C++程序  |  4572行  |  180.15 KB

//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the interfaces that NVPTX uses to lower LLVM code into a
// selection DAG.
//
//===----------------------------------------------------------------------===//

#include "NVPTXISelLowering.h"
#include "NVPTX.h"
#include "NVPTXTargetMachine.h"
#include "NVPTXTargetObjectFile.h"
#include "NVPTXUtilities.h"
#include "llvm/CodeGen/Analysis.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
#include "llvm/IR/CallSite.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/Module.h"
#include "llvm/MC/MCSectionELF.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include <sstream>

#undef DEBUG_TYPE
#define DEBUG_TYPE "nvptx-lower"

using namespace llvm;

static unsigned int uniqueCallSite = 0;

static cl::opt<bool> sched4reg(
    "nvptx-sched4reg",
    cl::desc("NVPTX Specific: schedule for register pressue"), cl::init(false));

static cl::opt<unsigned>
FMAContractLevelOpt("nvptx-fma-level", cl::ZeroOrMore, cl::Hidden,
                    cl::desc("NVPTX Specific: FMA contraction (0: don't do it"
                             " 1: do it  2: do it aggressively"),
                    cl::init(2));

static bool IsPTXVectorType(MVT VT) {
  switch (VT.SimpleTy) {
  default:
    return false;
  case MVT::v2i1:
  case MVT::v4i1:
  case MVT::v2i8:
  case MVT::v4i8:
  case MVT::v2i16:
  case MVT::v4i16:
  case MVT::v2i32:
  case MVT::v4i32:
  case MVT::v2i64:
  case MVT::v2f32:
  case MVT::v4f32:
  case MVT::v2f64:
    return true;
  }
}

/// ComputePTXValueVTs - For the given Type \p Ty, returns the set of primitive
/// EVTs that compose it.  Unlike ComputeValueVTs, this will break apart vectors
/// into their primitive components.
/// NOTE: This is a band-aid for code that expects ComputeValueVTs to return the
/// same number of types as the Ins/Outs arrays in LowerFormalArguments,
/// LowerCall, and LowerReturn.
static void ComputePTXValueVTs(const TargetLowering &TLI, const DataLayout &DL,
                               Type *Ty, SmallVectorImpl<EVT> &ValueVTs,
                               SmallVectorImpl<uint64_t> *Offsets = nullptr,
                               uint64_t StartingOffset = 0) {
  SmallVector<EVT, 16> TempVTs;
  SmallVector<uint64_t, 16> TempOffsets;

  ComputeValueVTs(TLI, DL, Ty, TempVTs, &TempOffsets, StartingOffset);
  for (unsigned i = 0, e = TempVTs.size(); i != e; ++i) {
    EVT VT = TempVTs[i];
    uint64_t Off = TempOffsets[i];
    if (VT.isVector())
      for (unsigned j = 0, je = VT.getVectorNumElements(); j != je; ++j) {
        ValueVTs.push_back(VT.getVectorElementType());
        if (Offsets)
          Offsets->push_back(Off+j*VT.getVectorElementType().getStoreSize());
      }
    else {
      ValueVTs.push_back(VT);
      if (Offsets)
        Offsets->push_back(Off);
    }
  }
}

// NVPTXTargetLowering Constructor.
NVPTXTargetLowering::NVPTXTargetLowering(const NVPTXTargetMachine &TM,
                                         const NVPTXSubtarget &STI)
    : TargetLowering(TM), nvTM(&TM), STI(STI) {

  // always lower memset, memcpy, and memmove intrinsics to load/store
  // instructions, rather
  // then generating calls to memset, mempcy or memmove.
  MaxStoresPerMemset = (unsigned) 0xFFFFFFFF;
  MaxStoresPerMemcpy = (unsigned) 0xFFFFFFFF;
  MaxStoresPerMemmove = (unsigned) 0xFFFFFFFF;

  setBooleanContents(ZeroOrNegativeOneBooleanContent);
  setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);

  // Jump is Expensive. Don't create extra control flow for 'and', 'or'
  // condition branches.
  setJumpIsExpensive(true);

  // Wide divides are _very_ slow. Try to reduce the width of the divide if
  // possible.
  addBypassSlowDiv(64, 32);

  // By default, use the Source scheduling
  if (sched4reg)
    setSchedulingPreference(Sched::RegPressure);
  else
    setSchedulingPreference(Sched::Source);

  addRegisterClass(MVT::i1, &NVPTX::Int1RegsRegClass);
  addRegisterClass(MVT::i16, &NVPTX::Int16RegsRegClass);
  addRegisterClass(MVT::i32, &NVPTX::Int32RegsRegClass);
  addRegisterClass(MVT::i64, &NVPTX::Int64RegsRegClass);
  addRegisterClass(MVT::f32, &NVPTX::Float32RegsRegClass);
  addRegisterClass(MVT::f64, &NVPTX::Float64RegsRegClass);

  // Operations not directly supported by NVPTX.
  setOperationAction(ISD::SELECT_CC, MVT::f32, Expand);
  setOperationAction(ISD::SELECT_CC, MVT::f64, Expand);
  setOperationAction(ISD::SELECT_CC, MVT::i1, Expand);
  setOperationAction(ISD::SELECT_CC, MVT::i8, Expand);
  setOperationAction(ISD::SELECT_CC, MVT::i16, Expand);
  setOperationAction(ISD::SELECT_CC, MVT::i32, Expand);
  setOperationAction(ISD::SELECT_CC, MVT::i64, Expand);
  setOperationAction(ISD::BR_CC, MVT::f32, Expand);
  setOperationAction(ISD::BR_CC, MVT::f64, Expand);
  setOperationAction(ISD::BR_CC, MVT::i1, Expand);
  setOperationAction(ISD::BR_CC, MVT::i8, Expand);
  setOperationAction(ISD::BR_CC, MVT::i16, Expand);
  setOperationAction(ISD::BR_CC, MVT::i32, Expand);
  setOperationAction(ISD::BR_CC, MVT::i64, Expand);
  // Some SIGN_EXTEND_INREG can be done using cvt instruction.
  // For others we will expand to a SHL/SRA pair.
  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i64, Legal);
  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Legal);
  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8 , Legal);
  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);

  setOperationAction(ISD::SHL_PARTS, MVT::i32  , Custom);
  setOperationAction(ISD::SRA_PARTS, MVT::i32  , Custom);
  setOperationAction(ISD::SRL_PARTS, MVT::i32  , Custom);
  setOperationAction(ISD::SHL_PARTS, MVT::i64  , Custom);
  setOperationAction(ISD::SRA_PARTS, MVT::i64  , Custom);
  setOperationAction(ISD::SRL_PARTS, MVT::i64  , Custom);

  if (STI.hasROT64()) {
    setOperationAction(ISD::ROTL, MVT::i64, Legal);
    setOperationAction(ISD::ROTR, MVT::i64, Legal);
  } else {
    setOperationAction(ISD::ROTL, MVT::i64, Expand);
    setOperationAction(ISD::ROTR, MVT::i64, Expand);
  }
  if (STI.hasROT32()) {
    setOperationAction(ISD::ROTL, MVT::i32, Legal);
    setOperationAction(ISD::ROTR, MVT::i32, Legal);
  } else {
    setOperationAction(ISD::ROTL, MVT::i32, Expand);
    setOperationAction(ISD::ROTR, MVT::i32, Expand);
  }

  setOperationAction(ISD::ROTL, MVT::i16, Expand);
  setOperationAction(ISD::ROTR, MVT::i16, Expand);
  setOperationAction(ISD::ROTL, MVT::i8, Expand);
  setOperationAction(ISD::ROTR, MVT::i8, Expand);
  setOperationAction(ISD::BSWAP, MVT::i16, Expand);
  setOperationAction(ISD::BSWAP, MVT::i32, Expand);
  setOperationAction(ISD::BSWAP, MVT::i64, Expand);

  // Indirect branch is not supported.
  // This also disables Jump Table creation.
  setOperationAction(ISD::BR_JT, MVT::Other, Expand);
  setOperationAction(ISD::BRIND, MVT::Other, Expand);

  setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
  setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);

  // We want to legalize constant related memmove and memcopy
  // intrinsics.
  setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);

  // Turn FP extload into load/fextend
  setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand);
  setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand);
  setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand);
  setLoadExtAction(ISD::EXTLOAD, MVT::v2f32, MVT::v2f16, Expand);
  setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f16, Expand);
  setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f32, Expand);
  setLoadExtAction(ISD::EXTLOAD, MVT::v4f32, MVT::v4f16, Expand);
  setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f16, Expand);
  setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Expand);
  // Turn FP truncstore into trunc + store.
  // FIXME: vector types should also be expanded
  setTruncStoreAction(MVT::f32, MVT::f16, Expand);
  setTruncStoreAction(MVT::f64, MVT::f16, Expand);
  setTruncStoreAction(MVT::f64, MVT::f32, Expand);

  // PTX does not support load / store predicate registers
  setOperationAction(ISD::LOAD, MVT::i1, Custom);
  setOperationAction(ISD::STORE, MVT::i1, Custom);

  for (MVT VT : MVT::integer_valuetypes()) {
    setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
    setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
    setTruncStoreAction(VT, MVT::i1, Expand);
  }

  // This is legal in NVPTX
  setOperationAction(ISD::ConstantFP, MVT::f64, Legal);
  setOperationAction(ISD::ConstantFP, MVT::f32, Legal);

  // TRAP can be lowered to PTX trap
  setOperationAction(ISD::TRAP, MVT::Other, Legal);

  setOperationAction(ISD::ADDC, MVT::i64, Expand);
  setOperationAction(ISD::ADDE, MVT::i64, Expand);

  // Register custom handling for vector loads/stores
  for (MVT VT : MVT::vector_valuetypes()) {
    if (IsPTXVectorType(VT)) {
      setOperationAction(ISD::LOAD, VT, Custom);
      setOperationAction(ISD::STORE, VT, Custom);
      setOperationAction(ISD::INTRINSIC_W_CHAIN, VT, Custom);
    }
  }

  // Custom handling for i8 intrinsics
  setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i8, Custom);

  setOperationAction(ISD::CTLZ, MVT::i16, Legal);
  setOperationAction(ISD::CTLZ, MVT::i32, Legal);
  setOperationAction(ISD::CTLZ, MVT::i64, Legal);
  setOperationAction(ISD::CTTZ, MVT::i16, Expand);
  setOperationAction(ISD::CTTZ, MVT::i32, Expand);
  setOperationAction(ISD::CTTZ, MVT::i64, Expand);
  setOperationAction(ISD::CTPOP, MVT::i16, Legal);
  setOperationAction(ISD::CTPOP, MVT::i32, Legal);
  setOperationAction(ISD::CTPOP, MVT::i64, Legal);

  // PTX does not directly support SELP of i1, so promote to i32 first
  setOperationAction(ISD::SELECT, MVT::i1, Custom);

  // PTX cannot multiply two i64s in a single instruction.
  setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
  setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);

  // We have some custom DAG combine patterns for these nodes
  setTargetDAGCombine(ISD::ADD);
  setTargetDAGCombine(ISD::AND);
  setTargetDAGCombine(ISD::FADD);
  setTargetDAGCombine(ISD::MUL);
  setTargetDAGCombine(ISD::SHL);
  setTargetDAGCombine(ISD::SELECT);

