/*
* Copyright © 2017 Advanced Micro Devices, Inc.
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sub license, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
* OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NON-INFRINGEMENT. IN NO EVENT SHALL THE COPYRIGHT HOLDERS, AUTHORS
* AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
* USE OR OTHER DEALINGS IN THE SOFTWARE.
*
* The above copyright notice and this permission notice (including the
* next paragraph) shall be included in all copies or substantial portions
* of the Software.
*/
/**
************************************************************************************************************************
* @file gfx9addrlib.cpp
* @brief Contgfx9ns the implementation for the Gfx9Lib class.
************************************************************************************************************************
*/
#include "gfx9addrlib.h"
#include "gfx9_gb_reg.h"
#include "amdgpu_asic_addr.h"
////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////
namespace Addr
{
/**
************************************************************************************************************************
* Gfx9HwlInit
*
* @brief
* Creates an Gfx9Lib object.
*
* @return
* Returns an Gfx9Lib object pointer.
************************************************************************************************************************
*/
Addr::Lib* Gfx9HwlInit(const Client* pClient)
{
return V2::Gfx9Lib::CreateObj(pClient);
}
namespace V2
{
////////////////////////////////////////////////////////////////////////////////////////////////////
// Static Const Member
////////////////////////////////////////////////////////////////////////////////////////////////////
const SwizzleModeFlags Gfx9Lib::SwizzleModeTable[ADDR_SW_MAX_TYPE] =
{//Linear 256B 4KB 64KB Var Z Std Disp Rot XOR T RtOpt
{1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, // ADDR_SW_LINEAR
{0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0}, // ADDR_SW_256B_S
{0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0}, // ADDR_SW_256B_D
{0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0}, // ADDR_SW_256B_R
{0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0}, // ADDR_SW_4KB_Z
{0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0}, // ADDR_SW_4KB_S
{0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0}, // ADDR_SW_4KB_D
{0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0}, // ADDR_SW_4KB_R
{0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0}, // ADDR_SW_64KB_Z
{0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0}, // ADDR_SW_64KB_S
{0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0}, // ADDR_SW_64KB_D
{0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0}, // ADDR_SW_64KB_R
{0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0}, // ADDR_SW_VAR_Z
{0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0}, // ADDR_SW_VAR_S
{0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0}, // ADDR_SW_VAR_D
{0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0}, // ADDR_SW_VAR_R
{0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0}, // ADDR_SW_64KB_Z_T
{0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0}, // ADDR_SW_64KB_S_T
{0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0}, // ADDR_SW_64KB_D_T
{0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0}, // ADDR_SW_64KB_R_T
{0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0}, // ADDR_SW_4KB_Z_x
{0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0}, // ADDR_SW_4KB_S_x
{0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0}, // ADDR_SW_4KB_D_x
{0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0}, // ADDR_SW_4KB_R_x
{0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0}, // ADDR_SW_64KB_Z_X
{0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0}, // ADDR_SW_64KB_S_X
{0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0}, // ADDR_SW_64KB_D_X
{0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0}, // ADDR_SW_64KB_R_X
{0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0}, // ADDR_SW_VAR_Z_X
{0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0}, // ADDR_SW_VAR_S_X
{0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0}, // ADDR_SW_VAR_D_X
{0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0}, // ADDR_SW_VAR_R_X
{1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, // ADDR_SW_LINEAR_GENERAL
};
const UINT_32 Gfx9Lib::MipTailOffset256B[] = {2048, 1024, 512, 256, 128, 64, 32, 16,
8, 6, 5, 4, 3, 2, 1, 0};
const Dim3d Gfx9Lib::Block256_3dS[] = {{16, 4, 4}, {8, 4, 4}, {4, 4, 4}, {2, 4, 4}, {1, 4, 4}};
const Dim3d Gfx9Lib::Block256_3dZ[] = {{8, 4, 8}, {4, 4, 8}, {4, 4, 4}, {4, 2, 4}, {2, 2, 4}};
/**
************************************************************************************************************************
* Gfx9Lib::Gfx9Lib
*
* @brief
* Constructor
*
************************************************************************************************************************
*/
Gfx9Lib::Gfx9Lib(const Client* pClient)
:
Lib(pClient),
m_numEquations(0)
{
m_class = AI_ADDRLIB;
memset(&m_settings, 0, sizeof(m_settings));
memcpy(m_swizzleModeTable, SwizzleModeTable, sizeof(SwizzleModeTable));
}
/**
************************************************************************************************************************
* Gfx9Lib::~Gfx9Lib
*
* @brief
* Destructor
************************************************************************************************************************
*/
Gfx9Lib::~Gfx9Lib()
{
}
/**
************************************************************************************************************************
* Gfx9Lib::HwlComputeHtileInfo
*
* @brief
* Interface function stub of AddrComputeHtilenfo
*
* @return
* ADDR_E_RETURNCODE
************************************************************************************************************************
*/
ADDR_E_RETURNCODE Gfx9Lib::HwlComputeHtileInfo(
const ADDR2_COMPUTE_HTILE_INFO_INPUT* pIn, ///< [in] input structure
ADDR2_COMPUTE_HTILE_INFO_OUTPUT* pOut ///< [out] output structure
) const
{
UINT_32 numPipeTotal = GetPipeNumForMetaAddressing(pIn->hTileFlags.pipeAligned,
pIn->swizzleMode);
UINT_32 numRbTotal = pIn->hTileFlags.rbAligned ? m_se * m_rbPerSe : 1;
UINT_32 numCompressBlkPerMetaBlk, numCompressBlkPerMetaBlkLog2;
if ((numPipeTotal == 1) && (numRbTotal == 1))
{
numCompressBlkPerMetaBlkLog2 = 10;
}
else
{
if (m_settings.applyAliasFix)
{
numCompressBlkPerMetaBlkLog2 = m_seLog2 + m_rbPerSeLog2 + Max(10u, m_pipeInterleaveLog2);
}
else
{
numCompressBlkPerMetaBlkLog2 = m_seLog2 + m_rbPerSeLog2 + 10;
}
}
numCompressBlkPerMetaBlk = 1 << numCompressBlkPerMetaBlkLog2;
Dim3d metaBlkDim = {8, 8, 1};
UINT_32 totalAmpBits = numCompressBlkPerMetaBlkLog2;
UINT_32 widthAmp = (pIn->numMipLevels > 1) ? (totalAmpBits >> 1) : RoundHalf(totalAmpBits);
UINT_32 heightAmp = totalAmpBits - widthAmp;
metaBlkDim.w <<= widthAmp;
metaBlkDim.h <<= heightAmp;
#if DEBUG
Dim3d metaBlkDimDbg = {8, 8, 1};
for (UINT_32 index = 0; index < numCompressBlkPerMetaBlkLog2; index++)
{
if ((metaBlkDimDbg.h < metaBlkDimDbg.w) ||
((pIn->numMipLevels > 1) && (metaBlkDimDbg.h == metaBlkDimDbg.w)))
{
metaBlkDimDbg.h <<= 1;
}
else
{
metaBlkDimDbg.w <<= 1;
}
}
ADDR_ASSERT((metaBlkDimDbg.w == metaBlkDim.w) && (metaBlkDimDbg.h == metaBlkDim.h));
#endif
UINT_32 numMetaBlkX;
UINT_32 numMetaBlkY;
UINT_32 numMetaBlkZ;
GetMetaMipInfo(pIn->numMipLevels, &metaBlkDim, FALSE, pOut->pMipInfo,
pIn->unalignedWidth, pIn->unalignedHeight, pIn->numSlices,
&numMetaBlkX, &numMetaBlkY, &numMetaBlkZ);
UINT_32 sizeAlign = numPipeTotal * numRbTotal * m_pipeInterleaveBytes;
if (m_settings.htileAlignFix)
{
sizeAlign <<= 1;
}
pOut->pitch = numMetaBlkX * metaBlkDim.w;
pOut->height = numMetaBlkY * metaBlkDim.h;
pOut->sliceSize = numMetaBlkX * numMetaBlkY * numCompressBlkPerMetaBlk * 4;
pOut->metaBlkWidth = metaBlkDim.w;
pOut->metaBlkHeight = metaBlkDim.h;
pOut->metaBlkNumPerSlice = numMetaBlkX * numMetaBlkY;
pOut->baseAlign = Max(numCompressBlkPerMetaBlk * 4, sizeAlign);
if (m_settings.metaBaseAlignFix)
{
pOut->baseAlign = Max(pOut->baseAlign, GetBlockSize(pIn->swizzleMode));
}
if ((IsXor(pIn->swizzleMode) == FALSE) && (numPipeTotal > 2))
{
UINT_32 additionalAlign = numPipeTotal * numCompressBlkPerMetaBlk * 2;
if (additionalAlign > sizeAlign)
{
sizeAlign = additionalAlign;
}
}
pOut->htileBytes = PowTwoAlign(pOut->sliceSize * numMetaBlkZ, sizeAlign);
return ADDR_OK;
}
/**
************************************************************************************************************************
* Gfx9Lib::HwlComputeCmaskInfo
*
* @brief
* Interface function stub of AddrComputeCmaskInfo
*
* @return
* ADDR_E_RETURNCODE
************************************************************************************************************************
*/
ADDR_E_RETURNCODE Gfx9Lib::HwlComputeCmaskInfo(
const ADDR2_COMPUTE_CMASK_INFO_INPUT* pIn, ///< [in] input structure
ADDR2_COMPUTE_CMASK_INFO_OUTPUT* pOut ///< [out] output structure
) const
{
// TODO: Clarify with AddrLib team
// ADDR_ASSERT(pIn->resourceType == ADDR_RSRC_TEX_2D);
UINT_32 numPipeTotal = GetPipeNumForMetaAddressing(pIn->cMaskFlags.pipeAligned,
pIn->swizzleMode);
UINT_32 numRbTotal = pIn->cMaskFlags.rbAligned ? m_se * m_rbPerSe : 1;
UINT_32 numCompressBlkPerMetaBlkLog2, numCompressBlkPerMetaBlk;
if ((numPipeTotal == 1) && (numRbTotal == 1))
{
numCompressBlkPerMetaBlkLog2 = 13;
}
else
{
if (m_settings.applyAliasFix)
{
numCompressBlkPerMetaBlkLog2 = m_seLog2 + m_rbPerSeLog2 + Max(10u, m_pipeInterleaveLog2);
}
else
{
numCompressBlkPerMetaBlkLog2 = m_seLog2 + m_rbPerSeLog2 + 10;
}
numCompressBlkPerMetaBlkLog2 = Max(numCompressBlkPerMetaBlkLog2, 13u);
}
numCompressBlkPerMetaBlk = 1 << numCompressBlkPerMetaBlkLog2;
Dim2d metaBlkDim = {8, 8};
UINT_32 totalAmpBits = numCompressBlkPerMetaBlkLog2;
UINT_32 heightAmp = totalAmpBits >> 1;
UINT_32 widthAmp = totalAmpBits - heightAmp;
metaBlkDim.w <<= widthAmp;
metaBlkDim.h <<= heightAmp;
#if DEBUG
Dim2d metaBlkDimDbg = {8, 8};
for (UINT_32 index = 0; index < numCompressBlkPerMetaBlkLog2; index++)
{
if (metaBlkDimDbg.h < metaBlkDimDbg.w)
{
metaBlkDimDbg.h <<= 1;
}
else
{
metaBlkDimDbg.w <<= 1;
}
}
ADDR_ASSERT((metaBlkDimDbg.w == metaBlkDim.w) && (metaBlkDimDbg.h == metaBlkDim.h));
#endif
UINT_32 numMetaBlkX = (pIn->unalignedWidth + metaBlkDim.w - 1) / metaBlkDim.w;
UINT_32 numMetaBlkY = (pIn->unalignedHeight + metaBlkDim.h - 1) / metaBlkDim.h;
UINT_32 numMetaBlkZ = Max(pIn->numSlices, 1u);
UINT_32 sizeAlign = numPipeTotal * numRbTotal * m_pipeInterleaveBytes;
pOut->pitch = numMetaBlkX * metaBlkDim.w;
pOut->height = numMetaBlkY * metaBlkDim.h;
pOut->sliceSize = (numMetaBlkX * numMetaBlkY * numCompressBlkPerMetaBlk) >> 1;
pOut->cmaskBytes = PowTwoAlign(pOut->sliceSize * numMetaBlkZ, sizeAlign);
pOut->baseAlign = Max(numCompressBlkPerMetaBlk >> 1, sizeAlign);
if (m_settings.metaBaseAlignFix)
{
pOut->baseAlign = Max(pOut->baseAlign, GetBlockSize(pIn->swizzleMode));
}
pOut->metaBlkWidth = metaBlkDim.w;
pOut->metaBlkHeight = metaBlkDim.h;
pOut->metaBlkNumPerSlice = numMetaBlkX * numMetaBlkY;
return ADDR_OK;
}
/**
************************************************************************************************************************
* Gfx9Lib::GetMetaMipInfo
*
* @brief
* Get meta mip info
*
* @return
* N/A
************************************************************************************************************************
*/
VOID Gfx9Lib::GetMetaMipInfo(
UINT_32 numMipLevels, ///< [in] number of mip levels
Dim3d* pMetaBlkDim, ///< [in] meta block dimension
BOOL_32 dataThick, ///< [in] data surface is thick
ADDR2_META_MIP_INFO* pInfo, ///< [out] meta mip info
UINT_32 mip0Width, ///< [in] mip0 width
UINT_32 mip0Height, ///< [in] mip0 height
UINT_32 mip0Depth, ///< [in] mip0 depth
UINT_32* pNumMetaBlkX, ///< [out] number of metablock X in mipchain
UINT_32* pNumMetaBlkY, ///< [out] number of metablock Y in mipchain
UINT_32* pNumMetaBlkZ) ///< [out] number of metablock Z in mipchain
const
{
UINT_32 numMetaBlkX = (mip0Width + pMetaBlkDim->w - 1) / pMetaBlkDim->w;
UINT_32 numMetaBlkY = (mip0Height + pMetaBlkDim->h - 1) / pMetaBlkDim->h;
UINT_32 numMetaBlkZ = (mip0Depth + pMetaBlkDim->d - 1) / pMetaBlkDim->d;
UINT_32 tailWidth = pMetaBlkDim->w;
UINT_32 tailHeight = pMetaBlkDim->h >> 1;
UINT_32 tailDepth = pMetaBlkDim->d;
BOOL_32 inTail = FALSE;
AddrMajorMode major = ADDR_MAJOR_MAX_TYPE;
if (numMipLevels > 1)
{
if (dataThick && (numMetaBlkZ > numMetaBlkX) && (numMetaBlkZ > numMetaBlkY))
{
// Z major
major = ADDR_MAJOR_Z;
}
else if (numMetaBlkX >= numMetaBlkY)
{
// X major
major = ADDR_MAJOR_X;
}
else
{
// Y major
major = ADDR_MAJOR_Y;
}
inTail = ((mip0Width <= tailWidth) &&
(mip0Height <= tailHeight) &&
((dataThick == FALSE) || (mip0Depth <= tailDepth)));
if (inTail == FALSE)
{
UINT_32 orderLimit;
UINT_32 *pMipDim;
UINT_32 *pOrderDim;
if (major == ADDR_MAJOR_Z)
{
// Z major
pMipDim = &numMetaBlkY;
pOrderDim = &numMetaBlkZ;
orderLimit = 4;
}
else if (major == ADDR_MAJOR_X)
{
// X major
pMipDim = &numMetaBlkY;
pOrderDim = &numMetaBlkX;
orderLimit = 4;
}
else
{
// Y major
pMipDim = &numMetaBlkX;
pOrderDim = &numMetaBlkY;
orderLimit = 2;
}
if ((*pMipDim < 3) && (*pOrderDim > orderLimit) && (numMipLevels > 3))
{
*pMipDim += 2;
}
else
{
*pMipDim += ((*pMipDim / 2) + (*pMipDim & 1));
}
}
}
if (pInfo != NULL)
{
UINT_32 mipWidth = mip0Width;
UINT_32 mipHeight = mip0Height;
UINT_32 mipDepth = mip0Depth;
Dim3d mipCoord = {0};
for (UINT_32 mip = 0; mip < numMipLevels; mip++)
{
if (inTail)
{
GetMetaMiptailInfo(&pInfo[mip], mipCoord, numMipLevels - mip,
pMetaBlkDim);
break;
}
else
{
mipWidth = PowTwoAlign(mipWidth, pMetaBlkDim->w);
mipHeight = PowTwoAlign(mipHeight, pMetaBlkDim->h);
mipDepth = PowTwoAlign(mipDepth, pMetaBlkDim->d);
pInfo[mip].inMiptail = FALSE;
pInfo[mip].startX = mipCoord.w;
pInfo[mip].startY = mipCoord.h;
pInfo[mip].startZ = mipCoord.d;
pInfo[mip].width = mipWidth;
pInfo[mip].height = mipHeight;
pInfo[mip].depth = dataThick ? mipDepth : 1;
if ((mip >= 3) || (mip & 1))
{
switch (major)
{
case ADDR_MAJOR_X:
mipCoord.w += mipWidth;
break;
case ADDR_MAJOR_Y:
mipCoord.h += mipHeight;
break;
case ADDR_MAJOR_Z:
mipCoord.d += mipDepth;
break;
default:
break;
}
}
else
{
switch (major)
{
case ADDR_MAJOR_X:
mipCoord.h += mipHeight;
break;
case ADDR_MAJOR_Y:
mipCoord.w += mipWidth;
break;
case ADDR_MAJOR_Z:
mipCoord.h += mipHeight;
break;
default:
break;
}
}
mipWidth = Max(mipWidth >> 1, 1u);
mipHeight = Max(mipHeight >> 1, 1u);
mipDepth = Max(mipDepth >> 1, 1u);
inTail = ((mipWidth <= tailWidth) &&
(mipHeight <= tailHeight) &&
((dataThick == FALSE) || (mipDepth <= tailDepth)));
}
}
}
*pNumMetaBlkX = numMetaBlkX;
*pNumMetaBlkY = numMetaBlkY;
*pNumMetaBlkZ = numMetaBlkZ;
}
/**
************************************************************************************************************************
* Gfx9Lib::HwlComputeDccInfo
*
* @brief
* Interface function to compute DCC key info
*
* @return
* ADDR_E_RETURNCODE
************************************************************************************************************************
*/
ADDR_E_RETURNCODE Gfx9Lib::HwlComputeDccInfo(
const ADDR2_COMPUTE_DCCINFO_INPUT* pIn, ///< [in] input structure
ADDR2_COMPUTE_DCCINFO_OUTPUT* pOut ///< [out] output structure
) const
{
BOOL_32 dataLinear = IsLinear(pIn->swizzleMode);
BOOL_32 metaLinear = pIn->dccKeyFlags.linear;
BOOL_32 pipeAligned = pIn->dccKeyFlags.pipeAligned;
if (dataLinear)
{
metaLinear = TRUE;
}
else if (metaLinear == TRUE)
{
pipeAligned = FALSE;
}
UINT_32 numPipeTotal = GetPipeNumForMetaAddressing(pipeAligned, pIn->swizzleMode);
if (metaLinear)
{
// Linear metadata supporting was removed for GFX9! No one can use this feature on GFX9.
