/*
* Copyright 2014 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sub license, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
* DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
* OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
* USE OR OTHER DEALINGS IN THE SOFTWARE.
*
* The above copyright notice and this permission notice (including the
* next paragraph) shall be included in all copies or substantial portions
* of the Software.
*
*/
/* based on pieces from si_pipe.c and radeon_llvm_emit.c */
#include "ac_llvm_build.h"
#include <llvm-c/Core.h>
#include "c11/threads.h"
#include <assert.h>
#include <stdio.h>
#include "ac_llvm_util.h"
#include "ac_exp_param.h"
#include "util/bitscan.h"
#include "util/macros.h"
#include "util/u_atomic.h"
#include "sid.h"
#include "shader_enums.h"
#define AC_LLVM_INITIAL_CF_DEPTH 4
/* Data for if/else/endif and bgnloop/endloop control flow structures.
*/
struct ac_llvm_flow {
/* Loop exit or next part of if/else/endif. */
LLVMBasicBlockRef next_block;
LLVMBasicBlockRef loop_entry_block;
};
/* Initialize module-independent parts of the context.
*
* The caller is responsible for initializing ctx::module and ctx::builder.
*/
void
ac_llvm_context_init(struct ac_llvm_context *ctx, LLVMContextRef context,
enum chip_class chip_class, enum radeon_family family)
{
LLVMValueRef args[1];
ctx->chip_class = chip_class;
ctx->family = family;
ctx->context = context;
ctx->module = NULL;
ctx->builder = NULL;
ctx->voidt = LLVMVoidTypeInContext(ctx->context);
ctx->i1 = LLVMInt1TypeInContext(ctx->context);
ctx->i8 = LLVMInt8TypeInContext(ctx->context);
ctx->i16 = LLVMIntTypeInContext(ctx->context, 16);
ctx->i32 = LLVMIntTypeInContext(ctx->context, 32);
ctx->i64 = LLVMIntTypeInContext(ctx->context, 64);
ctx->f16 = LLVMHalfTypeInContext(ctx->context);
ctx->f32 = LLVMFloatTypeInContext(ctx->context);
ctx->f64 = LLVMDoubleTypeInContext(ctx->context);
ctx->v2i32 = LLVMVectorType(ctx->i32, 2);
ctx->v3i32 = LLVMVectorType(ctx->i32, 3);
ctx->v4i32 = LLVMVectorType(ctx->i32, 4);
ctx->v2f32 = LLVMVectorType(ctx->f32, 2);
ctx->v4f32 = LLVMVectorType(ctx->f32, 4);
ctx->v8i32 = LLVMVectorType(ctx->i32, 8);
ctx->i32_0 = LLVMConstInt(ctx->i32, 0, false);
ctx->i32_1 = LLVMConstInt(ctx->i32, 1, false);
ctx->i64_0 = LLVMConstInt(ctx->i64, 0, false);
ctx->i64_1 = LLVMConstInt(ctx->i64, 1, false);
ctx->f32_0 = LLVMConstReal(ctx->f32, 0.0);
ctx->f32_1 = LLVMConstReal(ctx->f32, 1.0);
ctx->f64_0 = LLVMConstReal(ctx->f64, 0.0);
ctx->f64_1 = LLVMConstReal(ctx->f64, 1.0);
ctx->i1false = LLVMConstInt(ctx->i1, 0, false);
ctx->i1true = LLVMConstInt(ctx->i1, 1, false);
ctx->range_md_kind = LLVMGetMDKindIDInContext(ctx->context,
"range", 5);
ctx->invariant_load_md_kind = LLVMGetMDKindIDInContext(ctx->context,
"invariant.load", 14);
ctx->fpmath_md_kind = LLVMGetMDKindIDInContext(ctx->context, "fpmath", 6);
args[0] = LLVMConstReal(ctx->f32, 2.5);
ctx->fpmath_md_2p5_ulp = LLVMMDNodeInContext(ctx->context, args, 1);
ctx->uniform_md_kind = LLVMGetMDKindIDInContext(ctx->context,
"amdgpu.uniform", 14);
ctx->empty_md = LLVMMDNodeInContext(ctx->context, NULL, 0);
}
void
ac_llvm_context_dispose(struct ac_llvm_context *ctx)
{
free(ctx->flow);
ctx->flow = NULL;
ctx->flow_depth_max = 0;
}
int
ac_get_llvm_num_components(LLVMValueRef value)
{
LLVMTypeRef type = LLVMTypeOf(value);
unsigned num_components = LLVMGetTypeKind(type) == LLVMVectorTypeKind
? LLVMGetVectorSize(type)
: 1;
return num_components;
}
LLVMValueRef
ac_llvm_extract_elem(struct ac_llvm_context *ac,
LLVMValueRef value,
int index)
{
if (LLVMGetTypeKind(LLVMTypeOf(value)) != LLVMVectorTypeKind) {
assert(index == 0);
return value;
}
return LLVMBuildExtractElement(ac->builder, value,
LLVMConstInt(ac->i32, index, false), "");
}
unsigned
ac_get_type_size(LLVMTypeRef type)
{
LLVMTypeKind kind = LLVMGetTypeKind(type);
switch (kind) {
case LLVMIntegerTypeKind:
return LLVMGetIntTypeWidth(type) / 8;
case LLVMFloatTypeKind:
return 4;
case LLVMDoubleTypeKind:
case LLVMPointerTypeKind:
return 8;
case LLVMVectorTypeKind:
return LLVMGetVectorSize(type) *
ac_get_type_size(LLVMGetElementType(type));
case LLVMArrayTypeKind:
return LLVMGetArrayLength(type) *
ac_get_type_size(LLVMGetElementType(type));
default:
assert(0);
return 0;
}
}
static LLVMTypeRef to_integer_type_scalar(struct ac_llvm_context *ctx, LLVMTypeRef t)
{
if (t == ctx->f16 || t == ctx->i16)
return ctx->i16;
else if (t == ctx->f32 || t == ctx->i32)
return ctx->i32;
else if (t == ctx->f64 || t == ctx->i64)
return ctx->i64;
else
unreachable("Unhandled integer size");
}
LLVMTypeRef
ac_to_integer_type(struct ac_llvm_context *ctx, LLVMTypeRef t)
{
if (LLVMGetTypeKind(t) == LLVMVectorTypeKind) {
LLVMTypeRef elem_type = LLVMGetElementType(t);
return LLVMVectorType(to_integer_type_scalar(ctx, elem_type),
LLVMGetVectorSize(t));
}
return to_integer_type_scalar(ctx, t);
}
LLVMValueRef
ac_to_integer(struct ac_llvm_context *ctx, LLVMValueRef v)
{
LLVMTypeRef type = LLVMTypeOf(v);
return LLVMBuildBitCast(ctx->builder, v, ac_to_integer_type(ctx, type), "");
}
static LLVMTypeRef to_float_type_scalar(struct ac_llvm_context *ctx, LLVMTypeRef t)
{
if (t == ctx->i16 || t == ctx->f16)
return ctx->f16;
else if (t == ctx->i32 || t == ctx->f32)
return ctx->f32;
else if (t == ctx->i64 || t == ctx->f64)
return ctx->f64;
else
unreachable("Unhandled float size");
}
LLVMTypeRef
ac_to_float_type(struct ac_llvm_context *ctx, LLVMTypeRef t)
{
if (LLVMGetTypeKind(t) == LLVMVectorTypeKind) {
LLVMTypeRef elem_type = LLVMGetElementType(t);
return LLVMVectorType(to_float_type_scalar(ctx, elem_type),
LLVMGetVectorSize(t));
}
return to_float_type_scalar(ctx, t);
}
LLVMValueRef
ac_to_float(struct ac_llvm_context *ctx, LLVMValueRef v)
{
LLVMTypeRef type = LLVMTypeOf(v);
return LLVMBuildBitCast(ctx->builder, v, ac_to_float_type(ctx, type), "");
}
LLVMValueRef
ac_build_intrinsic(struct ac_llvm_context *ctx, const char *name,
LLVMTypeRef return_type, LLVMValueRef *params,
unsigned param_count, unsigned attrib_mask)
{
LLVMValueRef function, call;
bool set_callsite_attrs = HAVE_LLVM >= 0x0400 &&
!(attrib_mask & AC_FUNC_ATTR_LEGACY);
function = LLVMGetNamedFunction(ctx->module, name);
if (!function) {
LLVMTypeRef param_types[32], function_type;
unsigned i;
assert(param_count <= 32);
for (i = 0; i < param_count; ++i) {
assert(params[i]);
param_types[i] = LLVMTypeOf(params[i]);
}
function_type =
LLVMFunctionType(return_type, param_types, param_count, 0);
function = LLVMAddFunction(ctx->module, name, function_type);
LLVMSetFunctionCallConv(function, LLVMCCallConv);
LLVMSetLinkage(function, LLVMExternalLinkage);
if (!set_callsite_attrs)
ac_add_func_attributes(ctx->context, function, attrib_mask);
}
call = LLVMBuildCall(ctx->builder, function, params, param_count, "");
if (set_callsite_attrs)
ac_add_func_attributes(ctx->context, call, attrib_mask);
return call;
}
/**
* Given the i32 or vNi32 \p type, generate the textual name (e.g. for use with
* intrinsic names).