  // Now deduce the information based on the above mentioned
  // actions
  computeRegisterProperties(STI.getRegisterInfo());
}

const char *NVPTXTargetLowering::getTargetNodeName(unsigned Opcode) const {
  switch ((NVPTXISD::NodeType)Opcode) {
  case NVPTXISD::FIRST_NUMBER:
    break;
  case NVPTXISD::CALL:
    return "NVPTXISD::CALL";
  case NVPTXISD::RET_FLAG:
    return "NVPTXISD::RET_FLAG";
  case NVPTXISD::LOAD_PARAM:
    return "NVPTXISD::LOAD_PARAM";
  case NVPTXISD::Wrapper:
    return "NVPTXISD::Wrapper";
  case NVPTXISD::DeclareParam:
    return "NVPTXISD::DeclareParam";
  case NVPTXISD::DeclareScalarParam:
    return "NVPTXISD::DeclareScalarParam";
  case NVPTXISD::DeclareRet:
    return "NVPTXISD::DeclareRet";
  case NVPTXISD::DeclareScalarRet:
    return "NVPTXISD::DeclareScalarRet";
  case NVPTXISD::DeclareRetParam:
    return "NVPTXISD::DeclareRetParam";
  case NVPTXISD::PrintCall:
    return "NVPTXISD::PrintCall";
  case NVPTXISD::PrintConvergentCall:
    return "NVPTXISD::PrintConvergentCall";
  case NVPTXISD::PrintCallUni:
    return "NVPTXISD::PrintCallUni";
  case NVPTXISD::PrintConvergentCallUni:
    return "NVPTXISD::PrintConvergentCallUni";
  case NVPTXISD::LoadParam:
    return "NVPTXISD::LoadParam";
  case NVPTXISD::LoadParamV2:
    return "NVPTXISD::LoadParamV2";
  case NVPTXISD::LoadParamV4:
    return "NVPTXISD::LoadParamV4";
  case NVPTXISD::StoreParam:
    return "NVPTXISD::StoreParam";
  case NVPTXISD::StoreParamV2:
    return "NVPTXISD::StoreParamV2";
  case NVPTXISD::StoreParamV4:
    return "NVPTXISD::StoreParamV4";
  case NVPTXISD::StoreParamS32:
    return "NVPTXISD::StoreParamS32";
  case NVPTXISD::StoreParamU32:
    return "NVPTXISD::StoreParamU32";
  case NVPTXISD::CallArgBegin:
    return "NVPTXISD::CallArgBegin";
  case NVPTXISD::CallArg:
    return "NVPTXISD::CallArg";
  case NVPTXISD::LastCallArg:
    return "NVPTXISD::LastCallArg";
  case NVPTXISD::CallArgEnd:
    return "NVPTXISD::CallArgEnd";
  case NVPTXISD::CallVoid:
    return "NVPTXISD::CallVoid";
  case NVPTXISD::CallVal:
    return "NVPTXISD::CallVal";
  case NVPTXISD::CallSymbol:
    return "NVPTXISD::CallSymbol";
  case NVPTXISD::Prototype:
    return "NVPTXISD::Prototype";
  case NVPTXISD::MoveParam:
    return "NVPTXISD::MoveParam";
  case NVPTXISD::StoreRetval:
    return "NVPTXISD::StoreRetval";
  case NVPTXISD::StoreRetvalV2:
    return "NVPTXISD::StoreRetvalV2";
  case NVPTXISD::StoreRetvalV4:
    return "NVPTXISD::StoreRetvalV4";
  case NVPTXISD::PseudoUseParam:
    return "NVPTXISD::PseudoUseParam";
  case NVPTXISD::RETURN:
    return "NVPTXISD::RETURN";
  case NVPTXISD::CallSeqBegin:
    return "NVPTXISD::CallSeqBegin";
  case NVPTXISD::CallSeqEnd:
    return "NVPTXISD::CallSeqEnd";
  case NVPTXISD::CallPrototype:
    return "NVPTXISD::CallPrototype";
  case NVPTXISD::LoadV2:
    return "NVPTXISD::LoadV2";
  case NVPTXISD::LoadV4:
    return "NVPTXISD::LoadV4";
  case NVPTXISD::LDGV2:
    return "NVPTXISD::LDGV2";
  case NVPTXISD::LDGV4:
    return "NVPTXISD::LDGV4";
  case NVPTXISD::LDUV2:
    return "NVPTXISD::LDUV2";
  case NVPTXISD::LDUV4:
    return "NVPTXISD::LDUV4";
  case NVPTXISD::StoreV2:
    return "NVPTXISD::StoreV2";
  case NVPTXISD::StoreV4:
    return "NVPTXISD::StoreV4";
  case NVPTXISD::FUN_SHFL_CLAMP:
    return "NVPTXISD::FUN_SHFL_CLAMP";
  case NVPTXISD::FUN_SHFR_CLAMP:
    return "NVPTXISD::FUN_SHFR_CLAMP";
  case NVPTXISD::IMAD:
    return "NVPTXISD::IMAD";
  case NVPTXISD::Dummy:
    return "NVPTXISD::Dummy";
  case NVPTXISD::MUL_WIDE_SIGNED:
    return "NVPTXISD::MUL_WIDE_SIGNED";
  case NVPTXISD::MUL_WIDE_UNSIGNED:
    return "NVPTXISD::MUL_WIDE_UNSIGNED";
  case NVPTXISD::Tex1DFloatS32:        return "NVPTXISD::Tex1DFloatS32";
  case NVPTXISD::Tex1DFloatFloat:      return "NVPTXISD::Tex1DFloatFloat";
  case NVPTXISD::Tex1DFloatFloatLevel:
    return "NVPTXISD::Tex1DFloatFloatLevel";
  case NVPTXISD::Tex1DFloatFloatGrad:
    return "NVPTXISD::Tex1DFloatFloatGrad";
  case NVPTXISD::Tex1DS32S32:          return "NVPTXISD::Tex1DS32S32";
  case NVPTXISD::Tex1DS32Float:        return "NVPTXISD::Tex1DS32Float";
  case NVPTXISD::Tex1DS32FloatLevel:
    return "NVPTXISD::Tex1DS32FloatLevel";
  case NVPTXISD::Tex1DS32FloatGrad:
    return "NVPTXISD::Tex1DS32FloatGrad";
  case NVPTXISD::Tex1DU32S32:          return "NVPTXISD::Tex1DU32S32";
  case NVPTXISD::Tex1DU32Float:        return "NVPTXISD::Tex1DU32Float";
  case NVPTXISD::Tex1DU32FloatLevel:
    return "NVPTXISD::Tex1DU32FloatLevel";
  case NVPTXISD::Tex1DU32FloatGrad:
    return "NVPTXISD::Tex1DU32FloatGrad";
  case NVPTXISD::Tex1DArrayFloatS32:   return "NVPTXISD::Tex1DArrayFloatS32";
  case NVPTXISD::Tex1DArrayFloatFloat: return "NVPTXISD::Tex1DArrayFloatFloat";
  case NVPTXISD::Tex1DArrayFloatFloatLevel:
    return "NVPTXISD::Tex1DArrayFloatFloatLevel";
  case NVPTXISD::Tex1DArrayFloatFloatGrad:
    return "NVPTXISD::Tex1DArrayFloatFloatGrad";
  case NVPTXISD::Tex1DArrayS32S32:     return "NVPTXISD::Tex1DArrayS32S32";
  case NVPTXISD::Tex1DArrayS32Float:   return "NVPTXISD::Tex1DArrayS32Float";
  case NVPTXISD::Tex1DArrayS32FloatLevel:
    return "NVPTXISD::Tex1DArrayS32FloatLevel";
  case NVPTXISD::Tex1DArrayS32FloatGrad:
    return "NVPTXISD::Tex1DArrayS32FloatGrad";
  case NVPTXISD::Tex1DArrayU32S32:     return "NVPTXISD::Tex1DArrayU32S32";
  case NVPTXISD::Tex1DArrayU32Float:   return "NVPTXISD::Tex1DArrayU32Float";
  case NVPTXISD::Tex1DArrayU32FloatLevel:
    return "NVPTXISD::Tex1DArrayU32FloatLevel";
  case NVPTXISD::Tex1DArrayU32FloatGrad:
    return "NVPTXISD::Tex1DArrayU32FloatGrad";
  case NVPTXISD::Tex2DFloatS32:        return "NVPTXISD::Tex2DFloatS32";
  case NVPTXISD::Tex2DFloatFloat:      return "NVPTXISD::Tex2DFloatFloat";
  case NVPTXISD::Tex2DFloatFloatLevel:
    return "NVPTXISD::Tex2DFloatFloatLevel";
  case NVPTXISD::Tex2DFloatFloatGrad:
    return "NVPTXISD::Tex2DFloatFloatGrad";
  case NVPTXISD::Tex2DS32S32:          return "NVPTXISD::Tex2DS32S32";
  case NVPTXISD::Tex2DS32Float:        return "NVPTXISD::Tex2DS32Float";
  case NVPTXISD::Tex2DS32FloatLevel:
    return "NVPTXISD::Tex2DS32FloatLevel";
  case NVPTXISD::Tex2DS32FloatGrad:
    return "NVPTXISD::Tex2DS32FloatGrad";
  case NVPTXISD::Tex2DU32S32:          return "NVPTXISD::Tex2DU32S32";
  case NVPTXISD::Tex2DU32Float:        return "NVPTXISD::Tex2DU32Float";
  case NVPTXISD::Tex2DU32FloatLevel:
    return "NVPTXISD::Tex2DU32FloatLevel";
  case NVPTXISD::Tex2DU32FloatGrad:
    return "NVPTXISD::Tex2DU32FloatGrad";
  case NVPTXISD::Tex2DArrayFloatS32:   return "NVPTXISD::Tex2DArrayFloatS32";
  case NVPTXISD::Tex2DArrayFloatFloat: return "NVPTXISD::Tex2DArrayFloatFloat";
  case NVPTXISD::Tex2DArrayFloatFloatLevel:
    return "NVPTXISD::Tex2DArrayFloatFloatLevel";
  case NVPTXISD::Tex2DArrayFloatFloatGrad:
    return "NVPTXISD::Tex2DArrayFloatFloatGrad";
  case NVPTXISD::Tex2DArrayS32S32:     return "NVPTXISD::Tex2DArrayS32S32";
  case NVPTXISD::Tex2DArrayS32Float:   return "NVPTXISD::Tex2DArrayS32Float";
  case NVPTXISD::Tex2DArrayS32FloatLevel:
    return "NVPTXISD::Tex2DArrayS32FloatLevel";
  case NVPTXISD::Tex2DArrayS32FloatGrad:
    return "NVPTXISD::Tex2DArrayS32FloatGrad";
  case NVPTXISD::Tex2DArrayU32S32:     return "NVPTXISD::Tex2DArrayU32S32";
  case NVPTXISD::Tex2DArrayU32Float:   return "NVPTXISD::Tex2DArrayU32Float";
  case NVPTXISD::Tex2DArrayU32FloatLevel:
    return "NVPTXISD::Tex2DArrayU32FloatLevel";
  case NVPTXISD::Tex2DArrayU32FloatGrad:
    return "NVPTXISD::Tex2DArrayU32FloatGrad";
  case NVPTXISD::Tex3DFloatS32:        return "NVPTXISD::Tex3DFloatS32";
  case NVPTXISD::Tex3DFloatFloat:      return "NVPTXISD::Tex3DFloatFloat";
  case NVPTXISD::Tex3DFloatFloatLevel:
    return "NVPTXISD::Tex3DFloatFloatLevel";
  case NVPTXISD::Tex3DFloatFloatGrad:
    return "NVPTXISD::Tex3DFloatFloatGrad";
  case NVPTXISD::Tex3DS32S32:          return "NVPTXISD::Tex3DS32S32";
  case NVPTXISD::Tex3DS32Float:        return "NVPTXISD::Tex3DS32Float";
  case NVPTXISD::Tex3DS32FloatLevel:
    return "NVPTXISD::Tex3DS32FloatLevel";
  case NVPTXISD::Tex3DS32FloatGrad:
    return "NVPTXISD::Tex3DS32FloatGrad";
  case NVPTXISD::Tex3DU32S32:          return "NVPTXISD::Tex3DU32S32";
  case NVPTXISD::Tex3DU32Float:        return "NVPTXISD::Tex3DU32Float";
  case NVPTXISD::Tex3DU32FloatLevel:
    return "NVPTXISD::Tex3DU32FloatLevel";
  case NVPTXISD::Tex3DU32FloatGrad:
    return "NVPTXISD::Tex3DU32FloatGrad";
  case NVPTXISD::TexCubeFloatFloat:      return "NVPTXISD::TexCubeFloatFloat";
  case NVPTXISD::TexCubeFloatFloatLevel:
    return "NVPTXISD::TexCubeFloatFloatLevel";
  case NVPTXISD::TexCubeS32Float:        return "NVPTXISD::TexCubeS32Float";
  case NVPTXISD::TexCubeS32FloatLevel:
    return "NVPTXISD::TexCubeS32FloatLevel";
  case NVPTXISD::TexCubeU32Float:        return "NVPTXISD::TexCubeU32Float";
  case NVPTXISD::TexCubeU32FloatLevel:
    return "NVPTXISD::TexCubeU32FloatLevel";
  case NVPTXISD::TexCubeArrayFloatFloat:
    return "NVPTXISD::TexCubeArrayFloatFloat";
  case NVPTXISD::TexCubeArrayFloatFloatLevel:
    return "NVPTXISD::TexCubeArrayFloatFloatLevel";
  case NVPTXISD::TexCubeArrayS32Float:
    return "NVPTXISD::TexCubeArrayS32Float";
  case NVPTXISD::TexCubeArrayS32FloatLevel:
    return "NVPTXISD::TexCubeArrayS32FloatLevel";
  case NVPTXISD::TexCubeArrayU32Float:
    return "NVPTXISD::TexCubeArrayU32Float";
  case NVPTXISD::TexCubeArrayU32FloatLevel:
    return "NVPTXISD::TexCubeArrayU32FloatLevel";
  case NVPTXISD::Tld4R2DFloatFloat:
    return "NVPTXISD::Tld4R2DFloatFloat";
  case NVPTXISD::Tld4G2DFloatFloat:
    return "NVPTXISD::Tld4G2DFloatFloat";
  case NVPTXISD::Tld4B2DFloatFloat:
    return "NVPTXISD::Tld4B2DFloatFloat";
  case NVPTXISD::Tld4A2DFloatFloat:
    return "NVPTXISD::Tld4A2DFloatFloat";
  case NVPTXISD::Tld4R2DS64Float:
    return "NVPTXISD::Tld4R2DS64Float";
  case NVPTXISD::Tld4G2DS64Float:
    return "NVPTXISD::Tld4G2DS64Float";
  case NVPTXISD::Tld4B2DS64Float:
    return "NVPTXISD::Tld4B2DS64Float";
  case NVPTXISD::Tld4A2DS64Float:
    return "NVPTXISD::Tld4A2DS64Float";
  case NVPTXISD::Tld4R2DU64Float:
    return "NVPTXISD::Tld4R2DU64Float";
  case NVPTXISD::Tld4G2DU64Float:
    return "NVPTXISD::Tld4G2DU64Float";
  case NVPTXISD::Tld4B2DU64Float:
    return "NVPTXISD::Tld4B2DU64Float";
  case NVPTXISD::Tld4A2DU64Float:
    return "NVPTXISD::Tld4A2DU64Float";