ADDR_ASSERT_ALWAYS();
pOut->dccRamBaseAlign = numPipeTotal * m_pipeInterleaveBytes;
pOut->dccRamSize = PowTwoAlign((pIn->dataSurfaceSize / 256), pOut->dccRamBaseAlign);
}
else
{
BOOL_32 dataThick = IsThick(pIn->resourceType, pIn->swizzleMode);
UINT_32 minMetaBlkSize = dataThick ? 65536 : 4096;
UINT_32 numFrags = Max(pIn->numFrags, 1u);
UINT_32 numSlices = Max(pIn->numSlices, 1u);
minMetaBlkSize /= numFrags;
UINT_32 numCompressBlkPerMetaBlk = minMetaBlkSize;
UINT_32 numRbTotal = pIn->dccKeyFlags.rbAligned ? m_se * m_rbPerSe : 1;
if ((numPipeTotal > 1) || (numRbTotal > 1))
{
const UINT_32 thinBlkSize = 1 << (m_settings.applyAliasFix ? Max(10u, m_pipeInterleaveLog2) : 10);
numCompressBlkPerMetaBlk =
Max(numCompressBlkPerMetaBlk, m_se * m_rbPerSe * (dataThick ? 262144 : thinBlkSize));
if (numCompressBlkPerMetaBlk > 65536 * pIn->bpp)
{
numCompressBlkPerMetaBlk = 65536 * pIn->bpp;
}
}
Dim3d compressBlkDim = GetDccCompressBlk(pIn->resourceType, pIn->swizzleMode, pIn->bpp);
Dim3d metaBlkDim = compressBlkDim;
for (UINT_32 index = 1; index < numCompressBlkPerMetaBlk; index <<= 1)
{
if ((metaBlkDim.h < metaBlkDim.w) ||
((pIn->numMipLevels > 1) && (metaBlkDim.h == metaBlkDim.w)))
{
if ((dataThick == FALSE) || (metaBlkDim.h <= metaBlkDim.d))
{
metaBlkDim.h <<= 1;
}
else
{
metaBlkDim.d <<= 1;
}
}
else
{
if ((dataThick == FALSE) || (metaBlkDim.w <= metaBlkDim.d))
{
metaBlkDim.w <<= 1;
}
else
{
metaBlkDim.d <<= 1;
}
}
}
UINT_32 numMetaBlkX;
UINT_32 numMetaBlkY;
UINT_32 numMetaBlkZ;
GetMetaMipInfo(pIn->numMipLevels, &metaBlkDim, dataThick, pOut->pMipInfo,
pIn->unalignedWidth, pIn->unalignedHeight, numSlices,
&numMetaBlkX, &numMetaBlkY, &numMetaBlkZ);
UINT_32 sizeAlign = numPipeTotal * numRbTotal * m_pipeInterleaveBytes;
if (numFrags > m_maxCompFrag)
{
sizeAlign *= (numFrags / m_maxCompFrag);
}
pOut->dccRamSize = numMetaBlkX * numMetaBlkY * numMetaBlkZ *
numCompressBlkPerMetaBlk * numFrags;
pOut->dccRamSize = PowTwoAlign(pOut->dccRamSize, sizeAlign);
pOut->dccRamBaseAlign = Max(numCompressBlkPerMetaBlk, sizeAlign);
if (m_settings.metaBaseAlignFix)
{
pOut->dccRamBaseAlign = Max(pOut->dccRamBaseAlign, GetBlockSize(pIn->swizzleMode));
}
pOut->pitch = numMetaBlkX * metaBlkDim.w;
pOut->height = numMetaBlkY * metaBlkDim.h;
pOut->depth = numMetaBlkZ * metaBlkDim.d;
pOut->compressBlkWidth = compressBlkDim.w;
pOut->compressBlkHeight = compressBlkDim.h;
pOut->compressBlkDepth = compressBlkDim.d;
pOut->metaBlkWidth = metaBlkDim.w;
pOut->metaBlkHeight = metaBlkDim.h;
pOut->metaBlkDepth = metaBlkDim.d;
pOut->metaBlkNumPerSlice = numMetaBlkX * numMetaBlkY;
pOut->fastClearSizePerSlice =
pOut->metaBlkNumPerSlice * numCompressBlkPerMetaBlk * Min(numFrags, m_maxCompFrag);
}
return ADDR_OK;
}
/**
************************************************************************************************************************
* Gfx9Lib::HwlGetMaxAlignments
*
* @brief
* Gets maximum alignments
* @return
* ADDR_E_RETURNCODE
************************************************************************************************************************
*/
ADDR_E_RETURNCODE Gfx9Lib::HwlGetMaxAlignments(
ADDR_GET_MAX_ALIGNMENTS_OUTPUT* pOut ///< [out] output structure
) const
{
pOut->baseAlign = HwlComputeSurfaceBaseAlign(ADDR_SW_64KB);
return ADDR_OK;
}
/**
************************************************************************************************************************
* Gfx9Lib::HwlComputeCmaskAddrFromCoord
*
* @brief
* Interface function stub of AddrComputeCmaskAddrFromCoord
*
* @return
* ADDR_E_RETURNCODE
************************************************************************************************************************
*/
ADDR_E_RETURNCODE Gfx9Lib::HwlComputeCmaskAddrFromCoord(
const ADDR2_COMPUTE_CMASK_ADDRFROMCOORD_INPUT* pIn, ///< [in] input structure
ADDR2_COMPUTE_CMASK_ADDRFROMCOORD_OUTPUT* pOut) ///< [out] output structure
{
ADDR2_COMPUTE_CMASK_INFO_INPUT input = {0};
input.size = sizeof(input);
input.cMaskFlags = pIn->cMaskFlags;
input.colorFlags = pIn->colorFlags;
input.unalignedWidth = Max(pIn->unalignedWidth, 1u);
input.unalignedHeight = Max(pIn->unalignedHeight, 1u);
input.numSlices = Max(pIn->numSlices, 1u);
input.swizzleMode = pIn->swizzleMode;
input.resourceType = pIn->resourceType;
ADDR2_COMPUTE_CMASK_INFO_OUTPUT output = {0};
output.size = sizeof(output);
ADDR_E_RETURNCODE returnCode = ComputeCmaskInfo(&input, &output);
if (returnCode == ADDR_OK)
{
UINT_32 fmaskBpp = GetFmaskBpp(pIn->numSamples, pIn->numFrags);
UINT_32 fmaskElementBytesLog2 = Log2(fmaskBpp >> 3);
UINT_32 metaBlkWidthLog2 = Log2(output.metaBlkWidth);
UINT_32 metaBlkHeightLog2 = Log2(output.metaBlkHeight);
const CoordEq* pMetaEq = GetMetaEquation({0, fmaskElementBytesLog2, 0, pIn->cMaskFlags,
Gfx9DataFmask, pIn->swizzleMode, pIn->resourceType,
metaBlkWidthLog2, metaBlkHeightLog2, 0, 3, 3, 0});
UINT_32 xb = pIn->x / output.metaBlkWidth;
UINT_32 yb = pIn->y / output.metaBlkHeight;
UINT_32 zb = pIn->slice;
UINT_32 pitchInBlock = output.pitch / output.metaBlkWidth;
UINT_32 sliceSizeInBlock = (output.height / output.metaBlkHeight) * pitchInBlock;
UINT_32 blockIndex = zb * sliceSizeInBlock + yb * pitchInBlock + xb;
UINT_64 address = pMetaEq->solve(pIn->x, pIn->y, pIn->slice, 0, blockIndex);
pOut->addr = address >> 1;
pOut->bitPosition = static_cast<UINT_32>((address & 1) << 2);
UINT_32 numPipeBits = GetPipeLog2ForMetaAddressing(pIn->cMaskFlags.pipeAligned,
pIn->swizzleMode);
UINT_64 pipeXor = static_cast<UINT_64>(pIn->pipeXor & ((1 << numPipeBits) - 1));
pOut->addr ^= (pipeXor << m_pipeInterleaveLog2);
}
return returnCode;
}
/**
************************************************************************************************************************
* Gfx9Lib::HwlComputeHtileAddrFromCoord
*
* @brief
* Interface function stub of AddrComputeHtileAddrFromCoord
*
* @return
* ADDR_E_RETURNCODE
************************************************************************************************************************
*/
ADDR_E_RETURNCODE Gfx9Lib::HwlComputeHtileAddrFromCoord(
const ADDR2_COMPUTE_HTILE_ADDRFROMCOORD_INPUT* pIn, ///< [in] input structure
ADDR2_COMPUTE_HTILE_ADDRFROMCOORD_OUTPUT* pOut) ///< [out] output structure
{
ADDR_E_RETURNCODE returnCode = ADDR_OK;
if (pIn->numMipLevels > 1)
{
returnCode = ADDR_NOTIMPLEMENTED;
}
else
{
ADDR2_COMPUTE_HTILE_INFO_INPUT input = {0};
input.size = sizeof(input);
input.hTileFlags = pIn->hTileFlags;
input.depthFlags = pIn->depthflags;
input.swizzleMode = pIn->swizzleMode;
input.unalignedWidth = Max(pIn->unalignedWidth, 1u);
input.unalignedHeight = Max(pIn->unalignedHeight, 1u);
input.numSlices = Max(pIn->numSlices, 1u);
input.numMipLevels = Max(pIn->numMipLevels, 1u);
ADDR2_COMPUTE_HTILE_INFO_OUTPUT output = {0};
output.size = sizeof(output);
returnCode = ComputeHtileInfo(&input, &output);
if (returnCode == ADDR_OK)
{
UINT_32 elementBytesLog2 = Log2(pIn->bpp >> 3);
UINT_32 metaBlkWidthLog2 = Log2(output.metaBlkWidth);
UINT_32 metaBlkHeightLog2 = Log2(output.metaBlkHeight);
UINT_32 numSamplesLog2 = Log2(pIn->numSamples);
const CoordEq* pMetaEq = GetMetaEquation({0, elementBytesLog2, numSamplesLog2, pIn->hTileFlags,
Gfx9DataDepthStencil, pIn->swizzleMode, ADDR_RSRC_TEX_2D,
metaBlkWidthLog2, metaBlkHeightLog2, 0, 3, 3, 0});
UINT_32 xb = pIn->x / output.metaBlkWidth;
UINT_32 yb = pIn->y / output.metaBlkHeight;
UINT_32 zb = pIn->slice;
UINT_32 pitchInBlock = output.pitch / output.metaBlkWidth;
UINT_32 sliceSizeInBlock = (output.height / output.metaBlkHeight) * pitchInBlock;
UINT_32 blockIndex = zb * sliceSizeInBlock + yb * pitchInBlock + xb;
UINT_64 address = pMetaEq->solve(pIn->x, pIn->y, pIn->slice, 0, blockIndex);
pOut->addr = address >> 1;
UINT_32 numPipeBits = GetPipeLog2ForMetaAddressing(pIn->hTileFlags.pipeAligned,
pIn->swizzleMode);
UINT_64 pipeXor = static_cast<UINT_64>(pIn->pipeXor & ((1 << numPipeBits) - 1));
pOut->addr ^= (pipeXor << m_pipeInterleaveLog2);
}
}
return returnCode;
}
/**
************************************************************************************************************************
* Gfx9Lib::HwlComputeHtileCoordFromAddr
*
* @brief
* Interface function stub of AddrComputeHtileCoordFromAddr
*
* @return
* ADDR_E_RETURNCODE
************************************************************************************************************************
*/
ADDR_E_RETURNCODE Gfx9Lib::HwlComputeHtileCoordFromAddr(
const ADDR2_COMPUTE_HTILE_COORDFROMADDR_INPUT* pIn, ///< [in] input structure
ADDR2_COMPUTE_HTILE_COORDFROMADDR_OUTPUT* pOut) ///< [out] output structure
{
ADDR_E_RETURNCODE returnCode = ADDR_OK;
if (pIn->numMipLevels > 1)
{
returnCode = ADDR_NOTIMPLEMENTED;
}
else
{
ADDR2_COMPUTE_HTILE_INFO_INPUT input = {0};
input.size = sizeof(input);
input.hTileFlags = pIn->hTileFlags;
input.swizzleMode = pIn->swizzleMode;
input.unalignedWidth = Max(pIn->unalignedWidth, 1u);
input.unalignedHeight = Max(pIn->unalignedHeight, 1u);
input.numSlices = Max(pIn->numSlices, 1u);
input.numMipLevels = Max(pIn->numMipLevels, 1u);
ADDR2_COMPUTE_HTILE_INFO_OUTPUT output = {0};
output.size = sizeof(output);
returnCode = ComputeHtileInfo(&input, &output);
if (returnCode == ADDR_OK)
{
UINT_32 elementBytesLog2 = Log2(pIn->bpp >> 3);
UINT_32 metaBlkWidthLog2 = Log2(output.metaBlkWidth);
UINT_32 metaBlkHeightLog2 = Log2(output.metaBlkHeight);
UINT_32 numSamplesLog2 = Log2(pIn->numSamples);
const CoordEq* pMetaEq = GetMetaEquation({0, elementBytesLog2, numSamplesLog2, pIn->hTileFlags,
Gfx9DataDepthStencil, pIn->swizzleMode, ADDR_RSRC_TEX_2D,
metaBlkWidthLog2, metaBlkHeightLog2, 0, 3, 3, 0});
UINT_32 numPipeBits = GetPipeLog2ForMetaAddressing(pIn->hTileFlags.pipeAligned,
pIn->swizzleMode);
UINT_64 pipeXor = static_cast<UINT_64>(pIn->pipeXor & ((1 << numPipeBits) - 1));
UINT_64 nibbleAddress = (pIn->addr ^ (pipeXor << m_pipeInterleaveLog2)) << 1;
UINT_32 pitchInBlock = output.pitch / output.metaBlkWidth;
UINT_32 sliceSizeInBlock = (output.height / output.metaBlkHeight) * pitchInBlock;
UINT_32 x, y, z, s, m;
pMetaEq->solveAddr(nibbleAddress, sliceSizeInBlock, x, y, z, s, m);
pOut->slice = m / sliceSizeInBlock;
pOut->y = ((m % sliceSizeInBlock) / pitchInBlock) * output.metaBlkHeight + y;
pOut->x = (m % pitchInBlock) * output.metaBlkWidth + x;
}
}
return returnCode;
}
/**
************************************************************************************************************************
* Gfx9Lib::HwlComputeDccAddrFromCoord
*
* @brief
* Interface function stub of AddrComputeDccAddrFromCoord
*
* @return
* ADDR_E_RETURNCODE
************************************************************************************************************************
*/
ADDR_E_RETURNCODE Gfx9Lib::HwlComputeDccAddrFromCoord(
const ADDR2_COMPUTE_DCC_ADDRFROMCOORD_INPUT* pIn,
ADDR2_COMPUTE_DCC_ADDRFROMCOORD_OUTPUT* pOut)
{
ADDR_E_RETURNCODE returnCode = ADDR_OK;
if ((pIn->numMipLevels > 1) || (pIn->mipId > 1) || pIn->dccKeyFlags.linear)
{
returnCode = ADDR_NOTIMPLEMENTED;
}
else
{
ADDR2_COMPUTE_DCCINFO_INPUT input = {0};
input.size = sizeof(input);
input.dccKeyFlags = pIn->dccKeyFlags;
input.colorFlags = pIn->colorFlags;
input.swizzleMode = pIn->swizzleMode;
input.resourceType = pIn->resourceType;
input.bpp = pIn->bpp;
input.unalignedWidth = Max(pIn->unalignedWidth, 1u);
input.unalignedHeight = Max(pIn->unalignedHeight, 1u);
input.numSlices = Max(pIn->numSlices, 1u);
input.numFrags = Max(pIn->numFrags, 1u);
input.numMipLevels = Max(pIn->numMipLevels, 1u);
ADDR2_COMPUTE_DCCINFO_OUTPUT output = {0};
output.size = sizeof(output);
returnCode = ComputeDccInfo(&input, &output);
if (returnCode == ADDR_OK)
{
UINT_32 elementBytesLog2 = Log2(pIn->bpp >> 3);
UINT_32 numSamplesLog2 = Log2(pIn->numFrags);
UINT_32 metaBlkWidthLog2 = Log2(output.metaBlkWidth);
UINT_32 metaBlkHeightLog2 = Log2(output.metaBlkHeight);
UINT_32 metaBlkDepthLog2 = Log2(output.metaBlkDepth);
UINT_32 compBlkWidthLog2 = Log2(output.compressBlkWidth);
UINT_32 compBlkHeightLog2 = Log2(output.compressBlkHeight);
UINT_32 compBlkDepthLog2 = Log2(output.compressBlkDepth);
const CoordEq* pMetaEq = GetMetaEquation({pIn->mipId, elementBytesLog2, numSamplesLog2, pIn->dccKeyFlags,
Gfx9DataColor, pIn->swizzleMode, pIn->resourceType,
metaBlkWidthLog2, metaBlkHeightLog2, metaBlkDepthLog2,
compBlkWidthLog2, compBlkHeightLog2, compBlkDepthLog2});
UINT_32 xb = pIn->x / output.metaBlkWidth;
UINT_32 yb = pIn->y / output.metaBlkHeight;
UINT_32 zb = pIn->slice / output.metaBlkDepth;
UINT_32 pitchInBlock = output.pitch / output.metaBlkWidth;
UINT_32 sliceSizeInBlock = (output.height / output.metaBlkHeight) * pitchInBlock;
UINT_32 blockIndex = zb * sliceSizeInBlock + yb * pitchInBlock + xb;
UINT_64 address = pMetaEq->solve(pIn->x, pIn->y, pIn->slice, pIn->sample, blockIndex);
pOut->addr = address >> 1;
UINT_32 numPipeBits = GetPipeLog2ForMetaAddressing(pIn->dccKeyFlags.pipeAligned,
pIn->swizzleMode);
UINT_64 pipeXor = static_cast<UINT_64>(pIn->pipeXor & ((1 << numPipeBits) - 1));
pOut->addr ^= (pipeXor << m_pipeInterleaveLog2);
}
}
return returnCode;
}
/**
************************************************************************************************************************
* Gfx9Lib::HwlInitGlobalParams
*
* @brief
* Initializes global parameters
*
* @return
* TRUE if all settings are valid
*
************************************************************************************************************************
*/
BOOL_32 Gfx9Lib::HwlInitGlobalParams(
const ADDR_CREATE_INPUT* pCreateIn) ///< [in] create input
{
BOOL_32 valid = TRUE;
if (m_settings.isArcticIsland)
{
GB_ADDR_CONFIG gbAddrConfig;
gbAddrConfig.u32All = pCreateIn->regValue.gbAddrConfig;
// These values are copied from CModel code
switch (gbAddrConfig.bits.NUM_PIPES)
{
case ADDR_CONFIG_1_PIPE:
m_pipes = 1;
m_pipesLog2 = 0;
break;
case ADDR_CONFIG_2_PIPE:
m_pipes = 2;
m_pipesLog2 = 1;
break;
case ADDR_CONFIG_4_PIPE:
m_pipes = 4;
m_pipesLog2 = 2;
break;
case ADDR_CONFIG_8_PIPE:
m_pipes = 8;
m_pipesLog2 = 3;
break;
case ADDR_CONFIG_16_PIPE:
m_pipes = 16;
m_pipesLog2 = 4;
break;
case ADDR_CONFIG_32_PIPE:
m_pipes = 32;
m_pipesLog2 = 5;
break;
default:
ADDR_ASSERT_ALWAYS();
break;
}
switch (gbAddrConfig.bits.PIPE_INTERLEAVE_SIZE)
{
case ADDR_CONFIG_PIPE_INTERLEAVE_256B:
m_pipeInterleaveBytes = ADDR_PIPEINTERLEAVE_256B;
m_pipeInterleaveLog2 = 8;
break;
case ADDR_CONFIG_PIPE_INTERLEAVE_512B:
m_pipeInterleaveBytes = ADDR_PIPEINTERLEAVE_512B;
m_pipeInterleaveLog2 = 9;
break;
case ADDR_CONFIG_PIPE_INTERLEAVE_1KB:
m_pipeInterleaveBytes = ADDR_PIPEINTERLEAVE_1KB;
m_pipeInterleaveLog2 = 10;
break;
case ADDR_CONFIG_PIPE_INTERLEAVE_2KB:
m_pipeInterleaveBytes = ADDR_PIPEINTERLEAVE_2KB;
m_pipeInterleaveLog2 = 11;
break;
default:
ADDR_ASSERT_ALWAYS();
break;
}
switch (gbAddrConfig.bits.NUM_BANKS)
{
case ADDR_CONFIG_1_BANK:
m_banks = 1;
m_banksLog2 = 0;
break;
case ADDR_CONFIG_2_BANK:
m_banks = 2;
m_banksLog2 = 1;
break;
case ADDR_CONFIG_4_BANK:
m_banks = 4;
m_banksLog2 = 2;
break;
case ADDR_CONFIG_8_BANK:
m_banks = 8;
m_banksLog2 = 3;
break;
case ADDR_CONFIG_16_BANK:
m_banks = 16;
m_banksLog2 = 4;
break;
default:
ADDR_ASSERT_ALWAYS();
break;
}
switch (gbAddrConfig.bits.NUM_SHADER_ENGINES)
{
case ADDR_CONFIG_1_SHADER_ENGINE:
m_se = 1;
m_seLog2 = 0;
break;
case ADDR_CONFIG_2_SHADER_ENGINE:
m_se = 2;
m_seLog2 = 1;
break;
case ADDR_CONFIG_4_SHADER_ENGINE:
m_se = 4;
m_seLog2 = 2;
break;
case ADDR_CONFIG_8_SHADER_ENGINE:
m_se = 8;
m_seLog2 = 3;
break;
default:
ADDR_ASSERT_ALWAYS();
break;
}
switch (gbAddrConfig.bits.NUM_RB_PER_SE)
{
case ADDR_CONFIG_1_RB_PER_SHADER_ENGINE:
m_rbPerSe = 1;
m_rbPerSeLog2 = 0;
break;
case ADDR_CONFIG_2_RB_PER_SHADER_ENGINE:
m_rbPerSe = 2;
m_rbPerSeLog2 = 1;
break;
case ADDR_CONFIG_4_RB_PER_SHADER_ENGINE:
m_rbPerSe = 4;
m_rbPerSeLog2 = 2;
break;
default:
ADDR_ASSERT_ALWAYS();
break;
}
switch (gbAddrConfig.bits.MAX_COMPRESSED_FRAGS)
{
case ADDR_CONFIG_1_MAX_COMPRESSED_FRAGMENTS:
m_maxCompFrag = 1;
m_maxCompFragLog2 = 0;
break;
case ADDR_CONFIG_2_MAX_COMPRESSED_FRAGMENTS:
m_maxCompFrag = 2;
m_maxCompFragLog2 = 1;
break;
case ADDR_CONFIG_4_MAX_COMPRESSED_FRAGMENTS:
m_maxCompFrag = 4;
m_maxCompFragLog2 = 2;
break;
case ADDR_CONFIG_8_MAX_COMPRESSED_FRAGMENTS:
m_maxCompFrag = 8;
m_maxCompFragLog2 = 3;
break;
default:
ADDR_ASSERT_ALWAYS();
break;
}
m_blockVarSizeLog2 = pCreateIn->regValue.blockVarSizeLog2;
ADDR_ASSERT((m_blockVarSizeLog2 == 0) ||
((m_blockVarSizeLog2 >= 17u) && (m_blockVarSizeLog2 <= 20u)));
m_blockVarSizeLog2 = Min(Max(17u, m_blockVarSizeLog2), 20u);
}
else
{
valid = FALSE;
ADDR_NOT_IMPLEMENTED();
}
if (valid)
{
InitEquationTable();
}
return valid;
}
/**
************************************************************************************************************************
* Gfx9Lib::HwlConvertChipFamily
*
* @brief
* Convert familyID defined in atiid.h to ChipFamily and set m_chipFamily/m_chipRevision
* @return
* ChipFamily
************************************************************************************************************************
*/
ChipFamily Gfx9Lib::HwlConvertChipFamily(
UINT_32 uChipFamily, ///< [in] chip family defined in atiih.h
UINT_32 uChipRevision) ///< [in] chip revision defined in "asic_family"_id.h
{
ChipFamily family = ADDR_CHIP_FAMILY_AI;
switch (uChipFamily)
{
case FAMILY_AI:
m_settings.isArcticIsland = 1;
m_settings.isVega10 = ASICREV_IS_VEGA10_P(uChipRevision);
m_settings.isDce12 = 1;
if (m_settings.isVega10 == 0)
{
m_settings.htileAlignFix = 1;
m_settings.applyAliasFix = 1;
}
m_settings.metaBaseAlignFix = 1;
m_settings.depthPipeXorDisable = 1;
break;
case FAMILY_RV:
m_settings.isArcticIsland = 1;
m_settings.isRaven = ASICREV_IS_RAVEN(uChipRevision);
if (m_settings.isRaven)
{
m_settings.isDcn1 = 1;
}
m_settings.metaBaseAlignFix = 1;
if (ASICREV_IS_RAVEN(uChipRevision))
{
m_settings.depthPipeXorDisable = 1;
}
break;
default:
ADDR_ASSERT(!"This should be a Fusion");
break;
}
return family;
}
/**
************************************************************************************************************************
* Gfx9Lib::InitRbEquation
*
* @brief
* Init RB equation
* @return
* N/A
************************************************************************************************************************
*/
VOID Gfx9Lib::GetRbEquation(
CoordEq* pRbEq, ///< [out] rb equation
UINT_32 numRbPerSeLog2, ///< [in] number of rb per shader engine
UINT_32 numSeLog2) ///< [in] number of shader engine
const
{
// RB's are distributed on 16x16, except when we have 1 rb per se, in which case its 32x32
UINT_32 rbRegion = (numRbPerSeLog2 == 0) ? 5 : 4;
Coordinate cx('x', rbRegion);
Coordinate cy('y', rbRegion);
UINT_32 start = 0;
UINT_32 numRbTotalLog2 = numRbPerSeLog2 + numSeLog2;
// Clear the rb equation
pRbEq->resize(0);
pRbEq->resize(numRbTotalLog2);
if ((numSeLog2 > 0) && (numRbPerSeLog2 == 1))
{
// Special case when more than 1 SE, and 2 RB per SE
(*pRbEq)[0].add(cx);
(*pRbEq)[0].add(cy);
cx++;
cy++;
if (m_settings.applyAliasFix == false)
{
(*pRbEq)[0].add(cy);
}
(*pRbEq)[0].add(cy);
start++;
}
UINT_32 numBits = 2 * (numRbTotalLog2 - start);
for (UINT_32 i = 0; i < numBits; i++)
{
UINT_32 idx =
start + (((start + i) >= numRbTotalLog2) ? (2 * (numRbTotalLog2 - start) - i - 1) : i);
if ((i % 2) == 1)
{
(*pRbEq)[idx].add(cx);
cx++;
}
else
{
(*pRbEq)[idx].add(cy);
cy++;
}
}
}
/**
************************************************************************************************************************
* Gfx9Lib::GetDataEquation
*
* @brief
* Get data equation for fmask and Z
* @return
* N/A
************************************************************************************************************************
*/
VOID Gfx9Lib::GetDataEquation(
CoordEq* pDataEq, ///< [out] data surface equation
Gfx9DataType dataSurfaceType, ///< [in] data surface type
AddrSwizzleMode swizzleMode, ///< [in] data surface swizzle mode
AddrResourceType resourceType, ///< [in] data surface resource type
UINT_32 elementBytesLog2, ///< [in] data surface element bytes
UINT_32 numSamplesLog2) ///< [in] data surface sample count
const
{
Coordinate cx('x', 0);
Coordinate cy('y', 0);
Coordinate cz('z', 0);
Coordinate cs('s', 0);
// Clear the equation
pDataEq->resize(0);
pDataEq->resize(27);
if (dataSurfaceType == Gfx9DataColor)
{
if (IsLinear(swizzleMode))
{
Coordinate cm('m', 0);
pDataEq->resize(49);
for (UINT_32 i = 0; i < 49; i++)
{
(*pDataEq)[i].add(cm);
cm++;
}
}
else if (IsThick(resourceType, swizzleMode))
{
// Color 3d_S and 3d_Z modes, 3d_D is same as color 2d
UINT_32 i;
if (IsStandardSwizzle(resourceType, swizzleMode))
{
// Standard 3d swizzle
// Fill in bottom x bits
for (i = elementBytesLog2; i < 4; i++)
{
(*pDataEq)[i].add(cx);
cx++;
}
// Fill in 2 bits of y and then z
for (i = 4; i < 6; i++)
{
(*pDataEq)[i].add(cy);
cy++;
}
for (i = 6; i < 8; i++)
{
(*pDataEq)[i].add(cz);
cz++;
}
if (elementBytesLog2 < 2)
{
// fill in z & y bit
(*pDataEq)[8].add(cz);
(*pDataEq)[9].add(cy);
cz++;
cy++;
}
else if (elementBytesLog2 == 2)
{
// fill in y and x bit
(*pDataEq)[8].add(cy);
(*pDataEq)[9].add(cx);
cy++;
cx++;
}
else
{
// fill in 2 x bits
(*pDataEq)[8].add(cx);
cx++;
(*pDataEq)[9].add(cx);
cx++;
}
}
else
{
// Z 3d swizzle
UINT_32 m2dEnd = (elementBytesLog2 ==0) ? 3 : ((elementBytesLog2 < 4) ? 4 : 5);
UINT_32 numZs = (elementBytesLog2 == 0 || elementBytesLog2 == 4) ?
2 : ((elementBytesLog2 == 1) ? 3 : 1);
pDataEq->mort2d(cx, cy, elementBytesLog2, m2dEnd);
for (i = m2dEnd + 1; i <= m2dEnd + numZs; i++)
{
(*pDataEq)[i].add(cz);
cz++;
}
if ((elementBytesLog2 == 0) || (elementBytesLog2 == 3))
{
// add an x and z
(*pDataEq)[6].add(cx);
(*pDataEq)[7].add(cz);
cx++;
cz++;
}
else if (elementBytesLog2 == 2)
{
// add a y and z
(*pDataEq)[6].add(cy);
(*pDataEq)[7].add(cz);
cy++;
cz++;
}
// add y and x
(*pDataEq)[8].add(cy);
(*pDataEq)[9].add(cx);
cy++;
cx++;
}
// Fill in bit 10 and up
pDataEq->mort3d( cz, cy, cx, 10 );
}
else if (IsThin(resourceType, swizzleMode))
{
UINT_32 blockSizeLog2 = GetBlockSizeLog2(swizzleMode);
// Color 2D
UINT_32 microYBits = (8 - elementBytesLog2) / 2;
UINT_32 tileSplitStart = blockSizeLog2 - numSamplesLog2;
UINT_32 i;
// Fill in bottom x bits
for (i = elementBytesLog2; i < 4; i++)
{
(*pDataEq)[i].add(cx);
cx++;
}
// Fill in bottom y bits
for (i = 4; i < 4 + microYBits; i++)
{
(*pDataEq)[i].add(cy);
cy++;
}
// Fill in last of the micro_x bits
for (i = 4 + microYBits; i < 8; i++)
{
(*pDataEq)[i].add(cx);
cx++;
}
// Fill in x/y bits below sample split
pDataEq->mort2d(cy, cx, 8, tileSplitStart - 1);
// Fill in sample bits
for (i = 0; i < numSamplesLog2; i++)
{
cs.set('s', i);
(*pDataEq)[tileSplitStart + i].add(cs);
}
// Fill in x/y bits above sample split
if ((numSamplesLog2 & 1) ^ (blockSizeLog2 & 1))
{
pDataEq->mort2d(cx, cy, blockSizeLog2);
}
else
{
pDataEq->mort2d(cy, cx, blockSizeLog2);
}
}
else
{
ADDR_ASSERT_ALWAYS();
}
}
else
{
// Fmask or depth
UINT_32 sampleStart = elementBytesLog2;
UINT_32 pixelStart = elementBytesLog2 + numSamplesLog2;
UINT_32 ymajStart = 6 + numSamplesLog2;
for (UINT_32 s = 0; s < numSamplesLog2; s++)
{
cs.set('s', s);
(*pDataEq)[sampleStart + s].add(cs);
}
// Put in the x-major order pixel bits
pDataEq->mort2d(cx, cy, pixelStart, ymajStart - 1);
// Put in the y-major order pixel bits
pDataEq->mort2d(cy, cx, ymajStart);
}
}
/**
************************************************************************************************************************
* Gfx9Lib::GetPipeEquation
*
* @brief
* Get pipe equation
* @return
* N/A
************************************************************************************************************************
*/
VOID Gfx9Lib::GetPipeEquation(
CoordEq* pPipeEq, ///< [out] pipe equation
CoordEq* pDataEq, ///< [in] data equation
UINT_32 pipeInterleaveLog2, ///< [in] pipe interleave
UINT_32 numPipeLog2, ///< [in] number of pipes
UINT_32 numSamplesLog2, ///< [in] data surface sample count
Gfx9DataType dataSurfaceType, ///< [in] data surface type
AddrSwizzleMode swizzleMode, ///< [in] data surface swizzle mode
AddrResourceType resourceType ///< [in] data surface resource type
) const
{
UINT_32 blockSizeLog2 = GetBlockSizeLog2(swizzleMode);
CoordEq dataEq;
pDataEq->copy(dataEq);
if (dataSurfaceType == Gfx9DataColor)
{
INT_32 shift = static_cast<INT_32>(numSamplesLog2);
dataEq.shift(-shift, blockSizeLog2 - numSamplesLog2);
}
dataEq.copy(*pPipeEq, pipeInterleaveLog2, numPipeLog2);
// This section should only apply to z/stencil, maybe fmask
// If the pipe bit is below the comp block size,
// then keep moving up the address until we find a bit that is above
UINT_32 pipeStart = 0;
if (dataSurfaceType != Gfx9DataColor)
{
Coordinate tileMin('x', 3);
while (dataEq[pipeInterleaveLog2 + pipeStart][0] < tileMin)
{
pipeStart++;
}
// if pipe is 0, then the first pipe bit is above the comp block size,
// so we don't need to do anything
// Note, this if condition is not necessary, since if we execute the loop when pipe==0,
// we will get the same pipe equation
if (pipeStart != 0)
{
for (UINT_32 i = 0; i < numPipeLog2; i++)
{
// Copy the jth bit above pipe interleave to the current pipe equation bit
dataEq[pipeInterleaveLog2 + pipeStart + i].copyto((*pPipeEq)[i]);
}
}
}
if (IsPrt(swizzleMode))
{
// Clear out bits above the block size if prt's are enabled
dataEq.resize(blockSizeLog2);
dataEq.resize(48);
}
if (IsXor(swizzleMode))
{
CoordEq xorMask;
if (IsThick(resourceType, swizzleMode))
{
CoordEq xorMask2;
dataEq.copy(xorMask2, pipeInterleaveLog2 + numPipeLog2, 2 * numPipeLog2);
xorMask.resize(numPipeLog2);
for (UINT_32 pipeIdx = 0; pipeIdx < numPipeLog2; pipeIdx++)
{
xorMask[pipeIdx].add(xorMask2[2 * pipeIdx]);
xorMask[pipeIdx].add(xorMask2[2 * pipeIdx + 1]);
}
}
else
{
// Xor in the bits above the pipe+gpu bits
dataEq.copy(xorMask, pipeInterleaveLog2 + pipeStart + numPipeLog2, numPipeLog2);
if ((numSamplesLog2 == 0) && (IsPrt(swizzleMode) == FALSE))
{
Coordinate co;
CoordEq xorMask2;
// if 1xaa and not prt, then xor in the z bits
xorMask2.resize(0);
xorMask2.resize(numPipeLog2);
for (UINT_32 pipeIdx = 0; pipeIdx < numPipeLog2; pipeIdx++)
{
co.set('z', numPipeLog2 - 1 - pipeIdx);
xorMask2[pipeIdx].add(co);
}
pPipeEq->xorin(xorMask2);
}
}
xorMask.reverse();
pPipeEq->xorin(xorMask);
}
}
/**
************************************************************************************************************************
* Gfx9Lib::GetMetaEquation
*
* @brief
* Get meta equation for cmask/htile/DCC
* @return
* Pointer to a calculated meta equation
************************************************************************************************************************
*/
const CoordEq* Gfx9Lib::GetMetaEquation(
const MetaEqParams& metaEqParams)
{
UINT_32 cachedMetaEqIndex;
for (cachedMetaEqIndex = 0; cachedMetaEqIndex < MaxCachedMetaEq; cachedMetaEqIndex++)
{
if (memcmp(&metaEqParams,
&m_cachedMetaEqKey[cachedMetaEqIndex],
static_cast<UINT_32>(sizeof(metaEqParams))) == 0)
{
break;
}
}
CoordEq* pMetaEq = NULL;
if (cachedMetaEqIndex < MaxCachedMetaEq)
{
pMetaEq = &m_cachedMetaEq[cachedMetaEqIndex];
}
else
{
m_cachedMetaEqKey[m_metaEqOverrideIndex] = metaEqParams;
pMetaEq = &m_cachedMetaEq[m_metaEqOverrideIndex++];
m_metaEqOverrideIndex %= MaxCachedMetaEq;
GenMetaEquation(pMetaEq,
metaEqParams.maxMip,
metaEqParams.elementBytesLog2,
metaEqParams.numSamplesLog2,
metaEqParams.metaFlag,
metaEqParams.dataSurfaceType,
metaEqParams.swizzleMode,
metaEqParams.resourceType,
metaEqParams.metaBlkWidthLog2,
metaEqParams.metaBlkHeightLog2,
metaEqParams.metaBlkDepthLog2,
metaEqParams.compBlkWidthLog2,
metaEqParams.compBlkHeightLog2,
metaEqParams.compBlkDepthLog2);
}
return pMetaEq;
}
/**
************************************************************************************************************************
* Gfx9Lib::GenMetaEquation
*
* @brief
* Get meta equation for cmask/htile/DCC
* @return
* N/A
************************************************************************************************************************
*/
VOID Gfx9Lib::GenMetaEquation(
CoordEq* pMetaEq, ///< [out] meta equation
UINT_32 maxMip, ///< [in] max mip Id
UINT_32 elementBytesLog2, ///< [in] data surface element bytes
UINT_32 numSamplesLog2, ///< [in] data surface sample count
ADDR2_META_FLAGS metaFlag, ///< [in] meta falg
Gfx9DataType dataSurfaceType, ///< [in] data surface type
AddrSwizzleMode swizzleMode, ///< [in] data surface swizzle mode
AddrResourceType resourceType, ///< [in] data surface resource type
UINT_32 metaBlkWidthLog2, ///< [in] meta block width
UINT_32 metaBlkHeightLog2, ///< [in] meta block height
UINT_32 metaBlkDepthLog2, ///< [in] meta block depth
UINT_32 compBlkWidthLog2, ///< [in] compress block width
UINT_32 compBlkHeightLog2, ///< [in] compress block height
UINT_32 compBlkDepthLog2) ///< [in] compress block depth
const
{
UINT_32 numPipeTotalLog2 = GetPipeLog2ForMetaAddressing(metaFlag.pipeAligned, swizzleMode);
UINT_32 pipeInterleaveLog2 = m_pipeInterleaveLog2;
// Get the correct data address and rb equation
CoordEq dataEq;
GetDataEquation(&dataEq, dataSurfaceType, swizzleMode, resourceType,
elementBytesLog2, numSamplesLog2);
// Get pipe and rb equations
CoordEq pipeEquation;
GetPipeEquation(&pipeEquation, &dataEq, pipeInterleaveLog2, numPipeTotalLog2,
numSamplesLog2, dataSurfaceType, swizzleMode, resourceType);
numPipeTotalLog2 = pipeEquation.getsize();
if (metaFlag.linear)
{
// Linear metadata supporting was removed for GFX9! No one can use this feature.