*/
void ac_build_type_name_for_intr(LLVMTypeRef type, char *buf, unsigned bufsize)
{
LLVMTypeRef elem_type = type;
assert(bufsize >= 8);
if (LLVMGetTypeKind(type) == LLVMVectorTypeKind) {
int ret = snprintf(buf, bufsize, "v%u",
LLVMGetVectorSize(type));
if (ret < 0) {
char *type_name = LLVMPrintTypeToString(type);
fprintf(stderr, "Error building type name for: %s\n",
type_name);
return;
}
elem_type = LLVMGetElementType(type);
buf += ret;
bufsize -= ret;
}
switch (LLVMGetTypeKind(elem_type)) {
default: break;
case LLVMIntegerTypeKind:
snprintf(buf, bufsize, "i%d", LLVMGetIntTypeWidth(elem_type));
break;
case LLVMFloatTypeKind:
snprintf(buf, bufsize, "f32");
break;
case LLVMDoubleTypeKind:
snprintf(buf, bufsize, "f64");
break;
}
}
/**
* Helper function that builds an LLVM IR PHI node and immediately adds
* incoming edges.
*/
LLVMValueRef
ac_build_phi(struct ac_llvm_context *ctx, LLVMTypeRef type,
unsigned count_incoming, LLVMValueRef *values,
LLVMBasicBlockRef *blocks)
{
LLVMValueRef phi = LLVMBuildPhi(ctx->builder, type, "");
LLVMAddIncoming(phi, values, blocks, count_incoming);
return phi;
}
/* Prevent optimizations (at least of memory accesses) across the current
* point in the program by emitting empty inline assembly that is marked as
* having side effects.
*
* Optionally, a value can be passed through the inline assembly to prevent
* LLVM from hoisting calls to ReadNone functions.
*/
void
ac_build_optimization_barrier(struct ac_llvm_context *ctx,
LLVMValueRef *pvgpr)
{
static int counter = 0;
LLVMBuilderRef builder = ctx->builder;
char code[16];
snprintf(code, sizeof(code), "; %d", p_atomic_inc_return(&counter));
if (!pvgpr) {
LLVMTypeRef ftype = LLVMFunctionType(ctx->voidt, NULL, 0, false);
LLVMValueRef inlineasm = LLVMConstInlineAsm(ftype, code, "", true, false);
LLVMBuildCall(builder, inlineasm, NULL, 0, "");
} else {
LLVMTypeRef ftype = LLVMFunctionType(ctx->i32, &ctx->i32, 1, false);
LLVMValueRef inlineasm = LLVMConstInlineAsm(ftype, code, "=v,0", true, false);
LLVMValueRef vgpr = *pvgpr;
LLVMTypeRef vgpr_type = LLVMTypeOf(vgpr);
unsigned vgpr_size = ac_get_type_size(vgpr_type);
LLVMValueRef vgpr0;
assert(vgpr_size % 4 == 0);
vgpr = LLVMBuildBitCast(builder, vgpr, LLVMVectorType(ctx->i32, vgpr_size / 4), "");
vgpr0 = LLVMBuildExtractElement(builder, vgpr, ctx->i32_0, "");
vgpr0 = LLVMBuildCall(builder, inlineasm, &vgpr0, 1, "");
vgpr = LLVMBuildInsertElement(builder, vgpr, vgpr0, ctx->i32_0, "");
vgpr = LLVMBuildBitCast(builder, vgpr, vgpr_type, "");
*pvgpr = vgpr;
}
}
LLVMValueRef
ac_build_ballot(struct ac_llvm_context *ctx,
LLVMValueRef value)
{
LLVMValueRef args[3] = {
value,
ctx->i32_0,
LLVMConstInt(ctx->i32, LLVMIntNE, 0)
};
/* We currently have no other way to prevent LLVM from lifting the icmp
* calls to a dominating basic block.
*/
ac_build_optimization_barrier(ctx, &args[0]);
if (LLVMTypeOf(args[0]) != ctx->i32)
args[0] = LLVMBuildBitCast(ctx->builder, args[0], ctx->i32, "");
return ac_build_intrinsic(ctx,
"llvm.amdgcn.icmp.i32",
ctx->i64, args, 3,
AC_FUNC_ATTR_NOUNWIND |
AC_FUNC_ATTR_READNONE |
AC_FUNC_ATTR_CONVERGENT);
}
LLVMValueRef
ac_build_vote_all(struct ac_llvm_context *ctx, LLVMValueRef value)
{
LLVMValueRef active_set = ac_build_ballot(ctx, ctx->i32_1);
LLVMValueRef vote_set = ac_build_ballot(ctx, value);
return LLVMBuildICmp(ctx->builder, LLVMIntEQ, vote_set, active_set, "");
}
LLVMValueRef
ac_build_vote_any(struct ac_llvm_context *ctx, LLVMValueRef value)
{
LLVMValueRef vote_set = ac_build_ballot(ctx, value);
return LLVMBuildICmp(ctx->builder, LLVMIntNE, vote_set,
LLVMConstInt(ctx->i64, 0, 0), "");
}
LLVMValueRef
ac_build_vote_eq(struct ac_llvm_context *ctx, LLVMValueRef value)
{
LLVMValueRef active_set = ac_build_ballot(ctx, ctx->i32_1);
LLVMValueRef vote_set = ac_build_ballot(ctx, value);
LLVMValueRef all = LLVMBuildICmp(ctx->builder, LLVMIntEQ,
vote_set, active_set, "");
LLVMValueRef none = LLVMBuildICmp(ctx->builder, LLVMIntEQ,
vote_set,
LLVMConstInt(ctx->i64, 0, 0), "");
return LLVMBuildOr(ctx->builder, all, none, "");
}
LLVMValueRef
ac_build_varying_gather_values(struct ac_llvm_context *ctx, LLVMValueRef *values,
unsigned value_count, unsigned component)
{
LLVMValueRef vec = NULL;
if (value_count == 1) {
return values[component];
} else if (!value_count)
unreachable("value_count is 0");
for (unsigned i = component; i < value_count + component; i++) {
LLVMValueRef value = values[i];
if (i == component)
vec = LLVMGetUndef( LLVMVectorType(LLVMTypeOf(value), value_count));
LLVMValueRef index = LLVMConstInt(ctx->i32, i - component, false);
vec = LLVMBuildInsertElement(ctx->builder, vec, value, index, "");
}
return vec;
}
LLVMValueRef
ac_build_gather_values_extended(struct ac_llvm_context *ctx,
LLVMValueRef *values,
unsigned value_count,
unsigned value_stride,
bool load,
bool always_vector)
{
LLVMBuilderRef builder = ctx->builder;
LLVMValueRef vec = NULL;
unsigned i;
if (value_count == 1 && !always_vector) {
if (load)
return LLVMBuildLoad(builder, values[0], "");
return values[0];
} else if (!value_count)
unreachable("value_count is 0");
for (i = 0; i < value_count; i++) {
LLVMValueRef value = values[i * value_stride];
if (load)
value = LLVMBuildLoad(builder, value, "");
if (!i)
vec = LLVMGetUndef( LLVMVectorType(LLVMTypeOf(value), value_count));
LLVMValueRef index = LLVMConstInt(ctx->i32, i, false);
vec = LLVMBuildInsertElement(builder, vec, value, index, "");
}
return vec;
}
LLVMValueRef
ac_build_gather_values(struct ac_llvm_context *ctx,
LLVMValueRef *values,
unsigned value_count)
{
return ac_build_gather_values_extended(ctx, values, value_count, 1, false, false);
}
LLVMValueRef
ac_build_fdiv(struct ac_llvm_context *ctx,
LLVMValueRef num,
LLVMValueRef den)
{
LLVMValueRef ret = LLVMBuildFDiv(ctx->builder, num, den, "");
/* Use v_rcp_f32 instead of precise division. */
if (!LLVMIsConstant(ret))
LLVMSetMetadata(ret, ctx->fpmath_md_kind, ctx->fpmath_md_2p5_ulp);
return ret;
}
/* Coordinates for cube map selection. sc, tc, and ma are as in Table 8.27
* of the OpenGL 4.5 (Compatibility Profile) specification, except ma is
* already multiplied by two. id is the cube face number.
*/
struct cube_selection_coords {
LLVMValueRef stc[2];
LLVMValueRef ma;
LLVMValueRef id;
};
static void
build_cube_intrinsic(struct ac_llvm_context *ctx,
LLVMValueRef in[3],
struct cube_selection_coords *out)
{
LLVMTypeRef f32 = ctx->f32;
out->stc[1] = ac_build_intrinsic(ctx, "llvm.amdgcn.cubetc",
f32, in, 3, AC_FUNC_ATTR_READNONE);
out->stc[0] = ac_build_intrinsic(ctx, "llvm.amdgcn.cubesc",
f32, in, 3, AC_FUNC_ATTR_READNONE);
out->ma = ac_build_intrinsic(ctx, "llvm.amdgcn.cubema",
f32, in, 3, AC_FUNC_ATTR_READNONE);
out->id = ac_build_intrinsic(ctx, "llvm.amdgcn.cubeid",
f32, in, 3, AC_FUNC_ATTR_READNONE);
}
/**
* Build a manual selection sequence for cube face sc/tc coordinates and
* major axis vector (multiplied by 2 for consistency) for the given
* vec3 \p coords, for the face implied by \p selcoords.
*
* For the major axis, we always adjust the sign to be in the direction of
* selcoords.ma; i.e., a positive out_ma means that coords is pointed towards
* the selcoords major axis.