  case NVPTXISD::TexUnified1DFloatS32:
    return "NVPTXISD::TexUnified1DFloatS32";
  case NVPTXISD::TexUnified1DFloatFloat:
    return "NVPTXISD::TexUnified1DFloatFloat";
  case NVPTXISD::TexUnified1DFloatFloatLevel:
    return "NVPTXISD::TexUnified1DFloatFloatLevel";
  case NVPTXISD::TexUnified1DFloatFloatGrad:
    return "NVPTXISD::TexUnified1DFloatFloatGrad";
  case NVPTXISD::TexUnified1DS32S32:
    return "NVPTXISD::TexUnified1DS32S32";
  case NVPTXISD::TexUnified1DS32Float:
    return "NVPTXISD::TexUnified1DS32Float";
  case NVPTXISD::TexUnified1DS32FloatLevel:
    return "NVPTXISD::TexUnified1DS32FloatLevel";
  case NVPTXISD::TexUnified1DS32FloatGrad:
    return "NVPTXISD::TexUnified1DS32FloatGrad";
  case NVPTXISD::TexUnified1DU32S32:
    return "NVPTXISD::TexUnified1DU32S32";
  case NVPTXISD::TexUnified1DU32Float:
    return "NVPTXISD::TexUnified1DU32Float";
  case NVPTXISD::TexUnified1DU32FloatLevel:
    return "NVPTXISD::TexUnified1DU32FloatLevel";
  case NVPTXISD::TexUnified1DU32FloatGrad:
    return "NVPTXISD::TexUnified1DU32FloatGrad";
  case NVPTXISD::TexUnified1DArrayFloatS32:
    return "NVPTXISD::TexUnified1DArrayFloatS32";
  case NVPTXISD::TexUnified1DArrayFloatFloat:
    return "NVPTXISD::TexUnified1DArrayFloatFloat";
  case NVPTXISD::TexUnified1DArrayFloatFloatLevel:
    return "NVPTXISD::TexUnified1DArrayFloatFloatLevel";
  case NVPTXISD::TexUnified1DArrayFloatFloatGrad:
    return "NVPTXISD::TexUnified1DArrayFloatFloatGrad";
  case NVPTXISD::TexUnified1DArrayS32S32:
    return "NVPTXISD::TexUnified1DArrayS32S32";
  case NVPTXISD::TexUnified1DArrayS32Float:
    return "NVPTXISD::TexUnified1DArrayS32Float";
  case NVPTXISD::TexUnified1DArrayS32FloatLevel:
    return "NVPTXISD::TexUnified1DArrayS32FloatLevel";
  case NVPTXISD::TexUnified1DArrayS32FloatGrad:
    return "NVPTXISD::TexUnified1DArrayS32FloatGrad";
  case NVPTXISD::TexUnified1DArrayU32S32:
    return "NVPTXISD::TexUnified1DArrayU32S32";
  case NVPTXISD::TexUnified1DArrayU32Float:
    return "NVPTXISD::TexUnified1DArrayU32Float";
  case NVPTXISD::TexUnified1DArrayU32FloatLevel:
    return "NVPTXISD::TexUnified1DArrayU32FloatLevel";
  case NVPTXISD::TexUnified1DArrayU32FloatGrad:
    return "NVPTXISD::TexUnified1DArrayU32FloatGrad";
  case NVPTXISD::TexUnified2DFloatS32:
    return "NVPTXISD::TexUnified2DFloatS32";
  case NVPTXISD::TexUnified2DFloatFloat:
    return "NVPTXISD::TexUnified2DFloatFloat";
  case NVPTXISD::TexUnified2DFloatFloatLevel:
    return "NVPTXISD::TexUnified2DFloatFloatLevel";
  case NVPTXISD::TexUnified2DFloatFloatGrad:
    return "NVPTXISD::TexUnified2DFloatFloatGrad";
  case NVPTXISD::TexUnified2DS32S32:
    return "NVPTXISD::TexUnified2DS32S32";
  case NVPTXISD::TexUnified2DS32Float:
    return "NVPTXISD::TexUnified2DS32Float";
  case NVPTXISD::TexUnified2DS32FloatLevel:
    return "NVPTXISD::TexUnified2DS32FloatLevel";
  case NVPTXISD::TexUnified2DS32FloatGrad:
    return "NVPTXISD::TexUnified2DS32FloatGrad";
  case NVPTXISD::TexUnified2DU32S32:
    return "NVPTXISD::TexUnified2DU32S32";
  case NVPTXISD::TexUnified2DU32Float:
    return "NVPTXISD::TexUnified2DU32Float";
  case NVPTXISD::TexUnified2DU32FloatLevel:
    return "NVPTXISD::TexUnified2DU32FloatLevel";
  case NVPTXISD::TexUnified2DU32FloatGrad:
    return "NVPTXISD::TexUnified2DU32FloatGrad";
  case NVPTXISD::TexUnified2DArrayFloatS32:
    return "NVPTXISD::TexUnified2DArrayFloatS32";
  case NVPTXISD::TexUnified2DArrayFloatFloat:
    return "NVPTXISD::TexUnified2DArrayFloatFloat";
  case NVPTXISD::TexUnified2DArrayFloatFloatLevel:
    return "NVPTXISD::TexUnified2DArrayFloatFloatLevel";
  case NVPTXISD::TexUnified2DArrayFloatFloatGrad:
    return "NVPTXISD::TexUnified2DArrayFloatFloatGrad";
  case NVPTXISD::TexUnified2DArrayS32S32:
    return "NVPTXISD::TexUnified2DArrayS32S32";
  case NVPTXISD::TexUnified2DArrayS32Float:
    return "NVPTXISD::TexUnified2DArrayS32Float";
  case NVPTXISD::TexUnified2DArrayS32FloatLevel:
    return "NVPTXISD::TexUnified2DArrayS32FloatLevel";
  case NVPTXISD::TexUnified2DArrayS32FloatGrad:
    return "NVPTXISD::TexUnified2DArrayS32FloatGrad";
  case NVPTXISD::TexUnified2DArrayU32S32:
    return "NVPTXISD::TexUnified2DArrayU32S32";
  case NVPTXISD::TexUnified2DArrayU32Float:
    return "NVPTXISD::TexUnified2DArrayU32Float";
  case NVPTXISD::TexUnified2DArrayU32FloatLevel:
    return "NVPTXISD::TexUnified2DArrayU32FloatLevel";
  case NVPTXISD::TexUnified2DArrayU32FloatGrad:
    return "NVPTXISD::TexUnified2DArrayU32FloatGrad";
  case NVPTXISD::TexUnified3DFloatS32:
    return "NVPTXISD::TexUnified3DFloatS32";
  case NVPTXISD::TexUnified3DFloatFloat:
    return "NVPTXISD::TexUnified3DFloatFloat";
  case NVPTXISD::TexUnified3DFloatFloatLevel:
    return "NVPTXISD::TexUnified3DFloatFloatLevel";
  case NVPTXISD::TexUnified3DFloatFloatGrad:
    return "NVPTXISD::TexUnified3DFloatFloatGrad";
  case NVPTXISD::TexUnified3DS32S32:
    return "NVPTXISD::TexUnified3DS32S32";
  case NVPTXISD::TexUnified3DS32Float:
    return "NVPTXISD::TexUnified3DS32Float";
  case NVPTXISD::TexUnified3DS32FloatLevel:
    return "NVPTXISD::TexUnified3DS32FloatLevel";
  case NVPTXISD::TexUnified3DS32FloatGrad:
    return "NVPTXISD::TexUnified3DS32FloatGrad";
  case NVPTXISD::TexUnified3DU32S32:
    return "NVPTXISD::TexUnified3DU32S32";
  case NVPTXISD::TexUnified3DU32Float:
    return "NVPTXISD::TexUnified3DU32Float";
  case NVPTXISD::TexUnified3DU32FloatLevel:
    return "NVPTXISD::TexUnified3DU32FloatLevel";
  case NVPTXISD::TexUnified3DU32FloatGrad:
    return "NVPTXISD::TexUnified3DU32FloatGrad";
  case NVPTXISD::TexUnifiedCubeFloatFloat:
    return "NVPTXISD::TexUnifiedCubeFloatFloat";
  case NVPTXISD::TexUnifiedCubeFloatFloatLevel:
    return "NVPTXISD::TexUnifiedCubeFloatFloatLevel";
  case NVPTXISD::TexUnifiedCubeS32Float:
    return "NVPTXISD::TexUnifiedCubeS32Float";
  case NVPTXISD::TexUnifiedCubeS32FloatLevel:
    return "NVPTXISD::TexUnifiedCubeS32FloatLevel";
  case NVPTXISD::TexUnifiedCubeU32Float:
    return "NVPTXISD::TexUnifiedCubeU32Float";
  case NVPTXISD::TexUnifiedCubeU32FloatLevel:
    return "NVPTXISD::TexUnifiedCubeU32FloatLevel";
  case NVPTXISD::TexUnifiedCubeArrayFloatFloat:
    return "NVPTXISD::TexUnifiedCubeArrayFloatFloat";
  case NVPTXISD::TexUnifiedCubeArrayFloatFloatLevel:
    return "NVPTXISD::TexUnifiedCubeArrayFloatFloatLevel";
  case NVPTXISD::TexUnifiedCubeArrayS32Float:
    return "NVPTXISD::TexUnifiedCubeArrayS32Float";
  case NVPTXISD::TexUnifiedCubeArrayS32FloatLevel:
    return "NVPTXISD::TexUnifiedCubeArrayS32FloatLevel";
  case NVPTXISD::TexUnifiedCubeArrayU32Float:
    return "NVPTXISD::TexUnifiedCubeArrayU32Float";
  case NVPTXISD::TexUnifiedCubeArrayU32FloatLevel:
    return "NVPTXISD::TexUnifiedCubeArrayU32FloatLevel";
  case NVPTXISD::Tld4UnifiedR2DFloatFloat:
    return "NVPTXISD::Tld4UnifiedR2DFloatFloat";
  case NVPTXISD::Tld4UnifiedG2DFloatFloat:
    return "NVPTXISD::Tld4UnifiedG2DFloatFloat";
  case NVPTXISD::Tld4UnifiedB2DFloatFloat:
    return "NVPTXISD::Tld4UnifiedB2DFloatFloat";
  case NVPTXISD::Tld4UnifiedA2DFloatFloat:
    return "NVPTXISD::Tld4UnifiedA2DFloatFloat";
  case NVPTXISD::Tld4UnifiedR2DS64Float:
    return "NVPTXISD::Tld4UnifiedR2DS64Float";
  case NVPTXISD::Tld4UnifiedG2DS64Float:
    return "NVPTXISD::Tld4UnifiedG2DS64Float";
  case NVPTXISD::Tld4UnifiedB2DS64Float:
    return "NVPTXISD::Tld4UnifiedB2DS64Float";
  case NVPTXISD::Tld4UnifiedA2DS64Float:
    return "NVPTXISD::Tld4UnifiedA2DS64Float";
  case NVPTXISD::Tld4UnifiedR2DU64Float:
    return "NVPTXISD::Tld4UnifiedR2DU64Float";
  case NVPTXISD::Tld4UnifiedG2DU64Float:
    return "NVPTXISD::Tld4UnifiedG2DU64Float";
  case NVPTXISD::Tld4UnifiedB2DU64Float:
    return "NVPTXISD::Tld4UnifiedB2DU64Float";
  case NVPTXISD::Tld4UnifiedA2DU64Float:
    return "NVPTXISD::Tld4UnifiedA2DU64Float";