ADDR_ASSERT_ALWAYS();
ADDR_ASSERT(dataSurfaceType == Gfx9DataColor);
dataEq.copy(*pMetaEq);
if (IsLinear(swizzleMode))
{
if (metaFlag.pipeAligned)
{
// Remove the pipe bits
INT_32 shift = static_cast<INT_32>(numPipeTotalLog2);
pMetaEq->shift(-shift, pipeInterleaveLog2);
}
// Divide by comp block size, which for linear (which is always color) is 256 B
pMetaEq->shift(-8);
if (metaFlag.pipeAligned)
{
// Put pipe bits back in
pMetaEq->shift(numPipeTotalLog2, pipeInterleaveLog2);
for (UINT_32 i = 0; i < numPipeTotalLog2; i++)
{
pipeEquation[i].copyto((*pMetaEq)[pipeInterleaveLog2 + i]);
}
}
}
pMetaEq->shift(1);
}
else
{
UINT_32 maxCompFragLog2 = static_cast<INT_32>(m_maxCompFragLog2);
UINT_32 compFragLog2 =
((dataSurfaceType == Gfx9DataColor) && (numSamplesLog2 > maxCompFragLog2)) ?
maxCompFragLog2 : numSamplesLog2;
UINT_32 uncompFragLog2 = numSamplesLog2 - compFragLog2;
// Make sure the metaaddr is cleared
pMetaEq->resize(0);
pMetaEq->resize(27);
if (IsThick(resourceType, swizzleMode))
{
Coordinate cx('x', 0);
Coordinate cy('y', 0);
Coordinate cz('z', 0);
if (maxMip > 0)
{
pMetaEq->mort3d(cy, cx, cz);
}
else
{
pMetaEq->mort3d(cx, cy, cz);
}
}
else
{
Coordinate cx('x', 0);
Coordinate cy('y', 0);
Coordinate cs;
if (maxMip > 0)
{
pMetaEq->mort2d(cy, cx, compFragLog2);
}
else
{
pMetaEq->mort2d(cx, cy, compFragLog2);
}
//------------------------------------------------------------------------------------------------------------------------
// Put the compressible fragments at the lsb
// the uncompressible frags will be at the msb of the micro address
//------------------------------------------------------------------------------------------------------------------------
for (UINT_32 s = 0; s < compFragLog2; s++)
{
cs.set('s', s);
(*pMetaEq)[s].add(cs);
}
}
// Keep a copy of the pipe equations
CoordEq origPipeEquation;
pipeEquation.copy(origPipeEquation);
Coordinate co;
// filter out everything under the compressed block size
co.set('x', compBlkWidthLog2);
pMetaEq->Filter('<', co, 0, 'x');
co.set('y', compBlkHeightLog2);
pMetaEq->Filter('<', co, 0, 'y');
co.set('z', compBlkDepthLog2);
pMetaEq->Filter('<', co, 0, 'z');
// For non-color, filter out sample bits
if (dataSurfaceType != Gfx9DataColor)
{
co.set('x', 0);
pMetaEq->Filter('<', co, 0, 's');
}
// filter out everything above the metablock size
co.set('x', metaBlkWidthLog2 - 1);
pMetaEq->Filter('>', co, 0, 'x');
co.set('y', metaBlkHeightLog2 - 1);
pMetaEq->Filter('>', co, 0, 'y');
co.set('z', metaBlkDepthLog2 - 1);
pMetaEq->Filter('>', co, 0, 'z');
// filter out everything above the metablock size for the channel bits
co.set('x', metaBlkWidthLog2 - 1);
pipeEquation.Filter('>', co, 0, 'x');
co.set('y', metaBlkHeightLog2 - 1);
pipeEquation.Filter('>', co, 0, 'y');
co.set('z', metaBlkDepthLog2 - 1);
pipeEquation.Filter('>', co, 0, 'z');
// Make sure we still have the same number of channel bits
if (pipeEquation.getsize() != numPipeTotalLog2)
{
ADDR_ASSERT_ALWAYS();
}
// Loop through all channel and rb bits,
// and make sure these components exist in the metadata address
for (UINT_32 i = 0; i < numPipeTotalLog2; i++)
{
for (UINT_32 j = pipeEquation[i].getsize(); j > 0; j--)
{
if (pMetaEq->Exists(pipeEquation[i][j - 1]) == FALSE)
{
ADDR_ASSERT_ALWAYS();
}
}
}
const UINT_32 numSeLog2 = metaFlag.rbAligned ? m_seLog2 : 0;
const UINT_32 numRbPeSeLog2 = metaFlag.rbAligned ? m_rbPerSeLog2 : 0;
const UINT_32 numRbTotalLog2 = numRbPeSeLog2 + numSeLog2;
CoordEq origRbEquation;
GetRbEquation(&origRbEquation, numRbPeSeLog2, numSeLog2);
CoordEq rbEquation = origRbEquation;
for (UINT_32 i = 0; i < numRbTotalLog2; i++)
{
for (UINT_32 j = rbEquation[i].getsize(); j > 0; j--)
{
if (pMetaEq->Exists(rbEquation[i][j - 1]) == FALSE)
{
ADDR_ASSERT_ALWAYS();
}
}
}
if (m_settings.applyAliasFix)
{
co.set('z', -1);
}
// Loop through each rb id bit; if it is equal to any of the filtered channel bits, clear it
for (UINT_32 i = 0; i < numRbTotalLog2; i++)
{
for (UINT_32 j = 0; j < numPipeTotalLog2; j++)
{
BOOL_32 isRbEquationInPipeEquation = FALSE;
if (m_settings.applyAliasFix)
{
CoordTerm filteredPipeEq;
filteredPipeEq = pipeEquation[j];
filteredPipeEq.Filter('>', co, 0, 'z');
isRbEquationInPipeEquation = (rbEquation[i] == filteredPipeEq);
}
else
{
isRbEquationInPipeEquation = (rbEquation[i] == pipeEquation[j]);
}
if (isRbEquationInPipeEquation)
{
rbEquation[i].Clear();
}
}
}
bool rbAppendedWithPipeBits[1 << (MaxSeLog2 + MaxRbPerSeLog2)] = {};
// Loop through each bit of the channel, get the smallest coordinate,
// and remove it from the metaaddr, and rb_equation
for (UINT_32 i = 0; i < numPipeTotalLog2; i++)
{
pipeEquation[i].getsmallest(co);
UINT_32 old_size = pMetaEq->getsize();
pMetaEq->Filter('=', co);
UINT_32 new_size = pMetaEq->getsize();
if (new_size != old_size-1)
{
ADDR_ASSERT_ALWAYS();
}
pipeEquation.remove(co);
for (UINT_32 j = 0; j < numRbTotalLog2; j++)
{
if (rbEquation[j].remove(co))
{
// if we actually removed something from this bit, then add the remaining
// channel bits, as these can be removed for this bit
for (UINT_32 k = 0; k < pipeEquation[i].getsize(); k++)
{
if (pipeEquation[i][k] != co)
{
rbEquation[j].add(pipeEquation[i][k]);
rbAppendedWithPipeBits[j] = true;
}
}
}
}
}
// Loop through the rb bits and see what remain;
// filter out the smallest coordinate if it remains
UINT_32 rbBitsLeft = 0;
for (UINT_32 i = 0; i < numRbTotalLog2; i++)
{
BOOL_32 isRbEqAppended = FALSE;
if (m_settings.applyAliasFix)
{
isRbEqAppended = (rbEquation[i].getsize() > (rbAppendedWithPipeBits[i] ? 1 : 0));
}
else
{
isRbEqAppended = (rbEquation[i].getsize() > 0);
}
if (isRbEqAppended)
{
rbBitsLeft++;
rbEquation[i].getsmallest(co);
UINT_32 old_size = pMetaEq->getsize();
pMetaEq->Filter('=', co);
UINT_32 new_size = pMetaEq->getsize();
if (new_size != old_size - 1)
{
// assert warning
}
for (UINT_32 j = i + 1; j < numRbTotalLog2; j++)
{
if (rbEquation[j].remove(co))
{
// if we actually removed something from this bit, then add the remaining
// rb bits, as these can be removed for this bit
for (UINT_32 k = 0; k < rbEquation[i].getsize(); k++)
{
if (rbEquation[i][k] != co)
{
rbEquation[j].add(rbEquation[i][k]);
rbAppendedWithPipeBits[j] |= rbAppendedWithPipeBits[i];
}
}
}
}
}
}
// capture the size of the metaaddr
UINT_32 metaSize = pMetaEq->getsize();
// resize to 49 bits...make this a nibble address
pMetaEq->resize(49);
// Concatenate the macro address above the current address
for (UINT_32 i = metaSize, j = 0; i < 49; i++, j++)
{
co.set('m', j);
(*pMetaEq)[i].add(co);
}
// Multiply by meta element size (in nibbles)
if (dataSurfaceType == Gfx9DataColor)
{
pMetaEq->shift(1);
}
else if (dataSurfaceType == Gfx9DataDepthStencil)
{
pMetaEq->shift(3);
}
//------------------------------------------------------------------------------------------
// Note the pipeInterleaveLog2+1 is because address is a nibble address
// Shift up from pipe interleave number of channel
// and rb bits left, and uncompressed fragments
//------------------------------------------------------------------------------------------
pMetaEq->shift(numPipeTotalLog2 + rbBitsLeft + uncompFragLog2, pipeInterleaveLog2 + 1);
// Put in the channel bits
for (UINT_32 i = 0; i < numPipeTotalLog2; i++)
{
origPipeEquation[i].copyto((*pMetaEq)[pipeInterleaveLog2+1 + i]);
}
// Put in remaining rb bits
for (UINT_32 i = 0, j = 0; j < rbBitsLeft; i = (i + 1) % numRbTotalLog2)
{
BOOL_32 isRbEqAppended = FALSE;
if (m_settings.applyAliasFix)
{
isRbEqAppended = (rbEquation[i].getsize() > (rbAppendedWithPipeBits[i] ? 1 : 0));
}
else
{
isRbEqAppended = (rbEquation[i].getsize() > 0);
}
if (isRbEqAppended)
{
origRbEquation[i].copyto((*pMetaEq)[pipeInterleaveLog2 + 1 + numPipeTotalLog2 + j]);
// Mark any rb bit we add in to the rb mask
j++;
}
}
//------------------------------------------------------------------------------------------
// Put in the uncompressed fragment bits
//------------------------------------------------------------------------------------------
for (UINT_32 i = 0; i < uncompFragLog2; i++)
{
co.set('s', compFragLog2 + i);
(*pMetaEq)[pipeInterleaveLog2 + 1 + numPipeTotalLog2 + rbBitsLeft + i].add(co);
}
}
}
/**
************************************************************************************************************************
* Gfx9Lib::IsEquationSupported
*
* @brief
* Check if equation is supported for given swizzle mode and resource type.
*
* @return
* TRUE if supported
************************************************************************************************************************
*/
BOOL_32 Gfx9Lib::IsEquationSupported(
AddrResourceType rsrcType,
AddrSwizzleMode swMode,
UINT_32 elementBytesLog2) const
{
BOOL_32 supported = (elementBytesLog2 < MaxElementBytesLog2) &&
(IsLinear(swMode) == FALSE) &&
(((IsTex2d(rsrcType) == TRUE) &&
((elementBytesLog2 < 4) ||
((IsRotateSwizzle(swMode) == FALSE) &&
(IsZOrderSwizzle(swMode) == FALSE)))) ||
((IsTex3d(rsrcType) == TRUE) &&
(IsRotateSwizzle(swMode) == FALSE) &&
(IsBlock256b(swMode) == FALSE)));
return supported;
}
/**
************************************************************************************************************************
* Gfx9Lib::InitEquationTable
*
* @brief
* Initialize Equation table.
*
* @return
* N/A
************************************************************************************************************************
*/
VOID Gfx9Lib::InitEquationTable()
{
memset(m_equationTable, 0, sizeof(m_equationTable));
// Loop all possible resource type (2D/3D)
for (UINT_32 rsrcTypeIdx = 0; rsrcTypeIdx < MaxRsrcType; rsrcTypeIdx++)
{
AddrResourceType rsrcType = static_cast<AddrResourceType>(rsrcTypeIdx + ADDR_RSRC_TEX_2D);
// Loop all possible swizzle mode
for (UINT_32 swModeIdx = 0; swModeIdx < MaxSwMode; swModeIdx++)
{
AddrSwizzleMode swMode = static_cast<AddrSwizzleMode>(swModeIdx);
// Loop all possible bpp
for (UINT_32 bppIdx = 0; bppIdx < MaxElementBytesLog2; bppIdx++)
{
UINT_32 equationIndex = ADDR_INVALID_EQUATION_INDEX;
// Check if the input is supported
if (IsEquationSupported(rsrcType, swMode, bppIdx))
{
ADDR_EQUATION equation;
ADDR_E_RETURNCODE retCode;
memset(&equation, 0, sizeof(ADDR_EQUATION));
// Generate the equation
if (IsBlock256b(swMode) && IsTex2d(rsrcType))
{
retCode = ComputeBlock256Equation(rsrcType, swMode, bppIdx, &equation);
}
else if (IsThin(rsrcType, swMode))
{
retCode = ComputeThinEquation(rsrcType, swMode, bppIdx, &equation);
}
else
{
retCode = ComputeThickEquation(rsrcType, swMode, bppIdx, &equation);
}
// Only fill the equation into the table if the return code is ADDR_OK,
// otherwise if the return code is not ADDR_OK, it indicates this is not
// a valid input, we do nothing but just fill invalid equation index
// into the lookup table.
if (retCode == ADDR_OK)
{
equationIndex = m_numEquations;
ADDR_ASSERT(equationIndex < EquationTableSize);
m_equationTable[equationIndex] = equation;
m_numEquations++;
}
else
{
ADDR_ASSERT_ALWAYS();
}
}
// Fill the index into the lookup table, if the combination is not supported
// fill the invalid equation index
m_equationLookupTable[rsrcTypeIdx][swModeIdx][bppIdx] = equationIndex;
}
}
}
}
/**
************************************************************************************************************************
* Gfx9Lib::HwlGetEquationIndex
*
* @brief
* Interface function stub of GetEquationIndex
*
* @return
* ADDR_E_RETURNCODE
************************************************************************************************************************
*/
UINT_32 Gfx9Lib::HwlGetEquationIndex(
const ADDR2_COMPUTE_SURFACE_INFO_INPUT* pIn,
ADDR2_COMPUTE_SURFACE_INFO_OUTPUT* pOut
) const
{
AddrResourceType rsrcType = pIn->resourceType;
AddrSwizzleMode swMode = pIn->swizzleMode;
UINT_32 elementBytesLog2 = Log2(pIn->bpp >> 3);
UINT_32 index = ADDR_INVALID_EQUATION_INDEX;
if (IsEquationSupported(rsrcType, swMode, elementBytesLog2))
{
UINT_32 rsrcTypeIdx = static_cast<UINT_32>(rsrcType) - 1;
UINT_32 swModeIdx = static_cast<UINT_32>(swMode);
index = m_equationLookupTable[rsrcTypeIdx][swModeIdx][elementBytesLog2];
}
if (pOut->pMipInfo != NULL)
{
for (UINT_32 i = 0; i < pIn->numMipLevels; i++)
{
pOut->pMipInfo[i].equationIndex = index;
}
}
return index;
}
/**
************************************************************************************************************************
* Gfx9Lib::HwlComputeBlock256Equation
*
* @brief
* Interface function stub of ComputeBlock256Equation
*
* @return
* ADDR_E_RETURNCODE
************************************************************************************************************************
*/
ADDR_E_RETURNCODE Gfx9Lib::HwlComputeBlock256Equation(
AddrResourceType rsrcType,
AddrSwizzleMode swMode,
UINT_32 elementBytesLog2,
ADDR_EQUATION* pEquation) const
{
ADDR_E_RETURNCODE ret = ADDR_OK;
pEquation->numBits = 8;
UINT_32 i = 0;
for (; i < elementBytesLog2; i++)
{
InitChannel(1, 0 , i, &pEquation->addr[i]);
}
ADDR_CHANNEL_SETTING* pixelBit = &pEquation->addr[elementBytesLog2];
const UINT_32 maxBitsUsed = 4;
ADDR_CHANNEL_SETTING x[maxBitsUsed] = {};
ADDR_CHANNEL_SETTING y[maxBitsUsed] = {};
for (i = 0; i < maxBitsUsed; i++)
{
InitChannel(1, 0, elementBytesLog2 + i, &x[i]);
InitChannel(1, 1, i, &y[i]);
}
if (IsStandardSwizzle(rsrcType, swMode))
{
switch (elementBytesLog2)
{
case 0:
pixelBit[0] = x[0];
pixelBit[1] = x[1];
pixelBit[2] = x[2];
pixelBit[3] = x[3];
pixelBit[4] = y[0];
pixelBit[5] = y[1];
pixelBit[6] = y[2];
pixelBit[7] = y[3];
break;
case 1:
pixelBit[0] = x[0];
pixelBit[1] = x[1];
pixelBit[2] = x[2];
pixelBit[3] = y[0];
pixelBit[4] = y[1];
pixelBit[5] = y[2];
pixelBit[6] = x[3];
break;
case 2:
pixelBit[0] = x[0];
pixelBit[1] = x[1];
pixelBit[2] = y[0];
pixelBit[3] = y[1];
pixelBit[4] = y[2];
pixelBit[5] = x[2];
break;
case 3:
pixelBit[0] = x[0];
pixelBit[1] = y[0];
pixelBit[2] = y[1];
pixelBit[3] = x[1];
pixelBit[4] = x[2];
break;
case 4:
pixelBit[0] = y[0];
pixelBit[1] = y[1];
pixelBit[2] = x[0];
pixelBit[3] = x[1];
break;
default:
ADDR_ASSERT_ALWAYS();
ret = ADDR_INVALIDPARAMS;
break;
}
}
else if (IsDisplaySwizzle(rsrcType, swMode))
{
switch (elementBytesLog2)
{
case 0:
pixelBit[0] = x[0];
pixelBit[1] = x[1];
pixelBit[2] = x[2];
pixelBit[3] = y[1];
pixelBit[4] = y[0];
pixelBit[5] = y[2];
pixelBit[6] = x[3];
pixelBit[7] = y[3];
break;
case 1:
pixelBit[0] = x[0];
pixelBit[1] = x[1];
pixelBit[2] = x[2];
pixelBit[3] = y[0];
pixelBit[4] = y[1];
pixelBit[5] = y[2];
pixelBit[6] = x[3];
break;
case 2:
pixelBit[0] = x[0];
pixelBit[1] = x[1];
pixelBit[2] = y[0];
pixelBit[3] = x[2];
pixelBit[4] = y[1];
pixelBit[5] = y[2];
break;
case 3:
pixelBit[0] = x[0];
pixelBit[1] = y[0];
pixelBit[2] = x[1];
pixelBit[3] = x[2];
pixelBit[4] = y[1];
break;
case 4:
pixelBit[0] = x[0];
pixelBit[1] = y[0];
pixelBit[2] = x[1];
pixelBit[3] = y[1];
break;
default:
ADDR_ASSERT_ALWAYS();
ret = ADDR_INVALIDPARAMS;
break;
}
}
else if (IsRotateSwizzle(swMode))
{
switch (elementBytesLog2)
{
case 0:
pixelBit[0] = y[0];
pixelBit[1] = y[1];
pixelBit[2] = y[2];
pixelBit[3] = x[1];
pixelBit[4] = x[0];
pixelBit[5] = x[2];
pixelBit[6] = x[3];
pixelBit[7] = y[3];
break;
case 1:
pixelBit[0] = y[0];
pixelBit[1] = y[1];
pixelBit[2] = y[2];
pixelBit[3] = x[0];
pixelBit[4] = x[1];
pixelBit[5] = x[2];
pixelBit[6] = x[3];
break;
case 2:
pixelBit[0] = y[0];
pixelBit[1] = y[1];
pixelBit[2] = x[0];
pixelBit[3] = y[2];
pixelBit[4] = x[1];
pixelBit[5] = x[2];
break;
case 3:
pixelBit[0] = y[0];
pixelBit[1] = x[0];
pixelBit[2] = y[1];
pixelBit[3] = x[1];
pixelBit[4] = x[2];
break;
default:
ADDR_ASSERT_ALWAYS();
case 4:
ret = ADDR_INVALIDPARAMS;
break;
}
}
else
{
ADDR_ASSERT_ALWAYS();
ret = ADDR_INVALIDPARAMS;
}
// Post validation
if (ret == ADDR_OK)
{
Dim2d microBlockDim = Block256_2d[elementBytesLog2];
ADDR_ASSERT((2u << GetMaxValidChannelIndex(pEquation->addr, 8, 0)) ==
(microBlockDim.w * (1 << elementBytesLog2)));
ADDR_ASSERT((2u << GetMaxValidChannelIndex(pEquation->addr, 8, 1)) == microBlockDim.h);
}
return ret;
}
/**
************************************************************************************************************************
* Gfx9Lib::HwlComputeThinEquation
*
* @brief
* Interface function stub of ComputeThinEquation
*
* @return
* ADDR_E_RETURNCODE
************************************************************************************************************************
*/
ADDR_E_RETURNCODE Gfx9Lib::HwlComputeThinEquation(
AddrResourceType rsrcType,
AddrSwizzleMode swMode,
UINT_32 elementBytesLog2,
ADDR_EQUATION* pEquation) const
{
ADDR_E_RETURNCODE ret = ADDR_OK;
UINT_32 blockSizeLog2 = GetBlockSizeLog2(swMode);
UINT_32 maxXorBits = blockSizeLog2;
if (IsNonPrtXor(swMode))
{
// For non-prt-xor, maybe need to initialize some more bits for xor
// The highest xor bit used in equation will be max the following 3 items:
// 1. m_pipeInterleaveLog2 + 2 * pipeXorBits
// 2. m_pipeInterleaveLog2 + pipeXorBits + 2 * bankXorBits
// 3. blockSizeLog2
maxXorBits = Max(maxXorBits, m_pipeInterleaveLog2 + 2 * GetPipeXorBits(blockSizeLog2));
maxXorBits = Max(maxXorBits, m_pipeInterleaveLog2 +
GetPipeXorBits(blockSizeLog2) +
2 * GetBankXorBits(blockSizeLog2));
}
const UINT_32 maxBitsUsed = 14;
ADDR_ASSERT((2 * maxBitsUsed) >= maxXorBits);
ADDR_CHANNEL_SETTING x[maxBitsUsed] = {};
ADDR_CHANNEL_SETTING y[maxBitsUsed] = {};
const UINT_32 extraXorBits = 16;
ADDR_ASSERT(extraXorBits >= maxXorBits - blockSizeLog2);
ADDR_CHANNEL_SETTING xorExtra[extraXorBits] = {};
for (UINT_32 i = 0; i < maxBitsUsed; i++)
{
InitChannel(1, 0, elementBytesLog2 + i, &x[i]);
InitChannel(1, 1, i, &y[i]);
}
ADDR_CHANNEL_SETTING* pixelBit = pEquation->addr;
for (UINT_32 i = 0; i < elementBytesLog2; i++)
{
InitChannel(1, 0 , i, &pixelBit[i]);
}
UINT_32 xIdx = 0;
UINT_32 yIdx = 0;
UINT_32 lowBits = 0;
if (IsZOrderSwizzle(swMode))
{
if (elementBytesLog2 <= 3)
{
for (UINT_32 i = elementBytesLog2; i < 6; i++)
{
pixelBit[i] = (((i - elementBytesLog2) & 1) == 0) ? x[xIdx++] : y[yIdx++];
}
lowBits = 6;
}
else
{
ret = ADDR_INVALIDPARAMS;
}
}
else
{
ret = HwlComputeBlock256Equation(rsrcType, swMode, elementBytesLog2, pEquation);
if (ret == ADDR_OK)
{
Dim2d microBlockDim = Block256_2d[elementBytesLog2];
xIdx = Log2(microBlockDim.w);
yIdx = Log2(microBlockDim.h);
lowBits = 8;
}
}
if (ret == ADDR_OK)
{
for (UINT_32 i = lowBits; i < blockSizeLog2; i++)
{
pixelBit[i] = ((i & 1) == 0) ? y[yIdx++] : x[xIdx++];
}
for (UINT_32 i = blockSizeLog2; i < maxXorBits; i++)
{
xorExtra[i - blockSizeLog2] = ((i & 1) == 0) ? y[yIdx++] : x[xIdx++];
}
if (IsXor(swMode))
{
// Fill XOR bits
UINT_32 pipeStart = m_pipeInterleaveLog2;
UINT_32 pipeXorBits = GetPipeXorBits(blockSizeLog2);
UINT_32 bankStart = pipeStart + pipeXorBits;
UINT_32 bankXorBits = GetBankXorBits(blockSizeLog2);
for (UINT_32 i = 0; i < pipeXorBits; i++)
{
UINT_32 xor1BitPos = pipeStart + 2 * pipeXorBits - 1 - i;
ADDR_CHANNEL_SETTING* pXor1Src = (xor1BitPos < blockSizeLog2) ?
