//===-- X86TargetMachine.cpp - Define TargetMachine for the X86 -----------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the X86 specific subclass of TargetMachine.
//
//===----------------------------------------------------------------------===//
#include "X86TargetMachine.h"
#include "X86.h"
#include "X86TargetObjectFile.h"
#include "X86TargetTransformInfo.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/TargetPassConfig.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/LegacyPassManager.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/FormattedStream.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Target/TargetOptions.h"
using namespace llvm;
static cl::opt<bool> EnableMachineCombinerPass("x86-machine-combiner",
cl::desc("Enable the machine combiner pass"),
cl::init(true), cl::Hidden);
namespace llvm {
void initializeWinEHStatePassPass(PassRegistry &);
}
extern "C" void LLVMInitializeX86Target() {
// Register the target.
RegisterTargetMachine<X86TargetMachine> X(TheX86_32Target);
RegisterTargetMachine<X86TargetMachine> Y(TheX86_64Target);
PassRegistry &PR = *PassRegistry::getPassRegistry();
initializeWinEHStatePassPass(PR);
initializeFixupBWInstPassPass(PR);
}
static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) {
if (TT.isOSBinFormatMachO()) {
if (TT.getArch() == Triple::x86_64)
return make_unique<X86_64MachoTargetObjectFile>();
return make_unique<TargetLoweringObjectFileMachO>();
}
if (TT.isOSLinux() || TT.isOSNaCl())
return make_unique<X86LinuxNaClTargetObjectFile>();
if (TT.isOSBinFormatELF())
return make_unique<X86ELFTargetObjectFile>();
if (TT.isKnownWindowsMSVCEnvironment() || TT.isWindowsCoreCLREnvironment())
return make_unique<X86WindowsTargetObjectFile>();
if (TT.isOSBinFormatCOFF())
return make_unique<TargetLoweringObjectFileCOFF>();
llvm_unreachable("unknown subtarget type");
}
static std::string computeDataLayout(const Triple &TT) {
// X86 is little endian
std::string Ret = "e";
Ret += DataLayout::getManglingComponent(TT);
// X86 and x32 have 32 bit pointers.
if ((TT.isArch64Bit() &&
(TT.getEnvironment() == Triple::GNUX32 || TT.isOSNaCl())) ||
!TT.isArch64Bit())
Ret += "-p:32:32";
// Some ABIs align 64 bit integers and doubles to 64 bits, others to 32.
if (TT.isArch64Bit() || TT.isOSWindows() || TT.isOSNaCl())
Ret += "-i64:64";
else if (TT.isOSIAMCU())
Ret += "-i64:32-f64:32";
else
Ret += "-f64:32:64";
// Some ABIs align long double to 128 bits, others to 32.
if (TT.isOSNaCl() || TT.isOSIAMCU())
; // No f80
else if (TT.isArch64Bit() || TT.isOSDarwin())
Ret += "-f80:128";
else
Ret += "-f80:32";
if (TT.isOSIAMCU())
Ret += "-f128:32";
// The registers can hold 8, 16, 32 or, in x86-64, 64 bits.
if (TT.isArch64Bit())
Ret += "-n8:16:32:64";
else
Ret += "-n8:16:32";
// The stack is aligned to 32 bits on some ABIs and 128 bits on others.
if ((!TT.isArch64Bit() && TT.isOSWindows()) || TT.isOSIAMCU())
Ret += "-a:0:32-S32";
else
Ret += "-S128";
return Ret;
}
static Reloc::Model getEffectiveRelocModel(const Triple &TT,
Optional<Reloc::Model> RM) {
bool is64Bit = TT.getArch() == Triple::x86_64;
if (!RM.hasValue()) {
// Darwin defaults to PIC in 64 bit mode and dynamic-no-pic in 32 bit mode.