  case NVPTXISD::Suld1DI8Clamp:          return "NVPTXISD::Suld1DI8Clamp";
  case NVPTXISD::Suld1DI16Clamp:         return "NVPTXISD::Suld1DI16Clamp";
  case NVPTXISD::Suld1DI32Clamp:         return "NVPTXISD::Suld1DI32Clamp";
  case NVPTXISD::Suld1DI64Clamp:         return "NVPTXISD::Suld1DI64Clamp";
  case NVPTXISD::Suld1DV2I8Clamp:        return "NVPTXISD::Suld1DV2I8Clamp";
  case NVPTXISD::Suld1DV2I16Clamp:       return "NVPTXISD::Suld1DV2I16Clamp";
  case NVPTXISD::Suld1DV2I32Clamp:       return "NVPTXISD::Suld1DV2I32Clamp";
  case NVPTXISD::Suld1DV2I64Clamp:       return "NVPTXISD::Suld1DV2I64Clamp";
  case NVPTXISD::Suld1DV4I8Clamp:        return "NVPTXISD::Suld1DV4I8Clamp";
  case NVPTXISD::Suld1DV4I16Clamp:       return "NVPTXISD::Suld1DV4I16Clamp";
  case NVPTXISD::Suld1DV4I32Clamp:       return "NVPTXISD::Suld1DV4I32Clamp";

  case NVPTXISD::Suld1DArrayI8Clamp:   return "NVPTXISD::Suld1DArrayI8Clamp";
  case NVPTXISD::Suld1DArrayI16Clamp:  return "NVPTXISD::Suld1DArrayI16Clamp";
  case NVPTXISD::Suld1DArrayI32Clamp:  return "NVPTXISD::Suld1DArrayI32Clamp";
  case NVPTXISD::Suld1DArrayI64Clamp:  return "NVPTXISD::Suld1DArrayI64Clamp";
  case NVPTXISD::Suld1DArrayV2I8Clamp: return "NVPTXISD::Suld1DArrayV2I8Clamp";
  case NVPTXISD::Suld1DArrayV2I16Clamp:return "NVPTXISD::Suld1DArrayV2I16Clamp";
  case NVPTXISD::Suld1DArrayV2I32Clamp:return "NVPTXISD::Suld1DArrayV2I32Clamp";
  case NVPTXISD::Suld1DArrayV2I64Clamp:return "NVPTXISD::Suld1DArrayV2I64Clamp";
  case NVPTXISD::Suld1DArrayV4I8Clamp: return "NVPTXISD::Suld1DArrayV4I8Clamp";
  case NVPTXISD::Suld1DArrayV4I16Clamp:return "NVPTXISD::Suld1DArrayV4I16Clamp";
  case NVPTXISD::Suld1DArrayV4I32Clamp:return "NVPTXISD::Suld1DArrayV4I32Clamp";

  case NVPTXISD::Suld2DI8Clamp:          return "NVPTXISD::Suld2DI8Clamp";
  case NVPTXISD::Suld2DI16Clamp:         return "NVPTXISD::Suld2DI16Clamp";
  case NVPTXISD::Suld2DI32Clamp:         return "NVPTXISD::Suld2DI32Clamp";
  case NVPTXISD::Suld2DI64Clamp:         return "NVPTXISD::Suld2DI64Clamp";
  case NVPTXISD::Suld2DV2I8Clamp:        return "NVPTXISD::Suld2DV2I8Clamp";
  case NVPTXISD::Suld2DV2I16Clamp:       return "NVPTXISD::Suld2DV2I16Clamp";
  case NVPTXISD::Suld2DV2I32Clamp:       return "NVPTXISD::Suld2DV2I32Clamp";
  case NVPTXISD::Suld2DV2I64Clamp:       return "NVPTXISD::Suld2DV2I64Clamp";
  case NVPTXISD::Suld2DV4I8Clamp:        return "NVPTXISD::Suld2DV4I8Clamp";
  case NVPTXISD::Suld2DV4I16Clamp:       return "NVPTXISD::Suld2DV4I16Clamp";
  case NVPTXISD::Suld2DV4I32Clamp:       return "NVPTXISD::Suld2DV4I32Clamp";

  case NVPTXISD::Suld2DArrayI8Clamp:   return "NVPTXISD::Suld2DArrayI8Clamp";
  case NVPTXISD::Suld2DArrayI16Clamp:  return "NVPTXISD::Suld2DArrayI16Clamp";
  case NVPTXISD::Suld2DArrayI32Clamp:  return "NVPTXISD::Suld2DArrayI32Clamp";
  case NVPTXISD::Suld2DArrayI64Clamp:  return "NVPTXISD::Suld2DArrayI64Clamp";
  case NVPTXISD::Suld2DArrayV2I8Clamp: return "NVPTXISD::Suld2DArrayV2I8Clamp";
  case NVPTXISD::Suld2DArrayV2I16Clamp:return "NVPTXISD::Suld2DArrayV2I16Clamp";
  case NVPTXISD::Suld2DArrayV2I32Clamp:return "NVPTXISD::Suld2DArrayV2I32Clamp";
  case NVPTXISD::Suld2DArrayV2I64Clamp:return "NVPTXISD::Suld2DArrayV2I64Clamp";
  case NVPTXISD::Suld2DArrayV4I8Clamp: return "NVPTXISD::Suld2DArrayV4I8Clamp";
  case NVPTXISD::Suld2DArrayV4I16Clamp:return "NVPTXISD::Suld2DArrayV4I16Clamp";
  case NVPTXISD::Suld2DArrayV4I32Clamp:return "NVPTXISD::Suld2DArrayV4I32Clamp";

  case NVPTXISD::Suld3DI8Clamp:          return "NVPTXISD::Suld3DI8Clamp";
  case NVPTXISD::Suld3DI16Clamp:         return "NVPTXISD::Suld3DI16Clamp";
  case NVPTXISD::Suld3DI32Clamp:         return "NVPTXISD::Suld3DI32Clamp";
  case NVPTXISD::Suld3DI64Clamp:         return "NVPTXISD::Suld3DI64Clamp";
  case NVPTXISD::Suld3DV2I8Clamp:        return "NVPTXISD::Suld3DV2I8Clamp";
  case NVPTXISD::Suld3DV2I16Clamp:       return "NVPTXISD::Suld3DV2I16Clamp";
  case NVPTXISD::Suld3DV2I32Clamp:       return "NVPTXISD::Suld3DV2I32Clamp";
  case NVPTXISD::Suld3DV2I64Clamp:       return "NVPTXISD::Suld3DV2I64Clamp";
  case NVPTXISD::Suld3DV4I8Clamp:        return "NVPTXISD::Suld3DV4I8Clamp";
  case NVPTXISD::Suld3DV4I16Clamp:       return "NVPTXISD::Suld3DV4I16Clamp";
  case NVPTXISD::Suld3DV4I32Clamp:       return "NVPTXISD::Suld3DV4I32Clamp";

  case NVPTXISD::Suld1DI8Trap:          return "NVPTXISD::Suld1DI8Trap";
  case NVPTXISD::Suld1DI16Trap:         return "NVPTXISD::Suld1DI16Trap";
  case NVPTXISD::Suld1DI32Trap:         return "NVPTXISD::Suld1DI32Trap";
  case NVPTXISD::Suld1DI64Trap:         return "NVPTXISD::Suld1DI64Trap";
  case NVPTXISD::Suld1DV2I8Trap:        return "NVPTXISD::Suld1DV2I8Trap";
  case NVPTXISD::Suld1DV2I16Trap:       return "NVPTXISD::Suld1DV2I16Trap";
  case NVPTXISD::Suld1DV2I32Trap:       return "NVPTXISD::Suld1DV2I32Trap";
  case NVPTXISD::Suld1DV2I64Trap:       return "NVPTXISD::Suld1DV2I64Trap";
  case NVPTXISD::Suld1DV4I8Trap:        return "NVPTXISD::Suld1DV4I8Trap";
  case NVPTXISD::Suld1DV4I16Trap:       return "NVPTXISD::Suld1DV4I16Trap";
  case NVPTXISD::Suld1DV4I32Trap:       return "NVPTXISD::Suld1DV4I32Trap";