&pEquation->addr[xor1BitPos] : &xorExtra[xor1BitPos - blockSizeLog2];
InitChannel(&pEquation->xor1[pipeStart + i], pXor1Src);
}
for (UINT_32 i = 0; i < bankXorBits; i++)
{
UINT_32 xor1BitPos = bankStart + 2 * bankXorBits - 1 - i;
ADDR_CHANNEL_SETTING* pXor1Src = (xor1BitPos < blockSizeLog2) ?
&pEquation->addr[xor1BitPos] : &xorExtra[xor1BitPos - blockSizeLog2];
InitChannel(&pEquation->xor1[bankStart + i], pXor1Src);
}
if (IsPrt(swMode) == FALSE)
{
for (UINT_32 i = 0; i < pipeXorBits; i++)
{
InitChannel(1, 2, pipeXorBits - i - 1, &pEquation->xor2[pipeStart + i]);
}
for (UINT_32 i = 0; i < bankXorBits; i++)
{
InitChannel(1, 2, bankXorBits - i - 1 + pipeXorBits, &pEquation->xor2[bankStart + i]);
}
}
}
pEquation->numBits = blockSizeLog2;
}
return ret;
}
/**
************************************************************************************************************************
* Gfx9Lib::HwlComputeThickEquation
*
* @brief
* Interface function stub of ComputeThickEquation
*
* @return
* ADDR_E_RETURNCODE
************************************************************************************************************************
*/
ADDR_E_RETURNCODE Gfx9Lib::HwlComputeThickEquation(
AddrResourceType rsrcType,
AddrSwizzleMode swMode,
UINT_32 elementBytesLog2,
ADDR_EQUATION* pEquation) const
{
ADDR_E_RETURNCODE ret = ADDR_OK;
ADDR_ASSERT(IsTex3d(rsrcType));
UINT_32 blockSizeLog2 = GetBlockSizeLog2(swMode);
UINT_32 maxXorBits = blockSizeLog2;
if (IsNonPrtXor(swMode))
{
// For non-prt-xor, maybe need to initialize some more bits for xor
// The highest xor bit used in equation will be max the following 3:
// 1. m_pipeInterleaveLog2 + 3 * pipeXorBits
// 2. m_pipeInterleaveLog2 + pipeXorBits + 3 * bankXorBits
// 3. blockSizeLog2
maxXorBits = Max(maxXorBits, m_pipeInterleaveLog2 + 3 * GetPipeXorBits(blockSizeLog2));
maxXorBits = Max(maxXorBits, m_pipeInterleaveLog2 +
GetPipeXorBits(blockSizeLog2) +
3 * GetBankXorBits(blockSizeLog2));
}
for (UINT_32 i = 0; i < elementBytesLog2; i++)
{
InitChannel(1, 0 , i, &pEquation->addr[i]);
}
ADDR_CHANNEL_SETTING* pixelBit = &pEquation->addr[elementBytesLog2];
const UINT_32 maxBitsUsed = 12;
ADDR_ASSERT((3 * maxBitsUsed) >= maxXorBits);
ADDR_CHANNEL_SETTING x[maxBitsUsed] = {};
ADDR_CHANNEL_SETTING y[maxBitsUsed] = {};
ADDR_CHANNEL_SETTING z[maxBitsUsed] = {};
const UINT_32 extraXorBits = 24;
ADDR_ASSERT(extraXorBits >= maxXorBits - blockSizeLog2);
ADDR_CHANNEL_SETTING xorExtra[extraXorBits] = {};
for (UINT_32 i = 0; i < maxBitsUsed; i++)
{
InitChannel(1, 0, elementBytesLog2 + i, &x[i]);
InitChannel(1, 1, i, &y[i]);
InitChannel(1, 2, i, &z[i]);
}
if (IsZOrderSwizzle(swMode))
{
switch (elementBytesLog2)
{
case 0:
pixelBit[0] = x[0];
pixelBit[1] = y[0];
pixelBit[2] = x[1];
pixelBit[3] = y[1];
pixelBit[4] = z[0];
pixelBit[5] = z[1];
pixelBit[6] = x[2];
pixelBit[7] = z[2];
pixelBit[8] = y[2];
pixelBit[9] = x[3];
break;
case 1:
pixelBit[0] = x[0];
pixelBit[1] = y[0];
pixelBit[2] = x[1];
pixelBit[3] = y[1];
pixelBit[4] = z[0];
pixelBit[5] = z[1];
pixelBit[6] = z[2];
pixelBit[7] = y[2];
pixelBit[8] = x[2];
break;
case 2:
pixelBit[0] = x[0];
pixelBit[1] = y[0];
pixelBit[2] = x[1];
pixelBit[3] = z[0];
pixelBit[4] = y[1];
pixelBit[5] = z[1];
pixelBit[6] = y[2];
pixelBit[7] = x[2];
break;
case 3:
pixelBit[0] = x[0];
pixelBit[1] = y[0];
pixelBit[2] = z[0];
pixelBit[3] = x[1];
pixelBit[4] = z[1];
pixelBit[5] = y[1];
pixelBit[6] = x[2];
break;
case 4:
pixelBit[0] = x[0];
pixelBit[1] = y[0];
pixelBit[2] = z[0];
pixelBit[3] = z[1];
pixelBit[4] = y[1];
pixelBit[5] = x[1];
break;
default:
ADDR_ASSERT_ALWAYS();
ret = ADDR_INVALIDPARAMS;
break;
}
}
else if (IsStandardSwizzle(rsrcType, swMode))
{
switch (elementBytesLog2)
{
case 0:
pixelBit[0] = x[0];
pixelBit[1] = x[1];
pixelBit[2] = x[2];
pixelBit[3] = x[3];
pixelBit[4] = y[0];
pixelBit[5] = y[1];
pixelBit[6] = z[0];
pixelBit[7] = z[1];
pixelBit[8] = z[2];
pixelBit[9] = y[2];
break;
case 1:
pixelBit[0] = x[0];
pixelBit[1] = x[1];
pixelBit[2] = x[2];
pixelBit[3] = y[0];
pixelBit[4] = y[1];
pixelBit[5] = z[0];
pixelBit[6] = z[1];
pixelBit[7] = z[2];
pixelBit[8] = y[2];
break;
case 2:
pixelBit[0] = x[0];
pixelBit[1] = x[1];
pixelBit[2] = y[0];
pixelBit[3] = y[1];
pixelBit[4] = z[0];
pixelBit[5] = z[1];
pixelBit[6] = y[2];
pixelBit[7] = x[2];
break;
case 3:
pixelBit[0] = x[0];
pixelBit[1] = y[0];
pixelBit[2] = y[1];
pixelBit[3] = z[0];
pixelBit[4] = z[1];
pixelBit[5] = x[1];
pixelBit[6] = x[2];
break;
case 4:
pixelBit[0] = y[0];
pixelBit[1] = y[1];
pixelBit[2] = z[0];
pixelBit[3] = z[1];
pixelBit[4] = x[0];
pixelBit[5] = x[1];
break;
default:
ADDR_ASSERT_ALWAYS();
ret = ADDR_INVALIDPARAMS;
break;
}
}
else
{
ADDR_ASSERT_ALWAYS();
ret = ADDR_INVALIDPARAMS;
}
if (ret == ADDR_OK)
{
Dim3d microBlockDim = Block1K_3d[elementBytesLog2];
UINT_32 xIdx = Log2(microBlockDim.w);
UINT_32 yIdx = Log2(microBlockDim.h);
UINT_32 zIdx = Log2(microBlockDim.d);
pixelBit = pEquation->addr;
const UINT_32 lowBits = 10;
ADDR_ASSERT(pEquation->addr[lowBits - 1].valid == 1);
ADDR_ASSERT(pEquation->addr[lowBits].valid == 0);
for (UINT_32 i = lowBits; i < blockSizeLog2; i++)
{
if ((i % 3) == 0)
{
pixelBit[i] = x[xIdx++];
}
else if ((i % 3) == 1)
{
pixelBit[i] = z[zIdx++];
}
else
{
pixelBit[i] = y[yIdx++];
}
}
for (UINT_32 i = blockSizeLog2; i < maxXorBits; i++)
{
if ((i % 3) == 0)
{
xorExtra[i - blockSizeLog2] = x[xIdx++];
}
else if ((i % 3) == 1)
{
xorExtra[i - blockSizeLog2] = z[zIdx++];
}
else
{
xorExtra[i - blockSizeLog2] = y[yIdx++];
}
}
if (IsXor(swMode))
{
// Fill XOR bits
UINT_32 pipeStart = m_pipeInterleaveLog2;
UINT_32 pipeXorBits = GetPipeXorBits(blockSizeLog2);
for (UINT_32 i = 0; i < pipeXorBits; i++)
{
UINT_32 xor1BitPos = pipeStart + (3 * pipeXorBits) - 1 - (2 * i);
ADDR_CHANNEL_SETTING* pXor1Src = (xor1BitPos < blockSizeLog2) ?
&pEquation->addr[xor1BitPos] : &xorExtra[xor1BitPos - blockSizeLog2];
InitChannel(&pEquation->xor1[pipeStart + i], pXor1Src);
UINT_32 xor2BitPos = pipeStart + (3 * pipeXorBits) - 2 - (2 * i);
ADDR_CHANNEL_SETTING* pXor2Src = (xor2BitPos < blockSizeLog2) ?
&pEquation->addr[xor2BitPos] : &xorExtra[xor2BitPos - blockSizeLog2];
InitChannel(&pEquation->xor2[pipeStart + i], pXor2Src);
}
UINT_32 bankStart = pipeStart + pipeXorBits;
UINT_32 bankXorBits = GetBankXorBits(blockSizeLog2);
for (UINT_32 i = 0; i < bankXorBits; i++)
{
UINT_32 xor1BitPos = bankStart + (3 * bankXorBits) - 1 - (2 * i);
ADDR_CHANNEL_SETTING* pXor1Src = (xor1BitPos < blockSizeLog2) ?
&pEquation->addr[xor1BitPos] : &xorExtra[xor1BitPos - blockSizeLog2];
InitChannel(&pEquation->xor1[bankStart + i], pXor1Src);
UINT_32 xor2BitPos = bankStart + (3 * bankXorBits) - 2 - (2 * i);
ADDR_CHANNEL_SETTING* pXor2Src = (xor2BitPos < blockSizeLog2) ?
&pEquation->addr[xor2BitPos] : &xorExtra[xor2BitPos - blockSizeLog2];
InitChannel(&pEquation->xor2[bankStart + i], pXor2Src);
}
}
pEquation->numBits = blockSizeLog2;
}
return ret;
}
/**
************************************************************************************************************************
* Gfx9Lib::IsValidDisplaySwizzleMode
*
* @brief
* Check if a swizzle mode is supported by display engine
*
* @return
* TRUE is swizzle mode is supported by display engine
************************************************************************************************************************
*/
BOOL_32 Gfx9Lib::IsValidDisplaySwizzleMode(
const ADDR2_COMPUTE_SURFACE_INFO_INPUT* pIn) const
{
BOOL_32 support = FALSE;
const AddrResourceType resourceType = pIn->resourceType;
(void)resourceType;
const AddrSwizzleMode swizzleMode = pIn->swizzleMode;
if (m_settings.isDce12)
{
switch (swizzleMode)
{
case ADDR_SW_256B_D:
case ADDR_SW_256B_R:
support = (pIn->bpp == 32);
break;
case ADDR_SW_LINEAR:
case ADDR_SW_4KB_D:
case ADDR_SW_4KB_R:
case ADDR_SW_64KB_D:
case ADDR_SW_64KB_R:
case ADDR_SW_VAR_D:
case ADDR_SW_VAR_R:
case ADDR_SW_4KB_D_X:
case ADDR_SW_4KB_R_X:
case ADDR_SW_64KB_D_X:
case ADDR_SW_64KB_R_X:
case ADDR_SW_VAR_D_X:
case ADDR_SW_VAR_R_X:
support = (pIn->bpp <= 64);
break;
default:
break;
}
}
else if (m_settings.isDcn1)
{
switch (swizzleMode)
{
case ADDR_SW_4KB_D:
case ADDR_SW_64KB_D:
case ADDR_SW_VAR_D:
case ADDR_SW_64KB_D_T:
case ADDR_SW_4KB_D_X:
case ADDR_SW_64KB_D_X:
case ADDR_SW_VAR_D_X:
support = (pIn->bpp == 64);
break;
case ADDR_SW_LINEAR:
case ADDR_SW_4KB_S:
case ADDR_SW_64KB_S:
case ADDR_SW_VAR_S:
case ADDR_SW_64KB_S_T:
case ADDR_SW_4KB_S_X:
case ADDR_SW_64KB_S_X:
case ADDR_SW_VAR_S_X:
support = (pIn->bpp <= 64);
break;
default:
break;
}
}
else
{
ADDR_NOT_IMPLEMENTED();
}
return support;
}
/**
************************************************************************************************************************
* Gfx9Lib::HwlComputePipeBankXor
*
* @brief
* Generate a PipeBankXor value to be ORed into bits above pipeInterleaveBits of address
*
* @return
* PipeBankXor value
************************************************************************************************************************
*/
ADDR_E_RETURNCODE Gfx9Lib::HwlComputePipeBankXor(
const ADDR2_COMPUTE_PIPEBANKXOR_INPUT* pIn,
ADDR2_COMPUTE_PIPEBANKXOR_OUTPUT* pOut) const
{
UINT_32 macroBlockBits = GetBlockSizeLog2(pIn->swizzleMode);
UINT_32 pipeBits = GetPipeXorBits(macroBlockBits);
UINT_32 bankBits = GetBankXorBits(macroBlockBits);
UINT_32 pipeXor = 0;
UINT_32 bankXor = 0;
const UINT_32 bankMask = (1 << bankBits) - 1;
const UINT_32 index = pIn->surfIndex & bankMask;
const UINT_32 bpp = pIn->flags.fmask ?