*/
static void build_cube_select(struct ac_llvm_context *ctx,
const struct cube_selection_coords *selcoords,
const LLVMValueRef *coords,
LLVMValueRef *out_st,
LLVMValueRef *out_ma)
{
LLVMBuilderRef builder = ctx->builder;
LLVMTypeRef f32 = LLVMTypeOf(coords[0]);
LLVMValueRef is_ma_positive;
LLVMValueRef sgn_ma;
LLVMValueRef is_ma_z, is_not_ma_z;
LLVMValueRef is_ma_y;
LLVMValueRef is_ma_x;
LLVMValueRef sgn;
LLVMValueRef tmp;
is_ma_positive = LLVMBuildFCmp(builder, LLVMRealUGE,
selcoords->ma, LLVMConstReal(f32, 0.0), "");
sgn_ma = LLVMBuildSelect(builder, is_ma_positive,
LLVMConstReal(f32, 1.0), LLVMConstReal(f32, -1.0), "");
is_ma_z = LLVMBuildFCmp(builder, LLVMRealUGE, selcoords->id, LLVMConstReal(f32, 4.0), "");
is_not_ma_z = LLVMBuildNot(builder, is_ma_z, "");
is_ma_y = LLVMBuildAnd(builder, is_not_ma_z,
LLVMBuildFCmp(builder, LLVMRealUGE, selcoords->id, LLVMConstReal(f32, 2.0), ""), "");
is_ma_x = LLVMBuildAnd(builder, is_not_ma_z, LLVMBuildNot(builder, is_ma_y, ""), "");
/* Select sc */
tmp = LLVMBuildSelect(builder, is_ma_x, coords[2], coords[0], "");
sgn = LLVMBuildSelect(builder, is_ma_y, LLVMConstReal(f32, 1.0),
LLVMBuildSelect(builder, is_ma_z, sgn_ma,
LLVMBuildFNeg(builder, sgn_ma, ""), ""), "");
out_st[0] = LLVMBuildFMul(builder, tmp, sgn, "");
/* Select tc */
tmp = LLVMBuildSelect(builder, is_ma_y, coords[2], coords[1], "");
sgn = LLVMBuildSelect(builder, is_ma_y, sgn_ma,
LLVMConstReal(f32, -1.0), "");
out_st[1] = LLVMBuildFMul(builder, tmp, sgn, "");
/* Select ma */
tmp = LLVMBuildSelect(builder, is_ma_z, coords[2],
LLVMBuildSelect(builder, is_ma_y, coords[1], coords[0], ""), "");
tmp = ac_build_intrinsic(ctx, "llvm.fabs.f32",
ctx->f32, &tmp, 1, AC_FUNC_ATTR_READNONE);
*out_ma = LLVMBuildFMul(builder, tmp, LLVMConstReal(f32, 2.0), "");
}
void
ac_prepare_cube_coords(struct ac_llvm_context *ctx,
bool is_deriv, bool is_array, bool is_lod,
LLVMValueRef *coords_arg,
LLVMValueRef *derivs_arg)
{
LLVMBuilderRef builder = ctx->builder;
struct cube_selection_coords selcoords;
LLVMValueRef coords[3];
LLVMValueRef invma;
if (is_array && !is_lod) {
LLVMValueRef tmp = coords_arg[3];
tmp = ac_build_intrinsic(ctx, "llvm.rint.f32", ctx->f32, &tmp, 1, 0);
/* Section 8.9 (Texture Functions) of the GLSL 4.50 spec says:
*
* "For Array forms, the array layer used will be
*
* max(0, min(d−1, floor(layer+0.5)))
*
* where d is the depth of the texture array and layer
* comes from the component indicated in the tables below.
* Workaroudn for an issue where the layer is taken from a
* helper invocation which happens to fall on a different
* layer due to extrapolation."
*
* VI and earlier attempt to implement this in hardware by
* clamping the value of coords[2] = (8 * layer) + face.
* Unfortunately, this means that the we end up with the wrong
* face when clamping occurs.
*
* Clamp the layer earlier to work around the issue.
*/
if (ctx->chip_class <= VI) {
LLVMValueRef ge0;
ge0 = LLVMBuildFCmp(builder, LLVMRealOGE, tmp, ctx->f32_0, "");
tmp = LLVMBuildSelect(builder, ge0, tmp, ctx->f32_0, "");
}
coords_arg[3] = tmp;
}
build_cube_intrinsic(ctx, coords_arg, &selcoords);
invma = ac_build_intrinsic(ctx, "llvm.fabs.f32",
ctx->f32, &selcoords.ma, 1, AC_FUNC_ATTR_READNONE);
invma = ac_build_fdiv(ctx, LLVMConstReal(ctx->f32, 1.0), invma);
for (int i = 0; i < 2; ++i)
coords[i] = LLVMBuildFMul(builder, selcoords.stc[i], invma, "");
coords[2] = selcoords.id;
if (is_deriv && derivs_arg) {
LLVMValueRef derivs[4];
int axis;
/* Convert cube derivatives to 2D derivatives. */
for (axis = 0; axis < 2; axis++) {
LLVMValueRef deriv_st[2];
LLVMValueRef deriv_ma;
/* Transform the derivative alongside the texture
* coordinate. Mathematically, the correct formula is
* as follows. Assume we're projecting onto the +Z face
* and denote by dx/dh the derivative of the (original)
* X texture coordinate with respect to horizontal
* window coordinates. The projection onto the +Z face
* plane is:
*
* f(x,z) = x/z
*
* Then df/dh = df/dx * dx/dh + df/dz * dz/dh
* = 1/z * dx/dh - x/z * 1/z * dz/dh.
*
* This motivatives the implementation below.
*
* Whether this actually gives the expected results for
* apps that might feed in derivatives obtained via
* finite differences is anyone's guess. The OpenGL spec
* seems awfully quiet about how textureGrad for cube
* maps should be handled.
*/
build_cube_select(ctx, &selcoords, &derivs_arg[axis * 3],
deriv_st, &deriv_ma);
deriv_ma = LLVMBuildFMul(builder, deriv_ma, invma, "");
for (int i = 0; i < 2; ++i)
derivs[axis * 2 + i] =
LLVMBuildFSub(builder,
LLVMBuildFMul(builder, deriv_st[i], invma, ""),
LLVMBuildFMul(builder, deriv_ma, coords[i], ""), "");
}
memcpy(derivs_arg, derivs, sizeof(derivs));
}
/* Shift the texture coordinate. This must be applied after the
* derivative calculation.
*/
for (int i = 0; i < 2; ++i)
coords[i] = LLVMBuildFAdd(builder, coords[i], LLVMConstReal(ctx->f32, 1.5), "");
if (is_array) {
/* for cube arrays coord.z = coord.w(array_index) * 8 + face */
/* coords_arg.w component - array_index for cube arrays */
LLVMValueRef tmp = LLVMBuildFMul(ctx->builder, coords_arg[3], LLVMConstReal(ctx->f32, 8.0), "");
coords[2] = LLVMBuildFAdd(ctx->builder, tmp, coords[2], "");
}
memcpy(coords_arg, coords, sizeof(coords));
}
LLVMValueRef
ac_build_fs_interp(struct ac_llvm_context *ctx,
LLVMValueRef llvm_chan,
LLVMValueRef attr_number,
LLVMValueRef params,
LLVMValueRef i,
LLVMValueRef j)
{
LLVMValueRef args[5];
LLVMValueRef p1;
if (HAVE_LLVM < 0x0400) {
LLVMValueRef ij[2];
ij[0] = LLVMBuildBitCast(ctx->builder, i, ctx->i32, "");
ij[1] = LLVMBuildBitCast(ctx->builder, j, ctx->i32, "");
args[0] = llvm_chan;
args[1] = attr_number;
args[2] = params;
args[3] = ac_build_gather_values(ctx, ij, 2);
return ac_build_intrinsic(ctx, "llvm.SI.fs.interp",
ctx->f32, args, 4,
AC_FUNC_ATTR_READNONE);
}
args[0] = i;
args[1] = llvm_chan;
args[2] = attr_number;
args[3] = params;
p1 = ac_build_intrinsic(ctx, "llvm.amdgcn.interp.p1",
ctx->f32, args, 4, AC_FUNC_ATTR_READNONE);
args[0] = p1;
args[1] = j;
args[2] = llvm_chan;
args[3] = attr_number;
args[4] = params;
return ac_build_intrinsic(ctx, "llvm.amdgcn.interp.p2",
ctx->f32, args, 5, AC_FUNC_ATTR_READNONE);
}
LLVMValueRef
ac_build_fs_interp_mov(struct ac_llvm_context *ctx,
LLVMValueRef parameter,
LLVMValueRef llvm_chan,
LLVMValueRef attr_number,
LLVMValueRef params)
{
LLVMValueRef args[4];
if (HAVE_LLVM < 0x0400) {
args[0] = llvm_chan;
args[1] = attr_number;
args[2] = params;
return ac_build_intrinsic(ctx,
"llvm.SI.fs.constant",
ctx->f32, args, 3,
AC_FUNC_ATTR_READNONE);
}
args[0] = parameter;
args[1] = llvm_chan;
args[2] = attr_number;
args[3] = params;
return ac_build_intrinsic(ctx, "llvm.amdgcn.interp.mov",
ctx->f32, args, 4, AC_FUNC_ATTR_READNONE);
}
LLVMValueRef
ac_build_gep0(struct ac_llvm_context *ctx,
LLVMValueRef base_ptr,
LLVMValueRef index)
{
LLVMValueRef indices[2] = {
LLVMConstInt(ctx->i32, 0, 0),
index,
};
return LLVMBuildGEP(ctx->builder, base_ptr,
indices, 2, "");
}
void
ac_build_indexed_store(struct ac_llvm_context *ctx,
LLVMValueRef base_ptr, LLVMValueRef index,
LLVMValueRef value)
{
LLVMBuildStore(ctx->builder, value,
ac_build_gep0(ctx, base_ptr, index));
}
/**
* Build an LLVM bytecode indexed load using LLVMBuildGEP + LLVMBuildLoad.