  case NVPTXISD::Suld1DArrayI8Trap:     return "NVPTXISD::Suld1DArrayI8Trap";
  case NVPTXISD::Suld1DArrayI16Trap:    return "NVPTXISD::Suld1DArrayI16Trap";
  case NVPTXISD::Suld1DArrayI32Trap:    return "NVPTXISD::Suld1DArrayI32Trap";
  case NVPTXISD::Suld1DArrayI64Trap:    return "NVPTXISD::Suld1DArrayI64Trap";
  case NVPTXISD::Suld1DArrayV2I8Trap:   return "NVPTXISD::Suld1DArrayV2I8Trap";
  case NVPTXISD::Suld1DArrayV2I16Trap:  return "NVPTXISD::Suld1DArrayV2I16Trap";
  case NVPTXISD::Suld1DArrayV2I32Trap:  return "NVPTXISD::Suld1DArrayV2I32Trap";
  case NVPTXISD::Suld1DArrayV2I64Trap:  return "NVPTXISD::Suld1DArrayV2I64Trap";
  case NVPTXISD::Suld1DArrayV4I8Trap:   return "NVPTXISD::Suld1DArrayV4I8Trap";
  case NVPTXISD::Suld1DArrayV4I16Trap:  return "NVPTXISD::Suld1DArrayV4I16Trap";
  case NVPTXISD::Suld1DArrayV4I32Trap:  return "NVPTXISD::Suld1DArrayV4I32Trap";

  case NVPTXISD::Suld2DI8Trap:          return "NVPTXISD::Suld2DI8Trap";
  case NVPTXISD::Suld2DI16Trap:         return "NVPTXISD::Suld2DI16Trap";
  case NVPTXISD::Suld2DI32Trap:         return "NVPTXISD::Suld2DI32Trap";
  case NVPTXISD::Suld2DI64Trap:         return "NVPTXISD::Suld2DI64Trap";
  case NVPTXISD::Suld2DV2I8Trap:        return "NVPTXISD::Suld2DV2I8Trap";
  case NVPTXISD::Suld2DV2I16Trap:       return "NVPTXISD::Suld2DV2I16Trap";
  case NVPTXISD::Suld2DV2I32Trap:       return "NVPTXISD::Suld2DV2I32Trap";
  case NVPTXISD::Suld2DV2I64Trap:       return "NVPTXISD::Suld2DV2I64Trap";
  case NVPTXISD::Suld2DV4I8Trap:        return "NVPTXISD::Suld2DV4I8Trap";
  case NVPTXISD::Suld2DV4I16Trap:       return "NVPTXISD::Suld2DV4I16Trap";
  case NVPTXISD::Suld2DV4I32Trap:       return "NVPTXISD::Suld2DV4I32Trap";

  case NVPTXISD::Suld2DArrayI8Trap:     return "NVPTXISD::Suld2DArrayI8Trap";
  case NVPTXISD::Suld2DArrayI16Trap:    return "NVPTXISD::Suld2DArrayI16Trap";
  case NVPTXISD::Suld2DArrayI32Trap:    return "NVPTXISD::Suld2DArrayI32Trap";
  case NVPTXISD::Suld2DArrayI64Trap:    return "NVPTXISD::Suld2DArrayI64Trap";
  case NVPTXISD::Suld2DArrayV2I8Trap:   return "NVPTXISD::Suld2DArrayV2I8Trap";
  case NVPTXISD::Suld2DArrayV2I16Trap:  return "NVPTXISD::Suld2DArrayV2I16Trap";
  case NVPTXISD::Suld2DArrayV2I32Trap:  return "NVPTXISD::Suld2DArrayV2I32Trap";
  case NVPTXISD::Suld2DArrayV2I64Trap:  return "NVPTXISD::Suld2DArrayV2I64Trap";
  case NVPTXISD::Suld2DArrayV4I8Trap:   return "NVPTXISD::Suld2DArrayV4I8Trap";
  case NVPTXISD::Suld2DArrayV4I16Trap:  return "NVPTXISD::Suld2DArrayV4I16Trap";
  case NVPTXISD::Suld2DArrayV4I32Trap:  return "NVPTXISD::Suld2DArrayV4I32Trap";

  case NVPTXISD::Suld3DI8Trap:          return "NVPTXISD::Suld3DI8Trap";
  case NVPTXISD::Suld3DI16Trap:         return "NVPTXISD::Suld3DI16Trap";
  case NVPTXISD::Suld3DI32Trap:         return "NVPTXISD::Suld3DI32Trap";
  case NVPTXISD::Suld3DI64Trap:         return "NVPTXISD::Suld3DI64Trap";
  case NVPTXISD::Suld3DV2I8Trap:        return "NVPTXISD::Suld3DV2I8Trap";
  case NVPTXISD::Suld3DV2I16Trap:       return "NVPTXISD::Suld3DV2I16Trap";
  case NVPTXISD::Suld3DV2I32Trap:       return "NVPTXISD::Suld3DV2I32Trap";
  case NVPTXISD::Suld3DV2I64Trap:       return "NVPTXISD::Suld3DV2I64Trap";
  case NVPTXISD::Suld3DV4I8Trap:        return "NVPTXISD::Suld3DV4I8Trap";
  case NVPTXISD::Suld3DV4I16Trap:       return "NVPTXISD::Suld3DV4I16Trap";
  case NVPTXISD::Suld3DV4I32Trap:       return "NVPTXISD::Suld3DV4I32Trap";

  case NVPTXISD::Suld1DI8Zero:          return "NVPTXISD::Suld1DI8Zero";
  case NVPTXISD::Suld1DI16Zero:         return "NVPTXISD::Suld1DI16Zero";
  case NVPTXISD::Suld1DI32Zero:         return "NVPTXISD::Suld1DI32Zero";
  case NVPTXISD::Suld1DI64Zero:         return "NVPTXISD::Suld1DI64Zero";
  case NVPTXISD::Suld1DV2I8Zero:        return "NVPTXISD::Suld1DV2I8Zero";
  case NVPTXISD::Suld1DV2I16Zero:       return "NVPTXISD::Suld1DV2I16Zero";
  case NVPTXISD::Suld1DV2I32Zero:       return "NVPTXISD::Suld1DV2I32Zero";
  case NVPTXISD::Suld1DV2I64Zero:       return "NVPTXISD::Suld1DV2I64Zero";
  case NVPTXISD::Suld1DV4I8Zero:        return "NVPTXISD::Suld1DV4I8Zero";
  case NVPTXISD::Suld1DV4I16Zero:       return "NVPTXISD::Suld1DV4I16Zero";
  case NVPTXISD::Suld1DV4I32Zero:       return "NVPTXISD::Suld1DV4I32Zero";

  case NVPTXISD::Suld1DArrayI8Zero:     return "NVPTXISD::Suld1DArrayI8Zero";
  case NVPTXISD::Suld1DArrayI16Zero:    return "NVPTXISD::Suld1DArrayI16Zero";
  case NVPTXISD::Suld1DArrayI32Zero:    return "NVPTXISD::Suld1DArrayI32Zero";
  case NVPTXISD::Suld1DArrayI64Zero:    return "NVPTXISD::Suld1DArrayI64Zero";
  case NVPTXISD::Suld1DArrayV2I8Zero:   return "NVPTXISD::Suld1DArrayV2I8Zero";
  case NVPTXISD::Suld1DArrayV2I16Zero:  return "NVPTXISD::Suld1DArrayV2I16Zero";
  case NVPTXISD::Suld1DArrayV2I32Zero:  return "NVPTXISD::Suld1DArrayV2I32Zero";
  case NVPTXISD::Suld1DArrayV2I64Zero:  return "NVPTXISD::Suld1DArrayV2I64Zero";
  case NVPTXISD::Suld1DArrayV4I8Zero:   return "NVPTXISD::Suld1DArrayV4I8Zero";
  case NVPTXISD::Suld1DArrayV4I16Zero:  return "NVPTXISD::Suld1DArrayV4I16Zero";
  case NVPTXISD::Suld1DArrayV4I32Zero:  return "NVPTXISD::Suld1DArrayV4I32Zero";

  case NVPTXISD::Suld2DI8Zero:          return "NVPTXISD::Suld2DI8Zero";
  case NVPTXISD::Suld2DI16Zero:         return "NVPTXISD::Suld2DI16Zero";
  case NVPTXISD::Suld2DI32Zero:         return "NVPTXISD::Suld2DI32Zero";
  case NVPTXISD::Suld2DI64Zero:         return "NVPTXISD::Suld2DI64Zero";
  case NVPTXISD::Suld2DV2I8Zero:        return "NVPTXISD::Suld2DV2I8Zero";
  case NVPTXISD::Suld2DV2I16Zero:       return "NVPTXISD::Suld2DV2I16Zero";
  case NVPTXISD::Suld2DV2I32Zero:       return "NVPTXISD::Suld2DV2I32Zero";
  case NVPTXISD::Suld2DV2I64Zero:       return "NVPTXISD::Suld2DV2I64Zero";
  case NVPTXISD::Suld2DV4I8Zero:        return "NVPTXISD::Suld2DV4I8Zero";
  case NVPTXISD::Suld2DV4I16Zero:       return "NVPTXISD::Suld2DV4I16Zero";
  case NVPTXISD::Suld2DV4I32Zero:       return "NVPTXISD::Suld2DV4I32Zero";

  case NVPTXISD::Suld2DArrayI8Zero:     return "NVPTXISD::Suld2DArrayI8Zero";
  case NVPTXISD::Suld2DArrayI16Zero:    return "NVPTXISD::Suld2DArrayI16Zero";
  case NVPTXISD::Suld2DArrayI32Zero:    return "NVPTXISD::Suld2DArrayI32Zero";
  case NVPTXISD::Suld2DArrayI64Zero:    return "NVPTXISD::Suld2DArrayI64Zero";
  case NVPTXISD::Suld2DArrayV2I8Zero:   return "NVPTXISD::Suld2DArrayV2I8Zero";
  case NVPTXISD::Suld2DArrayV2I16Zero:  return "NVPTXISD::Suld2DArrayV2I16Zero";
  case NVPTXISD::Suld2DArrayV2I32Zero:  return "NVPTXISD::Suld2DArrayV2I32Zero";
  case NVPTXISD::Suld2DArrayV2I64Zero:  return "NVPTXISD::Suld2DArrayV2I64Zero";
  case NVPTXISD::Suld2DArrayV4I8Zero:   return "NVPTXISD::Suld2DArrayV4I8Zero";
  case NVPTXISD::Suld2DArrayV4I16Zero:  return "NVPTXISD::Suld2DArrayV4I16Zero";
  case NVPTXISD::Suld2DArrayV4I32Zero:  return "NVPTXISD::Suld2DArrayV4I32Zero";

  case NVPTXISD::Suld3DI8Zero:          return "NVPTXISD::Suld3DI8Zero";
  case NVPTXISD::Suld3DI16Zero:         return "NVPTXISD::Suld3DI16Zero";
  case NVPTXISD::Suld3DI32Zero:         return "NVPTXISD::Suld3DI32Zero";
  case NVPTXISD::Suld3DI64Zero:         return "NVPTXISD::Suld3DI64Zero";
  case NVPTXISD::Suld3DV2I8Zero:        return "NVPTXISD::Suld3DV2I8Zero";
  case NVPTXISD::Suld3DV2I16Zero:       return "NVPTXISD::Suld3DV2I16Zero";
  case NVPTXISD::Suld3DV2I32Zero:       return "NVPTXISD::Suld3DV2I32Zero";
  case NVPTXISD::Suld3DV2I64Zero:       return "NVPTXISD::Suld3DV2I64Zero";
  case NVPTXISD::Suld3DV4I8Zero:        return "NVPTXISD::Suld3DV4I8Zero";
  case NVPTXISD::Suld3DV4I16Zero:       return "NVPTXISD::Suld3DV4I16Zero";
  case NVPTXISD::Suld3DV4I32Zero:       return "NVPTXISD::Suld3DV4I32Zero";
  }
  return nullptr;
}