GetFmaskBpp(pIn->numSamples, pIn->numFrags) : GetElemLib()->GetBitsPerPixel(pIn->format);
if (bankBits == 4)
{
static const UINT_32 BankXorSmallBpp[] = {0, 7, 4, 3, 8, 15, 12, 11, 1, 6, 5, 2, 9, 14, 13, 10};
static const UINT_32 BankXorLargeBpp[] = {0, 7, 8, 15, 4, 3, 12, 11, 1, 6, 9, 14, 5, 2, 13, 10};
bankXor = (bpp <= 32) ? BankXorSmallBpp[index] : BankXorLargeBpp[index];
}
else if (bankBits > 0)
{
UINT_32 bankIncrease = (1 << (bankBits - 1)) - 1;
bankIncrease = (bankIncrease == 0) ? 1 : bankIncrease;
bankXor = (index * bankIncrease) & bankMask;
}
pOut->pipeBankXor = (bankXor << pipeBits) | pipeXor;
return ADDR_OK;
}
/**
************************************************************************************************************************
* Gfx9Lib::HwlComputeSlicePipeBankXor
*
* @brief
* Generate slice PipeBankXor value based on base PipeBankXor value and slice id
*
* @return
* PipeBankXor value
************************************************************************************************************************
*/
ADDR_E_RETURNCODE Gfx9Lib::HwlComputeSlicePipeBankXor(
const ADDR2_COMPUTE_SLICE_PIPEBANKXOR_INPUT* pIn,
ADDR2_COMPUTE_SLICE_PIPEBANKXOR_OUTPUT* pOut) const
{
UINT_32 macroBlockBits = GetBlockSizeLog2(pIn->swizzleMode);
UINT_32 pipeBits = GetPipeXorBits(macroBlockBits);
UINT_32 bankBits = GetBankXorBits(macroBlockBits);
UINT_32 pipeXor = ReverseBitVector(pIn->slice, pipeBits);
UINT_32 bankXor = ReverseBitVector(pIn->slice >> pipeBits, bankBits);
pOut->pipeBankXor = pIn->basePipeBankXor ^ (pipeXor | (bankXor << pipeBits));
return ADDR_OK;
}
/**
************************************************************************************************************************
* Gfx9Lib::HwlComputeSubResourceOffsetForSwizzlePattern
*
* @brief
* Compute sub resource offset to support swizzle pattern
*
* @return
* Offset
************************************************************************************************************************
*/
ADDR_E_RETURNCODE Gfx9Lib::HwlComputeSubResourceOffsetForSwizzlePattern(
const ADDR2_COMPUTE_SUBRESOURCE_OFFSET_FORSWIZZLEPATTERN_INPUT* pIn,
ADDR2_COMPUTE_SUBRESOURCE_OFFSET_FORSWIZZLEPATTERN_OUTPUT* pOut) const
{
ADDR_ASSERT(IsThin(pIn->resourceType, pIn->swizzleMode));
UINT_32 macroBlockBits = GetBlockSizeLog2(pIn->swizzleMode);
UINT_32 pipeBits = GetPipeXorBits(macroBlockBits);
UINT_32 bankBits = GetBankXorBits(macroBlockBits);
UINT_32 pipeXor = ReverseBitVector(pIn->slice, pipeBits);
UINT_32 bankXor = ReverseBitVector(pIn->slice >> pipeBits, bankBits);
UINT_32 pipeBankXor = ((pipeXor | (bankXor << pipeBits)) ^ (pIn->pipeBankXor)) << m_pipeInterleaveLog2;
pOut->offset = pIn->slice * pIn->sliceSize +
pIn->macroBlockOffset +
(pIn->mipTailOffset ^ pipeBankXor) -
static_cast<UINT_64>(pipeBankXor);
return ADDR_OK;
}
/**
************************************************************************************************************************
* Gfx9Lib::HwlComputeSurfaceInfoSanityCheck
*
* @brief
* Compute surface info sanity check
*
* @return
* Offset
************************************************************************************************************************
*/
ADDR_E_RETURNCODE Gfx9Lib::HwlComputeSurfaceInfoSanityCheck(
const ADDR2_COMPUTE_SURFACE_INFO_INPUT* pIn) const
{
BOOL_32 invalid = FALSE;
if ((pIn->bpp > 128) || (pIn->width == 0) || (pIn->numFrags > 8) || (pIn->numSamples > 16))
{
invalid = TRUE;
}
else if ((pIn->swizzleMode >= ADDR_SW_MAX_TYPE) ||
(pIn->resourceType >= ADDR_RSRC_MAX_TYPE))
{
invalid = TRUE;
}
BOOL_32 mipmap = (pIn->numMipLevels > 1);
BOOL_32 msaa = (pIn->numFrags > 1);
ADDR2_SURFACE_FLAGS flags = pIn->flags;
BOOL_32 zbuffer = (flags.depth || flags.stencil);
BOOL_32 color = flags.color;
BOOL_32 display = flags.display || flags.rotated;
AddrResourceType rsrcType = pIn->resourceType;
BOOL_32 tex3d = IsTex3d(rsrcType);
AddrSwizzleMode swizzle = pIn->swizzleMode;
BOOL_32 linear = IsLinear(swizzle);
BOOL_32 blk256B = IsBlock256b(swizzle);
BOOL_32 blkVar = IsBlockVariable(swizzle);
BOOL_32 isNonPrtXor = IsNonPrtXor(swizzle);
BOOL_32 prt = flags.prt;
BOOL_32 stereo = flags.qbStereo;
if (invalid == FALSE)
{
if ((pIn->numFrags > 1) &&
(GetBlockSize(swizzle) < (m_pipeInterleaveBytes * pIn->numFrags)))
{
// MSAA surface must have blk_bytes/pipe_interleave >= num_samples
invalid = TRUE;
}
}
if (invalid == FALSE)
{
switch (rsrcType)
{
case ADDR_RSRC_TEX_1D:
invalid = msaa || zbuffer || display || (linear == FALSE) || stereo;
break;
case ADDR_RSRC_TEX_2D:
invalid = (msaa && mipmap) || (stereo && msaa) || (stereo && mipmap);
break;
case ADDR_RSRC_TEX_3D:
invalid = msaa || zbuffer || display || stereo;
break;
default:
invalid = TRUE;
break;
}
}
if (invalid == FALSE)
{
if (display)
{
invalid = (IsValidDisplaySwizzleMode(pIn) == FALSE);
}
}
if (invalid == FALSE)
{
if (linear)
{
invalid = ((ADDR_RSRC_TEX_1D != rsrcType) && prt) ||
zbuffer || msaa || (pIn->bpp == 0) || ((pIn->bpp % 8) != 0);
}
else
{
if (blk256B || blkVar || isNonPrtXor)
{
invalid = prt;
if (blk256B)
{
invalid = invalid || zbuffer || tex3d || mipmap || msaa;
}
}
if (invalid == FALSE)
{
if (IsZOrderSwizzle(swizzle))
{
invalid = color && msaa;
}
else if (IsStandardSwizzle(rsrcType, swizzle))
{
invalid = zbuffer;
}
else if (IsDisplaySwizzle(rsrcType, swizzle))
{
invalid = zbuffer;
}
else if (IsRotateSwizzle(swizzle))
{
invalid = zbuffer || (pIn->bpp > 64) || tex3d;
}
else
{
ADDR_ASSERT(!"invalid swizzle mode");
invalid = TRUE;
}
}
}
}
ADDR_ASSERT(invalid == FALSE);
return invalid ? ADDR_INVALIDPARAMS : ADDR_OK;
}
/**
************************************************************************************************************************
* Gfx9Lib::HwlGetPreferredSurfaceSetting
*
* @brief
* Internal function to get suggested surface information for cliet to use
*
* @return
* ADDR_E_RETURNCODE
************************************************************************************************************************
*/
ADDR_E_RETURNCODE Gfx9Lib::HwlGetPreferredSurfaceSetting(
const ADDR2_GET_PREFERRED_SURF_SETTING_INPUT* pIn,
ADDR2_GET_PREFERRED_SURF_SETTING_OUTPUT* pOut) const
{
// Macro define resource block type
enum AddrBlockType
{
AddrBlockMicro = 0, // Resource uses 256B block
AddrBlock4KB = 1, // Resource uses 4KB block
AddrBlock64KB = 2, // Resource uses 64KB block
AddrBlockVar = 3, // Resource uses var blcok
AddrBlockLinear = 4, // Resource uses linear swizzle mode
AddrBlockMaxTiledType = AddrBlock64KB + 1,
};
enum AddrBlockSet
{
AddrBlockSetMicro = 1 << AddrBlockMicro,
AddrBlockSetMacro4KB = 1 << AddrBlock4KB,
AddrBlockSetMacro64KB = 1 << AddrBlock64KB,
AddrBlockSetVar = 1 << AddrBlockVar,
AddrBlockSetLinear = 1 << AddrBlockLinear,
AddrBlockSetMacro = AddrBlockSetMacro4KB | AddrBlockSetMacro64KB,
};
enum AddrSwSet
{
AddrSwSetZ = 1 << ADDR_SW_Z,
AddrSwSetS = 1 << ADDR_SW_S,
AddrSwSetD = 1 << ADDR_SW_D,
AddrSwSetR = 1 << ADDR_SW_R,
AddrSwSetAll = AddrSwSetZ | AddrSwSetS | AddrSwSetD | AddrSwSetR,
};
ADDR_E_RETURNCODE returnCode = ADDR_OK;
ElemLib* pElemLib = GetElemLib();
// Set format to INVALID will skip this conversion
UINT_32 expandX = 1;
UINT_32 expandY = 1;
UINT_32 bpp = pIn->bpp;
UINT_32 width = pIn->width;
UINT_32 height = pIn->height;
if (pIn->format != ADDR_FMT_INVALID)
{
// Don't care for this case
ElemMode elemMode = ADDR_UNCOMPRESSED;
// Get compression/expansion factors and element mode which indicates compression/expansion
bpp = pElemLib->GetBitsPerPixel(pIn->format,
&elemMode,
&expandX,
&expandY);
UINT_32 basePitch = 0;
GetElemLib()->AdjustSurfaceInfo(elemMode,
expandX,
expandY,
&bpp,
&basePitch,
&width,
&height);
}
UINT_32 numSamples = Max(pIn->numSamples, 1u);
UINT_32 numFrags = (pIn->numFrags == 0) ? numSamples : pIn->numFrags;
UINT_32 slice = Max(pIn->numSlices, 1u);
UINT_32 numMipLevels = Max(pIn->numMipLevels, 1u);
UINT_32 minSizeAlign = NextPow2(pIn->minSizeAlign);
if (pIn->flags.fmask)
{
bpp = GetFmaskBpp(numSamples, numFrags);
numFrags = 1;
numSamples = 1;
pOut->resourceType = ADDR_RSRC_TEX_2D;
}
else
{
// The output may get changed for volume(3D) texture resource in future
pOut->resourceType = pIn->resourceType;
}
if (bpp < 8)
{
ADDR_ASSERT_ALWAYS();
returnCode = ADDR_INVALIDPARAMS;
}
else if (IsTex1d(pOut->resourceType))
{
pOut->swizzleMode = ADDR_SW_LINEAR;
pOut->validBlockSet.value = AddrBlockSetLinear;
pOut->canXor = FALSE;
}
else
{
ADDR2_BLOCK_SET blockSet;
blockSet.value = 0;
ADDR2_SWTYPE_SET addrPreferredSwSet, addrValidSwSet, clientPreferredSwSet;
addrPreferredSwSet.value = AddrSwSetS;
addrValidSwSet = addrPreferredSwSet;
clientPreferredSwSet = pIn->preferredSwSet;
if (clientPreferredSwSet.value == 0)
{
clientPreferredSwSet.value = AddrSwSetAll;
}
// prt Xor and non-xor will have less height align requirement for stereo surface
BOOL_32 prtXor = (pIn->flags.prt || pIn->flags.qbStereo) && (pIn->noXor == FALSE);
BOOL_32 displayResource = FALSE;
pOut->canXor = (pIn->flags.prt == FALSE) && (pIn->noXor == FALSE);
// Filter out improper swType and blockSet by HW restriction
if (pIn->flags.fmask || pIn->flags.depth || pIn->flags.stencil)
{
ADDR_ASSERT(IsTex2d(pOut->resourceType));
blockSet.value = AddrBlockSetMacro;
addrPreferredSwSet.value = AddrSwSetZ;
addrValidSwSet.value = AddrSwSetZ;
if (pIn->flags.depth && pIn->flags.texture)
{
if (((bpp == 16) && (numFrags >= 4)) ||
((bpp == 32) && (numFrags >= 2)))
{
// When _X/_T swizzle mode was used for MSAA depth texture, TC will get zplane
// equation from wrong address within memory range a tile covered and use the
// garbage data for compressed Z reading which finally leads to corruption.
pOut->canXor = FALSE;
prtXor = FALSE;
}
}
}
else if (ElemLib::IsBlockCompressed(pIn->format))
{
// block compressed formats (BCx, ASTC, ETC2) must be either S or D modes.
// Not sure under what circumstances "_D" would be appropriate as these formats
// are not displayable.
blockSet.value = AddrBlockSetMacro;
// This isn't to be used as texture and caller doesn't allow macro tiled.
if ((pIn->flags.texture == FALSE) &&
(pIn->forbiddenBlock.macro4KB && pIn->forbiddenBlock.macro64KB))
{
blockSet.value |= AddrBlockSetLinear;
}
addrPreferredSwSet.value = AddrSwSetD;
addrValidSwSet.value = AddrSwSetS | AddrSwSetD;
}
else if (ElemLib::IsMacroPixelPacked(pIn->format))
{
// macro pixel packed formats (BG_RG, GB_GR) does not support the Z modes.
// Its notclear under what circumstances the D or R modes would be appropriate
// since these formats are not displayable.
blockSet.value = AddrBlockSetLinear | AddrBlockSetMacro;
addrPreferredSwSet.value = AddrSwSetS;
addrValidSwSet.value = AddrSwSetS | AddrSwSetD | AddrSwSetR;
}
else if (IsTex3d(pOut->resourceType))
{
blockSet.value = AddrBlockSetLinear | AddrBlockSetMacro;
if (pIn->flags.prt)
{
// PRT cannot use SW_D which gives an unexpected block dimension
addrPreferredSwSet.value = AddrSwSetZ;
addrValidSwSet.value = AddrSwSetZ | AddrSwSetS;
}
else if ((numMipLevels > 1) && (slice >= width) && (slice >= height))
{
// When depth (Z) is the maximum dimension then must use one of the SW_*_S
// or SW_*_Z modes if mipmapping is desired on a 3D surface
addrPreferredSwSet.value = AddrSwSetZ;
addrValidSwSet.value = AddrSwSetZ | AddrSwSetS;
}
else if (pIn->flags.color)
{
addrPreferredSwSet.value = AddrSwSetD;
addrValidSwSet.value = AddrSwSetZ | AddrSwSetS | AddrSwSetD;
}
else
{
addrPreferredSwSet.value = AddrSwSetZ;
addrValidSwSet.value = AddrSwSetZ | AddrSwSetD;
if (bpp != 128)
{
addrValidSwSet.value |= AddrSwSetS;
}
}
}
else
{
addrPreferredSwSet.value = ((pIn->flags.display == TRUE) ||
(pIn->flags.overlay == TRUE) ||
(pIn->bpp == 128)) ? AddrSwSetD : AddrSwSetS;
addrValidSwSet.value = AddrSwSetS | AddrSwSetD | AddrSwSetR;
if (numMipLevels > 1)
{
ADDR_ASSERT(numFrags == 1);
blockSet.value = AddrBlockSetLinear | AddrBlockSetMacro;
}
else if ((numFrags > 1) || (numSamples > 1))
{
ADDR_ASSERT(IsTex2d(pOut->resourceType));
blockSet.value = AddrBlockSetMacro;
}
else
{
ADDR_ASSERT(IsTex2d(pOut->resourceType));
blockSet.value = AddrBlockSetLinear | AddrBlockSetMicro | AddrBlockSetMacro;
displayResource = pIn->flags.rotated || pIn->flags.display;
if (displayResource)
{
addrPreferredSwSet.value = pIn->flags.rotated ? AddrSwSetR : AddrSwSetD;
if (pIn->bpp > 64)
{
blockSet.value = 0;
}
else if (m_settings.isDce12)
{
if (pIn->bpp != 32)
{
blockSet.micro = FALSE;
}
// DCE12 does not support display surface to be _T swizzle mode
prtXor = FALSE;
addrValidSwSet.value = AddrSwSetD | AddrSwSetR;
}
else if (m_settings.isDcn1)
{
// _R is not supported by Dcn1
if (pIn->bpp == 64)
{
addrPreferredSwSet.value = AddrSwSetD;
addrValidSwSet.value = AddrSwSetD;
}
else
{
addrPreferredSwSet.value = AddrSwSetS;
addrValidSwSet.value = AddrSwSetS | AddrSwSetD;
}
blockSet.micro = FALSE;
}
else
{
ADDR_NOT_IMPLEMENTED();
returnCode = ADDR_NOTSUPPORTED;
}
}
}
}
ADDR_ASSERT((addrValidSwSet.value & addrPreferredSwSet.value) == addrPreferredSwSet.value);
pOut->clientPreferredSwSet = clientPreferredSwSet;
// Clamp client preferred set to valid set
clientPreferredSwSet.value &= addrValidSwSet.value;
pOut->validSwTypeSet = addrValidSwSet;
if (clientPreferredSwSet.value == 0)
{
// Client asks for an invalid swizzle type...
ADDR_ASSERT_ALWAYS();
returnCode = ADDR_INVALIDPARAMS;
}
else
{
if (IsPow2(clientPreferredSwSet.value))
{
// Only one swizzle type left, use it directly
addrPreferredSwSet.value = clientPreferredSwSet.value;
}
else if ((clientPreferredSwSet.value & addrPreferredSwSet.value) == 0)
{
// Client wants 2 or more a valid swizzle type but none of them is addrlib preferred
if (clientPreferredSwSet.sw_D)
{
addrPreferredSwSet.value = AddrSwSetD;
}
else if (clientPreferredSwSet.sw_Z)
{
addrPreferredSwSet.value = AddrSwSetZ;
}
else if (clientPreferredSwSet.sw_R)
{
addrPreferredSwSet.value = AddrSwSetR;
}
else
{
ADDR_ASSERT(clientPreferredSwSet.sw_S);
addrPreferredSwSet.value = AddrSwSetS;
}
}
if ((numFrags > 1) &&
(GetBlockSize(ADDR_SW_4KB) < (m_pipeInterleaveBytes * numFrags)))
{
// MSAA surface must have blk_bytes/pipe_interleave >= num_samples
blockSet.macro4KB = FALSE;
}
if (pIn->flags.prt)
{
blockSet.value &= AddrBlockSetMacro64KB;
}
// Apply customized forbidden setting
blockSet.value &= ~pIn->forbiddenBlock.value;
if (pIn->maxAlign > 0)
{
if (pIn->maxAlign < GetBlockSize(ADDR_SW_64KB))
{
blockSet.macro64KB = FALSE;
}
if (pIn->maxAlign < GetBlockSize(ADDR_SW_4KB))
{
blockSet.macro4KB = FALSE;
}
if (pIn->maxAlign < GetBlockSize(ADDR_SW_256B))
{
blockSet.micro = FALSE;
}
}
Dim3d blkAlign[AddrBlockMaxTiledType] = {{0}, {0}, {0}};
Dim3d paddedDim[AddrBlockMaxTiledType] = {{0}, {0}, {0}};
UINT_64 padSize[AddrBlockMaxTiledType] = {0};
if (blockSet.micro)
{
returnCode = ComputeBlockDimensionForSurf(&blkAlign[AddrBlockMicro].w,
&blkAlign[AddrBlockMicro].h,
&blkAlign[AddrBlockMicro].d,
bpp,
numFrags,
pOut->resourceType,
ADDR_SW_256B);
if (returnCode == ADDR_OK)
{
if (displayResource)
{
blkAlign[AddrBlockMicro].w = PowTwoAlign(blkAlign[AddrBlockMicro].w, 32);
}
else if ((blkAlign[AddrBlockMicro].w >= width) && (blkAlign[AddrBlockMicro].h >= height) &&
(minSizeAlign <= GetBlockSize(ADDR_SW_256B)))
{
// If one 256B block can contain the surface, don't bother bigger block type
blockSet.macro4KB = FALSE;
blockSet.macro64KB = FALSE;
blockSet.var = FALSE;
}
padSize[AddrBlockMicro] = ComputePadSize(&blkAlign[AddrBlockMicro], width, height,
slice, &paddedDim[AddrBlockMicro]);
}
}
if ((returnCode == ADDR_OK) && blockSet.macro4KB)
{
returnCode = ComputeBlockDimensionForSurf(&blkAlign[AddrBlock4KB].w,
&blkAlign[AddrBlock4KB].h,
&blkAlign[AddrBlock4KB].d,
bpp,
numFrags,
pOut->resourceType,
ADDR_SW_4KB);
if (returnCode == ADDR_OK)
{
if (displayResource)
{
blkAlign[AddrBlock4KB].w = PowTwoAlign(blkAlign[AddrBlock4KB].w, 32);
}
padSize[AddrBlock4KB] = ComputePadSize(&blkAlign[AddrBlock4KB], width, height,
slice, &paddedDim[AddrBlock4KB]);
ADDR_ASSERT(padSize[AddrBlock4KB] >= padSize[AddrBlockMicro]);
}
}
if ((returnCode == ADDR_OK) && blockSet.macro64KB)
{
returnCode = ComputeBlockDimensionForSurf(&blkAlign[AddrBlock64KB].w,
&blkAlign[AddrBlock64KB].h,
&blkAlign[AddrBlock64KB].d,
bpp,
numFrags,
pOut->resourceType,
ADDR_SW_64KB);
if (returnCode == ADDR_OK)
{
if (displayResource)
{
blkAlign[AddrBlock64KB].w = PowTwoAlign(blkAlign[AddrBlock64KB].w, 32);
}
padSize[AddrBlock64KB] = ComputePadSize(&blkAlign[AddrBlock64KB], width, height,
slice, &paddedDim[AddrBlock64KB]);
ADDR_ASSERT(padSize[AddrBlock64KB] >= padSize[AddrBlock4KB]);
ADDR_ASSERT(padSize[AddrBlock64KB] >= padSize[AddrBlockMicro]);
}
}
if (returnCode == ADDR_OK)
{
UINT_64 minSizeAlignInElement = Max(minSizeAlign / (bpp >> 3), 1u);
for (UINT_32 i = AddrBlockMicro; i < AddrBlockMaxTiledType; i++)
{
padSize[i] = PowTwoAlign(padSize[i], minSizeAlignInElement);
}
// Use minimum block type which meets all conditions above if flag minimizeAlign was set
if (pIn->flags.minimizeAlign)
{
// If padded size of 64KB block is larger than padded size of 256B block or 4KB
// block, filter out 64KB block from candidate list
if (blockSet.macro64KB &&
((blockSet.micro && (padSize[AddrBlockMicro] < padSize[AddrBlock64KB])) ||
(blockSet.macro4KB && (padSize[AddrBlock4KB] < padSize[AddrBlock64KB]))))
{
blockSet.macro64KB = FALSE;
}
// If padded size of 4KB block is larger than padded size of 256B block,
// filter out 4KB block from candidate list
if (blockSet.macro4KB &&
blockSet.micro &&
(padSize[AddrBlockMicro] < padSize[AddrBlock4KB]))
{
blockSet.macro4KB = FALSE;
}
}
// Filter out 64KB/4KB block if a smaller block type has 2/3 or less memory footprint
else if (pIn->flags.opt4space)
{
UINT_64 threshold = blockSet.micro ? padSize[AddrBlockMicro] :
(blockSet.macro4KB ? padSize[AddrBlock4KB] : padSize[AddrBlock64KB]);
threshold += threshold >> 1;
if (blockSet.macro64KB && (padSize[AddrBlock64KB] > threshold))
{
blockSet.macro64KB = FALSE;
}
if (blockSet.macro4KB && (padSize[AddrBlock4KB] > threshold))
{
blockSet.macro4KB = FALSE;
}
}
else
{
if (blockSet.macro64KB &&
(padSize[AddrBlock64KB] >= static_cast<UINT_64>(width) * height * slice * 2) &&
((blockSet.value & ~AddrBlockSetMacro64KB) != 0))
{
// If 64KB block waste more than half memory on padding, filter it out from
// candidate list when it is not the only choice left
blockSet.macro64KB = FALSE;
}
}
if (blockSet.value == 0)
{
// Bad things happen, client will not get any useful information from AddrLib.
// Maybe we should fill in some output earlier instead of outputing nothing?