* It's equivalent to doing a load from &base_ptr[index].
*
* \param base_ptr Where the array starts.
* \param index The element index into the array.
* \param uniform Whether the base_ptr and index can be assumed to be
* dynamically uniform (i.e. load to an SGPR)
* \param invariant Whether the load is invariant (no other opcodes affect it)
*/
static LLVMValueRef
ac_build_load_custom(struct ac_llvm_context *ctx, LLVMValueRef base_ptr,
LLVMValueRef index, bool uniform, bool invariant)
{
LLVMValueRef pointer, result;
pointer = ac_build_gep0(ctx, base_ptr, index);
if (uniform)
LLVMSetMetadata(pointer, ctx->uniform_md_kind, ctx->empty_md);
result = LLVMBuildLoad(ctx->builder, pointer, "");
if (invariant)
LLVMSetMetadata(result, ctx->invariant_load_md_kind, ctx->empty_md);
return result;
}
LLVMValueRef ac_build_load(struct ac_llvm_context *ctx, LLVMValueRef base_ptr,
LLVMValueRef index)
{
return ac_build_load_custom(ctx, base_ptr, index, false, false);
}
LLVMValueRef ac_build_load_invariant(struct ac_llvm_context *ctx,
LLVMValueRef base_ptr, LLVMValueRef index)
{
return ac_build_load_custom(ctx, base_ptr, index, false, true);
}
LLVMValueRef ac_build_load_to_sgpr(struct ac_llvm_context *ctx,
LLVMValueRef base_ptr, LLVMValueRef index)
{
return ac_build_load_custom(ctx, base_ptr, index, true, true);
}
/* TBUFFER_STORE_FORMAT_{X,XY,XYZ,XYZW} <- the suffix is selected by num_channels=1..4.
* The type of vdata must be one of i32 (num_channels=1), v2i32 (num_channels=2),
* or v4i32 (num_channels=3,4).
*/
void
ac_build_buffer_store_dword(struct ac_llvm_context *ctx,
LLVMValueRef rsrc,
LLVMValueRef vdata,
unsigned num_channels,
LLVMValueRef voffset,
LLVMValueRef soffset,
unsigned inst_offset,
bool glc,
bool slc,
bool writeonly_memory,
bool swizzle_enable_hint)
{
/* SWIZZLE_ENABLE requires that soffset isn't folded into voffset
* (voffset is swizzled, but soffset isn't swizzled).
* llvm.amdgcn.buffer.store doesn't have a separate soffset parameter.
*/
if (!swizzle_enable_hint) {
/* Split 3 channel stores, becase LLVM doesn't support 3-channel
* intrinsics. */
if (num_channels == 3) {
LLVMValueRef v[3], v01;
for (int i = 0; i < 3; i++) {
v[i] = LLVMBuildExtractElement(ctx->builder, vdata,
LLVMConstInt(ctx->i32, i, 0), "");
}
v01 = ac_build_gather_values(ctx, v, 2);
ac_build_buffer_store_dword(ctx, rsrc, v01, 2, voffset,
soffset, inst_offset, glc, slc,
writeonly_memory, swizzle_enable_hint);
ac_build_buffer_store_dword(ctx, rsrc, v[2], 1, voffset,
soffset, inst_offset + 8,
glc, slc,
writeonly_memory, swizzle_enable_hint);
return;
}
unsigned func = CLAMP(num_channels, 1, 3) - 1;
static const char *types[] = {"f32", "v2f32", "v4f32"};
char name[256];
LLVMValueRef offset = soffset;
if (inst_offset)
offset = LLVMBuildAdd(ctx->builder, offset,
LLVMConstInt(ctx->i32, inst_offset, 0), "");
if (voffset)
offset = LLVMBuildAdd(ctx->builder, offset, voffset, "");
LLVMValueRef args[] = {
ac_to_float(ctx, vdata),
LLVMBuildBitCast(ctx->builder, rsrc, ctx->v4i32, ""),
LLVMConstInt(ctx->i32, 0, 0),
offset,
LLVMConstInt(ctx->i1, glc, 0),
LLVMConstInt(ctx->i1, slc, 0),
};
snprintf(name, sizeof(name), "llvm.amdgcn.buffer.store.%s",
types[func]);
ac_build_intrinsic(ctx, name, ctx->voidt,
args, ARRAY_SIZE(args),
writeonly_memory ?
AC_FUNC_ATTR_INACCESSIBLE_MEM_ONLY :
AC_FUNC_ATTR_WRITEONLY);
return;
}
static unsigned dfmt[] = {
V_008F0C_BUF_DATA_FORMAT_32,
V_008F0C_BUF_DATA_FORMAT_32_32,
V_008F0C_BUF_DATA_FORMAT_32_32_32,
V_008F0C_BUF_DATA_FORMAT_32_32_32_32
};
assert(num_channels >= 1 && num_channels <= 4);
LLVMValueRef args[] = {
rsrc,
vdata,
LLVMConstInt(ctx->i32, num_channels, 0),
voffset ? voffset : LLVMGetUndef(ctx->i32),
soffset,
LLVMConstInt(ctx->i32, inst_offset, 0),
LLVMConstInt(ctx->i32, dfmt[num_channels - 1], 0),
LLVMConstInt(ctx->i32, V_008F0C_BUF_NUM_FORMAT_UINT, 0),
LLVMConstInt(ctx->i32, voffset != NULL, 0),
LLVMConstInt(ctx->i32, 0, 0), /* idxen */
LLVMConstInt(ctx->i32, glc, 0),
LLVMConstInt(ctx->i32, slc, 0),
LLVMConstInt(ctx->i32, 0, 0), /* tfe*/
};
/* The instruction offset field has 12 bits */
assert(voffset || inst_offset < (1 << 12));
/* The intrinsic is overloaded, we need to add a type suffix for overloading to work. */
unsigned func = CLAMP(num_channels, 1, 3) - 1;
const char *types[] = {"i32", "v2i32", "v4i32"};
char name[256];
snprintf(name, sizeof(name), "llvm.SI.tbuffer.store.%s", types[func]);
ac_build_intrinsic(ctx, name, ctx->voidt,
args, ARRAY_SIZE(args),
AC_FUNC_ATTR_LEGACY);
}
LLVMValueRef
ac_build_buffer_load(struct ac_llvm_context *ctx,
LLVMValueRef rsrc,
int num_channels,
LLVMValueRef vindex,
LLVMValueRef voffset,
LLVMValueRef soffset,
unsigned inst_offset,
unsigned glc,
unsigned slc,
bool can_speculate,
bool allow_smem)
{
LLVMValueRef offset = LLVMConstInt(ctx->i32, inst_offset, 0);
if (voffset)
offset = LLVMBuildAdd(ctx->builder, offset, voffset, "");
if (soffset)
offset = LLVMBuildAdd(ctx->builder, offset, soffset, "");
/* TODO: VI and later generations can use SMEM with GLC=1.*/
if (allow_smem && !glc && !slc) {
assert(vindex == NULL);
LLVMValueRef result[4];
for (int i = 0; i < num_channels; i++) {
if (i) {
offset = LLVMBuildAdd(ctx->builder, offset,
LLVMConstInt(ctx->i32, 4, 0), "");
}
LLVMValueRef args[2] = {rsrc, offset};
result[i] = ac_build_intrinsic(ctx, "llvm.SI.load.const.v4i32",
ctx->f32, args, 2,
AC_FUNC_ATTR_READNONE |
AC_FUNC_ATTR_LEGACY);
}
if (num_channels == 1)
return result[0];
if (num_channels == 3)
result[num_channels++] = LLVMGetUndef(ctx->f32);
return ac_build_gather_values(ctx, result, num_channels);
}
unsigned func = CLAMP(num_channels, 1, 3) - 1;
LLVMValueRef args[] = {
LLVMBuildBitCast(ctx->builder, rsrc, ctx->v4i32, ""),
vindex ? vindex : LLVMConstInt(ctx->i32, 0, 0),
offset,
LLVMConstInt(ctx->i1, glc, 0),
LLVMConstInt(ctx->i1, slc, 0)
};
LLVMTypeRef types[] = {ctx->f32, LLVMVectorType(ctx->f32, 2),
ctx->v4f32};
const char *type_names[] = {"f32", "v2f32", "v4f32"};
char name[256];
snprintf(name, sizeof(name), "llvm.amdgcn.buffer.load.%s",
type_names[func]);
return ac_build_intrinsic(ctx, name, types[func], args,
ARRAY_SIZE(args),
ac_get_load_intr_attribs(can_speculate));
}
LLVMValueRef ac_build_buffer_load_format(struct ac_llvm_context *ctx,
LLVMValueRef rsrc,
LLVMValueRef vindex,
LLVMValueRef voffset,
bool can_speculate)
{
LLVMValueRef args [] = {
LLVMBuildBitCast(ctx->builder, rsrc, ctx->v4i32, ""),
vindex,
voffset,
ctx->i1false, /* glc */
ctx->i1false, /* slc */
};
return ac_build_intrinsic(ctx,
"llvm.amdgcn.buffer.load.format.v4f32",
ctx->v4f32, args, ARRAY_SIZE(args),
ac_get_load_intr_attribs(can_speculate));
}
LLVMValueRef ac_build_buffer_load_format_gfx9_safe(struct ac_llvm_context *ctx,
LLVMValueRef rsrc,
LLVMValueRef vindex,
LLVMValueRef voffset,
bool can_speculate)
{
LLVMValueRef elem_count = LLVMBuildExtractElement(ctx->builder, rsrc, LLVMConstInt(ctx->i32, 2, 0), "");
LLVMValueRef stride = LLVMBuildExtractElement(ctx->builder, rsrc, LLVMConstInt(ctx->i32, 1, 0), "");
stride = LLVMBuildLShr(ctx->builder, stride, LLVMConstInt(ctx->i32, 16, 0), "");
LLVMValueRef new_elem_count = LLVMBuildSelect(ctx->builder,
LLVMBuildICmp(ctx->builder, LLVMIntUGT, elem_count, stride, ""),
elem_count, stride, "");
LLVMValueRef new_rsrc = LLVMBuildInsertElement(ctx->builder, rsrc, new_elem_count,
LLVMConstInt(ctx->i32, 2, 0), "");
return ac_build_buffer_load_format(ctx, new_rsrc, vindex, voffset, can_speculate);
}
/**
* Set range metadata on an instruction. This can only be used on load and
* call instructions. If you know an instruction can only produce the values
* 0, 1, 2, you would do set_range_metadata(value, 0, 3);
* \p lo is the minimum value inclusive.
