] = ctx->ac.i32_0; /* voffset */
params[4] = glc; /* glc */
params[5] = ctx->ac.i1false; /* slc */
ac_build_intrinsic(&ctx->ac, "llvm.amdgcn.buffer.store.format.v4f32", ctx->ac.voidt,
params, 6, 0);
} else {
bool is_da = glsl_sampler_type_is_array(type) ||
glsl_get_sampler_dim(type) == GLSL_SAMPLER_DIM_CUBE ||
glsl_get_sampler_dim(type) == GLSL_SAMPLER_DIM_3D;
LLVMValueRef da = is_da ? ctx->ac.i1true : ctx->ac.i1false;
LLVMValueRef slc = ctx->ac.i1false;
params[0] = ac_to_float(&ctx->ac, get_src(ctx, instr->src[2]));
params[1] = get_image_coords(ctx, instr); /* coords */
params[2] = get_sampler_desc(ctx, instr->variables[0], AC_DESC_IMAGE, NULL, true, true);
params[3] = LLVMConstInt(ctx->ac.i32, 15, false); /* dmask */
if (HAVE_LLVM <= 0x0309) {
params[4] = ctx->ac.i1false; /* r128 */
params[5] = da;
params[6] = glc;
params[7] = slc;
} else {
LLVMValueRef lwe = ctx->ac.i1false;
params[4] = glc;
params[5] = slc;
params[6] = lwe;
params[7] = da;
}
ac_get_image_intr_name("llvm.amdgcn.image.store",
LLVMTypeOf(params[0]), /* vdata */
LLVMTypeOf(params[1]), /* coords */
LLVMTypeOf(params[2]), /* rsrc */
intrinsic_name, sizeof(intrinsic_name));
ac_build_intrinsic(&ctx->ac, intrinsic_name, ctx->ac.voidt,
params, 8, 0);
}
}
static LLVMValueRef visit_image_atomic(struct ac_nir_context *ctx,
const nir_intrinsic_instr *instr)
{
LLVMValueRef params[7];
int param_count = 0;
const nir_variable *var = instr->variables[0]->var;
const char *atomic_name;
char intrinsic_name[41];
const struct glsl_type *type = glsl_without_array(var->type);
MAYBE_UNUSED int length;
bool is_unsigned = glsl_get_sampler_result_type(type) == GLSL_TYPE_UINT;
switch (instr->intrinsic) {
case nir_intrinsic_image_atomic_add:
atomic_name = "add";
break;
case nir_intrinsic_image_atomic_min:
atomic_name = is_unsigned ? "umin" : "smin";
break;
case nir_intrinsic_image_atomic_max:
atomic_name = is_unsigned ? "umax" : "smax";
break;
case nir_intrinsic_image_atomic_and:
atomic_name = "and";
break;
case nir_intrinsic_image_atomic_or:
atomic_name = "or";
break;
case nir_intrinsic_image_atomic_xor:
atomic_name = "xor";
break;
case nir_intrinsic_image_atomic_exchange:
atomic_name = "swap";
break;
case nir_intrinsic_image_atomic_comp_swap:
atomic_name = "cmpswap";
break;
default:
abort();
}
if (instr->intrinsic == nir_intrinsic_image_atomic_comp_swap)
params[param_count++] = get_src(ctx, instr->src[3]);
params[param_count++] = get_src(ctx, instr->src[2]);
if (glsl_get_sampler_dim(type) == GLSL_SAMPLER_DIM_BUF) {
params[param_count++] = get_image_buffer_descriptor(ctx, instr, true);
params[param_count++] = LLVMBuildExtractElement(ctx->ac.builder, get_src(ctx, instr->src[0]),
ctx->ac.i32_0, ""); /* vindex */
params[param_count++] = ctx->ac.i32_0; /* voffset */
params[param_count++] = ctx->ac.i1false; /* slc */
length = snprintf(intrinsic_name, sizeof(intrinsic_name),
"llvm.amdgcn.buffer.atomic.%s", atomic_name);
} else {
char coords_type[8];
bool da = glsl_sampler_type_is_array(type) ||
glsl_get_sampler_dim(type) == GLSL_SAMPLER_DIM_CUBE;
LLVMValueRef coords = params[param_count++] = get_image_coords(ctx, instr);
params[param_count++] = get_sampler_desc(ctx, instr->variables[0], AC_DESC_IMAGE,
NULL, true, true);
params[param_count++] = ctx->ac.i1false; /* r128 */
params[param_count++] = da ? ctx->ac.i1true : ctx->ac.i1false; /* da */
params[param_count++] = ctx->ac.i1false; /* slc */
build_int_type_name(LLVMTypeOf(coords),
coords_type, sizeof(coords_type));
length = snprintf(intrinsic_name, sizeof(intrinsic_name),
"llvm.amdgcn.image.atomic.%s.%s", atomic_name, coords_type);
}
assert(length < sizeof(intrinsic_name));
return ac_build_intrinsic(&ctx->ac, intrinsic_name, ctx->ac.i32, params, param_count, 0);
}
static LLVMValueRef visit_image_size(struct ac_nir_context *ctx,
const nir_intrinsic_instr *instr)
{
LLVMValueRef res;
const nir_variable *var = instr->variables[0]->var;
const struct glsl_type *type = instr->variables[0]->var->type;
bool da = glsl_sampler_type_is_array(var->type) ||
glsl_get_sampler_dim(var->type) == GLSL_SAMPLER_DIM_CUBE ||
glsl_get_sampler_dim(var->type) == GLSL_SAMPLER_DIM_3D;
if(instr->variables[0]->deref.child)
type = instr->variables[0]->deref.child->type;
if (glsl_get_sampler_dim(type) == GLSL_SAMPLER_DIM_BUF)
return get_buffer_size(ctx,
get_sampler_desc(ctx, instr->variables[0],
AC_DESC_BUFFER, NULL, true, false), true);
struct ac_image_args args = { 0 };
args.da = da;
args.dmask = 0xf;
args.resource = get_sampler_desc(ctx, instr->variables[0], AC_DESC_IMAGE, NULL, true, false);
args.opcode = ac_image_get_resinfo;
args.addr = ctx->ac.i32_0;
res = ac_build_image_opcode(&ctx->ac, &args);
LLVMValueRef two = LLVMConstInt(ctx->ac.i32, 2, false);
if (glsl_get_sampler_dim(type) == GLSL_SAMPLER_DIM_CUBE &&
glsl_sampler_type_is_array(type)) {
LLVMValueRef six = LLVMConstInt(ctx->ac.i32, 6, false);
LLVMValueRef z = LLVMBuildExtractElement(ctx->ac.builder, res, two, "");
z = LLVMBuildSDiv(ctx->ac.builder, z, six, "");
res = LLVMBuildInsertElement(ctx->ac.builder, res, z, two, "");
}
if (ctx->ac.chip_class >= GFX9 &&
glsl_get_sampler_dim(type) == GLSL_SAMPLER_DIM_1D &&
glsl_sampler_type_is_array(type)) {
LLVMValueRef layers = LLVMBuildExtractElement(ctx->ac.builder, res, two, "");
res = LLVMBuildInsertElement(ctx->ac.builder, res, layers,
ctx->ac.i32_1, "");
}
return res;
}
#define NOOP_WAITCNT 0xf7f
#define LGKM_CNT 0x07f
#define VM_CNT 0xf70
static void emit_membar(struct nir_to_llvm_context *ctx,
const nir_intrinsic_instr *instr)
{
unsigned waitcnt = NOOP_WAITCNT;
switch (instr->intrinsic) {
case nir_intrinsic_memory_barrier:
case nir_intrinsic_group_memory_barrier:
waitcnt &= VM_CNT & LGKM_CNT;
break;
case nir_intrinsic_memory_barrier_atomic_counter:
case nir_intrinsic_memory_barrier_buffer:
case nir_intrinsic_memory_barrier_image:
waitcnt &= VM_CNT;
break;
case nir_intrinsic_memory_barrier_shared:
waitcnt &= LGKM_CNT;
break;
default:
break;
}
if (waitcnt != NOOP_WAITCNT)
ac_build_waitcnt(&ctx->ac, waitcnt);
}
static void emit_barrier(struct ac_llvm_context *ac, gl_shader_stage stage)
{
/* SI only (thanks to a hw bug workaround):
* The real barrier instruction isn’t needed, because an entire patch
* always fits into a single wave.
*/
if (ac->chip_class == SI && stage == MESA_SHADER_TESS_CTRL) {
ac_build_waitcnt(ac, LGKM_CNT & VM_CNT);
return;
}
ac_build_intrinsic(ac, "llvm.amdgcn.s.barrier",
ac->voidt, NULL, 0, AC_FUNC_ATTR_CONVERGENT);
}
static void emit_discard(struct ac_nir_context *ctx,
const nir_intrinsic_instr *instr)
{
LLVMValueRef cond;
if (instr->intrinsic == nir_intrinsic_discard_if) {
cond = LLVMBuildICmp(ctx->ac.builder, LLVMIntEQ,
get_src(ctx, instr->src[0]),
ctx->ac.i32_0, "");
} else {
assert(instr->intrinsic == nir_intrinsic_discard);
cond = LLVMConstInt(ctx->ac.i1, false, 0);
}
ac_build_kill_if_false(&ctx->ac, cond);
}
static LLVMValueRef
visit_load_helper_invocation(struct ac_nir_context *ctx)
{
LLVMValueRef result = ac_build_intrinsic(&ctx->ac,
"llvm.amdgcn.ps.live",
ctx->ac.i1, NULL, 0,
AC_FUNC_ATTR_READNONE);
result = LLVMBuildNot(ctx->ac.builder, result, "");
return LLVMBuildSExt(ctx->ac.builder, result, ctx->ac.i32, "");
}
static LLVMValueRef
visit_load_local_invocation_index(struct nir_to_llvm_context *ctx)
{
LLVMValueRef result;
LLVMValueRef thread_id = ac_get_thread_id(&ctx->ac);
result = LLVMBuildAnd(ctx->builder, ctx->tg_size,
LLVMConstInt(ctx->ac.i32, 0xfc0, false), "");
return LLVMBuildAdd(ctx->builder, result, thread_id, "");
}
static LLVMValueRef visit_var_atomic(struct nir_to_llvm_context *ctx,
const nir_intrinsic_instr *instr)
{
LLVMValueRef ptr, result;
LLVMValueRef src = get_src(ctx->nir, instr->src[0]);
ptr = build_gep_for_deref(ctx->nir, instr->variables[0]);
if (instr->intrinsic == nir_intrinsic_var_atomic_comp_swap) {
LLVMValueRef src1 = get_src(ctx->nir, instr->src[1]);
result = LLVMBuildAtomicCmpXchg(ctx->builder,
ptr, src, src1,
LLVMAtomicOrderingSequentiallyConsistent,
LLVMAtomicOrderingSequentiallyConsistent,
false);
} else {
LLVMAtomicRMWBinOp op;
switch (instr->intrinsic) {
case nir_intrinsic_var_atomic_add:
op = LLVMAtomicRMWBinOpAdd;
break;
case nir_intrinsic_var_atomic_umin:
op = LLVMAtomicRMWBinOpUMin;
break;
case nir_intrinsic_var_atomic_umax:
op = LLVMAtomicRMWBinOpUMax;
break;
case nir_intrinsic_var_atomic_imin:
op = LLVMAtomicRMWBinOpMin;
break;
case nir_intrinsic_var_atomic_imax:
op = LLVMAtomicRMWBinOpMax;
break;
case nir_intrinsic_var_atomic_and:
op = LLVMAtomicRMWBinOpAnd;
break;
case nir_intrinsic_var_atomic_or:
op = LLVMAtomicRMWBinOpOr;
break;
case nir_intrinsic_var_atomic_xor:
op = LLVMAtomicRMWBinOpXor;
break;
case nir_intrinsic_var_atomic_exchange:
op = LLVMAtomicRMWBinOpXchg;
break;
default:
return NULL;
}
result = LLVMBuildAtomicRMW(ctx->builder, op, ptr, ac_to_integer(&ctx->ac, src),
LLVMAtomicOrderingSequentiallyConsistent,
false);
}
return result;
}
#define INTERP_CENTER 0
#define INTERP_CENTROID 1
#define INTERP_SAMPLE 2
static LLVMValueRef lookup_interp_param(struct nir_to_llvm_context *ctx,
enum glsl_interp_mode interp, unsigned location)
{
switch (interp) {
case INTERP_MODE_FLAT:
default:
return NULL;
case INTERP_MODE_SMOOTH:
case INTERP_MODE_NONE:
if (location == INTERP_CENTER)
return ctx->persp_center;
else if (location == INTERP_CENTROID)
return ctx->persp_centroid;
else if (location == INTERP_SAMPLE)
return ctx->persp_sample;
break;
case INTERP_MODE_NOPERSPECTIVE:
if (location == INTERP_CENTER)
return ctx->linear_center;
else if (location == INTERP_CENTROID)
return ctx->linear_centroid;
else if (location == INTERP_SAMPLE)
return ctx->linear_sample;
break;
}
return NULL;
}
static LLVMValueRef load_sample_position(struct nir_to_llvm_context *ctx,
LLVMValueRef sample_id)
{
LLVMValueRef result;
LLVMValueRef ptr = ac_build_gep0(&ctx->ac, ctx->ring_offsets, LLVMConstInt(ctx->ac.i32, RING_PS_SAMPLE_POSITIONS, false));
ptr = LLVMBuildBitCast(ctx->builder, ptr,
const_array(ctx->ac.v2f32, 64), "");
sample_id = LLVMBuildAdd(ctx->builder, sample_id, ctx->sample_pos_offset, "");
result = ac_build_load_invariant(&ctx->ac, ptr, sample_id);
return result;
}
static LLVMValueRef load_sample_pos(struct ac_nir_context *ctx)
{
LLVMValueRef values[2];
values[0] = emit_ffract(&ctx->ac, ctx->abi->frag_pos[0]);
values[1] = emit_ffract(&ctx->ac, ctx->abi->frag_pos[1]);
return ac_build_gather_values(&ctx->ac, values, 2);
}
static LLVMValueRef load_sample_mask_in(struct ac_nir_context *ctx)
{
uint8_t log2_ps_iter_samples = ctx->nctx->shader_info->info.ps.force_persample ? ctx->nctx->options->key.fs.log2_num_samples : ctx->nctx->options->key.fs.log2_ps_iter_samples;
/* The bit pattern matches that used by fixed function fragment
* processing. */
static const uint16_t ps_iter_masks[] = {
0xffff, /* not used */
0x5555,
0x1111,
0x0101,
0x0001,
};
assert(log2_ps_iter_samples < ARRAY_SIZE(ps_iter_masks));
uint32_t ps_iter_mask = ps_iter_masks[log2_ps_iter_samples];
LLVMValueRef result, sample_id;
sample_id = unpack_param(&ctx->ac, ctx->abi->ancillary, 8, 4);
sample_id = LLVMBuildShl(ctx->ac.builder, LLVMConstInt(ctx->ac.i32, ps_iter_mask, false), sample_id, "");
result = LLVMBuildAnd(ctx->ac.builder, sample_id, ctx->abi->sample_coverage, "");
return result;
}
static LLVMValueRef visit_interp(struct nir_to_llvm_context *ctx,
const nir_intrinsic_instr *instr)
{
LLVMValueRef result[4];
LLVMValueRef interp_param, attr_number;
unsigned location;
unsigned chan;
LLVMValueRef src_c0 = NULL;
LLVMValueRef src_c1 = NULL;
LLVMValueRef src0 = NULL;
int input_index = instr->variables[0]->var->data.location - VARYING_SLOT_VAR0;
switch (instr->intrinsic) {
case nir_intrinsic_interp_var_at_centroid:
location = INTERP_CENTROID;
break;
case nir_intrinsic_interp_var_at_sample:
case nir_intrinsic_interp_var_at_offset:
location = INTERP_CENTER;
src0 = get_src(ctx->nir, instr->src[0]);
break;
default:
break;
}
if (instr->intrinsic == nir_intrinsic_interp_var_at_offset) {
src_c0 = ac_to_float(&ctx->ac, LLVMBuildExtractElement(ctx->builder, src0, ctx->ac.i32_0, ""));
src_c1 = ac_to_float(&ctx->ac, LLVMBuildExtractElement(ctx->builder, src0, ctx->ac.i32_1, ""));
} else if (instr->intrinsic == nir_intrinsic_interp_var_at_sample) {
LLVMValueRef sample_position;
LLVMValueRef halfval = LLVMConstReal(ctx->ac.f32, 0.5f);
/* fetch sample ID */
sample_position = load_sample_position(ctx, src0);
src_c0 = LLVMBuildExtractElement(ctx->builder, sample_position, ctx->ac.i32_0, "");
src_c0 = LLVMBuildFSub(ctx->builder, src_c0, halfval, "");
src_c1 = LLVMBuildExtractElement(ctx->builder, sample_position, ctx->ac.i32_1, "");
src_c1 = LLVMBuildFSub(ctx->builder, src_c1, halfval, "");
}
interp_param = lookup_interp_param(ctx, instr->variables[0]->var->data.interpolation, location);
attr_number = LLVMConstInt(ctx->ac.i32, input_index, false);
if (location == INTERP_CENTER) {
LLVMValueRef ij_out[2];
LLVMValueRef ddxy_out = emit_ddxy_interp(ctx->nir, interp_param);
/*
* take the I then J parameters, and the DDX/Y for it, and
* calculate the IJ inputs for the interpolator.
