//===------- X86ExpandPseudo.cpp - Expand pseudo instructions -------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains a pass that expands pseudo instructions into target
// instructions to allow proper scheduling, if-conversion, other late
// optimizations, or simply the encoding of the instructions.
//
//===----------------------------------------------------------------------===//
#include "X86.h"
#include "X86FrameLowering.h"
#include "X86InstrBuilder.h"
#include "X86InstrInfo.h"
#include "X86MachineFunctionInfo.h"
#include "X86Subtarget.h"
#include "llvm/Analysis/EHPersonalities.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/Passes.h" // For IDs of passes that are preserved.
#include "llvm/IR/GlobalValue.h"
using namespace llvm;
#define DEBUG_TYPE "x86-pseudo"
namespace {
class X86ExpandPseudo : public MachineFunctionPass {
public:
static char ID;
X86ExpandPseudo() : MachineFunctionPass(ID) {}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.setPreservesCFG();
AU.addPreservedID(MachineLoopInfoID);
AU.addPreservedID(MachineDominatorsID);
MachineFunctionPass::getAnalysisUsage(AU);
}
const X86Subtarget *STI;
const X86InstrInfo *TII;
const X86RegisterInfo *TRI;
const X86MachineFunctionInfo *X86FI;
const X86FrameLowering *X86FL;
bool runOnMachineFunction(MachineFunction &Fn) override;
MachineFunctionProperties getRequiredProperties() const override {
return MachineFunctionProperties().set(
MachineFunctionProperties::Property::AllVRegsAllocated);
}
const char *getPassName() const override {
return "X86 pseudo instruction expansion pass";
}
private:
bool ExpandMI(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI);
bool ExpandMBB(MachineBasicBlock &MBB);
};
char X86ExpandPseudo::ID = 0;
} // End anonymous namespace.
/// If \p MBBI is a pseudo instruction, this method expands
/// it to the corresponding (sequence of) actual instruction(s).
/// \returns true if \p MBBI has been expanded.
bool X86ExpandPseudo::ExpandMI(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MBBI) {
MachineInstr &MI = *MBBI;
unsigned Opcode = MI.getOpcode();
DebugLoc DL = MBBI->getDebugLoc();
switch (Opcode) {
default:
return false;
case X86::TCRETURNdi:
case X86::TCRETURNri:
case X86::TCRETURNmi:
case X86::TCRETURNdi64:
case X86::TCRETURNri64:
case X86::TCRETURNmi64: {
bool isMem = Opcode == X86::TCRETURNmi || Opcode == X86::TCRETURNmi64;
MachineOperand &JumpTarget = MBBI->getOperand(0);
MachineOperand &StackAdjust = MBBI->getOperand(isMem ? 5 : 1);
assert(StackAdjust.isImm() && "Expecting immediate value.");
// Adjust stack pointer.
int StackAdj = StackAdjust.getImm();
int MaxTCDelta = X86FI->getTCReturnAddrDelta();
int Offset = 0;
assert(MaxTCDelta <= 0 && "MaxTCDelta should never be positive");
// Incoporate the retaddr area.
Offset = StackAdj-MaxTCDelta;
assert(Offset >= 0 && "Offset should never be negative");
if (Offset) {
// Check for possible merge with preceding ADD instruction.
Offset += X86FL->mergeSPUpdates(MBB, MBBI, true);
X86FL->emitSPUpdate(MBB, MBBI, Offset, /*InEpilogue=*/true);
}
// Jump to label or value in register.
bool IsWin64 = STI->isTargetWin64();
if (Opcode == X86::TCRETURNdi || Opcode == X86::TCRETURNdi64) {
unsigned Op = (Opcode == X86::TCRETURNdi)
? X86::TAILJMPd
: (IsWin64 ? X86::TAILJMPd64_REX : X86::TAILJMPd64);
MachineInstrBuilder MIB = BuildMI(MBB, MBBI, DL, TII->get(Op));
if (JumpTarget.isGlobal())
MIB.addGlobalAddress(JumpTarget.getGlobal(), JumpTarget.getOffset(),
JumpTarget.getTargetFlags());
else {
assert(JumpTarget.isSymbol());
MIB.addExternalSymbol(JumpTarget.getSymbolName(),
JumpTarget.getTargetFlags());
}
} else if (Opcode == X86::TCRETURNmi || Opcode == X86::TCRETURNmi64) {
unsigned Op = (Opcode == X86::TCRETURNmi)
? X86::TAILJMPm
: (IsWin64 ? X86::TAILJMPm64_REX : X86::TAILJMPm64);
MachineInstrBuilder MIB = BuildMI(MBB, MBBI, DL, TII->get(Op));
for (unsigned i = 0; i != 5; ++i)
MIB.addOperand(MBBI->getOperand(i));
} else if (Opcode == X86::TCRETURNri64) {
BuildMI(MBB, MBBI, DL,
TII->get(IsWin64 ? X86::TAILJMPr64_REX : X86::TAILJMPr64))
.addReg(JumpTarget.getReg(), RegState::Kill);
} else {
BuildMI(MBB, MBBI, DL, TII->get(X86::TAILJMPr))
.addReg(JumpTarget.getReg(), RegState::Kill);
}
MachineInstr &NewMI = *std::prev(MBBI);
NewMI.copyImplicitOps(*MBBI->getParent()->getParent(), *MBBI);
// Delete the pseudo instruction TCRETURN.