ADDR_ASSERT_ALWAYS();
returnCode = ADDR_INVALIDPARAMS;
}
else
{
pOut->validBlockSet = blockSet;
pOut->canXor = pOut->canXor &&
(blockSet.macro4KB || blockSet.macro64KB || blockSet.var);
if (blockSet.macro64KB || blockSet.macro4KB)
{
if (addrPreferredSwSet.value == AddrSwSetZ)
{
pOut->swizzleMode = blockSet.macro64KB ? ADDR_SW_64KB_Z : ADDR_SW_4KB_Z;
}
else if (addrPreferredSwSet.value == AddrSwSetS)
{
pOut->swizzleMode = blockSet.macro64KB ? ADDR_SW_64KB_S : ADDR_SW_4KB_S;
}
else if (addrPreferredSwSet.value == AddrSwSetD)
{
pOut->swizzleMode = blockSet.macro64KB ? ADDR_SW_64KB_D : ADDR_SW_4KB_D;
}
else
{
ADDR_ASSERT(addrPreferredSwSet.value == AddrSwSetR);
pOut->swizzleMode = blockSet.macro64KB ? ADDR_SW_64KB_R : ADDR_SW_4KB_R;
}
if (prtXor && blockSet.macro64KB)
{
// Client wants PRTXOR, give back _T swizzle mode if 64KB is available
const UINT_32 prtGap = ADDR_SW_64KB_Z_T - ADDR_SW_64KB_Z;
pOut->swizzleMode = static_cast<AddrSwizzleMode>(pOut->swizzleMode + prtGap);
}
else if (pOut->canXor)
{
// Client wants XOR and this is allowed, return XOR version swizzle mode
const UINT_32 xorGap = ADDR_SW_4KB_Z_X - ADDR_SW_4KB_Z;
pOut->swizzleMode = static_cast<AddrSwizzleMode>(pOut->swizzleMode + xorGap);
}
}
else if (blockSet.micro)
{
if (addrPreferredSwSet.value == AddrSwSetS)
{
pOut->swizzleMode = ADDR_SW_256B_S;
}
else if (addrPreferredSwSet.value == AddrSwSetD)
{
pOut->swizzleMode = ADDR_SW_256B_D;
}
else
{
ADDR_ASSERT(addrPreferredSwSet.value == AddrSwSetR);
pOut->swizzleMode = ADDR_SW_256B_R;
}
}
else if (blockSet.linear)
{
// Fall into this branch doesn't mean linear is suitable, only no other choices!
pOut->swizzleMode = ADDR_SW_LINEAR;
}
else
{
ADDR_ASSERT(blockSet.var);
// Designer consider VAR swizzle mode is usless for most cases
ADDR_UNHANDLED_CASE();
returnCode = ADDR_NOTSUPPORTED;
}
#if DEBUG
// Post sanity check, at least AddrLib should accept the output generated by its own
if (pOut->swizzleMode != ADDR_SW_LINEAR)
{
ADDR2_COMPUTE_SURFACE_INFO_INPUT localIn = {0};
localIn.flags = pIn->flags;
localIn.swizzleMode = pOut->swizzleMode;
localIn.resourceType = pOut->resourceType;
localIn.format = pIn->format;
localIn.bpp = bpp;
localIn.width = width;
localIn.height = height;
localIn.numSlices = slice;
localIn.numMipLevels = numMipLevels;
localIn.numSamples = numSamples;
localIn.numFrags = numFrags;
HwlComputeSurfaceInfoSanityCheck(&localIn);
}
#endif
}
}
}
}
return returnCode;
}
/**
************************************************************************************************************************
* Gfx9Lib::ComputeStereoInfo
*
* @brief
* Compute height alignment and right eye pipeBankXor for stereo surface
*
* @return
* Error code
*
************************************************************************************************************************
*/
ADDR_E_RETURNCODE Gfx9Lib::ComputeStereoInfo(
const ADDR2_COMPUTE_SURFACE_INFO_INPUT* pIn,
ADDR2_COMPUTE_SURFACE_INFO_OUTPUT* pOut,
UINT_32* pHeightAlign
) const
{
ADDR_E_RETURNCODE returnCode = ADDR_OK;
UINT_32 eqIndex = HwlGetEquationIndex(pIn, pOut);
if (eqIndex < m_numEquations)
{
if (IsXor(pIn->swizzleMode))
{
const UINT_32 blkSizeLog2 = GetBlockSizeLog2(pIn->swizzleMode);
const UINT_32 numPipeBits = GetPipeXorBits(blkSizeLog2);
const UINT_32 numBankBits = GetBankXorBits(blkSizeLog2);
const UINT_32 bppLog2 = Log2(pIn->bpp >> 3);
const UINT_32 maxYCoordBlock256 = Log2(Block256_2d[bppLog2].h) - 1;
const ADDR_EQUATION *pEqToCheck = &m_equationTable[eqIndex];
ADDR_ASSERT(maxYCoordBlock256 ==
GetMaxValidChannelIndex(&pEqToCheck->addr[0], GetBlockSizeLog2(ADDR_SW_256B), 1));
const UINT_32 maxYCoordInBaseEquation =
(blkSizeLog2 - GetBlockSizeLog2(ADDR_SW_256B)) / 2 + maxYCoordBlock256;
ADDR_ASSERT(maxYCoordInBaseEquation ==
GetMaxValidChannelIndex(&pEqToCheck->addr[0], blkSizeLog2, 1));
const UINT_32 maxYCoordInPipeXor = (numPipeBits == 0) ? 0 : maxYCoordBlock256 + numPipeBits;
ADDR_ASSERT(maxYCoordInPipeXor ==
GetMaxValidChannelIndex(&pEqToCheck->xor1[m_pipeInterleaveLog2], numPipeBits, 1));
const UINT_32 maxYCoordInBankXor = (numBankBits == 0) ?
0 : maxYCoordBlock256 + (numPipeBits + 1) / 2 + numBankBits;
ADDR_ASSERT(maxYCoordInBankXor ==
GetMaxValidChannelIndex(&pEqToCheck->xor1[m_pipeInterleaveLog2 + numPipeBits], numBankBits, 1));
const UINT_32 maxYCoordInPipeBankXor = Max(maxYCoordInPipeXor, maxYCoordInBankXor);
if (maxYCoordInPipeBankXor > maxYCoordInBaseEquation)
{
*pHeightAlign = 1u << maxYCoordInPipeBankXor;
if (pOut->pStereoInfo != NULL)
{
pOut->pStereoInfo->rightSwizzle = 0;
if ((PowTwoAlign(pIn->height, *pHeightAlign) % (*pHeightAlign * 2)) != 0)
{
if (maxYCoordInPipeXor == maxYCoordInPipeBankXor)
{
pOut->pStereoInfo->rightSwizzle |= (1u << 1);
}
if (maxYCoordInBankXor == maxYCoordInPipeBankXor)
{
pOut->pStereoInfo->rightSwizzle |=
1u << ((numPipeBits % 2) ? numPipeBits : numPipeBits + 1);
}
ADDR_ASSERT(pOut->pStereoInfo->rightSwizzle ==
GetCoordActiveMask(&pEqToCheck->xor1[m_pipeInterleaveLog2],
numPipeBits + numBankBits, 1, maxYCoordInPipeBankXor));
}
}
}
}
}
else
{
ADDR_ASSERT_ALWAYS();
returnCode = ADDR_ERROR;
}
return returnCode;
}
/**
************************************************************************************************************************
* Gfx9Lib::HwlComputeSurfaceInfoTiled
*
* @brief
* Internal function to calculate alignment for tiled surface
*
* @return
* ADDR_E_RETURNCODE
************************************************************************************************************************
*/
ADDR_E_RETURNCODE Gfx9Lib::HwlComputeSurfaceInfoTiled(
const ADDR2_COMPUTE_SURFACE_INFO_INPUT* pIn, ///< [in] input structure
ADDR2_COMPUTE_SURFACE_INFO_OUTPUT* pOut ///< [out] output structure
) const
{
ADDR_E_RETURNCODE returnCode = ComputeBlockDimensionForSurf(&pOut->blockWidth,
&pOut->blockHeight,
&pOut->blockSlices,
pIn->bpp,
pIn->numFrags,
pIn->resourceType,
pIn->swizzleMode);
if (returnCode == ADDR_OK)
{
UINT_32 pitchAlignInElement = pOut->blockWidth;
if ((IsTex2d(pIn->resourceType) == TRUE) &&
(pIn->flags.display || pIn->flags.rotated) &&
(pIn->numMipLevels <= 1) &&
(pIn->numSamples <= 1) &&
(pIn->numFrags <= 1))
{
// Display engine needs pitch align to be at least 32 pixels.
pitchAlignInElement = PowTwoAlign(pitchAlignInElement, 32);
}
pOut->pitch = PowTwoAlign(pIn->width, pitchAlignInElement);
if ((pIn->numMipLevels <= 1) && (pIn->pitchInElement > 0))
{
if ((pIn->pitchInElement % pitchAlignInElement) != 0)
{
returnCode = ADDR_INVALIDPARAMS;
}
else if (pIn->pitchInElement < pOut->pitch)
{
returnCode = ADDR_INVALIDPARAMS;
}
else
{
pOut->pitch = pIn->pitchInElement;
}
}
UINT_32 heightAlign = 0;
if (pIn->flags.qbStereo)
{
returnCode = ComputeStereoInfo(pIn, pOut, &heightAlign);
}
if (returnCode == ADDR_OK)
{
pOut->height = PowTwoAlign(pIn->height, pOut->blockHeight);
if (heightAlign > 1)
{
pOut->height = PowTwoAlign(pOut->height, heightAlign);
}
pOut->numSlices = PowTwoAlign(pIn->numSlices, pOut->blockSlices);
pOut->epitchIsHeight = FALSE;
pOut->mipChainInTail = FALSE;
pOut->firstMipIdInTail = pIn->numMipLevels;
pOut->mipChainPitch = pOut->pitch;
pOut->mipChainHeight = pOut->height;
pOut->mipChainSlice = pOut->numSlices;
if (pIn->numMipLevels > 1)
{
pOut->firstMipIdInTail = GetMipChainInfo(pIn->resourceType,
pIn->swizzleMode,
pIn->bpp,
pIn->width,
pIn->height,
pIn->numSlices,
pOut->blockWidth,
pOut->blockHeight,
pOut->blockSlices,
pIn->numMipLevels,
pOut->pMipInfo);
const UINT_32 endingMipId = Min(pOut->firstMipIdInTail, pIn->numMipLevels - 1);
if (endingMipId == 0)
{
const Dim3d tailMaxDim = GetMipTailDim(pIn->resourceType,
pIn->swizzleMode,
pOut->blockWidth,
pOut->blockHeight,
pOut->blockSlices);
pOut->epitchIsHeight = TRUE;
pOut->pitch = tailMaxDim.w;
pOut->height = tailMaxDim.h;
pOut->numSlices = IsThick(pIn->resourceType, pIn->swizzleMode) ?
tailMaxDim.d : pIn->numSlices;
pOut->mipChainInTail = TRUE;
}
else
{
UINT_32 mip0WidthInBlk = pOut->pitch / pOut->blockWidth;
UINT_32 mip0HeightInBlk = pOut->height / pOut->blockHeight;
AddrMajorMode majorMode = GetMajorMode(pIn->resourceType,
pIn->swizzleMode,
mip0WidthInBlk,
mip0HeightInBlk,
pOut->numSlices / pOut->blockSlices);
if (majorMode == ADDR_MAJOR_Y)
{
UINT_32 mip1WidthInBlk = RoundHalf(mip0WidthInBlk);
if ((mip1WidthInBlk == 1) && (endingMipId > 2))
{
mip1WidthInBlk++;
}
pOut->mipChainPitch += (mip1WidthInBlk * pOut->blockWidth);
pOut->epitchIsHeight = FALSE;
}
else
{
UINT_32 mip1HeightInBlk = RoundHalf(mip0HeightInBlk);
if ((mip1HeightInBlk == 1) && (endingMipId > 2))
{
mip1HeightInBlk++;
}
pOut->mipChainHeight += (mip1HeightInBlk * pOut->blockHeight);
pOut->epitchIsHeight = TRUE;
}
}
if (pOut->pMipInfo != NULL)
{
UINT_32 elementBytesLog2 = Log2(pIn->bpp >> 3);
for (UINT_32 i = 0; i < pIn->numMipLevels; i++)
{
Dim3d mipStartPos = {0};
UINT_32 mipTailOffsetInBytes = 0;
mipStartPos = GetMipStartPos(pIn->resourceType,
pIn->swizzleMode,
pOut->pitch,
pOut->height,
pOut->numSlices,
pOut->blockWidth,
pOut->blockHeight,
pOut->blockSlices,
i,
elementBytesLog2,
&mipTailOffsetInBytes);
UINT_32 pitchInBlock =
pOut->mipChainPitch / pOut->blockWidth;
UINT_32 sliceInBlock =
(pOut->mipChainHeight / pOut->blockHeight) * pitchInBlock;
UINT_64 blockIndex =
mipStartPos.d * sliceInBlock + mipStartPos.h * pitchInBlock + mipStartPos.w;
UINT_64 macroBlockOffset =
blockIndex << GetBlockSizeLog2(pIn->swizzleMode);
pOut->pMipInfo[i].macroBlockOffset = macroBlockOffset;
pOut->pMipInfo[i].mipTailOffset = mipTailOffsetInBytes;
}
}
}
else if (pOut->pMipInfo != NULL)
{
pOut->pMipInfo[0].pitch = pOut->pitch;
pOut->pMipInfo[0].height = pOut->height;
pOut->pMipInfo[0].depth = IsTex3d(pIn->resourceType)? pOut->numSlices : 1;
pOut->pMipInfo[0].offset = 0;
}
pOut->sliceSize = static_cast<UINT_64>(pOut->mipChainPitch) * pOut->mipChainHeight *
(pIn->bpp >> 3) * pIn->numFrags;
pOut->surfSize = pOut->sliceSize * pOut->mipChainSlice;
pOut->baseAlign = HwlComputeSurfaceBaseAlign(pIn->swizzleMode);
if (pIn->flags.prt)
{
pOut->baseAlign = Max(pOut->baseAlign, PrtAlignment);
}
}
}
return returnCode;
}
/**
************************************************************************************************************************
* Gfx9Lib::HwlComputeSurfaceInfoLinear
*
* @brief
* Internal function to calculate alignment for linear surface
*
* @return
* ADDR_E_RETURNCODE
************************************************************************************************************************
*/
ADDR_E_RETURNCODE Gfx9Lib::HwlComputeSurfaceInfoLinear(
const ADDR2_COMPUTE_SURFACE_INFO_INPUT* pIn, ///< [in] input structure
ADDR2_COMPUTE_SURFACE_INFO_OUTPUT* pOut ///< [out] output structure
) const
{
ADDR_E_RETURNCODE returnCode = ADDR_OK;
UINT_32 pitch = 0;
UINT_32 actualHeight = 0;
UINT_32 elementBytes = pIn->bpp >> 3;
const UINT_32 alignment = pIn->flags.prt ? PrtAlignment : 256;
if (IsTex1d(pIn->resourceType))
{
if (pIn->height > 1)
{
returnCode = ADDR_INVALIDPARAMS;
}
else
{
const UINT_32 pitchAlignInElement = alignment / elementBytes;
pitch = PowTwoAlign(pIn->width, pitchAlignInElement);
actualHeight = pIn->numMipLevels;
if (pIn->flags.prt == FALSE)
{
returnCode = ApplyCustomizedPitchHeight(pIn, elementBytes, pitchAlignInElement,
&pitch, &actualHeight);
}
if (returnCode == ADDR_OK)
{
if (pOut->pMipInfo != NULL)
{
for (UINT_32 i = 0; i < pIn->numMipLevels; i++)
{
pOut->pMipInfo[i].offset = pitch * elementBytes * i;
pOut->pMipInfo[i].pitch = pitch;
pOut->pMipInfo[i].height = 1;
pOut->pMipInfo[i].depth = 1;
}
}
}
}
}
else
{
returnCode = ComputeSurfaceLinearPadding(pIn, &pitch, &actualHeight, pOut->pMipInfo);
}
if ((pitch == 0) || (actualHeight == 0))
{
returnCode = ADDR_INVALIDPARAMS;
}
if (returnCode == ADDR_OK)
{
pOut->pitch = pitch;
pOut->height = pIn->height;
pOut->numSlices = pIn->numSlices;
pOut->mipChainPitch = pitch;
pOut->mipChainHeight = actualHeight;
pOut->mipChainSlice = pOut->numSlices;
pOut->epitchIsHeight = (pIn->numMipLevels > 1) ? TRUE : FALSE;
pOut->sliceSize = static_cast<UINT_64>(pOut->pitch) * actualHeight * elementBytes;
pOut->surfSize = pOut->sliceSize * pOut->numSlices;
pOut->baseAlign = (pIn->swizzleMode == ADDR_SW_LINEAR_GENERAL) ? (pIn->bpp / 8) : alignment;
pOut->blockWidth = (pIn->swizzleMode == ADDR_SW_LINEAR_GENERAL) ? 1 : (256 / elementBytes);
pOut->blockHeight = 1;
pOut->blockSlices = 1;
}
// Post calculation validate
ADDR_ASSERT(pOut->sliceSize > 0);
return returnCode;
}
/**
************************************************************************************************************************
* Gfx9Lib::GetMipChainInfo
*
* @brief
* Internal function to get out information about mip chain
*
* @return
* Smaller value between Id of first mip fitted in mip tail and max Id of mip being created
************************************************************************************************************************
*/
UINT_32 Gfx9Lib::GetMipChainInfo(
AddrResourceType resourceType,
AddrSwizzleMode swizzleMode,
UINT_32 bpp,
UINT_32 mip0Width,
UINT_32 mip0Height,
UINT_32 mip0Depth,
UINT_32 blockWidth,
UINT_32 blockHeight,
UINT_32 blockDepth,
UINT_32 numMipLevel,
ADDR2_MIP_INFO* pMipInfo) const
{
const Dim3d tailMaxDim =
GetMipTailDim(resourceType, swizzleMode, blockWidth, blockHeight, blockDepth);
UINT_32 mipPitch = mip0Width;
UINT_32 mipHeight = mip0Height;
UINT_32 mipDepth = IsTex3d(resourceType) ? mip0Depth : 1;
UINT_32 offset = 0;
UINT_32 firstMipIdInTail = numMipLevel;
BOOL_32 inTail = FALSE;
BOOL_32 finalDim = FALSE;
BOOL_32 is3dThick = IsThick(resourceType, swizzleMode);
BOOL_32 is3dThin = IsTex3d(resourceType) && (is3dThick == FALSE);
for (UINT_32 mipId = 0; mipId < numMipLevel; mipId++)
{
if (inTail)
{
if (finalDim == FALSE)
{
UINT_32 mipSize;
if (is3dThick)
{
mipSize = mipPitch * mipHeight * mipDepth * (bpp >> 3);
}
else
{
mipSize = mipPitch * mipHeight * (bpp >> 3);
}
if (mipSize <= 256)
{
UINT_32 index = Log2(bpp >> 3);
if (is3dThick)
{
mipPitch = Block256_3dZ[index].w;
mipHeight = Block256_3dZ[index].h;
mipDepth = Block256_3dZ[index].d;
}
else
{
mipPitch = Block256_2d[index].w;
mipHeight = Block256_2d[index].h;
}
finalDim = TRUE;
}
}
}
else
{
inTail = IsInMipTail(resourceType, swizzleMode, tailMaxDim,
mipPitch, mipHeight, mipDepth);
if (inTail)
{
firstMipIdInTail = mipId;
mipPitch = tailMaxDim.w;
mipHeight = tailMaxDim.h;
if (is3dThick)
{
mipDepth = tailMaxDim.d;
}
}
else
{
mipPitch = PowTwoAlign(mipPitch, blockWidth);
mipHeight = PowTwoAlign(mipHeight, blockHeight);
if (is3dThick)
{
mipDepth = PowTwoAlign(mipDepth, blockDepth);
}
}
}
if (pMipInfo != NULL)
{
pMipInfo[mipId].pitch = mipPitch;
pMipInfo[mipId].height = mipHeight;
pMipInfo[mipId].depth = mipDepth;
pMipInfo[mipId].offset = offset;
}
offset += (mipPitch * mipHeight * mipDepth * (bpp >> 3));
if (finalDim)
{
if (is3dThin)
{
mipDepth = Max(mipDepth >> 1, 1u);
}
}
else
{
mipPitch = Max(mipPitch >> 1, 1u);
mipHeight = Max(mipHeight >> 1, 1u);
if (is3dThick || is3dThin)
{
mipDepth = Max(mipDepth >> 1, 1u);
}
}
}
return firstMipIdInTail;
}
/**
************************************************************************************************************************
* Gfx9Lib::GetMetaMiptailInfo
*
* @brief
* Get mip tail coordinate information.