TargetLoweringBase::LegalizeTypeAction
NVPTXTargetLowering::getPreferredVectorAction(EVT VT) const {
  if (VT.getVectorNumElements() != 1 && VT.getScalarType() == MVT::i1)
    return TypeSplitVector;

  return TargetLoweringBase::getPreferredVectorAction(VT);
}

SDValue
NVPTXTargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const {
  SDLoc dl(Op);
  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
  auto PtrVT = getPointerTy(DAG.getDataLayout());
  Op = DAG.getTargetGlobalAddress(GV, dl, PtrVT);
  return DAG.getNode(NVPTXISD::Wrapper, dl, PtrVT, Op);
}

std::string NVPTXTargetLowering::getPrototype(
    const DataLayout &DL, Type *retTy, const ArgListTy &Args,
    const SmallVectorImpl<ISD::OutputArg> &Outs, unsigned retAlignment,
    const ImmutableCallSite *CS) const {
  auto PtrVT = getPointerTy(DL);

  bool isABI = (STI.getSmVersion() >= 20);
  assert(isABI && "Non-ABI compilation is not supported");
  if (!isABI)
    return "";

  std::stringstream O;
  O << "prototype_" << uniqueCallSite << " : .callprototype ";

  if (retTy->getTypeID() == Type::VoidTyID) {
    O << "()";
  } else {
    O << "(";
    if (retTy->isFloatingPointTy() || retTy->isIntegerTy()) {
      unsigned size = 0;
      if (auto *ITy = dyn_cast<IntegerType>(retTy)) {
        size = ITy->getBitWidth();
        if (size < 32)
          size = 32;
      } else {
        assert(retTy->isFloatingPointTy() &&
               "Floating point type expected here");
        size = retTy->getPrimitiveSizeInBits();
      }

      O << ".param .b" << size << " _";
    } else if (isa<PointerType>(retTy)) {
      O << ".param .b" << PtrVT.getSizeInBits() << " _";
    } else if ((retTy->getTypeID() == Type::StructTyID) ||
               isa<VectorType>(retTy)) {
      auto &DL = CS->getCalledFunction()->getParent()->getDataLayout();
      O << ".param .align " << retAlignment << " .b8 _["
        << DL.getTypeAllocSize(retTy) << "]";
    } else {
      llvm_unreachable("Unknown return type");
    }
    O << ") ";
  }
  O << "_ (";

  bool first = true;

  unsigned OIdx = 0;
  for (unsigned i = 0, e = Args.size(); i != e; ++i, ++OIdx) {
    Type *Ty = Args[i].Ty;
    if (!first) {
      O << ", ";
    }
    first = false;

    if (!Outs[OIdx].Flags.isByVal()) {
      if (Ty->isAggregateType() || Ty->isVectorTy()) {
        unsigned align = 0;
        const CallInst *CallI = cast<CallInst>(CS->getInstruction());
        // +1 because index 0 is reserved for return type alignment
        if (!llvm::getAlign(*CallI, i + 1, align))
          align = DL.getABITypeAlignment(Ty);
        unsigned sz = DL.getTypeAllocSize(Ty);
        O << ".param .align " << align << " .b8 ";
        O << "_";
        O << "[" << sz << "]";
        // update the index for Outs
        SmallVector<EVT, 16> vtparts;
        ComputeValueVTs(*this, DL, Ty, vtparts);
        if (unsigned len = vtparts.size())
          OIdx += len - 1;
        continue;
      }
       // i8 types in IR will be i16 types in SDAG
      assert((getValueType(DL, Ty) == Outs[OIdx].VT ||
              (getValueType(DL, Ty) == MVT::i8 && Outs[OIdx].VT == MVT::i16)) &&
             "type mismatch between callee prototype and arguments");
      // scalar type
      unsigned sz = 0;
      if (isa<IntegerType>(Ty)) {
        sz = cast<IntegerType>(Ty)->getBitWidth();
        if (sz < 32)
          sz = 32;
      } else if (isa<PointerType>(Ty))
        sz = PtrVT.getSizeInBits();
      else
        sz = Ty->getPrimitiveSizeInBits();
      O << ".param .b" << sz << " ";
      O << "_";
      continue;
    }
    auto *PTy = dyn_cast<PointerType>(Ty);
    assert(PTy && "Param with byval attribute should be a pointer type");
    Type *ETy = PTy->getElementType();

    unsigned align = Outs[OIdx].Flags.getByValAlign();
    unsigned sz = DL.getTypeAllocSize(ETy);
    O << ".param .align " << align << " .b8 ";
    O << "_";
    O << "[" << sz << "]";
  }
  O << ");";
  return O.str();
}

unsigned
NVPTXTargetLowering::getArgumentAlignment(SDValue Callee,
                                          const ImmutableCallSite *CS,
                                          Type *Ty,
                                          unsigned Idx) const {
  unsigned Align = 0;
  const Value *DirectCallee = CS->getCalledFunction();

  if (!DirectCallee) {
    // We don't have a direct function symbol, but that may be because of
    // constant cast instructions in the call.
    const Instruction *CalleeI = CS->getInstruction();
    assert(CalleeI && "Call target is not a function or derived value?");

    // With bitcast'd call targets, the instruction will be the call
    if (isa<CallInst>(CalleeI)) {
      // Check if we have call alignment metadata
      if (llvm::getAlign(*cast<CallInst>(CalleeI), Idx, Align))
        return Align;

      const Value *CalleeV = cast<CallInst>(CalleeI)->getCalledValue();
      // Ignore any bitcast instructions
      while(isa<ConstantExpr>(CalleeV)) {
        const ConstantExpr *CE = cast<ConstantExpr>(CalleeV);
        if (!CE->isCast())
          break;
        // Look through the bitcast
        CalleeV = cast<ConstantExpr>(CalleeV)->getOperand(0);
      }

      // We have now looked past all of the bitcasts.  Do we finally have a
      // Function?
      if (isa<Function>(CalleeV))
        DirectCallee = CalleeV;
    }
  }

  // Check for function alignment information if we found that the
  // ultimate target is a Function
  if (DirectCallee)
    if (llvm::getAlign(*cast<Function>(DirectCallee), Idx, Align))
      return Align;

  // Call is indirect or alignment information is not available, fall back to
  // the ABI type alignment
  auto &DL = CS->getCaller()->getParent()->getDataLayout();
  return DL.getABITypeAlignment(Ty);
}

SDValue NVPTXTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
                                       SmallVectorImpl<SDValue> &InVals) const {
  SelectionDAG &DAG = CLI.DAG;
  SDLoc dl = CLI.DL;
  SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
  SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
  SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
  SDValue Chain = CLI.Chain;
  SDValue Callee = CLI.Callee;
  bool &isTailCall = CLI.IsTailCall;
  ArgListTy &Args = CLI.getArgs();
  Type *retTy = CLI.RetTy;
  ImmutableCallSite *CS = CLI.CS;

  bool isABI = (STI.getSmVersion() >= 20);
  assert(isABI && "Non-ABI compilation is not supported");
  if (!isABI)
    return Chain;
  MachineFunction &MF = DAG.getMachineFunction();
  const Function *F = MF.getFunction();
  auto &DL = MF.getDataLayout();

  SDValue tempChain = Chain;
  Chain = DAG.getCALLSEQ_START(Chain,
                               DAG.getIntPtrConstant(uniqueCallSite, dl, true),
                               dl);
  SDValue InFlag = Chain.getValue(1);

  unsigned paramCount = 0;
  // Args.size() and Outs.size() need not match.
  // Outs.size() will be larger
  //   * if there is an aggregate argument with multiple fields (each field
  //     showing up separately in Outs)
  //   * if there is a vector argument with more than typical vector-length
  //     elements (generally if more than 4) where each vector element is
  //     individually present in Outs.
  // So a different index should be used for indexing into Outs/OutVals.
  // See similar issue in LowerFormalArguments.
  unsigned OIdx = 0;
  // Declare the .params or .reg need to pass values
  // to the function
  for (unsigned i = 0, e = Args.size(); i != e; ++i, ++OIdx) {
    EVT VT = Outs[OIdx].VT;
    Type *Ty = Args[i].Ty;

    if (!Outs[OIdx].Flags.isByVal()) {
      if (Ty->isAggregateType()) {
        // aggregate
        SmallVector<EVT, 16> vtparts;
        SmallVector<uint64_t, 16> Offsets;
        ComputePTXValueVTs(*this, DAG.getDataLayout(), Ty, vtparts, &Offsets,
                           0);

        unsigned align = getArgumentAlignment(Callee, CS, Ty, paramCount + 1);
        // declare .param .align <align> .b8 .param<n>[<size>];
        unsigned sz = DL.getTypeAllocSize(Ty);
        SDVTList DeclareParamVTs = DAG.getVTList(MVT::Other, MVT::Glue);
        SDValue DeclareParamOps[] = { Chain, DAG.getConstant(align, dl,
                                                             MVT::i32),
                                      DAG.getConstant(paramCount, dl, MVT::i32),
                                      DAG.getConstant(sz, dl, MVT::i32),
                                      InFlag };
        Chain = DAG.getNode(NVPTXISD::DeclareParam, dl, DeclareParamVTs,
                            DeclareParamOps);
        InFlag = Chain.getValue(1);
        for (unsigned j = 0, je = vtparts.size(); j != je; ++j) {
          EVT elemtype = vtparts[j];
          unsigned ArgAlign = GreatestCommonDivisor64(align, Offsets[j]);
          if (elemtype.isInteger() && (sz < 8))
            sz = 8;
          SDValue StVal = OutVals[OIdx];
          if (elemtype.getSizeInBits() < 16) {
            StVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i16, StVal);
          }
          SDVTList CopyParamVTs = DAG.getVTList(MVT::Other, MVT::Glue);
          SDValue CopyParamOps[] = { Chain,
                                     DAG.getConstant(paramCount, dl, MVT::i32),
                                     DAG.getConstant(Offsets[j], dl, MVT::i32),
                                     StVal, InFlag };
          Chain = DAG.getMemIntrinsicNode(NVPTXISD::StoreParam, dl,
                                          CopyParamVTs, CopyParamOps,
                                          elemtype, MachinePointerInfo(),
                                          ArgAlign);
          InFlag = Chain.getValue(1);
          ++OIdx;
        }
        if (vtparts.size() > 0)
          --OIdx;
        ++paramCount;
        continue;
      }
      if (Ty->isVectorTy()) {
        EVT ObjectVT = getValueType(DL, Ty);
        unsigned align = getArgumentAlignment(Callee, CS, Ty, paramCount + 1);
        // declare .param .align <align> .b8 .param<n>[<size>];
        unsigned sz = DL.getTypeAllocSize(Ty);
        SDVTList DeclareParamVTs = DAG.getVTList(MVT::Other, MVT::Glue);
        SDValue DeclareParamOps[] = { Chain,
                                      DAG.getConstant(align, dl, MVT::i32),
                                      DAG.getConstant(paramCount, dl, MVT::i32),
                                      DAG.getConstant(sz, dl, MVT::i32),
                                      InFlag };
        Chain = DAG.getNode(NVPTXISD::DeclareParam, dl, DeclareParamVTs,
                            DeclareParamOps);
        InFlag = Chain.getValue(1);
        unsigned NumElts = ObjectVT.getVectorNumElements();
        EVT EltVT = ObjectVT.getVectorElementType();
        EVT MemVT = EltVT;
        bool NeedExtend = false;
        if (EltVT.getSizeInBits() < 16) {
          NeedExtend = true;
          EltVT = MVT::i16;
        }