* temp1 = ddx * offset/sample.x + I;
* interp_param.I = ddy * offset/sample.y + temp1;
* temp1 = ddx * offset/sample.x + J;
* interp_param.J = ddy * offset/sample.y + temp1;
*/
for (unsigned i = 0; i < 2; i++) {
LLVMValueRef ix_ll = LLVMConstInt(ctx->ac.i32, i, false);
LLVMValueRef iy_ll = LLVMConstInt(ctx->ac.i32, i + 2, false);
LLVMValueRef ddx_el = LLVMBuildExtractElement(ctx->builder,
ddxy_out, ix_ll, "");
LLVMValueRef ddy_el = LLVMBuildExtractElement(ctx->builder,
ddxy_out, iy_ll, "");
LLVMValueRef interp_el = LLVMBuildExtractElement(ctx->builder,
interp_param, ix_ll, "");
LLVMValueRef temp1, temp2;
interp_el = LLVMBuildBitCast(ctx->builder, interp_el,
ctx->ac.f32, "");
temp1 = LLVMBuildFMul(ctx->builder, ddx_el, src_c0, "");
temp1 = LLVMBuildFAdd(ctx->builder, temp1, interp_el, "");
temp2 = LLVMBuildFMul(ctx->builder, ddy_el, src_c1, "");
temp2 = LLVMBuildFAdd(ctx->builder, temp2, temp1, "");
ij_out[i] = LLVMBuildBitCast(ctx->builder,
temp2, ctx->ac.i32, "");
}
interp_param = ac_build_gather_values(&ctx->ac, ij_out, 2);
}
for (chan = 0; chan < 4; chan++) {
LLVMValueRef llvm_chan = LLVMConstInt(ctx->ac.i32, chan, false);
if (interp_param) {
interp_param = LLVMBuildBitCast(ctx->builder,
interp_param, ctx->ac.v2f32, "");
LLVMValueRef i = LLVMBuildExtractElement(
ctx->builder, interp_param, ctx->ac.i32_0, "");
LLVMValueRef j = LLVMBuildExtractElement(
ctx->builder, interp_param, ctx->ac.i32_1, "");
result[chan] = ac_build_fs_interp(&ctx->ac,
llvm_chan, attr_number,
ctx->prim_mask, i, j);
} else {
result[chan] = ac_build_fs_interp_mov(&ctx->ac,
LLVMConstInt(ctx->ac.i32, 2, false),
llvm_chan, attr_number,
ctx->prim_mask);
}
}
return ac_build_varying_gather_values(&ctx->ac, result, instr->num_components,
instr->variables[0]->var->data.location_frac);
}
static void
visit_emit_vertex(struct ac_shader_abi *abi, unsigned stream, LLVMValueRef *addrs)
{
LLVMValueRef gs_next_vertex;
LLVMValueRef can_emit;
int idx;
struct nir_to_llvm_context *ctx = nir_to_llvm_context_from_abi(abi);
assert(stream == 0);
/* Write vertex attribute values to GSVS ring */
gs_next_vertex = LLVMBuildLoad(ctx->builder,
ctx->gs_next_vertex,
"");
/* If this thread has already emitted the declared maximum number of
* vertices, kill it: excessive vertex emissions are not supposed to
* have any effect, and GS threads have no externally observable
* effects other than emitting vertices.
*/
can_emit = LLVMBuildICmp(ctx->builder, LLVMIntULT, gs_next_vertex,
LLVMConstInt(ctx->ac.i32, ctx->gs_max_out_vertices, false), "");
ac_build_kill_if_false(&ctx->ac, can_emit);
/* loop num outputs */
idx = 0;
for (unsigned i = 0; i < RADEON_LLVM_MAX_OUTPUTS; ++i) {
LLVMValueRef *out_ptr = &addrs[i * 4];
int length = 4;
int slot = idx;
int slot_inc = 1;
if (!(ctx->output_mask & (1ull << i)))
continue;
if (i == VARYING_SLOT_CLIP_DIST0) {
/* pack clip and cull into a single set of slots */
length = ctx->num_output_clips + ctx->num_output_culls;
if (length > 4)
slot_inc = 2;
}
for (unsigned j = 0; j < length; j++) {
LLVMValueRef out_val = LLVMBuildLoad(ctx->builder,
out_ptr[j], "");
LLVMValueRef voffset = LLVMConstInt(ctx->ac.i32, (slot * 4 + j) * ctx->gs_max_out_vertices, false);
voffset = LLVMBuildAdd(ctx->builder, voffset, gs_next_vertex, "");
voffset = LLVMBuildMul(ctx->builder, voffset, LLVMConstInt(ctx->ac.i32, 4, false), "");
out_val = LLVMBuildBitCast(ctx->builder, out_val, ctx->ac.i32, "");
ac_build_buffer_store_dword(&ctx->ac, ctx->gsvs_ring,
out_val, 1,
voffset, ctx->gs2vs_offset, 0,
1, 1, true, true);
}
idx += slot_inc;
}
gs_next_vertex = LLVMBuildAdd(ctx->builder, gs_next_vertex,
ctx->ac.i32_1, "");
LLVMBuildStore(ctx->builder, gs_next_vertex, ctx->gs_next_vertex);
ac_build_sendmsg(&ctx->ac, AC_SENDMSG_GS_OP_EMIT | AC_SENDMSG_GS | (0 << 8), ctx->gs_wave_id);
}
static void
visit_end_primitive(struct ac_shader_abi *abi, unsigned stream)
{
struct nir_to_llvm_context *ctx = nir_to_llvm_context_from_abi(abi);
ac_build_sendmsg(&ctx->ac, AC_SENDMSG_GS_OP_CUT | AC_SENDMSG_GS | (stream << 8), ctx->gs_wave_id);
}
static LLVMValueRef
load_tess_coord(struct ac_shader_abi *abi, LLVMTypeRef type,
unsigned num_components)
{
struct nir_to_llvm_context *ctx = nir_to_llvm_context_from_abi(abi);
LLVMValueRef coord[4] = {
ctx->tes_u,
ctx->tes_v,
ctx->ac.f32_0,
ctx->ac.f32_0,
};
if (ctx->tes_primitive_mode == GL_TRIANGLES)
coord[2] = LLVMBuildFSub(ctx->builder, ctx->ac.f32_1,
LLVMBuildFAdd(ctx->builder, coord[0], coord[1], ""), "");
LLVMValueRef result = ac_build_gather_values(&ctx->ac, coord, num_components);
return LLVMBuildBitCast(ctx->builder, result, type, "");
}
static LLVMValueRef
load_patch_vertices_in(struct ac_shader_abi *abi)
{
struct nir_to_llvm_context *ctx = nir_to_llvm_context_from_abi(abi);
return LLVMConstInt(ctx->ac.i32, ctx->options->key.tcs.input_vertices, false);
}
static void visit_intrinsic(struct ac_nir_context *ctx,
nir_intrinsic_instr *instr)
{
LLVMValueRef result = NULL;
switch (instr->intrinsic) {
case nir_intrinsic_ballot:
result = ac_build_ballot(&ctx->ac, get_src(ctx, instr->src[0]));
break;
case nir_intrinsic_read_invocation:
case nir_intrinsic_read_first_invocation: {
LLVMValueRef args[2];
/* Value */
args[0] = get_src(ctx, instr->src[0]);
unsigned num_args;
const char *intr_name;
if (instr->intrinsic == nir_intrinsic_read_invocation) {
num_args = 2;
intr_name = "llvm.amdgcn.readlane";
/* Invocation */
args[1] = get_src(ctx, instr->src[1]);
} else {
num_args = 1;
intr_name = "llvm.amdgcn.readfirstlane";
}
/* We currently have no other way to prevent LLVM from lifting the icmp
* calls to a dominating basic block.
*/
ac_build_optimization_barrier(&ctx->ac, &args[0]);
result = ac_build_intrinsic(&ctx->ac, intr_name,
ctx->ac.i32, args, num_args,
AC_FUNC_ATTR_READNONE |
AC_FUNC_ATTR_CONVERGENT);
break;
}
case nir_intrinsic_load_subgroup_invocation:
result = ac_get_thread_id(&ctx->ac);
break;
case nir_intrinsic_load_work_group_id: {
LLVMValueRef values[3];
for (int i = 0; i < 3; i++) {
values[i] = ctx->nctx->workgroup_ids[i] ?
ctx->nctx->workgroup_ids[i] : ctx->ac.i32_0;
}
result = ac_build_gather_values(&ctx->ac, values, 3);
break;
}
case nir_intrinsic_load_base_vertex: {
result = ctx->abi->base_vertex;
break;
}
case nir_intrinsic_load_vertex_id_zero_base: {
result = ctx->abi->vertex_id;
break;
}
case nir_intrinsic_load_local_invocation_id: {
result = ctx->nctx->local_invocation_ids;
break;
}
case nir_intrinsic_load_base_instance:
result = ctx->abi->start_instance;
break;
case nir_intrinsic_load_draw_id:
result = ctx->abi->draw_id;
break;
case nir_intrinsic_load_view_index:
result = ctx->nctx->view_index ? ctx->nctx->view_index : ctx->ac.i32_0;
break;
case nir_intrinsic_load_invocation_id:
if (ctx->stage == MESA_SHADER_TESS_CTRL)
result = unpack_param(&ctx->ac, ctx->abi->tcs_rel_ids, 8, 5);
else
result = ctx->abi->gs_invocation_id;
break;
case nir_intrinsic_load_primitive_id:
if (ctx->stage == MESA_SHADER_GEOMETRY) {
result = ctx->abi->gs_prim_id;
} else if (ctx->stage == MESA_SHADER_TESS_CTRL) {
result = ctx->abi->tcs_patch_id;
} else if (ctx->stage == MESA_SHADER_TESS_EVAL) {
result = ctx->abi->tes_patch_id;
} else
fprintf(stderr, "Unknown primitive id intrinsic: %d", ctx->stage);
break;
case nir_intrinsic_load_sample_id:
result = unpack_param(&ctx->ac, ctx->abi->ancillary, 8, 4);
break;
case nir_intrinsic_load_sample_pos:
result = load_sample_pos(ctx);
break;
case nir_intrinsic_load_sample_mask_in:
if (ctx->nctx)
result = load_sample_mask_in(ctx);
else
result = ctx->abi->sample_coverage;
break;
case nir_intrinsic_load_frag_coord: {
LLVMValueRef values[4] = {
ctx->abi->frag_pos[0],
ctx->abi->frag_pos[1],
ctx->abi->frag_pos[2],
ac_build_fdiv(&ctx->ac, ctx->ac.f32_1, ctx->abi->frag_pos[3])
};
result = ac_build_gather_values(&ctx->ac, values, 4);
break;
}
case nir_intrinsic_load_front_face:
result = ctx->abi->front_face;
break;
case nir_intrinsic_load_helper_invocation:
result = visit_load_helper_invocation(ctx);
break;
case nir_intrinsic_load_instance_id:
result = ctx->abi->instance_id;
break;
case nir_intrinsic_load_num_work_groups:
result = ctx->nctx->num_work_groups;
break;
case nir_intrinsic_load_local_invocation_index:
result = visit_load_local_invocation_index(ctx->nctx);
break;
case nir_intrinsic_load_push_constant:
result = visit_load_push_constant(ctx->nctx, instr);
break;
case nir_intrinsic_vulkan_resource_index:
result = visit_vulkan_resource_index(ctx->nctx, instr);
break;
case nir_intrinsic_vulkan_resource_reindex:
result = visit_vulkan_resource_reindex(ctx->nctx, instr);
break;
case nir_intrinsic_store_ssbo:
visit_store_ssbo(ctx, instr);
break;
case nir_intrinsic_load_ssbo:
result = visit_load_buffer(ctx, instr);
break;
case nir_intrinsic_ssbo_atomic_add:
case nir_intrinsic_ssbo_atomic_imin:
case nir_intrinsic_ssbo_atomic_umin:
case nir_intrinsic_ssbo_atomic_imax:
case nir_intrinsic_ssbo_atomic_umax:
case nir_intrinsic_ssbo_atomic_and:
case nir_intrinsic_ssbo_atomic_or:
case nir_intrinsic_ssbo_atomic_xor:
case nir_intrinsic_ssbo_atomic_exchange:
case nir_intrinsic_ssbo_atomic_comp_swap:
result = visit_atomic_ssbo(ctx, instr);
break;
case nir_intrinsic_load_ubo:
result = visit_load_ubo_buffer(ctx, instr);
break;
case nir_intrinsic_get_buffer_size:
result = visit_get_buffer_size(ctx, instr);
break;
case nir_intrinsic_load_var:
result = visit_load_var(ctx, instr);
break;
case nir_intrinsic_store_var:
visit_store_var(ctx, instr);
break;
case nir_intrinsic_image_load:
result = visit_image_load(ctx, instr);
break;
case nir_intrinsic_image_store:
visit_image_store(ctx, instr);
break;
case nir_intrinsic_image_atomic_add:
case nir_intrinsic_image_atomic_min:
case nir_intrinsic_image_atomic_max:
case nir_intrinsic_image_atomic_and:
case nir_intrinsic_image_atomic_or:
case nir_intrinsic_image_atomic_xor:
case nir_intrinsic_image_atomic_exchange:
case nir_intrinsic_image_atomic_comp_swap:
result = visit_image_atomic(ctx, instr);
break;
case nir_intrinsic_image_size:
result = visit_image_size(ctx, instr);
break;
case nir_intrinsic_discard:
case nir_intrinsic_discard_if:
emit_discard(ctx, instr);
break;
case nir_intrinsic_memory_barrier:
case nir_intrinsic_group_memory_barrier:
case nir_intrinsic_memory_barrier_atomic_counter:
case nir_intrinsic_memory_barrier_buffer:
case nir_intrinsic_memory_barrier_image:
case nir_intrinsic_memory_barrier_shared:
emit_membar(ctx->nctx, instr);
break;
case nir_intrinsic_barrier:
emit_barrier(&ctx->ac, ctx->stage);
break;
case nir_intrinsic_var_atomic_add:
case nir_intrinsic_var_atomic_imin:
case nir_intrinsic_var_atomic_umin:
case nir_intrinsic_var_atomic_imax:
case nir_intrinsic_var_atomic_umax:
case nir_intrinsic_var_atomic_and:
case nir_intrinsic_var_atomic_or:
case nir_intrinsic_var_atomic_xor:
case nir_intrinsic_var_atomic_exchange:
case nir_intrinsic_var_atomic_comp_swap:
result = visit_var_atomic(ctx->nctx, instr);
break;
case nir_intrinsic_interp_var_at_centroid:
case nir_intrinsic_interp_var_at_sample:
case nir_intrinsic_interp_var_at_offset:
result = visit_interp(ctx->nctx, instr);
break;
case nir_intrinsic_emit_vertex:
ctx->abi->emit_vertex(ctx->abi, nir_intrinsic_stream_id(instr), ctx->outputs);
break;
case nir_intrinsic_end_primitive:
ctx->abi->emit_primitive(ctx->abi, nir_intrinsic_stream_id(instr));
break;
case nir_intrinsic_load_tess_coord: {
LLVMTypeRef type = ctx->nctx ?