*
* @return
* N/A
************************************************************************************************************************
*/
VOID Gfx9Lib::GetMetaMiptailInfo(
ADDR2_META_MIP_INFO* pInfo, ///< [out] output structure to store per mip coord
Dim3d mipCoord, ///< [in] mip tail base coord
UINT_32 numMipInTail, ///< [in] number of mips in tail
Dim3d* pMetaBlkDim ///< [in] meta block width/height/depth
) const
{
BOOL_32 isThick = (pMetaBlkDim->d > 1);
UINT_32 mipWidth = pMetaBlkDim->w;
UINT_32 mipHeight = pMetaBlkDim->h >> 1;
UINT_32 mipDepth = pMetaBlkDim->d;
UINT_32 minInc;
if (isThick)
{
minInc = (pMetaBlkDim->h >= 512) ? 128 : ((pMetaBlkDim->h == 256) ? 64 : 32);
}
else if (pMetaBlkDim->h >= 1024)
{
minInc = 256;
}
else if (pMetaBlkDim->h == 512)
{
minInc = 128;
}
else
{
minInc = 64;
}
UINT_32 blk32MipId = 0xFFFFFFFF;
for (UINT_32 mip = 0; mip < numMipInTail; mip++)
{
pInfo[mip].inMiptail = TRUE;
pInfo[mip].startX = mipCoord.w;
pInfo[mip].startY = mipCoord.h;
pInfo[mip].startZ = mipCoord.d;
pInfo[mip].width = mipWidth;
pInfo[mip].height = mipHeight;
pInfo[mip].depth = mipDepth;
if (mipWidth <= 32)
{
if (blk32MipId == 0xFFFFFFFF)
{
blk32MipId = mip;
}
mipCoord.w = pInfo[blk32MipId].startX;
mipCoord.h = pInfo[blk32MipId].startY;
mipCoord.d = pInfo[blk32MipId].startZ;
switch (mip - blk32MipId)
{
case 0:
mipCoord.w += 32; // 16x16
break;
case 1:
mipCoord.h += 32; // 8x8
break;
case 2:
mipCoord.h += 32; // 4x4
mipCoord.w += 16;
break;
case 3:
mipCoord.h += 32; // 2x2
mipCoord.w += 32;
break;
case 4:
mipCoord.h += 32; // 1x1
mipCoord.w += 48;
break;
// The following are for BC/ASTC formats
case 5:
mipCoord.h += 48; // 1/2 x 1/2
break;
case 6:
mipCoord.h += 48; // 1/4 x 1/4
mipCoord.w += 16;
break;
case 7:
mipCoord.h += 48; // 1/8 x 1/8
mipCoord.w += 32;
break;
case 8:
mipCoord.h += 48; // 1/16 x 1/16
mipCoord.w += 48;
break;
default:
ADDR_ASSERT_ALWAYS();
break;
}
mipWidth = ((mip - blk32MipId) == 0) ? 16 : 8;
mipHeight = mipWidth;
if (isThick)
{
mipDepth = mipWidth;
}
}
else
{
if (mipWidth <= minInc)
{
// if we're below the minimal increment...
if (isThick)
{
// For 3d, just go in z direction
mipCoord.d += mipDepth;
}
else
{
// For 2d, first go across, then down
if ((mipWidth * 2) == minInc)
{
// if we're 2 mips below, that's when we go back in x, and down in y
mipCoord.w -= minInc;
mipCoord.h += minInc;
}
else
{
// otherwise, just go across in x
mipCoord.w += minInc;
}
}
}
else
{
// On even mip, go down, otherwise, go across
if (mip & 1)
{
mipCoord.w += mipWidth;
}
else
{
mipCoord.h += mipHeight;
}
}
// Divide the width by 2
mipWidth >>= 1;
// After the first mip in tail, the mip is always a square
mipHeight = mipWidth;
// ...or for 3d, a cube
if (isThick)
{
mipDepth = mipWidth;
}
}
}
}
/**
************************************************************************************************************************
* Gfx9Lib::GetMipStartPos
*
* @brief
* Internal function to get out information about mip logical start position
*
* @return
* logical start position in macro block width/heith/depth of one mip level within one slice
************************************************************************************************************************
*/
Dim3d Gfx9Lib::GetMipStartPos(
AddrResourceType resourceType,
AddrSwizzleMode swizzleMode,
UINT_32 width,
UINT_32 height,
UINT_32 depth,
UINT_32 blockWidth,
UINT_32 blockHeight,
UINT_32 blockDepth,
UINT_32 mipId,
UINT_32 log2ElementBytes,
UINT_32* pMipTailBytesOffset) const
{
Dim3d mipStartPos = {0};
const Dim3d tailMaxDim = GetMipTailDim(resourceType, swizzleMode, blockWidth, blockHeight, blockDepth);
// Report mip in tail if Mip0 is already in mip tail
BOOL_32 inMipTail = IsInMipTail(resourceType, swizzleMode, tailMaxDim, width, height, depth);
UINT_32 log2blkSize = GetBlockSizeLog2(swizzleMode);
UINT_32 mipIndexInTail = mipId;
if (inMipTail == FALSE)
{
// Mip 0 dimension, unit in block
UINT_32 mipWidthInBlk = width / blockWidth;
UINT_32 mipHeightInBlk = height / blockHeight;
UINT_32 mipDepthInBlk = depth / blockDepth;
AddrMajorMode majorMode = GetMajorMode(resourceType,
swizzleMode,
mipWidthInBlk,
mipHeightInBlk,
mipDepthInBlk);
UINT_32 endingMip = mipId + 1;
for (UINT_32 i = 1; i <= mipId; i++)
{
if ((i == 1) || (i == 3))
{
if (majorMode == ADDR_MAJOR_Y)
{
mipStartPos.w += mipWidthInBlk;
}
else
{
mipStartPos.h += mipHeightInBlk;
}
}
else
{
if (majorMode == ADDR_MAJOR_X)
{
mipStartPos.w += mipWidthInBlk;
}
else if (majorMode == ADDR_MAJOR_Y)
{
mipStartPos.h += mipHeightInBlk;
}
else
{
mipStartPos.d += mipDepthInBlk;
}
}
BOOL_32 inTail = FALSE;
if (IsThick(resourceType, swizzleMode))
{
UINT_32 dim = log2blkSize % 3;
if (dim == 0)
{
inTail =
(mipWidthInBlk <= 2) && (mipHeightInBlk == 1) && (mipDepthInBlk <= 2);
}
else if (dim == 1)
{
inTail =
(mipWidthInBlk == 1) && (mipHeightInBlk <= 2) && (mipDepthInBlk <= 2);
}
else
{
inTail =
(mipWidthInBlk <= 2) && (mipHeightInBlk <= 2) && (mipDepthInBlk == 1);
}
}
else
{
if (log2blkSize & 1)
{
inTail = (mipWidthInBlk <= 2) && (mipHeightInBlk == 1);
}
else
{
inTail = (mipWidthInBlk == 1) && (mipHeightInBlk <= 2);
}
}
if (inTail)
{
endingMip = i;
break;
}
mipWidthInBlk = RoundHalf(mipWidthInBlk);
mipHeightInBlk = RoundHalf(mipHeightInBlk);
mipDepthInBlk = RoundHalf(mipDepthInBlk);
}
if (mipId >= endingMip)
{
inMipTail = TRUE;
mipIndexInTail = mipId - endingMip;
}
}
if (inMipTail)
{
UINT_32 index = mipIndexInTail + MaxMacroBits - log2blkSize;
ADDR_ASSERT(index < sizeof(MipTailOffset256B) / sizeof(UINT_32));
*pMipTailBytesOffset = MipTailOffset256B[index] << 8;
}
return mipStartPos;
}
/**
************************************************************************************************************************
* Gfx9Lib::HwlComputeSurfaceAddrFromCoordTiled
*
* @brief
* Internal function to calculate address from coord for tiled swizzle surface
*
* @return
* ADDR_E_RETURNCODE
************************************************************************************************************************
*/
ADDR_E_RETURNCODE Gfx9Lib::HwlComputeSurfaceAddrFromCoordTiled(
const ADDR2_COMPUTE_SURFACE_ADDRFROMCOORD_INPUT* pIn, ///< [in] input structure
ADDR2_COMPUTE_SURFACE_ADDRFROMCOORD_OUTPUT* pOut ///< [out] output structure
) const
{
ADDR2_COMPUTE_SURFACE_INFO_INPUT localIn = {0};
localIn.swizzleMode = pIn->swizzleMode;
localIn.flags = pIn->flags;
localIn.resourceType = pIn->resourceType;
localIn.bpp = pIn->bpp;
localIn.width = Max(pIn->unalignedWidth, 1u);
localIn.height = Max(pIn->unalignedHeight, 1u);
localIn.numSlices = Max(pIn->numSlices, 1u);
localIn.numMipLevels = Max(pIn->numMipLevels, 1u);
localIn.numSamples = Max(pIn->numSamples, 1u);
localIn.numFrags = Max(pIn->numFrags, 1u);
if (localIn.numMipLevels <= 1)
{
localIn.pitchInElement = pIn->pitchInElement;
}
ADDR2_COMPUTE_SURFACE_INFO_OUTPUT localOut = {0};
ADDR_E_RETURNCODE returnCode = ComputeSurfaceInfoTiled(&localIn, &localOut);
BOOL_32 valid = (returnCode == ADDR_OK) &&
(IsThin(pIn->resourceType, pIn->swizzleMode) ||
IsThick(pIn->resourceType, pIn->swizzleMode)) &&
((pIn->pipeBankXor == 0) || (IsXor(pIn->swizzleMode)));
if (valid)
{
UINT_32 log2ElementBytes = Log2(pIn->bpp >> 3);
Dim3d mipStartPos = {0};
UINT_32 mipTailBytesOffset = 0;
if (pIn->numMipLevels > 1)
{
// Mip-map chain cannot be MSAA surface
ADDR_ASSERT((pIn->numSamples <= 1) && (pIn->numFrags<= 1));
mipStartPos = GetMipStartPos(pIn->resourceType,
pIn->swizzleMode,
localOut.pitch,
localOut.height,
localOut.numSlices,
localOut.blockWidth,
localOut.blockHeight,
localOut.blockSlices,
pIn->mipId,
log2ElementBytes,
&mipTailBytesOffset);
}
UINT_32 interleaveOffset = 0;
UINT_32 pipeBits = 0;
UINT_32 pipeXor = 0;
UINT_32 bankBits = 0;
UINT_32 bankXor = 0;
if (IsThin(pIn->resourceType, pIn->swizzleMode))
{
UINT_32 blockOffset = 0;
UINT_32 log2blkSize = GetBlockSizeLog2(pIn->swizzleMode);
if (IsZOrderSwizzle(pIn->swizzleMode))
{
// Morton generation
if ((log2ElementBytes == 0) || (log2ElementBytes == 2))
{
UINT_32 totalLowBits = 6 - log2ElementBytes;
UINT_32 mortBits = totalLowBits / 2;
UINT_32 lowBitsValue = MortonGen2d(pIn->y, pIn->x, mortBits);
// Are 9 bits enough?
UINT_32 highBitsValue =
MortonGen2d(pIn->x >> mortBits, pIn->y >> mortBits, 9) << totalLowBits;
blockOffset = lowBitsValue | highBitsValue;
ADDR_ASSERT(blockOffset == lowBitsValue + highBitsValue);
}
else
{
blockOffset = MortonGen2d(pIn->y, pIn->x, 13);
}
// Fill LSBs with sample bits
if (pIn->numSamples > 1)
{
blockOffset *= pIn->numSamples;
blockOffset |= pIn->sample;
}
// Shift according to BytesPP
blockOffset <<= log2ElementBytes;
}
else
{
// Micro block offset
UINT_32 microBlockOffset = ComputeSurface2DMicroBlockOffset(pIn);
blockOffset = microBlockOffset;
// Micro block dimension
ADDR_ASSERT(log2ElementBytes < MaxNumOfBpp);
Dim2d microBlockDim = Block256_2d[log2ElementBytes];
// Morton generation, does 12 bit enough?
blockOffset |=
MortonGen2d((pIn->x / microBlockDim.w), (pIn->y / microBlockDim.h), 12) << 8;
// Sample bits start location
UINT_32 sampleStart = log2blkSize - Log2(pIn->numSamples);
// Join sample bits information to the highest Macro block bits
if (IsNonPrtXor(pIn->swizzleMode))
{
// Non-prt-Xor : xor highest Macro block bits with sample bits
blockOffset = blockOffset ^ (pIn->sample << sampleStart);
}
else
{
// Non-Xor or prt-Xor: replace highest Macro block bits with sample bits
// after this op, the blockOffset only contains log2 Macro block size bits
blockOffset %= (1 << sampleStart);
blockOffset |= (pIn->sample << sampleStart);
ADDR_ASSERT((blockOffset >> log2blkSize) == 0);
}
}
if (IsXor(pIn->swizzleMode))
{
// Mask off bits above Macro block bits to keep page synonyms working for prt
if (IsPrt(pIn->swizzleMode))
{
blockOffset &= ((1 << log2blkSize) - 1);
}
// Preserve offset inside pipe interleave
interleaveOffset = blockOffset & ((1 << m_pipeInterleaveLog2) - 1);
blockOffset >>= m_pipeInterleaveLog2;
// Pipe/Se xor bits
pipeBits = GetPipeXorBits(log2blkSize);
// Pipe xor
pipeXor = FoldXor2d(blockOffset, pipeBits);
blockOffset >>= pipeBits;
// Bank xor bits
bankBits = GetBankXorBits(log2blkSize);
// Bank Xor
bankXor = FoldXor2d(blockOffset, bankBits);
blockOffset >>= bankBits;
// Put all the part back together
blockOffset <<= bankBits;
blockOffset |= bankXor;
blockOffset <<= pipeBits;
blockOffset |= pipeXor;
blockOffset <<= m_pipeInterleaveLog2;
blockOffset |= interleaveOffset;
}
ADDR_ASSERT((blockOffset | mipTailBytesOffset) == (blockOffset + mipTailBytesOffset));
ADDR_ASSERT((mipTailBytesOffset == 0u) || (blockOffset < (1u << log2blkSize)));
blockOffset |= mipTailBytesOffset;
if (IsNonPrtXor(pIn->swizzleMode) && (pIn->numSamples <= 1))
{
// Apply slice xor if not MSAA/PRT
blockOffset ^= (ReverseBitVector(pIn->slice, pipeBits) << m_pipeInterleaveLog2);
blockOffset ^= (ReverseBitVector(pIn->slice >> pipeBits, bankBits) <<
(m_pipeInterleaveLog2 + pipeBits));
}
returnCode = ApplyCustomerPipeBankXor(pIn->swizzleMode, pIn->pipeBankXor,
bankBits, pipeBits, &blockOffset);
blockOffset %= (1 << log2blkSize);
UINT_32 pitchInMacroBlock = localOut.mipChainPitch / localOut.blockWidth;
UINT_32 paddedHeightInMacroBlock = localOut.mipChainHeight / localOut.blockHeight;
UINT_32 sliceSizeInMacroBlock = pitchInMacroBlock * paddedHeightInMacroBlock;
UINT_32 macroBlockIndex =
(pIn->slice + mipStartPos.d) * sliceSizeInMacroBlock +
((pIn->y / localOut.blockHeight) + mipStartPos.h) * pitchInMacroBlock +
((pIn->x / localOut.blockWidth) + mipStartPos.w);
UINT_64 macroBlockOffset = (static_cast<UINT_64>(macroBlockIndex) <<
GetBlockSizeLog2(pIn->swizzleMode));
pOut->addr = blockOffset | macroBlockOffset;
}
else
{
UINT_32 log2blkSize = GetBlockSizeLog2(pIn->swizzleMode);
Dim3d microBlockDim = Block1K_3d[log2ElementBytes];
UINT_32 blockOffset = MortonGen3d((pIn->x / microBlockDim.w),
(pIn->y / microBlockDim.h),
(pIn->slice / microBlockDim.d),
8);
blockOffset <<= 10;
blockOffset |= ComputeSurface3DMicroBlockOffset(pIn);
if (IsXor(pIn->swizzleMode))
{
// Mask off bits above Macro block bits to keep page synonyms working for prt
if (IsPrt(pIn->swizzleMode))
{
blockOffset &= ((1 << log2blkSize) - 1);
}
// Preserve offset inside pipe interleave
interleaveOffset = blockOffset & ((1 << m_pipeInterleaveLog2) - 1);
blockOffset >>= m_pipeInterleaveLog2;
// Pipe/Se xor bits
pipeBits = GetPipeXorBits(log2blkSize);
// Pipe xor
pipeXor = FoldXor3d(blockOffset, pipeBits);
blockOffset >>= pipeBits;
// Bank xor bits
bankBits = GetBankXorBits(log2blkSize);
// Bank Xor
bankXor = FoldXor3d(blockOffset, bankBits);
blockOffset >>= bankBits;
// Put all the part back together
blockOffset <<= bankBits;
blockOffset |= bankXor;
blockOffset <<= pipeBits;
blockOffset |= pipeXor;
blockOffset <<= m_pipeInterleaveLog2;
blockOffset |= interleaveOffset;
}
ADDR_ASSERT((blockOffset | mipTailBytesOffset) == (blockOffset + mipTailBytesOffset));
ADDR_ASSERT((mipTailBytesOffset == 0u) || (blockOffset < (1u << log2blkSize)));
blockOffset |= mipTailBytesOffset;
returnCode = ApplyCustomerPipeBankXor(pIn->swizzleMode, pIn->pipeBankXor,
bankBits, pipeBits, &blockOffset);
blockOffset %= (1 << log2blkSize);
UINT_32 xb = pIn->x / localOut.blockWidth + mipStartPos.w;
UINT_32 yb = pIn->y / localOut.blockHeight + mipStartPos.h;
UINT_32 zb = pIn->slice / localOut.blockSlices + + mipStartPos.d;
UINT_32 pitchInBlock = localOut.mipChainPitch / localOut.blockWidth;
UINT_32 sliceSizeInBlock =
(localOut.mipChainHeight / localOut.blockHeight) * pitchInBlock;
UINT_32 blockIndex = zb * sliceSizeInBlock + yb * pitchInBlock + xb;
pOut->addr = blockOffset | (blockIndex << log2blkSize);
}
}
else
{
returnCode = ADDR_INVALIDPARAMS;
}
return returnCode;
}
/**
************************************************************************************************************************
* Gfx9Lib::ComputeSurfaceInfoLinear
*
* @brief
* Internal function to calculate padding for linear swizzle 2D/3D surface
*
* @return
* N/A
************************************************************************************************************************
*/
ADDR_E_RETURNCODE Gfx9Lib::ComputeSurfaceLinearPadding(
const ADDR2_COMPUTE_SURFACE_INFO_INPUT* pIn, ///< [in] input srtucture
UINT_32* pMipmap0PaddedWidth, ///< [out] padded width in element
UINT_32* pSlice0PaddedHeight, ///< [out] padded height for HW
ADDR2_MIP_INFO* pMipInfo ///< [out] per mip information
) const
{
ADDR_E_RETURNCODE returnCode = ADDR_OK;
UINT_32 elementBytes = pIn->bpp >> 3;
UINT_32 pitchAlignInElement = 0;
if (pIn->swizzleMode == ADDR_SW_LINEAR_GENERAL)
{
ADDR_ASSERT(pIn->numMipLevels <= 1);
ADDR_ASSERT(pIn->numSlices <= 1);
pitchAlignInElement = 1;
}
else
{
pitchAlignInElement = (256 / elementBytes);
}
UINT_32 mipChainWidth = PowTwoAlign(pIn->width, pitchAlignInElement);
UINT_32 slice0PaddedHeight = pIn->height;
returnCode = ApplyCustomizedPitchHeight(pIn, elementBytes, pitchAlignInElement,
&mipChainWidth, &slice0PaddedHeight);
if (returnCode == ADDR_OK)
{
UINT_32 mipChainHeight = 0;
UINT_32 mipHeight = pIn->height;
for (UINT_32 i = 0; i < pIn->numMipLevels; i++)
{
if (pMipInfo != NULL)
{
pMipInfo[i].offset = mipChainWidth * mipChainHeight * elementBytes;
pMipInfo[i].pitch = mipChainWidth;
pMipInfo[i].height = mipHeight;
pMipInfo[i].depth = 1;
}
mipChainHeight += mipHeight;
mipHeight = RoundHalf(mipHeight);
mipHeight = Max(mipHeight, 1u);
}
*pMipmap0PaddedWidth = mipChainWidth;
*pSlice0PaddedHeight = (pIn->numMipLevels > 1) ? mipChainHeight : slice0PaddedHeight;
}
return returnCode;
}
} // V2
} // Addr