* \p hi is the maximum value exclusive.
*/
static void set_range_metadata(struct ac_llvm_context *ctx,
LLVMValueRef value, unsigned lo, unsigned hi)
{
LLVMValueRef range_md, md_args[2];
LLVMTypeRef type = LLVMTypeOf(value);
LLVMContextRef context = LLVMGetTypeContext(type);
md_args[0] = LLVMConstInt(type, lo, false);
md_args[1] = LLVMConstInt(type, hi, false);
range_md = LLVMMDNodeInContext(context, md_args, 2);
LLVMSetMetadata(value, ctx->range_md_kind, range_md);
}
LLVMValueRef
ac_get_thread_id(struct ac_llvm_context *ctx)
{
LLVMValueRef tid;
LLVMValueRef tid_args[2];
tid_args[0] = LLVMConstInt(ctx->i32, 0xffffffff, false);
tid_args[1] = LLVMConstInt(ctx->i32, 0, false);
tid_args[1] = ac_build_intrinsic(ctx,
"llvm.amdgcn.mbcnt.lo", ctx->i32,
tid_args, 2, AC_FUNC_ATTR_READNONE);
tid = ac_build_intrinsic(ctx, "llvm.amdgcn.mbcnt.hi",
ctx->i32, tid_args,
2, AC_FUNC_ATTR_READNONE);
set_range_metadata(ctx, tid, 0, 64);
return tid;
}
/*
* SI implements derivatives using the local data store (LDS)
* All writes to the LDS happen in all executing threads at
* the same time. TID is the Thread ID for the current
* thread and is a value between 0 and 63, representing
* the thread's position in the wavefront.
*
* For the pixel shader threads are grouped into quads of four pixels.
* The TIDs of the pixels of a quad are:
*
* +------+------+
* |4n + 0|4n + 1|
* +------+------+
* |4n + 2|4n + 3|
* +------+------+
*
* So, masking the TID with 0xfffffffc yields the TID of the top left pixel
* of the quad, masking with 0xfffffffd yields the TID of the top pixel of
* the current pixel's column, and masking with 0xfffffffe yields the TID
* of the left pixel of the current pixel's row.
*
* Adding 1 yields the TID of the pixel to the right of the left pixel, and
* adding 2 yields the TID of the pixel below the top pixel.
*/
LLVMValueRef
ac_build_ddxy(struct ac_llvm_context *ctx,
uint32_t mask,
int idx,
LLVMValueRef val)
{
LLVMValueRef tl, trbl, args[2];
LLVMValueRef result;
if (ctx->chip_class >= VI) {
LLVMValueRef thread_id, tl_tid, trbl_tid;
thread_id = ac_get_thread_id(ctx);
tl_tid = LLVMBuildAnd(ctx->builder, thread_id,
LLVMConstInt(ctx->i32, mask, false), "");
trbl_tid = LLVMBuildAdd(ctx->builder, tl_tid,
LLVMConstInt(ctx->i32, idx, false), "");
args[0] = LLVMBuildMul(ctx->builder, tl_tid,
LLVMConstInt(ctx->i32, 4, false), "");
args[1] = val;
tl = ac_build_intrinsic(ctx,
"llvm.amdgcn.ds.bpermute", ctx->i32,
args, 2,
AC_FUNC_ATTR_READNONE |
AC_FUNC_ATTR_CONVERGENT);
args[0] = LLVMBuildMul(ctx->builder, trbl_tid,
LLVMConstInt(ctx->i32, 4, false), "");
trbl = ac_build_intrinsic(ctx,
"llvm.amdgcn.ds.bpermute", ctx->i32,
args, 2,
AC_FUNC_ATTR_READNONE |
AC_FUNC_ATTR_CONVERGENT);
} else {
uint32_t masks[2] = {};
switch (mask) {
case AC_TID_MASK_TOP_LEFT:
masks[0] = 0x8000;
if (idx == 1)
masks[1] = 0x8055;
else
masks[1] = 0x80aa;
break;
case AC_TID_MASK_TOP:
masks[0] = 0x8044;
masks[1] = 0x80ee;
break;
case AC_TID_MASK_LEFT:
masks[0] = 0x80a0;
masks[1] = 0x80f5;
break;
default:
assert(0);
}
args[0] = val;
args[1] = LLVMConstInt(ctx->i32, masks[0], false);
tl = ac_build_intrinsic(ctx,
"llvm.amdgcn.ds.swizzle", ctx->i32,
args, 2,
AC_FUNC_ATTR_READNONE |
AC_FUNC_ATTR_CONVERGENT);
args[1] = LLVMConstInt(ctx->i32, masks[1], false);
trbl = ac_build_intrinsic(ctx,
"llvm.amdgcn.ds.swizzle", ctx->i32,
args, 2,
AC_FUNC_ATTR_READNONE |
AC_FUNC_ATTR_CONVERGENT);
}
tl = LLVMBuildBitCast(ctx->builder, tl, ctx->f32, "");
trbl = LLVMBuildBitCast(ctx->builder, trbl, ctx->f32, "");
result = LLVMBuildFSub(ctx->builder, trbl, tl, "");
return result;
}
void
ac_build_sendmsg(struct ac_llvm_context *ctx,
uint32_t msg,
LLVMValueRef wave_id)
{
LLVMValueRef args[2];
const char *intr_name = (HAVE_LLVM < 0x0400) ? "llvm.SI.sendmsg" : "llvm.amdgcn.s.sendmsg";
args[0] = LLVMConstInt(ctx->i32, msg, false);
args[1] = wave_id;
ac_build_intrinsic(ctx, intr_name, ctx->voidt, args, 2, 0);
}
LLVMValueRef
ac_build_imsb(struct ac_llvm_context *ctx,
LLVMValueRef arg,
LLVMTypeRef dst_type)
{
const char *intr_name = (HAVE_LLVM < 0x0400) ? "llvm.AMDGPU.flbit.i32" :
"llvm.amdgcn.sffbh.i32";
LLVMValueRef msb = ac_build_intrinsic(ctx, intr_name,
dst_type, &arg, 1,
AC_FUNC_ATTR_READNONE);
/* The HW returns the last bit index from MSB, but NIR/TGSI wants
* the index from LSB. Invert it by doing "31 - msb". */
msb = LLVMBuildSub(ctx->builder, LLVMConstInt(ctx->i32, 31, false),
msb, "");
LLVMValueRef all_ones = LLVMConstInt(ctx->i32, -1, true);
LLVMValueRef cond = LLVMBuildOr(ctx->builder,
LLVMBuildICmp(ctx->builder, LLVMIntEQ,
arg, LLVMConstInt(ctx->i32, 0, 0), ""),
LLVMBuildICmp(ctx->builder, LLVMIntEQ,
arg, all_ones, ""), "");
return LLVMBuildSelect(ctx->builder, cond, all_ones, msb, "");
}
LLVMValueRef
ac_build_umsb(struct ac_llvm_context *ctx,
LLVMValueRef arg,
LLVMTypeRef dst_type)
{
LLVMValueRef args[2] = {
arg,
ctx->i1true,
};
LLVMValueRef msb = ac_build_intrinsic(ctx, "llvm.ctlz.i32",
dst_type, args, ARRAY_SIZE(args),
AC_FUNC_ATTR_READNONE);
/* The HW returns the last bit index from MSB, but TGSI/NIR wants
* the index from LSB. Invert it by doing "31 - msb". */
msb = LLVMBuildSub(ctx->builder, LLVMConstInt(ctx->i32, 31, false),
msb, "");
/* check for zero */
return LLVMBuildSelect(ctx->builder,
LLVMBuildICmp(ctx->builder, LLVMIntEQ, arg,
LLVMConstInt(ctx->i32, 0, 0), ""),
LLVMConstInt(ctx->i32, -1, true), msb, "");
}
LLVMValueRef ac_build_fmin(struct ac_llvm_context *ctx, LLVMValueRef a,
LLVMValueRef b)
{
LLVMValueRef args[2] = {a, b};
return ac_build_intrinsic(ctx, "llvm.minnum.f32", ctx->f32, args, 2,
AC_FUNC_ATTR_READNONE);
}
LLVMValueRef ac_build_fmax(struct ac_llvm_context *ctx, LLVMValueRef a,
LLVMValueRef b)
{
LLVMValueRef args[2] = {a, b};
return ac_build_intrinsic(ctx, "llvm.maxnum.f32", ctx->f32, args, 2,
AC_FUNC_ATTR_READNONE);
}
LLVMValueRef ac_build_umin(struct ac_llvm_context *ctx, LLVMValueRef a,
LLVMValueRef b)
{
LLVMValueRef cmp = LLVMBuildICmp(ctx->builder, LLVMIntULE, a, b, "");
return LLVMBuildSelect(ctx->builder, cmp, a, b, "");
}
LLVMValueRef ac_build_clamp(struct ac_llvm_context *ctx, LLVMValueRef value)
{
if (HAVE_LLVM >= 0x0500) {
return ac_build_fmin(ctx, ac_build_fmax(ctx, value, ctx->f32_0),
ctx->f32_1);
}
LLVMValueRef args[3] = {
value,
LLVMConstReal(ctx->f32, 0),
LLVMConstReal(ctx->f32, 1),
};