        // V1 store
        if (NumElts == 1) {
          SDValue Elt = OutVals[OIdx++];
          if (NeedExtend)
            Elt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Elt);

          SDVTList CopyParamVTs = DAG.getVTList(MVT::Other, MVT::Glue);
          SDValue CopyParamOps[] = { Chain,
                                     DAG.getConstant(paramCount, dl, MVT::i32),
                                     DAG.getConstant(0, dl, MVT::i32), Elt,
                                     InFlag };
          Chain = DAG.getMemIntrinsicNode(NVPTXISD::StoreParam, dl,
                                          CopyParamVTs, CopyParamOps,
                                          MemVT, MachinePointerInfo());
          InFlag = Chain.getValue(1);
        } else if (NumElts == 2) {
          SDValue Elt0 = OutVals[OIdx++];
          SDValue Elt1 = OutVals[OIdx++];
          if (NeedExtend) {
            Elt0 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Elt0);
            Elt1 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Elt1);
          }

          SDVTList CopyParamVTs = DAG.getVTList(MVT::Other, MVT::Glue);
          SDValue CopyParamOps[] = { Chain,
                                     DAG.getConstant(paramCount, dl, MVT::i32),
                                     DAG.getConstant(0, dl, MVT::i32), Elt0,
                                     Elt1, InFlag };
          Chain = DAG.getMemIntrinsicNode(NVPTXISD::StoreParamV2, dl,
                                          CopyParamVTs, CopyParamOps,
                                          MemVT, MachinePointerInfo());
          InFlag = Chain.getValue(1);
        } else {
          unsigned curOffset = 0;
          // V4 stores
          // We have at least 4 elements (<3 x Ty> expands to 4 elements) and
          // the
          // vector will be expanded to a power of 2 elements, so we know we can
          // always round up to the next multiple of 4 when creating the vector
          // stores.
          // e.g.  4 elem => 1 st.v4
          //       6 elem => 2 st.v4
          //       8 elem => 2 st.v4
          //      11 elem => 3 st.v4
          unsigned VecSize = 4;
          if (EltVT.getSizeInBits() == 64)
            VecSize = 2;

          // This is potentially only part of a vector, so assume all elements
          // are packed together.
          unsigned PerStoreOffset = MemVT.getStoreSizeInBits() / 8 * VecSize;

          for (unsigned i = 0; i < NumElts; i += VecSize) {
            // Get values
            SDValue StoreVal;
            SmallVector<SDValue, 8> Ops;
            Ops.push_back(Chain);
            Ops.push_back(DAG.getConstant(paramCount, dl, MVT::i32));
            Ops.push_back(DAG.getConstant(curOffset, dl, MVT::i32));

            unsigned Opc = NVPTXISD::StoreParamV2;

            StoreVal = OutVals[OIdx++];
            if (NeedExtend)
              StoreVal = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, StoreVal);
            Ops.push_back(StoreVal);

            if (i + 1 < NumElts) {
              StoreVal = OutVals[OIdx++];
              if (NeedExtend)
                StoreVal =
                    DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, StoreVal);
            } else {
              StoreVal = DAG.getUNDEF(EltVT);
            }
            Ops.push_back(StoreVal);

            if (VecSize == 4) {
              Opc = NVPTXISD::StoreParamV4;
              if (i + 2 < NumElts) {
                StoreVal = OutVals[OIdx++];
                if (NeedExtend)
                  StoreVal =
                      DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, StoreVal);
              } else {
                StoreVal = DAG.getUNDEF(EltVT);
              }
              Ops.push_back(StoreVal);

              if (i + 3 < NumElts) {
                StoreVal = OutVals[OIdx++];
                if (NeedExtend)
                  StoreVal =
                      DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, StoreVal);
              } else {
                StoreVal = DAG.getUNDEF(EltVT);
              }
              Ops.push_back(StoreVal);
            }

            Ops.push_back(InFlag);

            SDVTList CopyParamVTs = DAG.getVTList(MVT::Other, MVT::Glue);
            Chain = DAG.getMemIntrinsicNode(Opc, dl, CopyParamVTs, Ops,
                                            MemVT, MachinePointerInfo());
            InFlag = Chain.getValue(1);
            curOffset += PerStoreOffset;
          }
        }
        ++paramCount;
        --OIdx;
        continue;
      }
      // Plain scalar
      // for ABI,    declare .param .b<size> .param<n>;
      unsigned sz = VT.getSizeInBits();
      bool needExtend = false;
      if (VT.isInteger()) {
        if (sz < 16)
          needExtend = true;
        if (sz < 32)
          sz = 32;
      }
      SDVTList DeclareParamVTs = DAG.getVTList(MVT::Other, MVT::Glue);
      SDValue DeclareParamOps[] = { Chain,
                                    DAG.getConstant(paramCount, dl, MVT::i32),
                                    DAG.getConstant(sz, dl, MVT::i32),
                                    DAG.getConstant(0, dl, MVT::i32), InFlag };
      Chain = DAG.getNode(NVPTXISD::DeclareScalarParam, dl, DeclareParamVTs,
                          DeclareParamOps);
      InFlag = Chain.getValue(1);
      SDValue OutV = OutVals[OIdx];
      if (needExtend) {
        // zext/sext i1 to i16
        unsigned opc = ISD::ZERO_EXTEND;
        if (Outs[OIdx].Flags.isSExt())
          opc = ISD::SIGN_EXTEND;
        OutV = DAG.getNode(opc, dl, MVT::i16, OutV);
      }
      SDVTList CopyParamVTs = DAG.getVTList(MVT::Other, MVT::Glue);
      SDValue CopyParamOps[] = { Chain,
                                 DAG.getConstant(paramCount, dl, MVT::i32),
                                 DAG.getConstant(0, dl, MVT::i32), OutV,
                                 InFlag };

      unsigned opcode = NVPTXISD::StoreParam;
      if (Outs[OIdx].Flags.isZExt() && VT.getSizeInBits() < 32)
        opcode = NVPTXISD::StoreParamU32;
      else if (Outs[OIdx].Flags.isSExt() && VT.getSizeInBits() < 32)
        opcode = NVPTXISD::StoreParamS32;
      Chain = DAG.getMemIntrinsicNode(opcode, dl, CopyParamVTs, CopyParamOps,
                                      VT, MachinePointerInfo());

      InFlag = Chain.getValue(1);
      ++paramCount;
      continue;
    }
    // struct or vector
    SmallVector<EVT, 16> vtparts;
    SmallVector<uint64_t, 16> Offsets;
    auto *PTy = dyn_cast<PointerType>(Args[i].Ty);
    assert(PTy && "Type of a byval parameter should be pointer");
    ComputePTXValueVTs(*this, DAG.getDataLayout(), PTy->getElementType(),
                       vtparts, &Offsets, 0);

    // declare .param .align <align> .b8 .param<n>[<size>];
    unsigned sz = Outs[OIdx].Flags.getByValSize();
    SDVTList DeclareParamVTs = DAG.getVTList(MVT::Other, MVT::Glue);
    unsigned ArgAlign = Outs[OIdx].Flags.getByValAlign();
    // The ByValAlign in the Outs[OIdx].Flags is alway set at this point,
    // so we don't need to worry about natural alignment or not.
    // See TargetLowering::LowerCallTo().
    SDValue DeclareParamOps[] = {
      Chain, DAG.getConstant(Outs[OIdx].Flags.getByValAlign(), dl, MVT::i32),
      DAG.getConstant(paramCount, dl, MVT::i32),
      DAG.getConstant(sz, dl, MVT::i32), InFlag
    };
    Chain = DAG.getNode(NVPTXISD::DeclareParam, dl, DeclareParamVTs,
                        DeclareParamOps);
    InFlag = Chain.getValue(1);
    for (unsigned j = 0, je = vtparts.size(); j != je; ++j) {
      EVT elemtype = vtparts[j];
      int curOffset = Offsets[j];
      unsigned PartAlign = GreatestCommonDivisor64(ArgAlign, curOffset);
      auto PtrVT = getPointerTy(DAG.getDataLayout());
      SDValue srcAddr = DAG.getNode(ISD::ADD, dl, PtrVT, OutVals[OIdx],
                                    DAG.getConstant(curOffset, dl, PtrVT));
      SDValue theVal = DAG.getLoad(elemtype, dl, tempChain, srcAddr,
                                   MachinePointerInfo(), false, false, false,
                                   PartAlign);
      if (elemtype.getSizeInBits() < 16) {
        theVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i16, theVal);
      }
      SDVTList CopyParamVTs = DAG.getVTList(MVT::Other, MVT::Glue);
      SDValue CopyParamOps[] = { Chain,
                                 DAG.getConstant(paramCount, dl, MVT::i32),
                                 DAG.getConstant(curOffset, dl, MVT::i32),
                                 theVal, InFlag };
      Chain = DAG.getMemIntrinsicNode(NVPTXISD::StoreParam, dl, CopyParamVTs,
                                      CopyParamOps, elemtype,
                                      MachinePointerInfo());

      InFlag = Chain.getValue(1);
    }
    ++paramCount;
  }

  GlobalAddressSDNode *Func = dyn_cast<GlobalAddressSDNode>(Callee.getNode());
  unsigned retAlignment = 0;

  // Handle Result
  if (Ins.size() > 0) {
    SmallVector<EVT, 16> resvtparts;
    ComputeValueVTs(*this, DL, retTy, resvtparts);

    // Declare
    //  .param .align 16 .b8 retval0[<size-in-bytes>], or
    //  .param .b<size-in-bits> retval0
    unsigned resultsz = DL.getTypeAllocSizeInBits(retTy);
    // Emit ".param .b<size-in-bits> retval0" instead of byte arrays only for
    // these three types to match the logic in
    // NVPTXAsmPrinter::printReturnValStr and NVPTXTargetLowering::getPrototype.
    // Plus, this behavior is consistent with nvcc's.
    if (retTy->isFloatingPointTy() || retTy->isIntegerTy() ||
        retTy->isPointerTy()) {
      // Scalar needs to be at least 32bit wide
      if (resultsz < 32)
        resultsz = 32;
      SDVTList DeclareRetVTs = DAG.getVTList(MVT::Other, MVT::Glue);
      SDValue DeclareRetOps[] = { Chain, DAG.getConstant(1, dl, MVT::i32),
                                  DAG.getConstant(resultsz, dl, MVT::i32),
                                  DAG.getConstant(0, dl, MVT::i32), InFlag };
      Chain = DAG.getNode(NVPTXISD::DeclareRet, dl, DeclareRetVTs,
                          DeclareRetOps);
      InFlag = Chain.getValue(1);
    } else {
      retAlignment = getArgumentAlignment(Callee, CS, retTy, 0);
      SDVTList DeclareRetVTs = DAG.getVTList(MVT::Other, MVT::Glue);
      SDValue DeclareRetOps[] = { Chain,
                                  DAG.getConstant(retAlignment, dl, MVT::i32),
                                  DAG.getConstant(resultsz / 8, dl, MVT::i32),
                                  DAG.getConstant(0, dl, MVT::i32), InFlag };
      Chain = DAG.getNode(NVPTXISD::DeclareRetParam, dl, DeclareRetVTs,
                          DeclareRetOps);
      InFlag = Chain.getValue(1);
    }
  }

  if (!Func) {
    // This is indirect function call case : PTX requires a prototype of the
    // form
    // proto_0 : .callprototype(.param .b32 _) _ (.param .b32 _);
    // to be emitted, and the label has to used as the last arg of call
    // instruction.
    // The prototype is embedded in a string and put as the operand for a
    // CallPrototype SDNode which will print out to the value of the string.
    SDVTList ProtoVTs = DAG.getVTList(MVT::Other, MVT::Glue);
    std::string Proto =
        getPrototype(DAG.getDataLayout(), retTy, Args, Outs, retAlignment, CS);
    const char *ProtoStr =
      nvTM->getManagedStrPool()->getManagedString(Proto.c_str())->c_str();
    SDValue ProtoOps[] = {
      Chain, DAG.getTargetExternalSymbol(ProtoStr, MVT::i32), InFlag,
    };
    Chain = DAG.getNode(NVPTXISD::CallPrototype, dl, ProtoVTs, ProtoOps);
    InFlag = Chain.getValue(1);
  }
  // Op to just print "call"
  SDVTList PrintCallVTs = DAG.getVTList(MVT::Other, MVT::Glue);
  SDValue PrintCallOps[] = {
    Chain, DAG.getConstant((Ins.size() == 0) ? 0 : 1, dl, MVT::i32), InFlag
  };
  // We model convergent calls as separate opcodes.
  unsigned Opcode = Func ? NVPTXISD::PrintCallUni : NVPTXISD::PrintCall;
  if (CLI.IsConvergent)
    Opcode = Opcode == NVPTXISD::PrintCallUni ? NVPTXISD::PrintConvergentCallUni
                                              : NVPTXISD::PrintConvergentCall;
  Chain = DAG.getNode(Opcode, dl, PrintCallVTs, PrintCallOps);
  InFlag = Chain.getValue(1);