// Win64 requires rip-rel addressing, thus we force it to PIC. Otherwise we
// use static relocation model by default.
if (TT.isOSDarwin()) {
if (is64Bit)
return Reloc::PIC_;
return Reloc::DynamicNoPIC;
}
if (TT.isOSWindows() && is64Bit)
return Reloc::PIC_;
return Reloc::Static;
}
// ELF and X86-64 don't have a distinct DynamicNoPIC model. DynamicNoPIC
// is defined as a model for code which may be used in static or dynamic
// executables but not necessarily a shared library. On X86-32 we just
// compile in -static mode, in x86-64 we use PIC.
if (*RM == Reloc::DynamicNoPIC) {
if (is64Bit)
return Reloc::PIC_;
if (!TT.isOSDarwin())
return Reloc::Static;
}
// If we are on Darwin, disallow static relocation model in X86-64 mode, since
// the Mach-O file format doesn't support it.
if (*RM == Reloc::Static && TT.isOSDarwin() && is64Bit)
return Reloc::PIC_;
return *RM;
}
/// Create an X86 target.
///
X86TargetMachine::X86TargetMachine(const Target &T, const Triple &TT,
StringRef CPU, StringRef FS,
const TargetOptions &Options,
Optional<Reloc::Model> RM,
CodeModel::Model CM, CodeGenOpt::Level OL)
: LLVMTargetMachine(T, computeDataLayout(TT), TT, CPU, FS, Options,
getEffectiveRelocModel(TT, RM), CM, OL),
TLOF(createTLOF(getTargetTriple())),
Subtarget(TT, CPU, FS, *this, Options.StackAlignmentOverride) {
// Windows stack unwinder gets confused when execution flow "falls through"
// after a call to 'noreturn' function.
// To prevent that, we emit a trap for 'unreachable' IR instructions.
// (which on X86, happens to be the 'ud2' instruction)
// On PS4, the "return address" of a 'noreturn' call must still be within
// the calling function, and TrapUnreachable is an easy way to get that.
if (Subtarget.isTargetWin64() || Subtarget.isTargetPS4())
this->Options.TrapUnreachable = true;
// By default (and when -ffast-math is on), enable estimate codegen for
// everything except scalar division. By default, use 1 refinement step for
// all operations. Defaults may be overridden by using command-line options.
// Scalar division estimates are disabled because they break too much
// real-world code. These defaults match GCC behavior.
this->Options.Reciprocals.setDefaults("sqrtf", true, 1);
this->Options.Reciprocals.setDefaults("divf", false, 1);
this->Options.Reciprocals.setDefaults("vec-sqrtf", true, 1);
this->Options.Reciprocals.setDefaults("vec-divf", true, 1);
initAsmInfo();
}
X86TargetMachine::~X86TargetMachine() {}
const X86Subtarget *
X86TargetMachine::getSubtargetImpl(const Function &F) const {
Attribute CPUAttr = F.getFnAttribute("target-cpu");
Attribute FSAttr = F.getFnAttribute("target-features");
StringRef CPU = !CPUAttr.hasAttribute(Attribute::None)
? CPUAttr.getValueAsString()
: (StringRef)TargetCPU;
StringRef FS = !FSAttr.hasAttribute(Attribute::None)
? FSAttr.getValueAsString()
: (StringRef)TargetFS;
SmallString<512> Key;
Key.reserve(CPU.size() + FS.size());
Key += CPU;
Key += FS;
// FIXME: This is related to the code below to reset the target options,
// we need to know whether or not the soft float flag is set on the
// function before we can generate a subtarget. We also need to use
// it as a key for the subtarget since that can be the only difference
// between two functions.
bool SoftFloat =
F.getFnAttribute("use-soft-float").getValueAsString() == "true";
// If the soft float attribute is set on the function turn on the soft float
// subtarget feature.
if (SoftFloat)
Key += FS.empty() ? "+soft-float" : ",+soft-float";
FS = Key.substr(CPU.size());
auto &I = SubtargetMap[Key];
if (!I) {
// This needs to be done before we create a new subtarget since any
// creation will depend on the TM and the code generation flags on the
// function that reside in TargetOptions.