return ac_build_intrinsic(ctx, "llvm.AMDGPU.clamp.", ctx->f32, args, 3,
AC_FUNC_ATTR_READNONE |
AC_FUNC_ATTR_LEGACY);
}
void ac_build_export(struct ac_llvm_context *ctx, struct ac_export_args *a)
{
LLVMValueRef args[9];
if (HAVE_LLVM >= 0x0500) {
args[0] = LLVMConstInt(ctx->i32, a->target, 0);
args[1] = LLVMConstInt(ctx->i32, a->enabled_channels, 0);
if (a->compr) {
LLVMTypeRef i16 = LLVMInt16TypeInContext(ctx->context);
LLVMTypeRef v2i16 = LLVMVectorType(i16, 2);
args[2] = LLVMBuildBitCast(ctx->builder, a->out[0],
v2i16, "");
args[3] = LLVMBuildBitCast(ctx->builder, a->out[1],
v2i16, "");
args[4] = LLVMConstInt(ctx->i1, a->done, 0);
args[5] = LLVMConstInt(ctx->i1, a->valid_mask, 0);
ac_build_intrinsic(ctx, "llvm.amdgcn.exp.compr.v2i16",
ctx->voidt, args, 6, 0);
} else {
args[2] = a->out[0];
args[3] = a->out[1];
args[4] = a->out[2];
args[5] = a->out[3];
args[6] = LLVMConstInt(ctx->i1, a->done, 0);
args[7] = LLVMConstInt(ctx->i1, a->valid_mask, 0);
ac_build_intrinsic(ctx, "llvm.amdgcn.exp.f32",
ctx->voidt, args, 8, 0);
}
return;
}
args[0] = LLVMConstInt(ctx->i32, a->enabled_channels, 0);
args[1] = LLVMConstInt(ctx->i32, a->valid_mask, 0);
args[2] = LLVMConstInt(ctx->i32, a->done, 0);
args[3] = LLVMConstInt(ctx->i32, a->target, 0);
args[4] = LLVMConstInt(ctx->i32, a->compr, 0);
memcpy(args + 5, a->out, sizeof(a->out[0]) * 4);
ac_build_intrinsic(ctx, "llvm.SI.export", ctx->voidt, args, 9,
AC_FUNC_ATTR_LEGACY);
}
LLVMValueRef ac_build_image_opcode(struct ac_llvm_context *ctx,
struct ac_image_args *a)
{
LLVMTypeRef dst_type;
LLVMValueRef args[11];
unsigned num_args = 0;
const char *name = NULL;
char intr_name[128], type[64];
if (HAVE_LLVM >= 0x0400) {
bool sample = a->opcode == ac_image_sample ||
a->opcode == ac_image_gather4 ||
a->opcode == ac_image_get_lod;
if (sample)
args[num_args++] = ac_to_float(ctx, a->addr);
else
args[num_args++] = a->addr;
args[num_args++] = a->resource;
if (sample)
args[num_args++] = a->sampler;
args[num_args++] = LLVMConstInt(ctx->i32, a->dmask, 0);
if (sample)
args[num_args++] = LLVMConstInt(ctx->i1, a->unorm, 0);
args[num_args++] = ctx->i1false; /* glc */
args[num_args++] = ctx->i1false; /* slc */
args[num_args++] = ctx->i1false; /* lwe */
args[num_args++] = LLVMConstInt(ctx->i1, a->da, 0);
switch (a->opcode) {
case ac_image_sample:
name = "llvm.amdgcn.image.sample";
break;
case ac_image_gather4:
name = "llvm.amdgcn.image.gather4";
break;
case ac_image_load:
name = "llvm.amdgcn.image.load";
break;
case ac_image_load_mip:
name = "llvm.amdgcn.image.load.mip";
break;
case ac_image_get_lod:
name = "llvm.amdgcn.image.getlod";
break;
case ac_image_get_resinfo:
name = "llvm.amdgcn.image.getresinfo";
break;
default:
unreachable("invalid image opcode");
}
ac_build_type_name_for_intr(LLVMTypeOf(args[0]), type,
sizeof(type));
snprintf(intr_name, sizeof(intr_name), "%s%s%s%s.v4f32.%s.v8i32",
name,
a->compare ? ".c" : "",
a->bias ? ".b" :
a->lod ? ".l" :
a->deriv ? ".d" :
a->level_zero ? ".lz" : "",
a->offset ? ".o" : "",
type);
LLVMValueRef result =
ac_build_intrinsic(ctx, intr_name,
ctx->v4f32, args, num_args,
AC_FUNC_ATTR_READNONE);
if (!sample) {
result = LLVMBuildBitCast(ctx->builder, result,
ctx->v4i32, "");
}
return result;
}
args[num_args++] = a->addr;
args[num_args++] = a->resource;
if (a->opcode == ac_image_load ||
a->opcode == ac_image_load_mip ||
a->opcode == ac_image_get_resinfo) {
dst_type = ctx->v4i32;
} else {
dst_type = ctx->v4f32;
args[num_args++] = a->sampler;
}
args[num_args++] = LLVMConstInt(ctx->i32, a->dmask, 0);
args[num_args++] = LLVMConstInt(ctx->i32, a->unorm, 0);
args[num_args++] = LLVMConstInt(ctx->i32, 0, 0); /* r128 */
args[num_args++] = LLVMConstInt(ctx->i32, a->da, 0);
args[num_args++] = LLVMConstInt(ctx->i32, 0, 0); /* glc */
args[num_args++] = LLVMConstInt(ctx->i32, 0, 0); /* slc */
args[num_args++] = LLVMConstInt(ctx->i32, 0, 0); /* tfe */
args[num_args++] = LLVMConstInt(ctx->i32, 0, 0); /* lwe */
switch (a->opcode) {
case ac_image_sample:
name = "llvm.SI.image.sample";
break;
case ac_image_gather4:
name = "llvm.SI.gather4";
break;
case ac_image_load:
name = "llvm.SI.image.load";
break;
case ac_image_load_mip:
name = "llvm.SI.image.load.mip";
break;
case ac_image_get_lod:
name = "llvm.SI.getlod";
break;
case ac_image_get_resinfo:
name = "llvm.SI.getresinfo";
break;
}
ac_build_type_name_for_intr(LLVMTypeOf(a->addr), type, sizeof(type));
snprintf(intr_name, sizeof(intr_name), "%s%s%s%s.%s",
name,
a->compare ? ".c" : "",
a->bias ? ".b" :
a->lod ? ".l" :
a->deriv ? ".d" :
a->level_zero ? ".lz" : "",
a->offset ? ".o" : "",
type);
return ac_build_intrinsic(ctx, intr_name,
dst_type, args, num_args,
AC_FUNC_ATTR_READNONE |
AC_FUNC_ATTR_LEGACY);
}
LLVMValueRef ac_build_cvt_pkrtz_f16(struct ac_llvm_context *ctx,
LLVMValueRef args[2])
{
if (HAVE_LLVM >= 0x0500) {
LLVMTypeRef v2f16 =
LLVMVectorType(LLVMHalfTypeInContext(ctx->context), 2);
LLVMValueRef res =
ac_build_intrinsic(ctx, "llvm.amdgcn.cvt.pkrtz",
v2f16, args, 2,
AC_FUNC_ATTR_READNONE);
return LLVMBuildBitCast(ctx->builder, res, ctx->i32, "");
}
return ac_build_intrinsic(ctx, "llvm.SI.packf16", ctx->i32, args, 2,
AC_FUNC_ATTR_READNONE |
AC_FUNC_ATTR_LEGACY);
}
LLVMValueRef ac_build_wqm_vote(struct ac_llvm_context *ctx, LLVMValueRef i1)
{
assert(HAVE_LLVM >= 0x0600);
return ac_build_intrinsic(ctx, "llvm.amdgcn.wqm.vote", ctx->i1,
&i1, 1, AC_FUNC_ATTR_READNONE);
}
void ac_build_kill_if_false(struct ac_llvm_context *ctx, LLVMValueRef i1)
{
if (HAVE_LLVM >= 0x0600) {
ac_build_intrinsic(ctx, "llvm.amdgcn.kill", ctx->voidt,
&i1, 1, 0);
return;
}
LLVMValueRef value = LLVMBuildSelect(ctx->builder, i1,
LLVMConstReal(ctx->f32, 1),
LLVMConstReal(ctx->f32, -1), "");
ac_build_intrinsic(ctx, "llvm.AMDGPU.kill", ctx->voidt,
&value, 1, AC_FUNC_ATTR_LEGACY);
}
LLVMValueRef ac_build_bfe(struct ac_llvm_context *ctx, LLVMValueRef input,
LLVMValueRef offset, LLVMValueRef width,
bool is_signed)
{
LLVMValueRef args[] = {
input,
offset,
width,
};
if (HAVE_LLVM >= 0x0500) {
return ac_build_intrinsic(ctx,
is_signed ? "llvm.amdgcn.sbfe.i32" :
"llvm.amdgcn.ubfe.i32",
ctx->i32, args, 3,
AC_FUNC_ATTR_READNONE);
}
return ac_build_intrinsic(ctx,
is_signed ? "llvm.AMDGPU.bfe.i32" :
"llvm.AMDGPU.bfe.u32",
ctx->i32, args, 3,
AC_FUNC_ATTR_READNONE |
AC_FUNC_ATTR_LEGACY);
}