MBB.erase(MBBI);
return true;
}
case X86::EH_RETURN:
case X86::EH_RETURN64: {
MachineOperand &DestAddr = MBBI->getOperand(0);
assert(DestAddr.isReg() && "Offset should be in register!");
const bool Uses64BitFramePtr =
STI->isTarget64BitLP64() || STI->isTargetNaCl64();
unsigned StackPtr = TRI->getStackRegister();
BuildMI(MBB, MBBI, DL,
TII->get(Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr), StackPtr)
.addReg(DestAddr.getReg());
// The EH_RETURN pseudo is really removed during the MC Lowering.
return true;
}
case X86::IRET: {
// Adjust stack to erase error code
int64_t StackAdj = MBBI->getOperand(0).getImm();
X86FL->emitSPUpdate(MBB, MBBI, StackAdj, true);
// Replace pseudo with machine iret
BuildMI(MBB, MBBI, DL,
TII->get(STI->is64Bit() ? X86::IRET64 : X86::IRET32));
MBB.erase(MBBI);
return true;
}
case X86::RET: {
// Adjust stack to erase error code
int64_t StackAdj = MBBI->getOperand(0).getImm();
MachineInstrBuilder MIB;
if (StackAdj == 0) {
MIB = BuildMI(MBB, MBBI, DL,
TII->get(STI->is64Bit() ? X86::RETQ : X86::RETL));
} else if (isUInt<16>(StackAdj)) {
MIB = BuildMI(MBB, MBBI, DL,
TII->get(STI->is64Bit() ? X86::RETIQ : X86::RETIL))
.addImm(StackAdj);
} else {
assert(!STI->is64Bit() &&
"shouldn't need to do this for x86_64 targets!");
// A ret can only handle immediates as big as 2**16-1. If we need to pop
// off bytes before the return address, we must do it manually.
BuildMI(MBB, MBBI, DL, TII->get(X86::POP32r)).addReg(X86::ECX, RegState::Define);
X86FL->emitSPUpdate(MBB, MBBI, StackAdj, /*InEpilogue=*/true);
BuildMI(MBB, MBBI, DL, TII->get(X86::PUSH32r)).addReg(X86::ECX);
MIB = BuildMI(MBB, MBBI, DL, TII->get(X86::RETL));
}
for (unsigned I = 1, E = MBBI->getNumOperands(); I != E; ++I)
MIB.addOperand(MBBI->getOperand(I));
MBB.erase(MBBI);
return true;
}
case X86::EH_RESTORE: {
// Restore ESP and EBP, and optionally ESI if required.
bool IsSEH = isAsynchronousEHPersonality(classifyEHPersonality(
MBB.getParent()->getFunction()->getPersonalityFn()));
X86FL->restoreWin32EHStackPointers(MBB, MBBI, DL, /*RestoreSP=*/IsSEH);
MBBI->eraseFromParent();
return true;
}
case X86::LCMPXCHG8B_SAVE_EBX:
case X86::LCMPXCHG16B_SAVE_RBX: {
// Perform the following transformation.
// SaveRbx = pseudocmpxchg Addr, <4 opds for the address>, InArg, SaveRbx
// =>
// [E|R]BX = InArg
// actualcmpxchg Addr
// [E|R]BX = SaveRbx
const MachineOperand &InArg = MBBI->getOperand(6);
unsigned SaveRbx = MBBI->getOperand(7).getReg();
unsigned ActualInArg =
Opcode == X86::LCMPXCHG8B_SAVE_EBX ? X86::EBX : X86::RBX;
// Copy the input argument of the pseudo into the argument of the
// actual instruction.
TII->copyPhysReg(MBB, MBBI, DL, ActualInArg, InArg.getReg(),
InArg.isKill());
// Create the actual instruction.
unsigned ActualOpc =
Opcode == X86::LCMPXCHG8B_SAVE_EBX ? X86::LCMPXCHG8B : X86::LCMPXCHG16B;
MachineInstr *NewInstr = BuildMI(MBB, MBBI, DL, TII->get(ActualOpc));
// Copy the operands related to the address.
for (unsigned Idx = 1; Idx < 6; ++Idx)
NewInstr->addOperand(MBBI->getOperand(Idx));
// Finally, restore the value of RBX.
TII->copyPhysReg(MBB, MBBI, DL, ActualInArg, SaveRbx,
/*SrcIsKill*/ true);
// Delete the pseudo.
MBBI->eraseFromParent();
return true;
}
}
llvm_unreachable("Previous switch has a fallthrough?");
}
/// Expand all pseudo instructions contained in \p MBB.
/// \returns true if any expansion occurred for \p MBB.
bool X86ExpandPseudo::ExpandMBB(MachineBasicBlock &MBB) {
bool Modified = false;
// MBBI may be invalidated by the expansion.
MachineBasicBlock::iterator MBBI = MBB.begin(), E = MBB.end();
while (MBBI != E) {
MachineBasicBlock::iterator NMBBI = std::next(MBBI);
Modified |= ExpandMI(MBB, MBBI);
MBBI = NMBBI;
}
return Modified;
}
bool X86ExpandPseudo::runOnMachineFunction(MachineFunction &MF) {
STI = &static_cast<const X86Subtarget &>(MF.getSubtarget());
TII = STI->getInstrInfo();
TRI = STI->getRegisterInfo();
X86FI = MF.getInfo<X86MachineFunctionInfo>();
X86FL = STI->getFrameLowering();
bool Modified = false;
for (MachineBasicBlock &MBB : MF)
Modified |= ExpandMBB(MBB);
return Modified;
}
/// Returns an instance of the pseudo instruction expansion pass.
FunctionPass *llvm::createX86ExpandPseudoPass() {
return new X86ExpandPseudo();
}