get_def_type(ctx->nctx->nir, &instr->dest.ssa) :
NULL;
result = ctx->abi->load_tess_coord(ctx->abi, type, instr->num_components);
break;
}
case nir_intrinsic_load_tess_level_outer:
result = ctx->abi->load_tess_level(ctx->abi, VARYING_SLOT_TESS_LEVEL_OUTER);
break;
case nir_intrinsic_load_tess_level_inner:
result = ctx->abi->load_tess_level(ctx->abi, VARYING_SLOT_TESS_LEVEL_INNER);
break;
case nir_intrinsic_load_patch_vertices_in:
result = ctx->abi->load_patch_vertices_in(ctx->abi);
break;
case nir_intrinsic_vote_all: {
LLVMValueRef tmp = ac_build_vote_all(&ctx->ac, get_src(ctx, instr->src[0]));
result = LLVMBuildSExt(ctx->ac.builder, tmp, ctx->ac.i32, "");
break;
}
case nir_intrinsic_vote_any: {
LLVMValueRef tmp = ac_build_vote_any(&ctx->ac, get_src(ctx, instr->src[0]));
result = LLVMBuildSExt(ctx->ac.builder, tmp, ctx->ac.i32, "");
break;
}
case nir_intrinsic_vote_eq: {
LLVMValueRef tmp = ac_build_vote_eq(&ctx->ac, get_src(ctx, instr->src[0]));
result = LLVMBuildSExt(ctx->ac.builder, tmp, ctx->ac.i32, "");
break;
}
default:
fprintf(stderr, "Unknown intrinsic: ");
nir_print_instr(&instr->instr, stderr);
fprintf(stderr, "\n");
break;
}
if (result) {
_mesa_hash_table_insert(ctx->defs, &instr->dest.ssa, result);
}
}
static LLVMValueRef radv_load_ssbo(struct ac_shader_abi *abi,
LLVMValueRef buffer_ptr, bool write)
{
struct nir_to_llvm_context *ctx = nir_to_llvm_context_from_abi(abi);
if (write && ctx->stage == MESA_SHADER_FRAGMENT)
ctx->shader_info->fs.writes_memory = true;
return LLVMBuildLoad(ctx->builder, buffer_ptr, "");
}
static LLVMValueRef radv_load_ubo(struct ac_shader_abi *abi, LLVMValueRef buffer_ptr)
{
struct nir_to_llvm_context *ctx = nir_to_llvm_context_from_abi(abi);
LLVMValueRef result;
LLVMSetMetadata(buffer_ptr, ctx->ac.uniform_md_kind, ctx->ac.empty_md);
result = LLVMBuildLoad(ctx->builder, buffer_ptr, "");
LLVMSetMetadata(result, ctx->ac.invariant_load_md_kind, ctx->ac.empty_md);
return result;
}
static LLVMValueRef radv_get_sampler_desc(struct ac_shader_abi *abi,
unsigned descriptor_set,
unsigned base_index,
unsigned constant_index,
LLVMValueRef index,
enum ac_descriptor_type desc_type,
bool image, bool write)
{
struct nir_to_llvm_context *ctx = nir_to_llvm_context_from_abi(abi);
LLVMValueRef list = ctx->descriptor_sets[descriptor_set];
struct radv_descriptor_set_layout *layout = ctx->options->layout->set[descriptor_set].layout;
struct radv_descriptor_set_binding_layout *binding = layout->binding + base_index;
unsigned offset = binding->offset;
unsigned stride = binding->size;
unsigned type_size;
LLVMBuilderRef builder = ctx->builder;
LLVMTypeRef type;
assert(base_index < layout->binding_count);
if (write && ctx->stage == MESA_SHADER_FRAGMENT)
ctx->shader_info->fs.writes_memory = true;
switch (desc_type) {
case AC_DESC_IMAGE:
type = ctx->ac.v8i32;
type_size = 32;
break;
case AC_DESC_FMASK:
type = ctx->ac.v8i32;
offset += 32;
type_size = 32;
break;
case AC_DESC_SAMPLER:
type = ctx->ac.v4i32;
if (binding->type == VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER)
offset += 64;
type_size = 16;
break;
case AC_DESC_BUFFER:
type = ctx->ac.v4i32;
type_size = 16;
break;
default:
unreachable("invalid desc_type\n");
}
offset += constant_index * stride;
if (desc_type == AC_DESC_SAMPLER && binding->immutable_samplers_offset &&
(!index || binding->immutable_samplers_equal)) {
if (binding->immutable_samplers_equal)
constant_index = 0;
const uint32_t *samplers = radv_immutable_samplers(layout, binding);
LLVMValueRef constants[] = {
LLVMConstInt(ctx->ac.i32, samplers[constant_index * 4 + 0], 0),
LLVMConstInt(ctx->ac.i32, samplers[constant_index * 4 + 1], 0),
LLVMConstInt(ctx->ac.i32, samplers[constant_index * 4 + 2], 0),
LLVMConstInt(ctx->ac.i32, samplers[constant_index * 4 + 3], 0),
};
return ac_build_gather_values(&ctx->ac, constants, 4);
}
assert(stride % type_size == 0);
if (!index)
index = ctx->ac.i32_0;
index = LLVMBuildMul(builder, index, LLVMConstInt(ctx->ac.i32, stride / type_size, 0), "");
list = ac_build_gep0(&ctx->ac, list, LLVMConstInt(ctx->ac.i32, offset, 0));
list = LLVMBuildPointerCast(builder, list, const_array(type, 0), "");
return ac_build_load_to_sgpr(&ctx->ac, list, index);
}
static LLVMValueRef get_sampler_desc(struct ac_nir_context *ctx,
const nir_deref_var *deref,
enum ac_descriptor_type desc_type,
const nir_tex_instr *tex_instr,
bool image, bool write)
{
LLVMValueRef index = NULL;
unsigned constant_index = 0;
unsigned descriptor_set;
unsigned base_index;
if (!deref) {
assert(tex_instr && !image);
descriptor_set = 0;
base_index = tex_instr->sampler_index;
} else {
const nir_deref *tail = &deref->deref;
while (tail->child) {
const nir_deref_array *child = nir_deref_as_array(tail->child);
unsigned array_size = glsl_get_aoa_size(tail->child->type);
if (!array_size)
array_size = 1;
assert(child->deref_array_type != nir_deref_array_type_wildcard);
if (child->deref_array_type == nir_deref_array_type_indirect) {
LLVMValueRef indirect = get_src(ctx, child->indirect);
indirect = LLVMBuildMul(ctx->ac.builder, indirect,
LLVMConstInt(ctx->ac.i32, array_size, false), "");
if (!index)
index = indirect;
else
index = LLVMBuildAdd(ctx->ac.builder, index, indirect, "");
}
constant_index += child->base_offset * array_size;
tail = &child->deref;
}
descriptor_set = deref->var->data.descriptor_set;
base_index = deref->var->data.binding;
}
return ctx->abi->load_sampler_desc(ctx->abi,
descriptor_set,
base_index,
constant_index, index,
desc_type, image, write);
}
static void set_tex_fetch_args(struct ac_llvm_context *ctx,
struct ac_image_args *args,
const nir_tex_instr *instr,
nir_texop op,
LLVMValueRef res_ptr, LLVMValueRef samp_ptr,
LLVMValueRef *param, unsigned count,
unsigned dmask)
{
unsigned is_rect = 0;
bool da = instr->is_array || instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE;
if (op == nir_texop_lod)
da = false;
/* Pad to power of two vector */
while (count < util_next_power_of_two(count))
param[count++] = LLVMGetUndef(ctx->i32);
if (count > 1)
args->addr = ac_build_gather_values(ctx, param, count);
else
args->addr = param[0];
args->resource = res_ptr;
args->sampler = samp_ptr;
if (instr->sampler_dim == GLSL_SAMPLER_DIM_BUF && op == nir_texop_txf) {
args->addr = param[0];
return;
}
args->dmask = dmask;
args->unorm = is_rect;
args->da = da;
}
/* Disable anisotropic filtering if BASE_LEVEL == LAST_LEVEL.
*
* SI-CI:
* If BASE_LEVEL == LAST_LEVEL, the shader must disable anisotropic
* filtering manually. The driver sets img7 to a mask clearing
* MAX_ANISO_RATIO if BASE_LEVEL == LAST_LEVEL. The shader must do:
* s_and_b32 samp0, samp0, img7
*
* VI:
* The ANISO_OVERRIDE sampler field enables this fix in TA.
*/
static LLVMValueRef sici_fix_sampler_aniso(struct ac_nir_context *ctx,
LLVMValueRef res, LLVMValueRef samp)
{
LLVMBuilderRef builder = ctx->ac.builder;
LLVMValueRef img7, samp0;
if (ctx->ac.chip_class >= VI)
return samp;
img7 = LLVMBuildExtractElement(builder, res,
LLVMConstInt(ctx->ac.i32, 7, 0), "");
samp0 = LLVMBuildExtractElement(builder, samp,
LLVMConstInt(ctx->ac.i32, 0, 0), "");
samp0 = LLVMBuildAnd(builder, samp0, img7, "");
return LLVMBuildInsertElement(builder, samp, samp0,
LLVMConstInt(ctx->ac.i32, 0, 0), "");
}
static void tex_fetch_ptrs(struct ac_nir_context *ctx,
nir_tex_instr *instr,
LLVMValueRef *res_ptr, LLVMValueRef *samp_ptr,
LLVMValueRef *fmask_ptr)
{
if (instr->sampler_dim == GLSL_SAMPLER_DIM_BUF)
*res_ptr = get_sampler_desc(ctx, instr->texture, AC_DESC_BUFFER, instr, false, false);
else
*res_ptr = get_sampler_desc(ctx, instr->texture, AC_DESC_IMAGE, instr, false, false);
if (samp_ptr) {
if (instr->sampler)
*samp_ptr = get_sampler_desc(ctx, instr->sampler, AC_DESC_SAMPLER, instr, false, false);
else
*samp_ptr = get_sampler_desc(ctx, instr->texture, AC_DESC_SAMPLER, instr, false, false);
if (instr->sampler_dim < GLSL_SAMPLER_DIM_RECT)
*samp_ptr = sici_fix_sampler_aniso(ctx, *res_ptr, *samp_ptr);
}
if (fmask_ptr && !instr->sampler && (instr->op == nir_texop_txf_ms ||
instr->op == nir_texop_samples_identical))
*fmask_ptr = get_sampler_desc(ctx, instr->texture, AC_DESC_FMASK, instr, false, false);
}
static LLVMValueRef apply_round_slice(struct ac_llvm_context *ctx,
LLVMValueRef coord)
{
coord = ac_to_float(ctx, coord);
coord = ac_build_intrinsic(ctx, "llvm.rint.f32", ctx->f32, &coord, 1, 0);
coord = ac_to_integer(ctx, coord);
return coord;
}
static void visit_tex(struct ac_nir_context *ctx, nir_tex_instr *instr)
{
LLVMValueRef result = NULL;
struct ac_image_args args = { 0 };
unsigned dmask = 0xf;
LLVMValueRef address[16];
LLVMValueRef coords[5];
LLVMValueRef coord = NULL, lod = NULL, comparator = NULL;
LLVMValueRef bias = NULL, offsets = NULL;
LLVMValueRef res_ptr, samp_ptr, fmask_ptr = NULL, sample_index = NULL;
LLVMValueRef ddx = NULL, ddy = NULL;
LLVMValueRef derivs[6];
unsigned chan, count = 0;
unsigned const_src = 0, num_deriv_comp = 0;
bool lod_is_zero = false;
tex_fetch_ptrs(ctx, instr, &res_ptr, &samp_ptr, &fmask_ptr);
for (unsigned i = 0; i < instr->num_srcs; i++) {
switch (instr->src[i].src_type) {
case nir_tex_src_coord:
coord = get_src(ctx, instr->src[i].src);
break;
case nir_tex_src_projector:
break;
case nir_tex_src_comparator:
comparator = get_src(ctx, instr->src[i].src);
break;
case nir_tex_src_offset:
offsets = get_src(ctx, instr->src[i].src);
const_src = i;
break;
case nir_tex_src_bias:
bias = get_src(ctx, instr->src[i].src);
break;
case nir_tex_src_lod: {
nir_const_value *val = nir_src_as_const_value(instr->src[i].src);
if (val && val->i32[0] == 0)
lod_is_zero = true;
lod = get_src(ctx, instr->src[i].src);
break;
}
case nir_tex_src_ms_index:
sample_index = get_src(ctx, instr->src[i].src);
break;
case nir_tex_src_ms_mcs:
break;
case nir_tex_src_ddx:
ddx = get_src(ctx, instr->src[i].src);
num_deriv_comp = instr->src[i].src.ssa->num_components;
break;
case nir_tex_src_ddy:
ddy = get_src(ctx, instr->src[i].src);
break;
case nir_tex_src_texture_offset:
case nir_tex_src_sampler_offset:
case nir_tex_src_plane:
default:
break;
}
}
if (instr->op == nir_texop_txs && instr->sampler_dim == GLSL_SAMPLER_DIM_BUF) {
result = get_buffer_size(ctx, res_ptr, true);
goto write_result;
}
if (instr->op == nir_texop_texture_samples) {
LLVMValueRef res, samples, is_msaa;
res = LLVMBuildBitCast(ctx->ac.builder, res_ptr, ctx->ac.v8i32, "");
samples = LLVMBuildExtractElement(ctx->ac.builder, res,
LLVMConstInt(ctx->ac.i32, 3, false), "");
is_msaa = LLVMBuildLShr(ctx->ac.builder, samples,
LLVMConstInt(ctx->ac.i32, 28, false), "");
is_msaa = LLVMBuildAnd(ctx->ac.builder, is_msaa,
LLVMConstInt(ctx->ac.i32, 0xe, false), "");
is_msaa = LLVMBuildICmp(ctx->ac.builder, LLVMIntEQ, is_msaa,
LLVMConstInt(ctx->ac.i32, 0xe, false), "");
samples = LLVMBuildLShr(ctx->ac.builder, samples,
LLVMConstInt(ctx->ac.i32, 16, false), "");
samples = LLVMBuildAnd(ctx->ac.builder, samples,
LLVMConstInt(ctx->ac.i32, 0xf, false), "");
samples = LLVMBuildShl(ctx->ac.builder, ctx->ac.i32_1,
samples, "");
samples = LLVMBuildSelect(ctx->ac.builder, is_msaa, samples,
ctx->ac.i32_1, "");
result = samples;
goto write_result;
}
if (coord)
for (chan = 0; chan < instr->coord_components; chan++)
coords[chan] = ac_llvm_extract_elem(&ctx->ac, coord, chan);
if (offsets && instr->op != nir_texop_txf) {
LLVMValueRef offset[3], pack;
for (chan = 0; chan < 3; ++chan)
offset[chan] = ctx->ac.i32_0;
args.offset = true;
for (chan = 0; chan < ac_get_llvm_num_components(offsets); chan++) {
offset[chan] = ac_llvm_extract_elem(&ctx->ac, offsets, chan);
offset[chan] = LLVMBuildAnd(ctx->ac.builder, offset[chan],
LLVMConstInt(ctx->ac.i32, 0x3f, false), "");
if (chan)
offset[chan] = LLVMBuildShl(ctx->ac.builder, offset[chan],
LLVMConstInt(ctx->ac.i32, chan * 8, false), "");
}
pack = LLVMBuildOr(ctx->ac.builder, offset[0], offset[1], "");
pack = LLVMBuildOr(ctx->ac.builder, pack, offset[2], "");
address[count++] = pack;
}
/* pack LOD bias value */
if (instr->op == nir_texop_txb && bias) {
address[count++] = bias;
}
/* Pack depth comparison value */
if (instr->is_shadow && comparator) {
LLVMValueRef z = ac_to_float(&ctx->ac,
ac_llvm_extract_elem(&ctx->ac, comparator, 0));
/* TC-compatible HTILE on radeonsi promotes Z16 and Z24 to Z32_FLOAT,
* so the depth comparison value isn't clamped for Z16 and
* Z24 anymore. Do it manually here.
*
* It's unnecessary if the original texture format was
* Z32_FLOAT, but we don't know that here.