void ac_build_waitcnt(struct ac_llvm_context *ctx, unsigned simm16)
{
LLVMValueRef args[1] = {
LLVMConstInt(ctx->i32, simm16, false),
};
ac_build_intrinsic(ctx, "llvm.amdgcn.s.waitcnt",
ctx->voidt, args, 1, 0);
}
void ac_get_image_intr_name(const char *base_name,
LLVMTypeRef data_type,
LLVMTypeRef coords_type,
LLVMTypeRef rsrc_type,
char *out_name, unsigned out_len)
{
char coords_type_name[8];
ac_build_type_name_for_intr(coords_type, coords_type_name,
sizeof(coords_type_name));
if (HAVE_LLVM <= 0x0309) {
snprintf(out_name, out_len, "%s.%s", base_name, coords_type_name);
} else {
char data_type_name[8];
char rsrc_type_name[8];
ac_build_type_name_for_intr(data_type, data_type_name,
sizeof(data_type_name));
ac_build_type_name_for_intr(rsrc_type, rsrc_type_name,
sizeof(rsrc_type_name));
snprintf(out_name, out_len, "%s.%s.%s.%s", base_name,
data_type_name, coords_type_name, rsrc_type_name);
}
}
#define AC_EXP_TARGET (HAVE_LLVM >= 0x0500 ? 0 : 3)
#define AC_EXP_OUT0 (HAVE_LLVM >= 0x0500 ? 2 : 5)
enum ac_ir_type {
AC_IR_UNDEF,
AC_IR_CONST,
AC_IR_VALUE,
};
struct ac_vs_exp_chan
{
LLVMValueRef value;
float const_float;
enum ac_ir_type type;
};
struct ac_vs_exp_inst {
unsigned offset;
LLVMValueRef inst;
struct ac_vs_exp_chan chan[4];
};
struct ac_vs_exports {
unsigned num;
struct ac_vs_exp_inst exp[VARYING_SLOT_MAX];
};
/* Return true if the PARAM export has been eliminated. */
static bool ac_eliminate_const_output(uint8_t *vs_output_param_offset,
uint32_t num_outputs,
struct ac_vs_exp_inst *exp)
{
unsigned i, default_val; /* SPI_PS_INPUT_CNTL_i.DEFAULT_VAL */
bool is_zero[4] = {}, is_one[4] = {};
for (i = 0; i < 4; i++) {
/* It's a constant expression. Undef outputs are eliminated too. */
if (exp->chan[i].type == AC_IR_UNDEF) {
is_zero[i] = true;
is_one[i] = true;
} else if (exp->chan[i].type == AC_IR_CONST) {
if (exp->chan[i].const_float == 0)
is_zero[i] = true;
else if (exp->chan[i].const_float == 1)
is_one[i] = true;
else
return false; /* other constant */
} else
return false;
}
/* Only certain combinations of 0 and 1 can be eliminated. */
if (is_zero[0] && is_zero[1] && is_zero[2])
default_val = is_zero[3] ? 0 : 1;
else if (is_one[0] && is_one[1] && is_one[2])
default_val = is_zero[3] ? 2 : 3;
else
return false;
/* The PARAM export can be represented as DEFAULT_VAL. Kill it. */
LLVMInstructionEraseFromParent(exp->inst);
/* Change OFFSET to DEFAULT_VAL. */
for (i = 0; i < num_outputs; i++) {
if (vs_output_param_offset[i] == exp->offset) {
vs_output_param_offset[i] =
AC_EXP_PARAM_DEFAULT_VAL_0000 + default_val;
break;
}
}
return true;
}
static bool ac_eliminate_duplicated_output(uint8_t *vs_output_param_offset,
uint32_t num_outputs,
struct ac_vs_exports *processed,
struct ac_vs_exp_inst *exp)
{
unsigned p, copy_back_channels = 0;
/* See if the output is already in the list of processed outputs.
* The LLVMValueRef comparison relies on SSA.
*/
for (p = 0; p < processed->num; p++) {
bool different = false;
for (unsigned j = 0; j < 4; j++) {
struct ac_vs_exp_chan *c1 = &processed->exp[p].chan[j];
struct ac_vs_exp_chan *c2 = &exp->chan[j];
/* Treat undef as a match. */
if (c2->type == AC_IR_UNDEF)
continue;
/* If c1 is undef but c2 isn't, we can copy c2 to c1
* and consider the instruction duplicated.
*/
if (c1->type == AC_IR_UNDEF) {
copy_back_channels |= 1 << j;
continue;
}
/* Test whether the channels are not equal. */
if (c1->type != c2->type ||
(c1->type == AC_IR_CONST &&
c1->const_float != c2->const_float) ||
(c1->type == AC_IR_VALUE &&
c1->value != c2->value)) {
different = true;
break;
}
}
if (!different)
break;
copy_back_channels = 0;
}
if (p == processed->num)
return false;
/* If a match was found, but the matching export has undef where the new
* one has a normal value, copy the normal value to the undef channel.
*/
struct ac_vs_exp_inst *match = &processed->exp[p];
while (copy_back_channels) {
unsigned chan = u_bit_scan(©_back_channels);
assert(match->chan[chan].type == AC_IR_UNDEF);
LLVMSetOperand(match->inst, AC_EXP_OUT0 + chan,
exp->chan[chan].value);
match->chan[chan] = exp->chan[chan];
}
/* The PARAM export is duplicated. Kill it. */
LLVMInstructionEraseFromParent(exp->inst);
/* Change OFFSET to the matching export. */
for (unsigned i = 0; i < num_outputs; i++) {
if (vs_output_param_offset[i] == exp->offset) {
vs_output_param_offset[i] = match->offset;
break;
}
}
return true;
}
void ac_optimize_vs_outputs(struct ac_llvm_context *ctx,
LLVMValueRef main_fn,
uint8_t *vs_output_param_offset,
uint32_t num_outputs,
uint8_t *num_param_exports)
{
LLVMBasicBlockRef bb;
bool removed_any = false;
struct ac_vs_exports exports;
exports.num = 0;
/* Process all LLVM instructions. */
bb = LLVMGetFirstBasicBlock(main_fn);
while (bb) {
LLVMValueRef inst = LLVMGetFirstInstruction(bb);
while (inst) {
LLVMValueRef cur = inst;
inst = LLVMGetNextInstruction(inst);
struct ac_vs_exp_inst exp;
if (LLVMGetInstructionOpcode(cur) != LLVMCall)
continue;
LLVMValueRef callee = ac_llvm_get_called_value(cur);
if (!ac_llvm_is_function(callee))
continue;
const char *name = LLVMGetValueName(callee);
unsigned num_args = LLVMCountParams(callee);
/* Check if this is an export instruction. */
if ((num_args != 9 && num_args != 8) ||
(strcmp(name, "llvm.SI.export") &&
strcmp(name, "llvm.amdgcn.exp.f32")))
continue;
LLVMValueRef arg = LLVMGetOperand(cur, AC_EXP_TARGET);
unsigned target = LLVMConstIntGetZExtValue(arg);
if (target < V_008DFC_SQ_EXP_PARAM)
continue;
target -= V_008DFC_SQ_EXP_PARAM;
/* Parse the instruction. */
memset(&exp, 0, sizeof(exp));
exp.offset = target;
exp.inst = cur;
for (unsigned i = 0; i < 4; i++) {
LLVMValueRef v = LLVMGetOperand(cur, AC_EXP_OUT0 + i);
exp.chan[i].value = v;
if (LLVMIsUndef(v)) {
exp.chan[i].type = AC_IR_UNDEF;
} else if (LLVMIsAConstantFP(v)) {
LLVMBool loses_info;
exp.chan[i].type = AC_IR_CONST;
exp.chan[i].const_float =
LLVMConstRealGetDouble(v, &loses_info);
} else {
exp.chan[i].type = AC_IR_VALUE;
}
}
/* Eliminate constant and duplicated PARAM exports. */
if (ac_eliminate_const_output(vs_output_param_offset,
num_outputs, &exp) ||
ac_eliminate_duplicated_output(vs_output_param_offset,
num_outputs, &exports,
&exp)) {
removed_any = true;
} else {
exports.exp[exports.num++] = exp;
}
}
bb = LLVMGetNextBasicBlock(bb);
}
/* Remove holes in export memory due to removed PARAM exports.