resetTargetOptions(F);
I = llvm::make_unique<X86Subtarget>(TargetTriple, CPU, FS, *this,
Options.StackAlignmentOverride);
}
return I.get();
}
//===----------------------------------------------------------------------===//
// Command line options for x86
//===----------------------------------------------------------------------===//
static cl::opt<bool>
UseVZeroUpper("x86-use-vzeroupper", cl::Hidden,
cl::desc("Minimize AVX to SSE transition penalty"),
cl::init(true));
//===----------------------------------------------------------------------===//
// X86 TTI query.
//===----------------------------------------------------------------------===//
TargetIRAnalysis X86TargetMachine::getTargetIRAnalysis() {
return TargetIRAnalysis([this](const Function &F) {
return TargetTransformInfo(X86TTIImpl(this, F));
});
}
//===----------------------------------------------------------------------===//
// Pass Pipeline Configuration
//===----------------------------------------------------------------------===//
namespace {
/// X86 Code Generator Pass Configuration Options.
class X86PassConfig : public TargetPassConfig {
public:
X86PassConfig(X86TargetMachine *TM, PassManagerBase &PM)
: TargetPassConfig(TM, PM) {}
X86TargetMachine &getX86TargetMachine() const {
return getTM<X86TargetMachine>();
}
void addIRPasses() override;
bool addInstSelector() override;
bool addILPOpts() override;
bool addPreISel() override;
void addPreRegAlloc() override;
void addPostRegAlloc() override;
void addPreEmitPass() override;
void addPreSched2() override;
};
} // namespace
TargetPassConfig *X86TargetMachine::createPassConfig(PassManagerBase &PM) {
return new X86PassConfig(this, PM);
}
void X86PassConfig::addIRPasses() {
addPass(createAtomicExpandPass(&getX86TargetMachine()));
TargetPassConfig::addIRPasses();
}
bool X86PassConfig::addInstSelector() {
// Install an instruction selector.
addPass(createX86ISelDag(getX86TargetMachine(), getOptLevel()));
// For ELF, cleanup any local-dynamic TLS accesses.
if (TM->getTargetTriple().isOSBinFormatELF() &&
getOptLevel() != CodeGenOpt::None)
addPass(createCleanupLocalDynamicTLSPass());
addPass(createX86GlobalBaseRegPass());
return false;
}
bool X86PassConfig::addILPOpts() {
addPass(&EarlyIfConverterID);
if (EnableMachineCombinerPass)
addPass(&MachineCombinerID);
return true;
}
bool X86PassConfig::addPreISel() {
// Only add this pass for 32-bit x86 Windows.
const Triple &TT = TM->getTargetTriple();
if (TT.isOSWindows() && TT.getArch() == Triple::x86)
addPass(createX86WinEHStatePass());
return true;
}
void X86PassConfig::addPreRegAlloc() {
if (getOptLevel() != CodeGenOpt::None) {
addPass(createX86FixupSetCC());
addPass(createX86OptimizeLEAs());
addPass(createX86CallFrameOptimization());
}
addPass(createX86WinAllocaExpander());
}
void X86PassConfig::addPostRegAlloc() {
addPass(createX86FloatingPointStackifierPass());
}
void X86PassConfig::addPreSched2() { addPass(createX86ExpandPseudoPass()); }
void X86PassConfig::addPreEmitPass() {
if (getOptLevel() != CodeGenOpt::None)
addPass(createExecutionDependencyFixPass(&X86::VR128RegClass));
if (UseVZeroUpper)
addPass(createX86IssueVZeroUpperPass());
if (getOptLevel() != CodeGenOpt::None) {
addPass(createX86FixupBWInsts());
addPass(createX86PadShortFunctions());
addPass(createX86FixupLEAs());
}
}