*/
if (ctx->ac.chip_class == VI && ctx->abi->clamp_shadow_reference)
z = ac_build_clamp(&ctx->ac, z);
address[count++] = z;
}
/* pack derivatives */
if (ddx || ddy) {
int num_src_deriv_channels, num_dest_deriv_channels;
switch (instr->sampler_dim) {
case GLSL_SAMPLER_DIM_3D:
case GLSL_SAMPLER_DIM_CUBE:
num_deriv_comp = 3;
num_src_deriv_channels = 3;
num_dest_deriv_channels = 3;
break;
case GLSL_SAMPLER_DIM_2D:
default:
num_src_deriv_channels = 2;
num_dest_deriv_channels = 2;
num_deriv_comp = 2;
break;
case GLSL_SAMPLER_DIM_1D:
num_src_deriv_channels = 1;
if (ctx->ac.chip_class >= GFX9) {
num_dest_deriv_channels = 2;
num_deriv_comp = 2;
} else {
num_dest_deriv_channels = 1;
num_deriv_comp = 1;
}
break;
}
for (unsigned i = 0; i < num_src_deriv_channels; i++) {
derivs[i] = ac_to_float(&ctx->ac, ac_llvm_extract_elem(&ctx->ac, ddx, i));
derivs[num_dest_deriv_channels + i] = ac_to_float(&ctx->ac, ac_llvm_extract_elem(&ctx->ac, ddy, i));
}
for (unsigned i = num_src_deriv_channels; i < num_dest_deriv_channels; i++) {
derivs[i] = ctx->ac.f32_0;
derivs[num_dest_deriv_channels + i] = ctx->ac.f32_0;
}
}
if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE && coord) {
for (chan = 0; chan < instr->coord_components; chan++)
coords[chan] = ac_to_float(&ctx->ac, coords[chan]);
if (instr->coord_components == 3)
coords[3] = LLVMGetUndef(ctx->ac.f32);
ac_prepare_cube_coords(&ctx->ac,
instr->op == nir_texop_txd, instr->is_array,
instr->op == nir_texop_lod, coords, derivs);
if (num_deriv_comp)
num_deriv_comp--;
}
if (ddx || ddy) {
for (unsigned i = 0; i < num_deriv_comp * 2; i++)
address[count++] = derivs[i];
}
/* Pack texture coordinates */
if (coord) {
address[count++] = coords[0];
if (instr->coord_components > 1) {
if (instr->sampler_dim == GLSL_SAMPLER_DIM_1D && instr->is_array && instr->op != nir_texop_txf) {
coords[1] = apply_round_slice(&ctx->ac, coords[1]);
}
address[count++] = coords[1];
}
if (instr->coord_components > 2) {
/* This seems like a bit of a hack - but it passes Vulkan CTS with it */
if (instr->sampler_dim != GLSL_SAMPLER_DIM_3D &&
instr->sampler_dim != GLSL_SAMPLER_DIM_CUBE &&
instr->op != nir_texop_txf && instr->op != nir_texop_txf_ms) {
coords[2] = apply_round_slice(&ctx->ac, coords[2]);
}
address[count++] = coords[2];
}
if (ctx->ac.chip_class >= GFX9) {
LLVMValueRef filler;
if (instr->op == nir_texop_txf)
filler = ctx->ac.i32_0;
else
filler = LLVMConstReal(ctx->ac.f32, 0.5);
if (instr->sampler_dim == GLSL_SAMPLER_DIM_1D) {
/* No nir_texop_lod, because it does not take a slice
* even with array textures. */
if (instr->is_array && instr->op != nir_texop_lod ) {
address[count] = address[count - 1];
address[count - 1] = filler;
count++;
} else
address[count++] = filler;
}
}
}
/* Pack LOD */
if (lod && ((instr->op == nir_texop_txl && !lod_is_zero) ||
instr->op == nir_texop_txf)) {
address[count++] = lod;
} else if (instr->op == nir_texop_txf_ms && sample_index) {
address[count++] = sample_index;
} else if(instr->op == nir_texop_txs) {
count = 0;
if (lod)
address[count++] = lod;
else
address[count++] = ctx->ac.i32_0;
}
for (chan = 0; chan < count; chan++) {
address[chan] = LLVMBuildBitCast(ctx->ac.builder,
address[chan], ctx->ac.i32, "");
}
if (instr->op == nir_texop_samples_identical) {
LLVMValueRef txf_address[4];
struct ac_image_args txf_args = { 0 };
unsigned txf_count = count;
memcpy(txf_address, address, sizeof(txf_address));
if (!instr->is_array)
txf_address[2] = ctx->ac.i32_0;
txf_address[3] = ctx->ac.i32_0;
set_tex_fetch_args(&ctx->ac, &txf_args, instr, nir_texop_txf,
fmask_ptr, NULL,
txf_address, txf_count, 0xf);
result = build_tex_intrinsic(ctx, instr, false, &txf_args);
result = LLVMBuildExtractElement(ctx->ac.builder, result, ctx->ac.i32_0, "");
result = emit_int_cmp(&ctx->ac, LLVMIntEQ, result, ctx->ac.i32_0);
goto write_result;
}
if (instr->sampler_dim == GLSL_SAMPLER_DIM_MS &&
instr->op != nir_texop_txs) {
unsigned sample_chan = instr->is_array ? 3 : 2;
address[sample_chan] = adjust_sample_index_using_fmask(&ctx->ac,
address[0],
address[1],
instr->is_array ? address[2] : NULL,
address[sample_chan],
fmask_ptr);
}
if (offsets && instr->op == nir_texop_txf) {
nir_const_value *const_offset =
nir_src_as_const_value(instr->src[const_src].src);
int num_offsets = instr->src[const_src].src.ssa->num_components;
assert(const_offset);
num_offsets = MIN2(num_offsets, instr->coord_components);
if (num_offsets > 2)
address[2] = LLVMBuildAdd(ctx->ac.builder,
address[2], LLVMConstInt(ctx->ac.i32, const_offset->i32[2], false), "");
if (num_offsets > 1)
address[1] = LLVMBuildAdd(ctx->ac.builder,
address[1], LLVMConstInt(ctx->ac.i32, const_offset->i32[1], false), "");
address[0] = LLVMBuildAdd(ctx->ac.builder,
address[0], LLVMConstInt(ctx->ac.i32, const_offset->i32[0], false), "");
}
/* TODO TG4 support */
if (instr->op == nir_texop_tg4) {
if (instr->is_shadow)
dmask = 1;
else
dmask = 1 << instr->component;
}
set_tex_fetch_args(&ctx->ac, &args, instr, instr->op,
res_ptr, samp_ptr, address, count, dmask);
result = build_tex_intrinsic(ctx, instr, lod_is_zero, &args);
if (instr->op == nir_texop_query_levels)
result = LLVMBuildExtractElement(ctx->ac.builder, result, LLVMConstInt(ctx->ac.i32, 3, false), "");
else if (instr->is_shadow && instr->is_new_style_shadow &&
instr->op != nir_texop_txs && instr->op != nir_texop_lod &&
instr->op != nir_texop_tg4)
result = LLVMBuildExtractElement(ctx->ac.builder, result, ctx->ac.i32_0, "");
else if (instr->op == nir_texop_txs &&
instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE &&
instr->is_array) {
LLVMValueRef two = LLVMConstInt(ctx->ac.i32, 2, false);
LLVMValueRef six = LLVMConstInt(ctx->ac.i32, 6, false);
LLVMValueRef z = LLVMBuildExtractElement(ctx->ac.builder, result, two, "");
z = LLVMBuildSDiv(ctx->ac.builder, z, six, "");
result = LLVMBuildInsertElement(ctx->ac.builder, result, z, two, "");
} else if (ctx->ac.chip_class >= GFX9 &&
instr->op == nir_texop_txs &&
instr->sampler_dim == GLSL_SAMPLER_DIM_1D &&
instr->is_array) {
LLVMValueRef two = LLVMConstInt(ctx->ac.i32, 2, false);
LLVMValueRef layers = LLVMBuildExtractElement(ctx->ac.builder, result, two, "");
result = LLVMBuildInsertElement(ctx->ac.builder, result, layers,
ctx->ac.i32_1, "");
} else if (instr->dest.ssa.num_components != 4)
result = trim_vector(&ctx->ac, result, instr->dest.ssa.num_components);
write_result:
if (result) {
assert(instr->dest.is_ssa);
result = ac_to_integer(&ctx->ac, result);
_mesa_hash_table_insert(ctx->defs, &instr->dest.ssa, result);
}
}
static void visit_phi(struct ac_nir_context *ctx, nir_phi_instr *instr)
{
LLVMTypeRef type = get_def_type(ctx, &instr->dest.ssa);
LLVMValueRef result = LLVMBuildPhi(ctx->ac.builder, type, "");
_mesa_hash_table_insert(ctx->defs, &instr->dest.ssa, result);
_mesa_hash_table_insert(ctx->phis, instr, result);
}
static void visit_post_phi(struct ac_nir_context *ctx,
nir_phi_instr *instr,
LLVMValueRef llvm_phi)
{
nir_foreach_phi_src(src, instr) {
LLVMBasicBlockRef block = get_block(ctx, src->pred);
LLVMValueRef llvm_src = get_src(ctx, src->src);
LLVMAddIncoming(llvm_phi, &llvm_src, &block, 1);
}
}
static void phi_post_pass(struct ac_nir_context *ctx)
{
struct hash_entry *entry;
hash_table_foreach(ctx->phis, entry) {
visit_post_phi(ctx, (nir_phi_instr*)entry->key,
(LLVMValueRef)entry->data);
}
}
static void visit_ssa_undef(struct ac_nir_context *ctx,
const nir_ssa_undef_instr *instr)
{
unsigned num_components = instr->def.num_components;
LLVMTypeRef type = LLVMIntTypeInContext(ctx->ac.context, instr->def.bit_size);
LLVMValueRef undef;
if (num_components == 1)
undef = LLVMGetUndef(type);
else {
undef = LLVMGetUndef(LLVMVectorType(type, num_components));
}
_mesa_hash_table_insert(ctx->defs, &instr->def, undef);
}
static void visit_jump(struct ac_llvm_context *ctx,
const nir_jump_instr *instr)
{
switch (instr->type) {
case nir_jump_break:
ac_build_break(ctx);
break;
case nir_jump_continue:
ac_build_continue(ctx);
break;
default:
fprintf(stderr, "Unknown NIR jump instr: ");
nir_print_instr(&instr->instr, stderr);
fprintf(stderr, "\n");
abort();
}
}
static void visit_cf_list(struct ac_nir_context *ctx,
struct exec_list *list);
static void visit_block(struct ac_nir_context *ctx, nir_block *block)
{
LLVMBasicBlockRef llvm_block = LLVMGetInsertBlock(ctx->ac.builder);
nir_foreach_instr(instr, block)
{
switch (instr->type) {
case nir_instr_type_alu:
visit_alu(ctx, nir_instr_as_alu(instr));
break;
case nir_instr_type_load_const:
visit_load_const(ctx, nir_instr_as_load_const(instr));
break;
case nir_instr_type_intrinsic:
visit_intrinsic(ctx, nir_instr_as_intrinsic(instr));
break;
case nir_instr_type_tex:
visit_tex(ctx, nir_instr_as_tex(instr));
break;
case nir_instr_type_phi:
visit_phi(ctx, nir_instr_as_phi(instr));
break;
case nir_instr_type_ssa_undef:
visit_ssa_undef(ctx, nir_instr_as_ssa_undef(instr));
break;
case nir_instr_type_jump:
visit_jump(&ctx->ac, nir_instr_as_jump(instr));
break;
default:
fprintf(stderr, "Unknown NIR instr type: ");
nir_print_instr(instr, stderr);
fprintf(stderr, "\n");
abort();
}
}
_mesa_hash_table_insert(ctx->defs, block, llvm_block);
}
static void visit_if(struct ac_nir_context *ctx, nir_if *if_stmt)
{
LLVMValueRef value = get_src(ctx, if_stmt->condition);
nir_block *then_block =
(nir_block *) exec_list_get_head(&if_stmt->then_list);
ac_build_uif(&ctx->ac, value, then_block->index);
visit_cf_list(ctx, &if_stmt->then_list);
if (!exec_list_is_empty(&if_stmt->else_list)) {
nir_block *else_block =
(nir_block *) exec_list_get_head(&if_stmt->else_list);
ac_build_else(&ctx->ac, else_block->index);
visit_cf_list(ctx, &if_stmt->else_list);
}
ac_build_endif(&ctx->ac, then_block->index);
}
static void visit_loop(struct ac_nir_context *ctx, nir_loop *loop)
{
nir_block *first_loop_block =
(nir_block *) exec_list_get_head(&loop->body);
ac_build_bgnloop(&ctx->ac, first_loop_block->index);
visit_cf_list(ctx, &loop->body);
ac_build_endloop(&ctx->ac, first_loop_block->index);
}
static void visit_cf_list(struct ac_nir_context *ctx,
struct exec_list *list)
{
foreach_list_typed(nir_cf_node, node, node, list)
{
switch (node->type) {
case nir_cf_node_block:
visit_block(ctx, nir_cf_node_as_block(node));
break;
case nir_cf_node_if:
visit_if(ctx, nir_cf_node_as_if(node));
break;
case nir_cf_node_loop:
visit_loop(ctx, nir_cf_node_as_loop(node));
break;
default:
assert(0);
}
}
}
static void
handle_vs_input_decl(struct nir_to_llvm_context *ctx,
struct nir_variable *variable)
{
LLVMValueRef t_list_ptr = ctx->vertex_buffers;
LLVMValueRef t_offset;
LLVMValueRef t_list;
LLVMValueRef input;
LLVMValueRef buffer_index;
int index = variable->data.location - VERT_ATTRIB_GENERIC0;
int idx = variable->data.location;
unsigned attrib_count = glsl_count_attribute_slots(variable->type, true);
variable->data.driver_location = idx * 4;
for (unsigned i = 0; i < attrib_count; ++i, ++idx) {
if (ctx->options->key.vs.instance_rate_inputs & (1u << (index + i))) {
buffer_index = LLVMBuildAdd(ctx->builder, ctx->abi.instance_id,
ctx->abi.start_instance, "");
if (ctx->options->key.vs.as_ls) {
ctx->shader_info->vs.vgpr_comp_cnt =
MAX2(2, ctx->shader_info->vs.vgpr_comp_cnt);
} else {
ctx->shader_info->vs.vgpr_comp_cnt =
MAX2(1, ctx->shader_info->vs.vgpr_comp_cnt);
}
} else
buffer_index = LLVMBuildAdd(ctx->builder, ctx->abi.vertex_id,
ctx->abi.base_vertex, "");
t_offset = LLVMConstInt(ctx->ac.i32, index + i, false);
t_list = ac_build_load_to_sgpr(&ctx->ac, t_list_ptr, t_offset);
input = ac_build_buffer_load_format(&ctx->ac, t_list,
buffer_index,
ctx->ac.i32_0,
true);
for (unsigned chan = 0; chan < 4; chan++) {
LLVMValueRef llvm_chan = LLVMConstInt(ctx->ac.i32, chan, false);
ctx->inputs[radeon_llvm_reg_index_soa(idx, chan)] =
ac_to_integer(&ctx->ac, LLVMBuildExtractElement(ctx->builder,
input, llvm_chan, ""));
}
}
}
static void interp_fs_input(struct nir_to_llvm_context *ctx,
unsigned attr,
LLVMValueRef interp_param,
LLVMValueRef prim_mask,
LLVMValueRef result[4])
{
LLVMValueRef attr_number;
unsigned chan;
LLVMValueRef i, j;
bool interp = interp_param != NULL;
attr_number = LLVMConstInt(ctx->ac.i32, attr, false);
/* fs.constant returns the param from the middle vertex, so it's not
* really useful for flat shading. It's meant to be used for custom
* interpolation (but the intrinsic can't fetch from the other two
* vertices).
*
* Luckily, it doesn't matter, because we rely on the FLAT_SHADE state
* to do the right thing. The only reason we use fs.constant is that
* fs.interp cannot be used on integers, because they can be equal
* to NaN.
*/
if (interp) {
interp_param = LLVMBuildBitCast(ctx->builder, interp_param,
ctx->ac.v2f32, "");
i = LLVMBuildExtractElement(ctx->builder, interp_param,
ctx->ac.i32_0, "");
j = LLVMBuildExtractElement(ctx->builder, interp_param,
ctx->ac.i32_1, "");
}
for (chan = 0; chan < 4; chan++) {
LLVMValueRef llvm_chan = LLVMConstInt(ctx->ac.i32, chan, false);
if (interp) {
result[chan] = ac_build_fs_interp(&ctx->ac,
llvm_chan,
attr_number,
prim_mask, i, j);
} else {
result[chan] = ac_build_fs_interp_mov(&ctx->ac,
LLVMConstInt(ctx->ac.i32, 2, false),
llvm_chan,
attr_number,
prim_mask);
}
}
}
static void
handle_fs_input_decl(struct nir_to_llvm_context *ctx,
struct nir_variable *variable)
{
int idx = variable->data.location;
unsigned attrib_count = glsl_count_attribute_slots(variable->type, false);
LLVMValueRef interp;
variable->data.driver_location = idx * 4;
ctx->input_mask |= ((1ull << attrib_count) - 1) << variable->data.location;
if (glsl_get_base_type(glsl_without_array(variable->type)) == GLSL_TYPE_FLOAT) {
unsigned interp_type;
if (variable->data.sample) {
interp_type = INTERP_SAMPLE;
ctx->shader_info->info.ps.force_persample = true;
} else if (variable->data.centroid)
interp_type = INTERP_CENTROID;
else
interp_type = INTERP_CENTER;
interp = lookup_interp_param(ctx, variable->data.interpolation, interp_type);
} else
interp = NULL;
for (unsigned i = 0; i < attrib_count; ++i)
ctx->inputs[radeon_llvm_reg_index_soa(idx + i, 0)] = interp;
}
static void
handle_vs_inputs(struct nir_to_llvm_context *ctx,
struct nir_shader *nir) {
nir_foreach_variable(variable, &nir->inputs)
handle_vs_input_decl(ctx, variable);
}
static void
prepare_interp_optimize(struct nir_to_llvm_context *ctx,
struct nir_shader *nir)
{
if (!ctx->options->key.fs.multisample)
return;
bool uses_center = false;
bool uses_centroid = false;
nir_foreach_variable(variable, &nir->inputs) {
if (glsl_get_base_type(glsl_without_array(variable->type)) != GLSL_TYPE_FLOAT ||
variable->data.sample)
continue;
if (variable->data.centroid)
uses_centroid = true;
else
uses_center = true;
}
if (uses_center && uses_centroid) {
LLVMValueRef sel = LLVMBuildICmp(ctx->builder, LLVMIntSLT, ctx->prim_mask, ctx->ac.i32_0, "");
ctx->persp_centroid = LLVMBuildSelect(ctx->builder, sel, ctx->persp_center, ctx->persp_centroid, "");
ctx->linear_centroid = LLVMBuildSelect(ctx->builder, sel, ctx->linear_center, ctx->linear_centroid, "");
}
}
static void
handle_fs_inputs(struct nir_to_llvm_context *ctx,
struct nir_shader *nir)
{
prepare_interp_optimize(ctx, nir);
nir_foreach_variable(variable, &nir->inputs)
handle_fs_input_decl(ctx, variable);
unsigned index = 0;
if (ctx->shader_info->info.ps.uses_input_attachments ||
ctx->shader_info->info.needs_multiview_view_index)
ctx->input_mask |= 1ull << VARYING_SLOT_LAYER;
for (unsigned i = 0; i < RADEON_LLVM_MAX_INPUTS; ++i) {
LLVMValueRef interp_param;
LLVMValueRef *inputs = ctx->inputs +radeon_llvm_reg_index_soa(i, 0);
if (!(ctx->input_mask & (1ull << i)))
continue;
if (i >= VARYING_SLOT_VAR0 || i == VARYING_SLOT_PNTC ||