* This is done by renumbering all PARAM exports.
*/
if (removed_any) {
uint8_t old_offset[VARYING_SLOT_MAX];
unsigned out, i;
/* Make a copy of the offsets. We need the old version while
* we are modifying some of them. */
memcpy(old_offset, vs_output_param_offset,
sizeof(old_offset));
for (i = 0; i < exports.num; i++) {
unsigned offset = exports.exp[i].offset;
/* Update vs_output_param_offset. Multiple outputs can
* have the same offset.
*/
for (out = 0; out < num_outputs; out++) {
if (old_offset[out] == offset)
vs_output_param_offset[out] = i;
}
/* Change the PARAM offset in the instruction. */
LLVMSetOperand(exports.exp[i].inst, AC_EXP_TARGET,
LLVMConstInt(ctx->i32,
V_008DFC_SQ_EXP_PARAM + i, 0));
}
*num_param_exports = exports.num;
}
}
void ac_init_exec_full_mask(struct ac_llvm_context *ctx)
{
LLVMValueRef full_mask = LLVMConstInt(ctx->i64, ~0ull, 0);
ac_build_intrinsic(ctx,
"llvm.amdgcn.init.exec", ctx->voidt,
&full_mask, 1, AC_FUNC_ATTR_CONVERGENT);
}
void ac_declare_lds_as_pointer(struct ac_llvm_context *ctx)
{
unsigned lds_size = ctx->chip_class >= CIK ? 65536 : 32768;
ctx->lds = LLVMBuildIntToPtr(ctx->builder, ctx->i32_0,
LLVMPointerType(LLVMArrayType(ctx->i32, lds_size / 4), AC_LOCAL_ADDR_SPACE),
"lds");
}
LLVMValueRef ac_lds_load(struct ac_llvm_context *ctx,
LLVMValueRef dw_addr)
{
return ac_build_load(ctx, ctx->lds, dw_addr);
}
void ac_lds_store(struct ac_llvm_context *ctx,
LLVMValueRef dw_addr,
LLVMValueRef value)
{
value = ac_to_integer(ctx, value);
ac_build_indexed_store(ctx, ctx->lds,
dw_addr, value);
}
LLVMValueRef ac_find_lsb(struct ac_llvm_context *ctx,
LLVMTypeRef dst_type,
LLVMValueRef src0)
{
LLVMValueRef params[2] = {
src0,
/* The value of 1 means that ffs(x=0) = undef, so LLVM won't
* add special code to check for x=0. The reason is that
* the LLVM behavior for x=0 is different from what we
* need here. However, LLVM also assumes that ffs(x) is
* in [0, 31], but GLSL expects that ffs(0) = -1, so
* a conditional assignment to handle 0 is still required.
*
* The hardware already implements the correct behavior.
*/
LLVMConstInt(ctx->i1, 1, false),
};
LLVMValueRef lsb = ac_build_intrinsic(ctx, "llvm.cttz.i32", ctx->i32,
params, 2,
AC_FUNC_ATTR_READNONE);
/* TODO: We need an intrinsic to skip this conditional. */
/* Check for zero: */
return LLVMBuildSelect(ctx->builder, LLVMBuildICmp(ctx->builder,
LLVMIntEQ, src0,
ctx->i32_0, ""),
LLVMConstInt(ctx->i32, -1, 0), lsb, "");
}
static struct ac_llvm_flow *
get_current_flow(struct ac_llvm_context *ctx)
{
if (ctx->flow_depth > 0)
return &ctx->flow[ctx->flow_depth - 1];
return NULL;
}
static struct ac_llvm_flow *
get_innermost_loop(struct ac_llvm_context *ctx)
{
for (unsigned i = ctx->flow_depth; i > 0; --i) {
if (ctx->flow[i - 1].loop_entry_block)
return &ctx->flow[i - 1];
}
return NULL;
}
static struct ac_llvm_flow *
push_flow(struct ac_llvm_context *ctx)
{
struct ac_llvm_flow *flow;
if (ctx->flow_depth >= ctx->flow_depth_max) {
unsigned new_max = MAX2(ctx->flow_depth << 1,
AC_LLVM_INITIAL_CF_DEPTH);
ctx->flow = realloc(ctx->flow, new_max * sizeof(*ctx->flow));
ctx->flow_depth_max = new_max;
}
flow = &ctx->flow[ctx->flow_depth];
ctx->flow_depth++;
flow->next_block = NULL;
flow->loop_entry_block = NULL;
return flow;
}
static void set_basicblock_name(LLVMBasicBlockRef bb, const char *base,
int label_id)
{
char buf[32];
snprintf(buf, sizeof(buf), "%s%d", base, label_id);
LLVMSetValueName(LLVMBasicBlockAsValue(bb), buf);
}
/* Append a basic block at the level of the parent flow.
*/
static LLVMBasicBlockRef append_basic_block(struct ac_llvm_context *ctx,
const char *name)
{
assert(ctx->flow_depth >= 1);
if (ctx->flow_depth >= 2) {
struct ac_llvm_flow *flow = &ctx->flow[ctx->flow_depth - 2];
return LLVMInsertBasicBlockInContext(ctx->context,
flow->next_block, name);
}
LLVMValueRef main_fn =
LLVMGetBasicBlockParent(LLVMGetInsertBlock(ctx->builder));
return LLVMAppendBasicBlockInContext(ctx->context, main_fn, name);
}
/* Emit a branch to the given default target for the current block if
* applicable -- that is, if the current block does not already contain a
* branch from a break or continue.
*/
static void emit_default_branch(LLVMBuilderRef builder,
LLVMBasicBlockRef target)
{
if (!LLVMGetBasicBlockTerminator(LLVMGetInsertBlock(builder)))
LLVMBuildBr(builder, target);
}
void ac_build_bgnloop(struct ac_llvm_context *ctx, int label_id)
{
struct ac_llvm_flow *flow = push_flow(ctx);
flow->loop_entry_block = append_basic_block(ctx, "LOOP");
flow->next_block = append_basic_block(ctx, "ENDLOOP");
set_basicblock_name(flow->loop_entry_block, "loop", label_id);
LLVMBuildBr(ctx->builder, flow->loop_entry_block);
LLVMPositionBuilderAtEnd(ctx->builder, flow->loop_entry_block);
}
void ac_build_break(struct ac_llvm_context *ctx)
{
struct ac_llvm_flow *flow = get_innermost_loop(ctx);
LLVMBuildBr(ctx->builder, flow->next_block);
}
void ac_build_continue(struct ac_llvm_context *ctx)
{
struct ac_llvm_flow *flow = get_innermost_loop(ctx);
LLVMBuildBr(ctx->builder, flow->loop_entry_block);
}
void ac_build_else(struct ac_llvm_context *ctx, int label_id)
{
struct ac_llvm_flow *current_branch = get_current_flow(ctx);
LLVMBasicBlockRef endif_block;
assert(!current_branch->loop_entry_block);
endif_block = append_basic_block(ctx, "ENDIF");
emit_default_branch(ctx->builder, endif_block);
LLVMPositionBuilderAtEnd(ctx->builder, current_branch->next_block);
set_basicblock_name(current_branch->next_block, "else", label_id);
current_branch->next_block = endif_block;
}
void ac_build_endif(struct ac_llvm_context *ctx, int label_id)
{
struct ac_llvm_flow *current_branch = get_current_flow(ctx);
assert(!current_branch->loop_entry_block);
emit_default_branch(ctx->builder, current_branch->next_block);
LLVMPositionBuilderAtEnd(ctx->builder, current_branch->next_block);
set_basicblock_name(current_branch->next_block, "endif", label_id);
ctx->flow_depth--;
}
void ac_build_endloop(struct ac_llvm_context *ctx, int label_id)
{
struct ac_llvm_flow *current_loop = get_current_flow(ctx);
assert(current_loop->loop_entry_block);
emit_default_branch(ctx->builder, current_loop->loop_entry_block);
LLVMPositionBuilderAtEnd(ctx->builder, current_loop->next_block);
set_basicblock_name(current_loop->next_block, "endloop", label_id);
ctx->flow_depth--;
}
static void if_cond_emit(struct ac_llvm_context *ctx, LLVMValueRef cond,
int label_id)
{
struct ac_llvm_flow *flow = push_flow(ctx);
LLVMBasicBlockRef if_block;
if_block = append_basic_block(ctx, "IF");
flow->next_block = append_basic_block(ctx, "ELSE");
set_basicblock_name(if_block, "if", label_id);
LLVMBuildCondBr(ctx->builder, cond, if_block, flow->next_block);
LLVMPositionBuilderAtEnd(ctx->builder, if_block);
}
void ac_build_if(struct ac_llvm_context *ctx, LLVMValueRef value,
int label_id)
{
LLVMValueRef cond = LLVMBuildFCmp(ctx->builder, LLVMRealUNE,
value, ctx->f32_0, "");
if_cond_emit(ctx, cond, label_id);
}
void ac_build_uif(struct ac_llvm_context *ctx, LLVMValueRef value,
int label_id)
{
LLVMValueRef cond = LLVMBuildICmp(ctx->builder, LLVMIntNE,
ac_to_integer(ctx, value),
ctx->i32_0, "");
if_cond_emit(ctx, cond, label_id);
}