i == VARYING_SLOT_PRIMITIVE_ID || i == VARYING_SLOT_LAYER) {
interp_param = *inputs;
interp_fs_input(ctx, index, interp_param, ctx->prim_mask,
inputs);
if (!interp_param)
ctx->shader_info->fs.flat_shaded_mask |= 1u << index;
++index;
} else if (i == VARYING_SLOT_POS) {
for(int i = 0; i < 3; ++i)
inputs[i] = ctx->abi.frag_pos[i];
inputs[3] = ac_build_fdiv(&ctx->ac, ctx->ac.f32_1,
ctx->abi.frag_pos[3]);
}
}
ctx->shader_info->fs.num_interp = index;
if (ctx->input_mask & (1 << VARYING_SLOT_PNTC))
ctx->shader_info->fs.has_pcoord = true;
if (ctx->input_mask & (1 << VARYING_SLOT_PRIMITIVE_ID))
ctx->shader_info->fs.prim_id_input = true;
if (ctx->input_mask & (1 << VARYING_SLOT_LAYER))
ctx->shader_info->fs.layer_input = true;
ctx->shader_info->fs.input_mask = ctx->input_mask >> VARYING_SLOT_VAR0;
if (ctx->shader_info->info.needs_multiview_view_index)
ctx->view_index = ctx->inputs[radeon_llvm_reg_index_soa(VARYING_SLOT_LAYER, 0)];
}
static LLVMValueRef
ac_build_alloca(struct ac_llvm_context *ac,
LLVMTypeRef type,
const char *name)
{
LLVMBuilderRef builder = ac->builder;
LLVMBasicBlockRef current_block = LLVMGetInsertBlock(builder);
LLVMValueRef function = LLVMGetBasicBlockParent(current_block);
LLVMBasicBlockRef first_block = LLVMGetEntryBasicBlock(function);
LLVMValueRef first_instr = LLVMGetFirstInstruction(first_block);
LLVMBuilderRef first_builder = LLVMCreateBuilderInContext(ac->context);
LLVMValueRef res;
if (first_instr) {
LLVMPositionBuilderBefore(first_builder, first_instr);
} else {
LLVMPositionBuilderAtEnd(first_builder, first_block);
}
res = LLVMBuildAlloca(first_builder, type, name);
LLVMBuildStore(builder, LLVMConstNull(type), res);
LLVMDisposeBuilder(first_builder);
return res;
}
static LLVMValueRef si_build_alloca_undef(struct ac_llvm_context *ac,
LLVMTypeRef type,
const char *name)
{
LLVMValueRef ptr = ac_build_alloca(ac, type, name);
LLVMBuildStore(ac->builder, LLVMGetUndef(type), ptr);
return ptr;
}
static void
scan_shader_output_decl(struct nir_to_llvm_context *ctx,
struct nir_variable *variable,
struct nir_shader *shader,
gl_shader_stage stage)
{
int idx = variable->data.location + variable->data.index;
unsigned attrib_count = glsl_count_attribute_slots(variable->type, false);
uint64_t mask_attribs;
variable->data.driver_location = idx * 4;
/* tess ctrl has it's own load/store paths for outputs */
if (stage == MESA_SHADER_TESS_CTRL)
return;
mask_attribs = ((1ull << attrib_count) - 1) << idx;
if (stage == MESA_SHADER_VERTEX ||
stage == MESA_SHADER_TESS_EVAL ||
stage == MESA_SHADER_GEOMETRY) {
if (idx == VARYING_SLOT_CLIP_DIST0) {
int length = shader->info.clip_distance_array_size +
shader->info.cull_distance_array_size;
if (stage == MESA_SHADER_VERTEX) {
ctx->shader_info->vs.outinfo.clip_dist_mask = (1 << shader->info.clip_distance_array_size) - 1;
ctx->shader_info->vs.outinfo.cull_dist_mask = (1 << shader->info.cull_distance_array_size) - 1;
}
if (stage == MESA_SHADER_TESS_EVAL) {
ctx->shader_info->tes.outinfo.clip_dist_mask = (1 << shader->info.clip_distance_array_size) - 1;
ctx->shader_info->tes.outinfo.cull_dist_mask = (1 << shader->info.cull_distance_array_size) - 1;
}
if (length > 4)
attrib_count = 2;
else
attrib_count = 1;
mask_attribs = 1ull << idx;
}
}
ctx->output_mask |= mask_attribs;
}
static void
handle_shader_output_decl(struct ac_nir_context *ctx,
struct nir_shader *nir,
struct nir_variable *variable)
{
unsigned output_loc = variable->data.driver_location / 4;
unsigned attrib_count = glsl_count_attribute_slots(variable->type, false);
/* tess ctrl has it's own load/store paths for outputs */
if (ctx->stage == MESA_SHADER_TESS_CTRL)
return;
if (ctx->stage == MESA_SHADER_VERTEX ||
ctx->stage == MESA_SHADER_TESS_EVAL ||
ctx->stage == MESA_SHADER_GEOMETRY) {
int idx = variable->data.location + variable->data.index;
if (idx == VARYING_SLOT_CLIP_DIST0) {
int length = nir->info.clip_distance_array_size +
nir->info.cull_distance_array_size;
if (length > 4)
attrib_count = 2;
else
attrib_count = 1;
}
}
for (unsigned i = 0; i < attrib_count; ++i) {
for (unsigned chan = 0; chan < 4; chan++) {
ctx->outputs[radeon_llvm_reg_index_soa(output_loc + i, chan)] =
si_build_alloca_undef(&ctx->ac, ctx->ac.f32, "");
}
}
}
static LLVMTypeRef
glsl_base_to_llvm_type(struct nir_to_llvm_context *ctx,
enum glsl_base_type type)
{
switch (type) {
case GLSL_TYPE_INT:
case GLSL_TYPE_UINT:
case GLSL_TYPE_BOOL:
case GLSL_TYPE_SUBROUTINE:
return ctx->ac.i32;
case GLSL_TYPE_FLOAT: /* TODO handle mediump */
return ctx->ac.f32;
case GLSL_TYPE_INT64:
case GLSL_TYPE_UINT64:
return ctx->ac.i64;
case GLSL_TYPE_DOUBLE:
return ctx->ac.f64;
default:
unreachable("unknown GLSL type");
}
}
static LLVMTypeRef
glsl_to_llvm_type(struct nir_to_llvm_context *ctx,
const struct glsl_type *type)
{
if (glsl_type_is_scalar(type)) {
return glsl_base_to_llvm_type(ctx, glsl_get_base_type(type));
}
if (glsl_type_is_vector(type)) {
return LLVMVectorType(
glsl_base_to_llvm_type(ctx, glsl_get_base_type(type)),
glsl_get_vector_elements(type));
}
if (glsl_type_is_matrix(type)) {
return LLVMArrayType(
glsl_to_llvm_type(ctx, glsl_get_column_type(type)),
glsl_get_matrix_columns(type));
}
if (glsl_type_is_array(type)) {
return LLVMArrayType(
glsl_to_llvm_type(ctx, glsl_get_array_element(type)),
glsl_get_length(type));
}
assert(glsl_type_is_struct(type));
LLVMTypeRef member_types[glsl_get_length(type)];
for (unsigned i = 0; i < glsl_get_length(type); i++) {
member_types[i] =
glsl_to_llvm_type(ctx,
glsl_get_struct_field(type, i));
}
return LLVMStructTypeInContext(ctx->context, member_types,
glsl_get_length(type), false);
}
static void
setup_locals(struct ac_nir_context *ctx,
struct nir_function *func)
{
int i, j;
ctx->num_locals = 0;
nir_foreach_variable(variable, &func->impl->locals) {
unsigned attrib_count = glsl_count_attribute_slots(variable->type, false);
variable->data.driver_location = ctx->num_locals * 4;
variable->data.location_frac = 0;
ctx->num_locals += attrib_count;
}
ctx->locals = malloc(4 * ctx->num_locals * sizeof(LLVMValueRef));
if (!ctx->locals)
return;
for (i = 0; i < ctx->num_locals; i++) {
for (j = 0; j < 4; j++) {
ctx->locals[i * 4 + j] =
si_build_alloca_undef(&ctx->ac, ctx->ac.f32, "temp");
}
}
}
static void
setup_shared(struct ac_nir_context *ctx,
struct nir_shader *nir)
{
nir_foreach_variable(variable, &nir->shared) {
LLVMValueRef shared =
LLVMAddGlobalInAddressSpace(
ctx->ac.module, glsl_to_llvm_type(ctx->nctx, variable->type),
variable->name ? variable->name : "",
LOCAL_ADDR_SPACE);
_mesa_hash_table_insert(ctx->vars, variable, shared);
}
}
static LLVMValueRef
emit_float_saturate(struct ac_llvm_context *ctx, LLVMValueRef v, float lo, float hi)
{
v = ac_to_float(ctx, v);
v = emit_intrin_2f_param(ctx, "llvm.maxnum", ctx->f32, v, LLVMConstReal(ctx->f32, lo));
return emit_intrin_2f_param(ctx, "llvm.minnum", ctx->f32, v, LLVMConstReal(ctx->f32, hi));
}
static LLVMValueRef emit_pack_int16(struct nir_to_llvm_context *ctx,
LLVMValueRef src0, LLVMValueRef src1)
{
LLVMValueRef const16 = LLVMConstInt(ctx->ac.i32, 16, false);
LLVMValueRef comp[2];
comp[0] = LLVMBuildAnd(ctx->builder, src0, LLVMConstInt(ctx->ac.i32, 65535, 0), "");
comp[1] = LLVMBuildAnd(ctx->builder, src1, LLVMConstInt(ctx->ac.i32, 65535, 0), "");
comp[1] = LLVMBuildShl(ctx->builder, comp[1], const16, "");
return LLVMBuildOr(ctx->builder, comp[0], comp[1], "");
}
/* Initialize arguments for the shader export intrinsic */
static void
si_llvm_init_export_args(struct nir_to_llvm_context *ctx,
LLVMValueRef *values,
unsigned target,
struct ac_export_args *args)
{
/* Default is 0xf. Adjusted below depending on the format. */
args->enabled_channels = 0xf;
/* Specify whether the EXEC mask represents the valid mask */
args->valid_mask = 0;
/* Specify whether this is the last export */
args->done = 0;
/* Specify the target we are exporting */
args->target = target;
args->compr = false;
args->out[0] = LLVMGetUndef(ctx->ac.f32);
args->out[1] = LLVMGetUndef(ctx->ac.f32);
args->out[2] = LLVMGetUndef(ctx->ac.f32);
args->out[3] = LLVMGetUndef(ctx->ac.f32);
if (!values)
return;
if (ctx->stage == MESA_SHADER_FRAGMENT && target >= V_008DFC_SQ_EXP_MRT) {
LLVMValueRef val[4];
unsigned index = target - V_008DFC_SQ_EXP_MRT;
unsigned col_format = (ctx->options->key.fs.col_format >> (4 * index)) & 0xf;
bool is_int8 = (ctx->options->key.fs.is_int8 >> index) & 1;
bool is_int10 = (ctx->options->key.fs.is_int10 >> index) & 1;
switch(col_format) {
case V_028714_SPI_SHADER_ZERO:
args->enabled_channels = 0; /* writemask */
args->target = V_008DFC_SQ_EXP_NULL;
break;
case V_028714_SPI_SHADER_32_R:
args->enabled_channels = 1;
args->out[0] = values[0];
break;
case V_028714_SPI_SHADER_32_GR:
args->enabled_channels = 0x3;
args->out[0] = values[0];
args->out[1] = values[1];
break;
case V_028714_SPI_SHADER_32_AR:
args->enabled_channels = 0x9;
args->out[0] = values[0];
args->out[3] = values[3];
break;
case V_028714_SPI_SHADER_FP16_ABGR:
args->compr = 1;
for (unsigned chan = 0; chan < 2; chan++) {
LLVMValueRef pack_args[2] = {
values[2 * chan],
values[2 * chan + 1]
};
LLVMValueRef packed;
packed = ac_build_cvt_pkrtz_f16(&ctx->ac, pack_args);
args->out[chan] = packed;
}
break;
case V_028714_SPI_SHADER_UNORM16_ABGR:
for (unsigned chan = 0; chan < 4; chan++) {
val[chan] = ac_build_clamp(&ctx->ac, values[chan]);
val[chan] = LLVMBuildFMul(ctx->builder, val[chan],
LLVMConstReal(ctx->ac.f32, 65535), "");
val[chan] = LLVMBuildFAdd(ctx->builder, val[chan],
LLVMConstReal(ctx->ac.f32, 0.5), "");
val[chan] = LLVMBuildFPToUI(ctx->builder, val[chan],
ctx->ac.i32, "");
}
args->compr = 1;
args->out[0] = emit_pack_int16(ctx, val[0], val[1]);
args->out[1] = emit_pack_int16(ctx, val[2], val[3]);
break;
case V_028714_SPI_SHADER_SNORM16_ABGR:
for (unsigned chan = 0; chan < 4; chan++) {
val[chan] = emit_float_saturate(&ctx->ac, values[chan], -1, 1);
val[chan] = LLVMBuildFMul(ctx->builder, val[chan],
LLVMConstReal(ctx->ac.f32, 32767), "");
/* If positive, add 0.5, else add -0.5. */
val[chan] = LLVMBuildFAdd(ctx->builder, val[chan],
LLVMBuildSelect(ctx->builder,
LLVMBuildFCmp(ctx->builder, LLVMRealOGE,
val[chan], ctx->ac.f32_0, ""),
LLVMConstReal(ctx->ac.f32, 0.5),
LLVMConstReal(ctx->ac.f32, -0.5), ""), "");
val[chan] = LLVMBuildFPToSI(ctx->builder, val[chan], ctx->ac.i32, "");
}
args->compr = 1;
args->out[0] = emit_pack_int16(ctx, val[0], val[1]);
args->out[1] = emit_pack_int16(ctx, val[2], val[3]);
break;
case V_028714_SPI_SHADER_UINT16_ABGR: {
LLVMValueRef max_rgb = LLVMConstInt(ctx->ac.i32,
is_int8 ? 255 : is_int10 ? 1023 : 65535, 0);
LLVMValueRef max_alpha = !is_int10 ? max_rgb : LLVMConstInt(ctx->ac.i32, 3, 0);
for (unsigned chan = 0; chan < 4; chan++) {
val[chan] = ac_to_integer(&ctx->ac, values[chan]);
val[chan] = emit_minmax_int(&ctx->ac, LLVMIntULT, val[chan], chan == 3 ? max_alpha : max_rgb);
}
args->compr = 1;
args->out[0] = emit_pack_int16(ctx, val[0], val[1]);
args->out[1] = emit_pack_int16(ctx, val[2], val[3]);
break;
}
case V_028714_SPI_SHADER_SINT16_ABGR: {
LLVMValueRef max_rgb = LLVMConstInt(ctx->ac.i32,
is_int8 ? 127 : is_int10 ? 511 : 32767, 0);
LLVMValueRef min_rgb = LLVMConstInt(ctx->ac.i32,
is_int8 ? -128 : is_int10 ? -512 : -32768, 0);
LLVMValueRef max_alpha = !is_int10 ? max_rgb : ctx->ac.i32_1;
LLVMValueRef min_alpha = !is_int10 ? min_rgb : LLVMConstInt(ctx->ac.i32, -2, 0);
/* Clamp. */
for (unsigned chan = 0; chan < 4; chan++) {
val[chan] = ac_to_integer(&ctx->ac, values[chan]);
val[chan] = emit_minmax_int(&ctx->ac, LLVMIntSLT, val[chan], chan == 3 ? max_alpha : max_rgb);
val[chan] = emit_minmax_int(&ctx->ac, LLVMIntSGT, val[chan], chan == 3 ? min_alpha : min_rgb);
}
args->compr = 1;
args->out[0] = emit_pack_int16(ctx, val[0], val[1]);
args->out[1] = emit_pack_int16(ctx, val[2], val[3]);
break;
}
default:
case V_028714_SPI_SHADER_32_ABGR:
memcpy(&args->out[0], values, sizeof(values[0]) * 4);
break;
}
} else
memcpy(&args->out[0], values, sizeof(values[0]) * 4);
for (unsigned i = 0; i < 4; ++i)
args->out[i] = ac_to_float(&ctx->ac, args->out[i]);
}
static void
handle_vs_outputs_post(struct nir_to_llvm_context *ctx,
bool export_prim_id,
struct ac_vs_output_info *outinfo)
{
uint32_t param_count = 0;
unsigned target;
unsigned pos_idx, num_pos_exports = 0;
struct ac_export_args args, pos_args[4] = {};
LLVMValueRef psize_value = NULL, layer_value = NULL, viewport_index_value = NULL;
int i;
if (ctx->options->key.has_multiview_view_index) {
LLVMValueRef* tmp_out = &ctx->nir->outputs[radeon_llvm_reg_index_soa(VARYING_SLOT_LAYER, 0)];
if(!*tmp_out) {
for(unsigned i = 0; i < 4; ++i)
ctx->nir->outputs[radeon_llvm_reg_index_soa(VARYING_SLOT_LAYER, i)] =
si_build_alloca_undef(&ctx->ac, ctx->ac.f32, "");
}
LLVMBuildStore(ctx->builder, ac_to_float(&ctx->ac, ctx->view_index), *tmp_out);
ctx->output_mask |= 1ull << VARYING_SLOT_LAYER;
}
memset(outinfo->vs_output_param_offset, AC_EXP_PARAM_UNDEFINED,
sizeof(outinfo->vs_output_param_offset));
if (ctx->output_mask & (1ull << VARYING_SLOT_CLIP_DIST0)) {
LLVMValueRef slots[8];
unsigned j;
if (outinfo->cull_dist_mask)
outinfo->cull_dist_mask <<= ctx->num_output_clips;
i = VARYING_SLOT_CLIP_DIST0;
for (j = 0; j < ctx->num_output_clips + ctx->num_output_culls; j++)
slots[j] = ac_to_float(&ctx->ac, LLVMBuildLoad(ctx->builder,
ctx->nir->outputs[radeon_llvm_reg_index_soa(i, j)], ""));
for (i = ctx->num_output_clips + ctx->num_output_culls; i < 8; i++)
slots[i] = LLVMGetUndef(ctx->ac.f32);
if (ctx->num_output_clips + ctx->num_output_culls > 4) {
target = V_008DFC_SQ_EXP_POS + 3;
si_llvm_init_export_args(ctx, &slots[4], target, &args);
memcpy(&pos_args[target - V_008DFC_SQ_EXP_POS],
&args, sizeof(args));
}
target = V_008DFC_SQ_EXP_POS + 2;
si_llvm_init_export_args(ctx, &slots[0], target, &args);
memcpy(&pos_args[target - V_008DFC_SQ_EXP_POS],
&args, sizeof(args));
}
LLVMValueRef pos_values[4] = {ctx->ac.f32_0, ctx->ac.f32_0, ctx->ac.f32_0, ctx->ac.f32_1};
if (ctx->output_mask & (1ull << VARYING_SLOT_POS)) {
for (unsigned j = 0; j < 4; j++)
pos_values[j] = LLVMBuildLoad(ctx->builder,
ctx->nir->outputs[radeon_llvm_reg_index_soa(VARYING_SLOT_POS, j)], "");
}
si_llvm_init_export_args(ctx, pos_values, V_008DFC_SQ_EXP_POS, &pos_args[0]);
if (ctx->output_mask & (1ull << VARYING_SLOT_PSIZ)) {
outinfo->writes_pointsize = true;
psize_value = LLVMBuildLoad(ctx->builder,
ctx->nir->outputs[radeon_llvm_reg_index_soa(VARYING_SLOT_PSIZ, 0)], "");
}
if (ctx->output_mask & (1ull << VARYING_SLOT_LAYER)) {
outinfo->writes_layer = true;
layer_value = LLVMBuildLoad(ctx->builder,
ctx->nir->outputs[radeon_llvm_reg_index_soa(VARYING_SLOT_LAYER, 0)], "");
}
if (ctx->output_mask & (1ull << VARYING_SLOT_VIEWPORT)) {
outinfo->writes_viewport_index = true;
viewport_index_value = LLVMBuildLoad(ctx->builder,
ctx->nir->outputs[radeon_llvm_reg_index_soa(VARYING_SLOT_VIEWPORT, 0)], "");
}
if (outinfo->writes_pointsize ||
outinfo->writes_layer ||
outinfo->writes_viewport_index) {
pos_args[1].enabled_channels = ((outinfo->writes_pointsize == true ? 1 : 0) |
(outinfo->writes_layer == true ? 4 : 0));
pos_args[1].valid_mask = 0;
pos_args[1].done = 0;
pos_args[1].target = V_008DFC_SQ_EXP_POS + 1;
pos_args[1].compr = 0;
pos_args[1].out[0] = ctx->ac.f32_0; /* X */
pos_args[1].out[1] = ctx->ac.f32_0; /* Y */
pos_args[1].out[2] = ctx->ac.f32_0; /* Z */
pos_args[1].out[3] = ctx->ac.f32_0; /* W */
if (outinfo->writes_pointsize == true)
pos_args[1].out[0] = psize_value;
if (outinfo->writes_layer == true)
pos_args[1].out[2] = layer_value;
if (outinfo->writes_viewport_index == true) {
if (ctx->options->chip_class >= GFX9) {
/* GFX9 has the layer in out.z[10:0] and the viewport
* index in out.z[19:16].
*/
LLVMValueRef v = viewport_index_value;
v = ac_to_integer(&ctx->ac, v);
v = LLVMBuildShl(ctx->builder, v,
LLVMConstInt(ctx->ac.i32, 16, false),
"");
v = LLVMBuildOr(ctx->builder, v,
ac_to_integer(&ctx->ac, pos_args[1].out[2]), "");
pos_args[1].out[2] = ac_to_float(&ctx->ac, v);
pos_args[1].enabled_channels |= 1 << 2;
} else {
pos_args[1].out[3] = viewport_index_value;
pos_args[1].enabled_channels |= 1 << 3;
}
}
}
for (i = 0; i < 4; i++) {
if (pos_args[i].out[0])
num_pos_exports++;
}
pos_idx = 0;
for (i = 0; i < 4; i++) {
if (!pos_args[i].out[0])
continue;
/* Specify the target we are exporting */
pos_args[i].target = V_008DFC_SQ_EXP_POS + pos_idx++;
if (pos_idx == num_pos_exports)
pos_args[i].done = 1;
ac_build_export(&ctx->ac, &pos_args[i]);
}
for (unsigned i = 0; i < RADEON_LLVM_MAX_OUTPUTS; ++i) {
LLVMValueRef values[4];
if (!(ctx->output_mask & (1ull << i)))
continue;
for (unsigned j = 0; j < 4; j++)
values[j] = ac_to_float(&ctx->ac, LLVMBuildLoad(ctx->builder,
ctx->nir->outputs[radeon_llvm_reg_index_soa(i, j)], ""));
if (i == VARYING_SLOT_LAYER) {
target = V_008DFC_SQ_EXP_PARAM + param_count;
outinfo->vs_output_param_offset[VARYING_SLOT_LAYER] = param_count;
param_count++;
} else if (i == VARYING_SLOT_PRIMITIVE_ID) {
target = V_008DFC_SQ_EXP_PARAM + param_count;
outinfo->vs_output_param_offset[VARYING_SLOT_PRIMITIVE_ID] = param_count;
param_count++;
} else if (i >= VARYING_SLOT_VAR0) {
outinfo->export_mask |= 1u << (i - VARYING_SLOT_VAR0);
target = V_008DFC_SQ_EXP_PARAM + param_count;
outinfo->vs_output_param_offset[i] = param_count;
param_count++;
} else
continue;
si_llvm_init_export_args(ctx, values, target, &args);
if (target >= V_008DFC_SQ_EXP_POS &&
target <= (V_008DFC_SQ_EXP_POS + 3)) {
memcpy(&pos_args[target - V_008DFC_SQ_EXP_POS],
&args, sizeof(args));
} else {
ac_build_export(&ctx->ac, &args);
}
}
if (export_prim_id) {
LLVMValueRef values[4];
target = V_008DFC_SQ_EXP_PARAM + param_count;
outinfo->vs_output_param_offset[VARYING_SLOT_PRIMITIVE_ID] = param_count;
param_count++;
values[0] = ctx->vs_prim_id;
ctx->shader_info->vs.vgpr_comp_cnt = MAX2(2,
ctx->shader_info->vs.vgpr_comp_cnt);
for (unsigned j = 1; j < 4; j++)
values[j] = ctx->ac.f32_0;
si_llvm_init_export_args(ctx, values, target, &args);
ac_build_export(&ctx->ac, &args);
outinfo->export_prim_id = true;
}
outinfo->pos_exports = num_pos_exports;
outinfo->param_exports = param_count;
}
static void
handle_es_outputs_post(struct nir_to_llvm_context *ctx,
struct ac_es_output_info *outinfo)
{
int j;
uint64_t max_output_written = 0;
LLVMValueRef lds_base = NULL;
for (unsigned i = 0; i < RADEON_LLVM_MAX_OUTPUTS; ++i) {
int param_index;
int length = 4;
if (!(ctx->output_mask & (1ull << i)))
continue;
if (i == VARYING_SLOT_CLIP_DIST0)
length = ctx->num_output_clips + ctx->num_output_culls;
param_index = shader_io_get_unique_index(i);
max_output_written = MAX2(param_index + (length > 4), max_output_written);
}
outinfo->esgs_itemsize = (max_output_written + 1) * 16;
if (ctx->ac.chip_class >= GFX9) {
unsigned itemsize_dw = outinfo->esgs_itemsize / 4;
LLVMValueRef vertex_idx = ac_get_thread_id(&ctx->ac);
LLVMValueRef wave_idx = ac_build_bfe(&ctx->ac, ctx->merged_wave_info,
LLVMConstInt(ctx->ac.i32, 24, false),
LLVMConstInt(ctx->ac.i32, 4, false), false);
vertex_idx = LLVMBuildOr(ctx->ac.builder, vertex_idx,
LLVMBuildMul(ctx->ac.builder, wave_idx,
LLVMConstInt(ctx->ac.i32, 64, false), ""), "");
lds_base = LLVMBuildMul(ctx->ac.builder, vertex_idx,
LLVMConstInt(ctx->ac.i32, itemsize_dw, 0), "");
}
for (unsigned i = 0; i < RADEON_LLVM_MAX_OUTPUTS; ++i) {
LLVMValueRef dw_addr = NULL;
LLVMValueRef *out_ptr = &ctx->nir->outputs[i * 4];
int param_index;
int length = 4;
if (!(ctx->output_mask & (1ull << i)))
continue;
if (i == VARYING_SLOT_CLIP_DIST0)
length = ctx->num_output_clips + ctx->num_output_culls;
param_index = shader_io_get_unique_index(i);
if (lds_base) {
dw_addr = LLVMBuildAdd(ctx->builder, lds_base,
LLVMConstInt(ctx->ac.i32, param_index * 4, false),
"");
}
for (j = 0; j < length; j++) {
LLVMValueRef out_val = LLVMBuildLoad(ctx->builder, out_ptr[j], "");
out_val = LLVMBuildBitCast(ctx->builder, out_val, ctx->ac.i32, "");
if (ctx->ac.chip_class >= GFX9) {
ac_lds_store(&ctx->ac, dw_addr,
LLVMBuildLoad(ctx->builder, out_ptr[j], ""));
dw_addr = LLVMBuildAdd(ctx->builder, dw_addr, ctx->ac.i32_1, "");
} else {
ac_build_buffer_store_dword(&ctx->ac,
ctx->esgs_ring,
out_val, 1,
NULL, ctx->es2gs_offset,
(4 * param_index + j) * 4,
1, 1, true, true);
}
}
}
}
static void
handle_ls_outputs_post(struct nir_to_llvm_context *ctx)
{
LLVMValueRef vertex_id = ctx->rel_auto_id;
LLVMValueRef vertex_dw_stride = unpack_param(&ctx->ac, ctx->ls_out_layout, 13, 8);
LLVMValueRef base_dw_addr = LLVMBuildMul(ctx->builder, vertex_id,
vertex_dw_stride, "");
for (unsigned i = 0; i < RADEON_LLVM_MAX_OUTPUTS; ++i) {
LLVMValueRef *out_ptr = &ctx->nir->outputs[i * 4];
int length = 4;
if (!(ctx->output_mask & (1ull << i)))
continue;
if (i == VARYING_SLOT_CLIP_DIST0)
length = ctx->num_output_clips + ctx->num_output_culls;
int param = shader_io_get_unique_index(i);
mark_tess_output(ctx, false, param, 1);
if (length > 4)
mark_tess_output(ctx, false, param + 1, 1);
LLVMValueRef dw_addr = LLVMBuildAdd(ctx->builder, base_dw_addr,
LLVMConstInt(ctx->ac.i32, param * 4, false),
"");
for (unsigned j = 0; j < length; j++) {
ac_lds_store(&ctx->ac, dw_addr,
LLVMBuildLoad(ctx->builder, out_ptr[j], ""));
dw_addr = LLVMBuildAdd(ctx->builder, dw_addr, ctx->ac.i32_1, "");
}
}
}
struct ac_build_if_state
{
struct nir_to_llvm_context *ctx;
LLVMValueRef condition;
LLVMBasicBlockRef entry_block;
LLVMBasicBlockRef true_block;
LLVMBasicBlockRef false_block;
LLVMBasicBlockRef merge_block;
};
static LLVMBasicBlockRef
ac_build_insert_new_block(struct nir_to_llvm_context *ctx, const char *name)
{
LLVMBasicBlockRef current_block;
LLVMBasicBlockRef next_block;
LLVMBasicBlockRef new_block;
/* get current basic block */
current_block = LLVMGetInsertBlock(ctx->builder);
/* chqeck if there's another block after this one */
next_block = LLVMGetNextBasicBlock(current_block);
if (next_block) {
/* insert the new block before the next block */
new_block = LLVMInsertBasicBlockInContext(ctx->context, next_block, name);
}
else {
/* append new block after current block */
LLVMValueRef function = LLVMGetBasicBlockParent(current_block);
new_block = LLVMAppendBasicBlockInContext(ctx->context, function, name);
}
return new_block;
}
static void
ac_nir_build_if(struct ac_build_if_state *ifthen,
struct nir_to_llvm_context *ctx,
LLVMValueRef condition)
{
LLVMBasicBlockRef block = LLVMGetInsertBlock(ctx->builder);
memset(ifthen, 0, sizeof *ifthen);
ifthen->ctx = ctx;
ifthen->condition = condition;
ifthen->entry_block = block;
/* create endif/merge basic block for the phi functions */
ifthen->merge_block = ac_build_insert_new_block(ctx, "endif-block");
/* create/insert true_block before merge_block */
ifthen->true_block =
LLVMInsertBasicBlockInContext(ctx->context,
ifthen->merge_block,
"if-true-block");
/* successive code goes into the true block */
LLVMPositionBuilderAtEnd(ctx->builder, ifthen->true_block);
}
/**
* End a conditional.
*/
static void
ac_nir_build_endif(struct ac_build_if_state *ifthen)
{
LLVMBuilderRef builder = ifthen->ctx->builder;
/* Insert branch to the merge block from current block */
LLVMBuildBr(builder, ifthen->merge_block);
/*
* Now patch in the various branch instructions.
*/
/* Insert the conditional branch instruction at the end of entry_block */
LLVMPositionBuilderAtEnd(builder, ifthen->entry_block);
if (ifthen->false_block) {
/* we have an else clause */
LLVMBuildCondBr(builder, ifthen->condition,
ifthen->true_block, ifthen->false_block);
}
else {
/* no else clause */
LLVMBuildCondBr(builder, ifthen->condition,
ifthen->true_block, ifthen->merge_block);
}
/* Resume building code at end of the ifthen->merge_block */
LLVMPositionBuilderAtEnd(builder, ifthen->merge_block);
}
static void
write_tess_factors(struct nir_to_llvm_context *ctx)
{
unsigned stride, outer_comps, inner_comps;
struct ac_build_if_state if_ctx, inner_if_ctx;
LLVMValueRef invocation_id = unpack_param(&ctx->ac, ctx->abi.tcs_rel_ids, 8, 5);
LLVMValueRef rel_patch_id = unpack_param(&ctx->ac, ctx->abi.tcs_rel_ids, 0, 8);
unsigned tess_inner_index, tess_outer_index;
LLVMValueRef lds_base, lds_inner, lds_outer, byteoffset, buffer;
LLVMValueRef out[6], vec0, vec1, tf_base, inner[4], outer[4];
int i;
emit_barrier(&ctx->ac, ctx->stage);
switch (ctx->options->key.tcs.primitive_mode) {
case GL_ISOLINES:
stride = 2;
outer_comps = 2;
inner_comps = 0;
break;
case GL_TRIANGLES:
stride = 4;
outer_comps = 3;
inner_comps = 1;
break;
case GL_QUADS:
stride = 6;
outer_comps = 4;
inner_comps = 2;
break;
default:
return;
}
ac_nir_build_if(&if_ctx, ctx,
LLVMBuildICmp(ctx->builder, LLVMIntEQ,
invocation_id, ctx->ac.i32_0, ""));
tess_inner_index = shader_io_get_unique_index(VARYING_SLOT_TESS_LEVEL_INNER);
tess_outer_index = shader_io_get_unique_index(VARYING_SLOT_TESS_LEVEL_OUTER);
mark_tess_output(ctx, true, tess_inner_index, 1);
mark_tess_output(ctx, true, tess_outer_index, 1);
lds_base = get_tcs_out_current_patch_data_offset(ctx);
lds_inner = LLVMBuildAdd(ctx->builder, lds_base,
LLVMConstInt(ctx->ac.i32, tess_inner_index * 4, false), "");
lds_outer = LLVMBuildAdd(ctx->builder, lds_base,
LLVMConstInt(ctx->ac.i32, tess_outer_index * 4, false), "");
for (i = 0; i < 4; i++) {
inner[i] = LLVMGetUndef(ctx->ac.i32);
outer[i] = LLVMGetUndef(ctx->ac.i32);
}
// LINES reverseal
if (ctx->options->key.tcs.primitive_mode == GL_ISOLINES) {
outer[0] = out[1] = ac_lds_load(&ctx->ac, lds_outer);
lds_outer = LLVMBuildAdd(ctx->builder, lds_outer,
ctx->ac.i32_1, "");
outer[1] = out[0] = ac_lds_load(&ctx->ac, lds_outer);
} else {
for (i = 0; i < outer_comps; i++) {
outer[i] = out[i] =
ac_lds_load(&ctx->ac, lds_outer);
lds_outer = LLVMBuildAdd(ctx->builder, lds_outer,
ctx->ac.i32_1, "");
}
for (i = 0; i < inner_comps; i++) {
inner[i] = out[outer_comps+i] =
ac_lds_load(&ctx->ac, lds_inner);
lds_inner = LLVMBuildAdd(ctx->builder, lds_inner,
ctx->ac.i32_1, "");
}
}
/* Convert the outputs to vectors for stores. */
vec0 = ac_build_gather_values(&ctx->ac, out, MIN2(stride, 4));
vec1 = NULL;
if (stride > 4)
vec1 = ac_build_gather_values(&ctx->ac, out + 4, stride - 4);
buffer = ctx->hs_ring_tess_factor;
tf_base = ctx->tess_factor_offset;
byteoffset = LLVMBuildMul(ctx->builder, rel_patch_id,
LLVMConstInt(ctx->ac.i32, 4 * stride, false), "");
unsigned tf_offset = 0;
if (ctx->options->chip_class <= VI) {
ac_nir_build_if(&inner_if_ctx, ctx,
LLVMBuildICmp(ctx->builder, LLVMIntEQ,
rel_patch_id, ctx->ac.i32_0, ""));
/* Store the dynamic HS control word. */
ac_build_buffer_store_dword(&ctx->ac, buffer,
LLVMConstInt(ctx->ac.i32, 0x80000000, false),
1, ctx->ac.i32_0, tf_base,
0, 1, 0, true, false);
tf_offset += 4;
ac_nir_build_endif(&inner_if_ctx);
}
/* Store the tessellation factors. */
ac_build_buffer_store_dword(&ctx->ac, buffer, vec0,
MIN2(stride, 4), byteoffset, tf_base,
tf_offset, 1, 0, true, false);
if (vec1)
ac_build_buffer_store_dword(&ctx->ac, buffer, vec1,
stride - 4, byteoffset, tf_base,
16 + tf_offset, 1, 0, true, false);
//store to offchip for TES to read - only if TES reads them
if (ctx->options->key.tcs.tes_reads_tess_factors) {
LLVMValueRef inner_vec, outer_vec, tf_outer_offset;
LLVMValueRef tf_inner_offset;
unsigned param_outer, param_inner;
param_outer = shader_io_get_unique_index(VARYING_SLOT_TESS_LEVEL_OUTER);
tf_outer_offset = get_tcs_tes_buffer_address(ctx, NULL,
LLVMConstInt(ctx->ac.i32, param_outer, 0));
outer_vec = ac_build_gather_values(&ctx->ac, outer,
util_next_power_of_two(outer_comps));
ac_build_buffer_store_dword(&ctx->ac, ctx->hs_ring_tess_offchip, outer_vec,
outer_comps, tf_outer_offset,
ctx->oc_lds, 0, 1, 0, true, false);
if (inner_comps) {
param_inner = shader_io_get_unique_index(VARYING_SLOT_TESS_LEVEL_INNER);
tf_inner_offset = get_tcs_tes_buffer_address(ctx, NULL,
LLVMConstInt(ctx->ac.i32, param_inner, 0));
inner_vec = inner_comps == 1 ? inner[0] :
ac_build_gather_values(&ctx->ac, inner, inner_comps);
ac_build_buffer_store_dword(&ctx->ac, ctx->hs_ring_tess_offchip, inner_vec,
inner_comps, tf_inner_offset,
ctx->oc_lds, 0, 1, 0, true, false);
}
}
ac_nir_build_endif(&if_ctx);
}
static void
handle_tcs_outputs_post(struct nir_to_llvm_context *ctx)
{
write_tess_factors(ctx);
}
static bool
si_export_mrt_color(struct nir_to_llvm_context *ctx,
LLVMValueRef *color, unsigned param, bool is_last,
struct ac_export_args *args)
{
/* Export */
si_llvm_init_export_args(ctx, color, param,
args);
if (is_last) {
args->valid_mask = 1; /* whether the EXEC mask is valid */
args->done = 1; /* DONE bit */
} else if (!args->enabled_channels)
return false; /* unnecessary NULL export */
return true;
}
static void
radv_export_mrt_z(struct nir_to_llvm_context *ctx,
LLVMValueRef depth, LLVMValueRef stencil,
LLVMValueRef samplemask)
{
struct ac_export_args args;
ac_export_mrt_z(&ctx->ac, depth, stencil, samplemask, &args);
ac_build_export(&ctx->ac, &args);
}
static void
handle_fs_outputs_post(struct nir_to_llvm_context *ctx)
{
unsigned index = 0;
LLVMValueRef depth = NULL, stencil = NULL, samplemask = NULL;
struct ac_export_args color_args[8];
for (unsigned i = 0; i < RADEON_LLVM_MAX_OUTPUTS; ++i) {
LLVMValueRef values[4];
if (!(ctx->output_mask & (1ull << i)))
continue;
if (i == FRAG_RESULT_DEPTH) {
ctx->shader_info->fs.writes_z = true;
depth = ac_to_float(&ctx->ac, LLVMBuildLoad(ctx->builder,
ctx->nir->outputs[radeon_llvm_reg_index_soa(i, 0)], ""));
} else if (i == FRAG_RESULT_STENCIL) {
ctx->shader_info->fs.writes_stencil = true;
stencil = ac_to_float(&ctx->ac, LLVMBuildLoad(ctx->builder,
ctx->nir->outputs[radeon_llvm_reg_index_soa(i, 0)], ""));
} else if (i == FRAG_RESULT_SAMPLE_MASK) {
ctx->shader_info->fs.writes_sample_mask = true;
samplemask = ac_to_float(&ctx->ac, LLVMBuildLoad(ctx->builder,
ctx->nir->outputs[radeon_llvm_reg_index_soa(i, 0)], ""));
} else {
bool last = false;
for (unsigned j = 0; j < 4; j++)
values[j] = ac_to_float(&ctx->ac, LLVMBuildLoad(ctx->builder,
ctx->nir->outputs[radeon_llvm_reg_index_soa(i, j)], ""));
if (!ctx->shader_info->fs.writes_z && !ctx->shader_info->fs.writes_stencil && !ctx->shader_info->fs.writes_sample_mask)
last = ctx->output_mask <= ((1ull << (i + 1)) - 1);
bool ret = si_export_mrt_color(ctx, values, V_008DFC_SQ_EXP_MRT + (i - FRAG_RESULT_DATA0), last, &color_args[index]);
if (ret)
index++;
}
}
for (unsigned i = 0; i < index; i++)
ac_build_export(&ctx->ac, &color_args[i]);
if (depth || stencil || samplemask)
radv_export_mrt_z(ctx, depth, stencil, samplemask);
else if (!index) {
si_export_mrt_color(ctx, NULL, V_008DFC_SQ_EXP_NULL, true, &color_args[0]);
ac_build_export(&ctx->ac, &color_args[0]);
}
}
static void
emit_gs_epilogue(struct nir_to_llvm_context *ctx)
{
ac_build_sendmsg(&ctx->ac, AC_SENDMSG_GS_OP_NOP | AC_SENDMSG_GS_DONE, ctx->gs_wave_id);
}
static void
handle_shader_outputs_post(struct ac_shader_abi *abi, unsigned max_outputs,
LLVMValueRef *addrs)
{
struct nir_to_llvm_context *ctx = nir_to_llvm_context_from_abi(abi);
switch (ctx->stage) {
case MESA_SHADER_VERTEX:
if (ctx->options->key.vs.as_ls)
handle_ls_outputs_post(ctx);
else if (ctx->options->key.vs.as_es)
handle_es_outputs_post(ctx, &ctx->shader_info->vs.es_info);
else
handle_vs_outputs_post(ctx, ctx->options->key.vs.export_prim_id,
&ctx->shader_info->vs.outinfo);
break;
case MESA_SHADER_FRAGMENT:
handle_fs_outputs_post(ctx);
break;
case MESA_SHADER_GEOMETRY:
emit_gs_epilogue(ctx);
break;
case MESA_SHADER_TESS_CTRL:
handle_tcs_outputs_post(ctx);
break;
case MESA_SHADER_TESS_EVAL:
if (ctx->options->key.tes.as_es)
handle_es_outputs_post(ctx, &ctx->shader_info->tes.es_info);
else
handle_vs_outputs_post(ctx, ctx->options->key.tes.export_prim_id,
&ctx->shader_info->tes.outinfo);
break;
default:
break;
}
}
static void ac_llvm_finalize_module(struct nir_to_llvm_context * ctx)
{
LLVMPassManagerRef passmgr;
/* Create the pass manager */
passmgr = LLVMCreateFunctionPassManagerForModule(
ctx->module);
/* This pass should eliminate all the load and store instructions */
LLVMAddPromoteMemoryToRegisterPass(passmgr);
/* Add some optimization passes */
LLVMAddScalarReplAggregatesPass(passmgr);
LLVMAddLICMPass(passmgr);
LLVMAddAggressiveDCEPass(passmgr);
LLVMAddCFGSimplificationPass(passmgr);
LLVMAddInstructionCombiningPass(passmgr);
/* Run the pass */
LLVMInitializeFunctionPassManager(passmgr);
LLVMRunFunctionPassManager(passmgr, ctx->main_function);
LLVMFinalizeFunctionPassManager(passmgr);
LLVMDisposeBuilder(ctx->builder);
LLVMDisposePassManager(passmgr);
ac_llvm_context_dispose(&ctx->ac);
}
static void
ac_nir_eliminate_const_vs_outputs(struct nir_to_llvm_context *ctx)
{
struct ac_vs_output_info *outinfo;
switch (ctx->stage) {
case MESA_SHADER_FRAGMENT:
case MESA_SHADER_COMPUTE:
case MESA_SHADER_TESS_CTRL:
case MESA_SHADER_GEOMETRY:
return;
case MESA_SHADER_VERTEX:
if (ctx->options->key.vs.as_ls ||
ctx->options->key.vs.as_es)
return;
outinfo = &ctx->shader_info->vs.outinfo;
break;
case MESA_SHADER_TESS_EVAL:
if (ctx->options->key.vs.as_es)
return;
outinfo = &ctx->shader_info->tes.outinfo;
break;
default:
unreachable("Unhandled shader type");
}
ac_optimize_vs_outputs(&ctx->ac,
ctx->main_function,
outinfo->vs_output_param_offset,
VARYING_SLOT_MAX,
&outinfo->param_exports);
}
static void
ac_setup_rings(struct nir_to_llvm_context *ctx)
{
if ((ctx->stage == MESA_SHADER_VERTEX && ctx->options->key.vs.as_es) ||
(ctx->stage == MESA_SHADER_TESS_EVAL && ctx->options->key.tes.as_es)) {
ctx->esgs_ring = ac_build_load_to_sgpr(&ctx->ac, ctx->ring_offsets, LLVMConstInt(ctx->ac.i32, RING_ESGS_VS, false));
}
if (ctx->is_gs_copy_shader) {
ctx->gsvs_ring = ac_build_load_to_sgpr(&ctx->ac, ctx->ring_offsets, LLVMConstInt(ctx->ac.i32, RING_GSVS_VS, false));
}
if (ctx->stage == MESA_SHADER_GEOMETRY) {
LLVMValueRef tmp;
ctx->esgs_ring = ac_build_load_to_sgpr(&ctx->ac, ctx->ring_offsets, LLVMConstInt(ctx->ac.i32, RING_ESGS_GS, false));
ctx->gsvs_ring = ac_build_load_to_sgpr(&ctx->ac, ctx->ring_offsets, LLVMConstInt(ctx->ac.i32, RING_GSVS_GS, false));
ctx->gsvs_ring = LLVMBuildBitCast(ctx->builder, ctx->gsvs_ring, ctx->ac.v4i32, "");
ctx->gsvs_ring = LLVMBuildInsertElement(ctx->builder, ctx->gsvs_ring, ctx->gsvs_num_entries, LLVMConstInt(ctx->ac.i32, 2, false), "");
tmp = LLVMBuildExtractElement(ctx->builder, ctx->gsvs_ring, ctx->ac.i32_1, "");
tmp = LLVMBuildOr(ctx->builder, tmp, ctx->gsvs_ring_stride, "");
ctx->gsvs_ring = LLVMBuildInsertElement(ctx->builder, ctx->gsvs_ring, tmp, ctx->ac.i32_1, "");
}
if (ctx->stage == MESA_SHADER_TESS_CTRL ||
ctx->stage == MESA_SHADER_TESS_EVAL) {
ctx->hs_ring_tess_offchip = ac_build_load_to_sgpr(&ctx->ac, ctx->ring_offsets, LLVMConstInt(ctx->ac.i32, RING_HS_TESS_OFFCHIP, false));
ctx->hs_ring_tess_factor = ac_build_load_to_sgpr(&ctx->ac, ctx->ring_offsets, LLVMConstInt(ctx->ac.i32, RING_HS_TESS_FACTOR, false));
}
}
static unsigned
ac_nir_get_max_workgroup_size(enum chip_class chip_class,
const struct nir_shader *nir)
{
switch (nir->info.stage) {
case MESA_SHADER_TESS_CTRL:
return chip_class >= CIK ? 128 : 64;
case MESA_SHADER_GEOMETRY:
return chip_class >= GFX9 ? 128 : 64;
case MESA_SHADER_COMPUTE:
break;
default:
return 0;
}
unsigned max_workgroup_size = nir->info.cs.local_size[0] *
nir->info.cs.local_size[1] *
nir->info.cs.local_size[2];
return max_workgroup_size;
}
/* Fixup the HW not emitting the TCS regs if there are no HS threads. */
static void ac_nir_fixup_ls_hs_input_vgprs(struct nir_to_llvm_context *ctx)
{
LLVMValueRef count = ac_build_bfe(&ctx->ac, ctx->merged_wave_info,
LLVMConstInt(ctx->ac.i32, 8, false),
LLVMConstInt(ctx->ac.i32, 8, false), false);
LLVMValueRef hs_empty = LLVMBuildICmp(ctx->ac.builder, LLVMIntEQ, count,
ctx->ac.i32_0, "");
ctx->abi.instance_id = LLVMBuildSelect(ctx->ac.builder, hs_empty, ctx->rel_auto_id, ctx->abi.instance_id, "");
ctx->vs_prim_id = LLVMBuildSelect(ctx->ac.builder, hs_empty, ctx->abi.vertex_id, ctx->vs_prim_id, "");
ctx->rel_auto_id = LLVMBuildSelect(ctx->ac.builder, hs_empty, ctx->abi.tcs_rel_ids, ctx->rel_auto_id, "");
ctx->abi.vertex_id = LLVMBuildSelect(ctx->ac.builder, hs_empty, ctx->abi.tcs_patch_id, ctx->abi.vertex_id, "");
}
static void prepare_gs_input_vgprs(struct nir_to_llvm_context *ctx)
{
for(int i = 5; i >= 0; --i) {
ctx->gs_vtx_offset[i] = ac_build_bfe(&ctx->ac, ctx->gs_vtx_offset[i & ~1],
LLVMConstInt(ctx->ac.i32, (i & 1) * 16, false),
LLVMConstInt(ctx->ac.i32, 16, false), false);
}
ctx->gs_wave_id = ac_build_bfe(&ctx->ac, ctx->merged_wave_info,
LLVMConstInt(ctx->ac.i32, 16, false),
LLVMConstInt(ctx->ac.i32, 8, false), false);
}
void ac_nir_translate(struct ac_llvm_context *ac, struct ac_shader_abi *abi,
struct nir_shader *nir, struct nir_to_llvm_context *nctx)
{
struct ac_nir_context ctx = {};
struct nir_function *func;
ctx.ac = *ac;
ctx.abi = abi;
ctx.nctx = nctx;
if (nctx)
nctx->nir = &ctx;
ctx.stage = nir->info.stage;
ctx.main_function = LLVMGetBasicBlockParent(LLVMGetInsertBlock(ctx.ac.builder));
nir_foreach_variable(variable, &nir->outputs)
handle_shader_output_decl(&ctx, nir, variable);
ctx.defs = _mesa_hash_table_create(NULL, _mesa_hash_pointer,
_mesa_key_pointer_equal);
ctx.phis = _mesa_hash_table_create(NULL, _mesa_hash_pointer,
_mesa_key_pointer_equal);
ctx.vars = _mesa_hash_table_create(NULL, _mesa_hash_pointer,
_mesa_key_pointer_equal);
func = (struct nir_function *)exec_list_get_head(&nir->functions);
setup_locals(&ctx, func);
if (nir->info.stage == MESA_SHADER_COMPUTE)
setup_shared(&ctx, nir);
visit_cf_list(&ctx, &func->impl->body);
phi_post_pass(&ctx);
ctx.abi->emit_outputs(ctx.abi, RADEON_LLVM_MAX_OUTPUTS,
ctx.outputs);
free(ctx.locals);
ralloc_free(ctx.defs);
ralloc_free(ctx.phis);
ralloc_free(ctx.vars);
if (nctx)
nctx->nir = NULL;
}
static
LLVMModuleRef ac_translate_nir_to_llvm(LLVMTargetMachineRef tm,
struct nir_shader *const *shaders,
int shader_count,
struct ac_shader_variant_info *shader_info,
const struct ac_nir_compiler_options *options)
{
struct nir_to_llvm_context ctx = {0};
unsigned i;
ctx.options = options;
ctx.shader_info = shader_info;
ctx.context = LLVMContextCreate();
ctx.module = LLVMModuleCreateWithNameInContext("shader", ctx.context);
ac_llvm_context_init(&ctx.ac, ctx.context, options->chip_class,
options->family);
ctx.ac.module = ctx.module;
LLVMSetTarget(ctx.module, options->supports_spill ? "amdgcn-mesa-mesa3d" : "amdgcn--");
LLVMTargetDataRef data_layout = LLVMCreateTargetDataLayout(tm);
char *data_layout_str = LLVMCopyStringRepOfTargetData(data_layout);
LLVMSetDataLayout(ctx.module, data_layout_str);
LLVMDisposeTargetData(data_layout);
LLVMDisposeMessage(data_layout_str);
enum ac_float_mode float_mode =
options->unsafe_math ? AC_FLOAT_MODE_UNSAFE_FP_MATH :
AC_FLOAT_MODE_DEFAULT;
ctx.builder = ac_create_builder(ctx.context, float_mode);
ctx.ac.builder = ctx.builder;
memset(shader_info, 0, sizeof(*shader_info));
for(int i = 0; i < shader_count; ++i)
ac_nir_shader_info_pass(shaders[i], options, &shader_info->info);
for (i = 0; i < AC_UD_MAX_SETS; i++)
shader_info->user_sgprs_locs.descriptor_sets[i].sgpr_idx = -1;
for (i = 0; i < AC_UD_MAX_UD; i++)
shader_info->user_sgprs_locs.shader_data[i].sgpr_idx = -1;
ctx.max_workgroup_size = 0;
for (int i = 0; i < shader_count; ++i) {
ctx.max_workgroup_size = MAX2(ctx.max_workgroup_size,
ac_nir_get_max_workgroup_size(ctx.options->chip_class,
shaders[i]));
}
create_function(&ctx, shaders[shader_count - 1]->info.stage, shader_count >= 2,
shader_count >= 2 ? shaders[shader_count - 2]->info.stage : MESA_SHADER_VERTEX);
ctx.abi.inputs = &ctx.inputs[0];
ctx.abi.emit_outputs = handle_shader_outputs_post;
ctx.abi.emit_vertex = visit_emit_vertex;
ctx.abi.load_ubo = radv_load_ubo;
ctx.abi.load_ssbo = radv_load_ssbo;
ctx.abi.load_sampler_desc = radv_get_sampler_desc;
ctx.abi.clamp_shadow_reference = false;
ctx.abi.gfx9_stride_size_workaround = ctx.ac.chip_class == GFX9;
if (shader_count >= 2)
ac_init_exec_full_mask(&ctx.ac);
if (ctx.ac.chip_class == GFX9 &&
shaders[shader_count - 1]->info.stage == MESA_SHADER_TESS_CTRL)
ac_nir_fixup_ls_hs_input_vgprs(&ctx);
for(int i = 0; i < shader_count; ++i) {
ctx.stage = shaders[i]->info.stage;
ctx.output_mask = 0;
ctx.tess_outputs_written = 0;
ctx.num_output_clips = shaders[i]->info.clip_distance_array_size;
ctx.num_output_culls = shaders[i]->info.cull_distance_array_size;
if (shaders[i]->info.stage == MESA_SHADER_GEOMETRY) {
ctx.gs_next_vertex = ac_build_alloca(&ctx.ac, ctx.ac.i32, "gs_next_vertex");
ctx.gs_max_out_vertices = shaders[i]->info.gs.vertices_out;
ctx.abi.load_inputs = load_gs_input;
ctx.abi.emit_primitive = visit_end_primitive;
} else if (shaders[i]->info.stage == MESA_SHADER_TESS_CTRL) {
ctx.tcs_outputs_read = shaders[i]->info.outputs_read;
ctx.tcs_patch_outputs_read = shaders[i]->info.patch_outputs_read;
ctx.abi.load_tess_varyings = load_tcs_varyings;
ctx.abi.load_patch_vertices_in = load_patch_vertices_in;
ctx.abi.store_tcs_outputs = store_tcs_output;
} else if (shaders[i]->info.stage == MESA_SHADER_TESS_EVAL) {
ctx.tes_primitive_mode = shaders[i]->info.tess.primitive_mode;
ctx.abi.load_tess_varyings = load_tes_input;
ctx.abi.load_tess_coord = load_tess_coord;
ctx.abi.load_patch_vertices_in = load_patch_vertices_in;
} else if (shaders[i]->info.stage == MESA_SHADER_VERTEX) {
if (shader_info->info.vs.needs_instance_id) {
if (ctx.options->key.vs.as_ls) {
ctx.shader_info->vs.vgpr_comp_cnt =
MAX2(2, ctx.shader_info->vs.vgpr_comp_cnt);
} else {
ctx.shader_info->vs.vgpr_comp_cnt =
MAX2(1, ctx.shader_info->vs.vgpr_comp_cnt);
}
}
} else if (shaders[i]->info.stage == MESA_SHADER_FRAGMENT) {
shader_info->fs.can_discard = shaders[i]->info.fs.uses_discard;
}
if (i)
emit_barrier(&ctx.ac, ctx.stage);
ac_setup_rings(&ctx);
LLVMBasicBlockRef merge_block;
if (shader_count >= 2) {
LLVMValueRef fn = LLVMGetBasicBlockParent(LLVMGetInsertBlock(ctx.ac.builder));
LLVMBasicBlockRef then_block = LLVMAppendBasicBlockInContext(ctx.ac.context, fn, "");
merge_block = LLVMAppendBasicBlockInContext(ctx.ac.context, fn, "");
LLVMValueRef count = ac_build_bfe(&ctx.ac, ctx.merged_wave_info,
LLVMConstInt(ctx.ac.i32, 8 * i, false),
LLVMConstInt(ctx.ac.i32, 8, false), false);
LLVMValueRef thread_id = ac_get_thread_id(&ctx.ac);
LLVMValueRef cond = LLVMBuildICmp(ctx.ac.builder, LLVMIntULT,
thread_id, count, "");
LLVMBuildCondBr(ctx.ac.builder, cond, then_block, merge_block);
LLVMPositionBuilderAtEnd(ctx.ac.builder, then_block);
}
if (shaders[i]->info.stage == MESA_SHADER_FRAGMENT)
handle_fs_inputs(&ctx, shaders[i]);
else if(shaders[i]->info.stage == MESA_SHADER_VERTEX)
handle_vs_inputs(&ctx, shaders[i]);
else if(shader_count >= 2 && shaders[i]->info.stage == MESA_SHADER_GEOMETRY)
prepare_gs_input_vgprs(&ctx);
nir_foreach_variable(variable, &shaders[i]->outputs)
scan_shader_output_decl(&ctx, variable, shaders[i], shaders[i]->info.stage);
ac_nir_translate(&ctx.ac, &ctx.abi, shaders[i], &ctx);
if (shader_count >= 2) {
LLVMBuildBr(ctx.ac.builder, merge_block);
LLVMPositionBuilderAtEnd(ctx.ac.builder, merge_block);
}
if (shaders[i]->info.stage == MESA_SHADER_GEOMETRY) {
unsigned addclip = shaders[i]->info.clip_distance_array_size +
shaders[i]->info.cull_distance_array_size > 4;
shader_info->gs.gsvs_vertex_size = (util_bitcount64(ctx.output_mask) + addclip) * 16;
shader_info->gs.max_gsvs_emit_size = shader_info->gs.gsvs_vertex_size *
shaders[i]->info.gs.vertices_out;
} else if (shaders[i]->info.stage == MESA_SHADER_TESS_CTRL) {
shader_info->tcs.outputs_written = ctx.tess_outputs_written;
shader_info->tcs.patch_outputs_written = ctx.tess_patch_outputs_written;
} else if (shaders[i]->info.stage == MESA_SHADER_VERTEX && ctx.options->key.vs.as_ls) {
shader_info->vs.outputs_written = ctx.tess_outputs_written;
}
}
LLVMBuildRetVoid(ctx.builder);
if (options->dump_preoptir)
ac_dump_module(ctx.module);
ac_llvm_finalize_module(&ctx);
if (shader_count == 1)
ac_nir_eliminate_const_vs_outputs(&ctx);
return ctx.module;
}
static void ac_diagnostic_handler(LLVMDiagnosticInfoRef di, void *context)
{
unsigned *retval = (unsigned *)context;
LLVMDiagnosticSeverity severity = LLVMGetDiagInfoSeverity(di);
char *description = LLVMGetDiagInfoDescription(di);
if (severity == LLVMDSError) {
*retval = 1;
fprintf(stderr, "LLVM triggered Diagnostic Handler: %s\n",
description);
}
LLVMDisposeMessage(description);
}
static unsigned ac_llvm_compile(LLVMModuleRef M,
struct ac_shader_binary *binary,
LLVMTargetMachineRef tm)
{
unsigned retval = 0;
char *err;
LLVMContextRef llvm_ctx;
LLVMMemoryBufferRef out_buffer;
unsigned buffer_size;
const char *buffer_data;
LLVMBool mem_err;
/* Setup Diagnostic Handler*/
llvm_ctx = LLVMGetModuleContext(M);
LLVMContextSetDiagnosticHandler(llvm_ctx, ac_diagnostic_handler,
&retval);
/* Compile IR*/
mem_err = LLVMTargetMachineEmitToMemoryBuffer(tm, M, LLVMObjectFile,
&err, &out_buffer);
/* Process Errors/Warnings */
if (mem_err) {
fprintf(stderr, "%s: %s", __FUNCTION__, err);
free(err);
retval = 1;
goto out;
}
/* Extract Shader Code*/
buffer_size = LLVMGetBufferSize(out_buffer);
buffer_data = LLVMGetBufferStart(out_buffer);
ac_elf_read(buffer_data, buffer_size, binary);
/* Clean up */
LLVMDisposeMemoryBuffer(out_buffer);
out:
return retval;
}
static void ac_compile_llvm_module(LLVMTargetMachineRef tm,
LLVMModuleRef llvm_module,
struct ac_shader_binary *binary,
struct ac_shader_config *config,
struct ac_shader_variant_info *shader_info,
gl_shader_stage stage,
bool dump_shader, bool supports_spill)
{
if (dump_shader)
ac_dump_module(llvm_module);
memset(binary, 0, sizeof(*binary));
int v = ac_llvm_compile(llvm_module, binary, tm);
if (v) {
fprintf(stderr, "compile failed\n");
}
if (dump_shader)
fprintf(stderr, "disasm:\n%s\n", binary->disasm_string);
ac_shader_binary_read_config(binary, config, 0, supports_spill);
LLVMContextRef ctx = LLVMGetModuleContext(llvm_module);
LLVMDisposeModule(llvm_module);
LLVMContextDispose(ctx);
if (stage == MESA_SHADER_FRAGMENT) {
shader_info->num_input_vgprs = 0;
if (G_0286CC_PERSP_SAMPLE_ENA(config->spi_ps_input_addr))
shader_info->num_input_vgprs += 2;
if (G_0286CC_PERSP_CENTER_ENA(config->spi_ps_input_addr))
shader_info->num_input_vgprs += 2;
if (G_0286CC_PERSP_CENTROID_ENA(config->spi_ps_input_addr))
shader_info->num_input_vgprs += 2;
if (G_0286CC_PERSP_PULL_MODEL_ENA(config->spi_ps_input_addr))
shader_info->num_input_vgprs += 3;
if (G_0286CC_LINEAR_SAMPLE_ENA(config->spi_ps_input_addr))
shader_info->num_input_vgprs += 2;
if (G_0286CC_LINEAR_CENTER_ENA(config->spi_ps_input_addr))
shader_info->num_input_vgprs += 2;
if (G_0286CC_LINEAR_CENTROID_ENA(config->spi_ps_input_addr))
shader_info->num_input_vgprs += 2;
if (G_0286CC_LINE_STIPPLE_TEX_ENA(config->spi_ps_input_addr))
shader_info->num_input_vgprs += 1;
if (G_0286CC_POS_X_FLOAT_ENA(config->spi_ps_input_addr))
shader_info->num_input_vgprs += 1;
if (G_0286CC_POS_Y_FLOAT_ENA(config->spi_ps_input_addr))
shader_info->num_input_vgprs += 1;
if (G_0286CC_POS_Z_FLOAT_ENA(config->spi_ps_input_addr))
shader_info->num_input_vgprs += 1;
if (G_0286CC_POS_W_FLOAT_ENA(config->spi_ps_input_addr))
shader_info->num_input_vgprs += 1;
if (G_0286CC_FRONT_FACE_ENA(config->spi_ps_input_addr))
shader_info->num_input_vgprs += 1;
if (G_0286CC_ANCILLARY_ENA(config->spi_ps_input_addr))
shader_info->num_input_vgprs += 1;
if (G_0286CC_SAMPLE_COVERAGE_ENA(config->spi_ps_input_addr))
shader_info->num_input_vgprs += 1;
if (G_0286CC_POS_FIXED_PT_ENA(config->spi_ps_input_addr))
shader_info->num_input_vgprs += 1;
}
config->num_vgprs = MAX2(config->num_vgprs, shader_info->num_input_vgprs);
/* +3 for scratch wave offset and VCC */
config->num_sgprs = MAX2(config->num_sgprs,
shader_info->num_input_sgprs + 3);
/* Enable 64-bit and 16-bit denormals, because there is no performance
* cost.
*
* If denormals are enabled, all floating-point output modifiers are
* ignored.
*
* Don't enable denormals for 32-bit floats, because:
* - Floating-point output modifiers would be ignored by the hw.
* - Some opcodes don't support denormals, such as v_mad_f32. We would
* have to stop using those.
* - SI & CI would be very slow.
*/
config->float_mode |= V_00B028_FP_64_DENORMS;
}
static void
ac_fill_shader_info(struct ac_shader_variant_info *shader_info, struct nir_shader *nir, const struct ac_nir_compiler_options *options)
{
switch (nir->info.stage) {
case MESA_SHADER_COMPUTE:
for (int i = 0; i < 3; ++i)
shader_info->cs.block_size[i] = nir->info.cs.local_size[i];
break;
case MESA_SHADER_FRAGMENT:
shader_info->fs.early_fragment_test = nir->info.fs.early_fragment_tests;
break;
case MESA_SHADER_GEOMETRY:
shader_info->gs.vertices_in = nir->info.gs.vertices_in;
shader_info->gs.vertices_out = nir->info.gs.vertices_out;
shader_info->gs.output_prim = nir->info.gs.output_primitive;
shader_info->gs.invocations = nir->info.gs.invocations;
break;
case MESA_SHADER_TESS_EVAL:
shader_info->tes.primitive_mode = nir->info.tess.primitive_mode;
shader_info->tes.spacing = nir->info.tess.spacing;
shader_info->tes.ccw = nir->info.tess.ccw;
shader_info->tes.point_mode = nir->info.tess.point_mode;
shader_info->tes.as_es = options->key.tes.as_es;
break;
case MESA_SHADER_TESS_CTRL:
shader_info->tcs.tcs_vertices_out = nir->info.tess.tcs_vertices_out;
break;
case MESA_SHADER_VERTEX:
shader_info->vs.as_es = options->key.vs.as_es;
shader_info->vs.as_ls = options->key.vs.as_ls;
/* in LS mode we need at least 1, invocation id needs 2, handled elsewhere */
if (options->key.vs.as_ls)
shader_info->vs.vgpr_comp_cnt = MAX2(1, shader_info->vs.vgpr_comp_cnt);
break;
default:
break;
}
}
void ac_compile_nir_shader(LLVMTargetMachineRef tm,
struct ac_shader_binary *binary,
struct ac_shader_config *config,
struct ac_shader_variant_info *shader_info,
struct nir_shader *const *nir,
int nir_count,
const struct ac_nir_compiler_options *options,
bool dump_shader)
{
LLVMModuleRef llvm_module = ac_translate_nir_to_llvm(tm, nir, nir_count, shader_info,
options);
ac_compile_llvm_module(tm, llvm_module, binary, config, shader_info, nir[0]->info.stage, dump_shader, options->supports_spill);
for (int i = 0; i < nir_count; ++i)
ac_fill_shader_info(shader_info, nir[i], options);
/* Determine the ES type (VS or TES) for the GS on GFX9. */
if (options->chip_class == GFX9) {
if (nir_count == 2 &&
nir[1]->info.stage == MESA_SHADER_GEOMETRY) {
shader_info->gs.es_type = nir[0]->info.stage;
}
}
}
static void
ac_gs_copy_shader_emit(struct nir_to_llvm_context *ctx)
{
LLVMValueRef args[9];
args[0] = ctx->gsvs_ring;
args[1] = LLVMBuildMul(ctx->builder, ctx->abi.vertex_id, LLVMConstInt(ctx->ac.i32, 4, false), "");
args[3] = ctx->ac.i32_0;
args[4] = ctx->ac.i32_1; /* OFFEN */
args[5] = ctx->ac.i32_0; /* IDXEN */
args[6] = ctx->ac.i32_1; /* GLC */
args[7] = ctx->ac.i32_1; /* SLC */
args[8] = ctx->ac.i32_0; /* TFE */
int idx = 0;
for (unsigned i = 0; i < RADEON_LLVM_MAX_OUTPUTS; ++i) {
int length = 4;
int slot = idx;
int slot_inc = 1;
if (!(ctx->output_mask & (1ull << i)))
continue;
if (i == VARYING_SLOT_CLIP_DIST0) {
/* unpack clip and cull from a single set of slots */
length = ctx->num_output_clips + ctx->num_output_culls;
if (length > 4)
slot_inc = 2;
}
for (unsigned j = 0; j < length; j++) {
LLVMValueRef value;
args[2] = LLVMConstInt(ctx->ac.i32,
(slot * 4 + j) *
ctx->gs_max_out_vertices * 16 * 4, false);
value = ac_build_intrinsic(&ctx->ac,
"llvm.SI.buffer.load.dword.i32.i32",
ctx->ac.i32, args, 9,
AC_FUNC_ATTR_READONLY |
AC_FUNC_ATTR_LEGACY);
LLVMBuildStore(ctx->builder,
ac_to_float(&ctx->ac, value), ctx->nir->outputs[radeon_llvm_reg_index_soa(i, j)]);
}
idx += slot_inc;
}
handle_vs_outputs_post(ctx, false, &ctx->shader_info->vs.outinfo);
}
void ac_create_gs_copy_shader(LLVMTargetMachineRef tm,
struct nir_shader *geom_shader,
struct ac_shader_binary *binary,
struct ac_shader_config *config,
struct ac_shader_variant_info *shader_info,
const struct ac_nir_compiler_options *options,
bool dump_shader)
{
struct nir_to_llvm_context ctx = {0};
ctx.context = LLVMContextCreate();
ctx.module = LLVMModuleCreateWithNameInContext("shader", ctx.context);
ctx.options = options;
ctx.shader_info = shader_info;
ac_llvm_context_init(&ctx.ac, ctx.context, options->chip_class,
options->family);
ctx.ac.module = ctx.module;
ctx.is_gs_copy_shader = true;
LLVMSetTarget(ctx.module, "amdgcn--");
enum ac_float_mode float_mode =
options->unsafe_math ? AC_FLOAT_MODE_UNSAFE_FP_MATH :
AC_FLOAT_MODE_DEFAULT;
ctx.builder = ac_create_builder(ctx.context, float_mode);
ctx.ac.builder = ctx.builder;
ctx.stage = MESA_SHADER_VERTEX;
create_function(&ctx, MESA_SHADER_VERTEX, false, MESA_SHADER_VERTEX);
ctx.gs_max_out_vertices = geom_shader->info.gs.vertices_out;
ac_setup_rings(&ctx);
ctx.num_output_clips = geom_shader->info.clip_distance_array_size;
ctx.num_output_culls = geom_shader->info.cull_distance_array_size;
struct ac_nir_context nir_ctx = {};
nir_ctx.ac = ctx.ac;
nir_ctx.abi = &ctx.abi;
nir_ctx.nctx = &ctx;
ctx.nir = &nir_ctx;
nir_foreach_variable(variable, &geom_shader->outputs) {
scan_shader_output_decl(&ctx, variable, geom_shader, MESA_SHADER_VERTEX);
handle_shader_output_decl(&nir_ctx, geom_shader, variable);
}
ac_gs_copy_shader_emit(&ctx);
ctx.nir = NULL;
LLVMBuildRetVoid(ctx.builder);
ac_llvm_finalize_module(&ctx);
ac_compile_llvm_module(tm, ctx.module, binary, config, shader_info,
MESA_SHADER_VERTEX,
dump_shader, options->supports_spill);
}