  // Ops to print out the function name
  SDVTList CallVoidVTs = DAG.getVTList(MVT::Other, MVT::Glue);
  SDValue CallVoidOps[] = { Chain, Callee, InFlag };
  Chain = DAG.getNode(NVPTXISD::CallVoid, dl, CallVoidVTs, CallVoidOps);
  InFlag = Chain.getValue(1);

  // Ops to print out the param list
  SDVTList CallArgBeginVTs = DAG.getVTList(MVT::Other, MVT::Glue);
  SDValue CallArgBeginOps[] = { Chain, InFlag };
  Chain = DAG.getNode(NVPTXISD::CallArgBegin, dl, CallArgBeginVTs,
                      CallArgBeginOps);
  InFlag = Chain.getValue(1);

  for (unsigned i = 0, e = paramCount; i != e; ++i) {
    unsigned opcode;
    if (i == (e - 1))
      opcode = NVPTXISD::LastCallArg;
    else
      opcode = NVPTXISD::CallArg;
    SDVTList CallArgVTs = DAG.getVTList(MVT::Other, MVT::Glue);
    SDValue CallArgOps[] = { Chain, DAG.getConstant(1, dl, MVT::i32),
                             DAG.getConstant(i, dl, MVT::i32), InFlag };
    Chain = DAG.getNode(opcode, dl, CallArgVTs, CallArgOps);
    InFlag = Chain.getValue(1);
  }
  SDVTList CallArgEndVTs = DAG.getVTList(MVT::Other, MVT::Glue);
  SDValue CallArgEndOps[] = { Chain,
                              DAG.getConstant(Func ? 1 : 0, dl, MVT::i32),
                              InFlag };
  Chain = DAG.getNode(NVPTXISD::CallArgEnd, dl, CallArgEndVTs, CallArgEndOps);
  InFlag = Chain.getValue(1);

  if (!Func) {
    SDVTList PrototypeVTs = DAG.getVTList(MVT::Other, MVT::Glue);
    SDValue PrototypeOps[] = { Chain,
                               DAG.getConstant(uniqueCallSite, dl, MVT::i32),
                               InFlag };
    Chain = DAG.getNode(NVPTXISD::Prototype, dl, PrototypeVTs, PrototypeOps);
    InFlag = Chain.getValue(1);
  }

  // Generate loads from param memory/moves from registers for result
  if (Ins.size() > 0) {
    if (retTy && retTy->isVectorTy()) {
      EVT ObjectVT = getValueType(DL, retTy);
      unsigned NumElts = ObjectVT.getVectorNumElements();
      EVT EltVT = ObjectVT.getVectorElementType();
      assert(STI.getTargetLowering()->getNumRegisters(F->getContext(),
                                                      ObjectVT) == NumElts &&
             "Vector was not scalarized");
      unsigned sz = EltVT.getSizeInBits();
      bool needTruncate = sz < 8;

      if (NumElts == 1) {
        // Just a simple load
        SmallVector<EVT, 4> LoadRetVTs;
        if (EltVT == MVT::i1 || EltVT == MVT::i8) {
          // If loading i1/i8 result, generate
          //   load.b8 i16
          //   if i1
          //   trunc i16 to i1
          LoadRetVTs.push_back(MVT::i16);
        } else
          LoadRetVTs.push_back(EltVT);
        LoadRetVTs.push_back(MVT::Other);
        LoadRetVTs.push_back(MVT::Glue);
        SDValue LoadRetOps[] = {Chain, DAG.getConstant(1, dl, MVT::i32),
                                DAG.getConstant(0, dl, MVT::i32), InFlag};
        SDValue retval = DAG.getMemIntrinsicNode(
            NVPTXISD::LoadParam, dl,
            DAG.getVTList(LoadRetVTs), LoadRetOps, EltVT, MachinePointerInfo());
        Chain = retval.getValue(1);
        InFlag = retval.getValue(2);
        SDValue Ret0 = retval;
        if (needTruncate)
          Ret0 = DAG.getNode(ISD::TRUNCATE, dl, EltVT, Ret0);
        InVals.push_back(Ret0);
      } else if (NumElts == 2) {
        // LoadV2
        SmallVector<EVT, 4> LoadRetVTs;
        if (EltVT == MVT::i1 || EltVT == MVT::i8) {
          // If loading i1/i8 result, generate
          //   load.b8 i16
          //   if i1
          //   trunc i16 to i1
          LoadRetVTs.push_back(MVT::i16);
          LoadRetVTs.push_back(MVT::i16);
        } else {
          LoadRetVTs.push_back(EltVT);
          LoadRetVTs.push_back(EltVT);
        }
        LoadRetVTs.push_back(MVT::Other);
        LoadRetVTs.push_back(MVT::Glue);
        SDValue LoadRetOps[] = {Chain, DAG.getConstant(1, dl, MVT::i32),
                                DAG.getConstant(0, dl, MVT::i32), InFlag};
        SDValue retval = DAG.getMemIntrinsicNode(
            NVPTXISD::LoadParamV2, dl,
            DAG.getVTList(LoadRetVTs), LoadRetOps, EltVT, MachinePointerInfo());
        Chain = retval.getValue(2);
        InFlag = retval.getValue(3);
        SDValue Ret0 = retval.getValue(0);
        SDValue Ret1 = retval.getValue(1);
        if (needTruncate) {
          Ret0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Ret0);
          InVals.push_back(Ret0);
          Ret1 = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Ret1);
          InVals.push_back(Ret1);
        } else {
          InVals.push_back(Ret0);
          InVals.push_back(Ret1);
        }
      } else {
        // Split into N LoadV4
        unsigned Ofst = 0;
        unsigned VecSize = 4;
        unsigned Opc = NVPTXISD::LoadParamV4;
        if (EltVT.getSizeInBits() == 64) {
          VecSize = 2;
          Opc = NVPTXISD::LoadParamV2;
        }
        EVT VecVT = EVT::getVectorVT(F->getContext(), EltVT, VecSize);
        for (unsigned i = 0; i < NumElts; i += VecSize) {
          SmallVector<EVT, 8> LoadRetVTs;
          if (EltVT == MVT::i1 || EltVT == MVT::i8) {
            // If loading i1/i8 result, generate
            //   load.b8 i16
            //   if i1
            //   trunc i16 to i1
            for (unsigned j = 0; j < VecSize; ++j)
              LoadRetVTs.push_back(MVT::i16);
          } else {
            for (unsigned j = 0; j < VecSize; ++j)
              LoadRetVTs.push_back(EltVT);
          }
          LoadRetVTs.push_back(MVT::Other);
          LoadRetVTs.push_back(MVT::Glue);
          SDValue LoadRetOps[] = {Chain, DAG.getConstant(1, dl, MVT::i32),
                                  DAG.getConstant(Ofst, dl, MVT::i32), InFlag};
          SDValue retval = DAG.getMemIntrinsicNode(
              Opc, dl, DAG.getVTList(LoadRetVTs),
              LoadRetOps, EltVT, MachinePointerInfo());
          if (VecSize == 2) {
            Chain = retval.getValue(2);
            InFlag = retval.getValue(3);
          } else {
            Chain = retval.getValue(4);
            InFlag = retval.getValue(5);
          }

          for (unsigned j = 0; j < VecSize; ++j) {
            if (i + j >= NumElts)
              break;
            SDValue Elt = retval.getValue(j);
            if (needTruncate)
              Elt = DAG.getNode(ISD::TRUNCATE, dl, EltVT, Elt);
            InVals.push_back(Elt);
          }
          Ofst += DL.getTypeAllocSize(VecVT.getTypeForEVT(F->getContext()));
        }
      }
    } else {
      SmallVector<EVT, 16> VTs;
      SmallVector<uint64_t, 16> Offsets;
      ComputePTXValueVTs(*this, DAG.getDataLayout(), retTy, VTs, &Offsets, 0);
      assert(VTs.size() == Ins.size() && "Bad value decomposition");
      unsigned RetAlign = getArgumentAlignment(Callee, CS, retTy, 0);
      for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
        unsigned sz = VTs[i].getSizeInBits();
        unsigned AlignI = GreatestCommonDivisor64(RetAlign, Offsets[i]);
        bool needTruncate = false;
        if (VTs[i].isInteger() && sz < 8) {
          sz = 8;
          needTruncate = true;
        }

        SmallVector<EVT, 4> LoadRetVTs;
        EVT TheLoadType = VTs[i];
        if (retTy->isIntegerTy() && DL.getTypeAllocSizeInBits(retTy) < 32) {
          // This is for integer types only, and specifically not for
          // aggregates.
          LoadRetVTs.push_back(MVT::i32);
          TheLoadType = MVT::i32;
          needTruncate = true;
        } else if (sz < 16) {
          // If loading i1/i8 result, generate
          //   load i8 (-> i16)
          //   trunc i16 to i1/i8

          // FIXME: Do we need to set needTruncate to true here, too?  We could
          // not figure out what this branch is for in D17872, so we left it
          // alone.  The comment above about loading i1/i8 may be wrong, as the
          // branch above seems to cover integers of size < 32.
          LoadRetVTs.push_back(MVT::i16);
        } else
          LoadRetVTs.push_back(Ins[i].VT);
        LoadRetVTs.push_back(MVT::Other);
        LoadRetVTs.push_back(MVT::Glue);

        SDValue LoadRetOps[] = {Chain, DAG.getConstant(1, dl, MVT::i32),
                                DAG.getConstant(Offsets[i], dl, MVT::i32),
                                InFlag};
        SDValue retval = DAG.getMemIntrinsicNode(
            NVPTXISD::LoadParam, dl,
            DAG.getVTList(LoadRetVTs), LoadRetOps,
            TheLoadType, MachinePointerInfo(), AlignI);
        Chain = retval.getValue(1);
        InFlag = retval.getValue(2);
        SDValue Ret0 = retval.getValue(0);
        if (needTruncate)
          Ret0 = DAG.getNode(ISD::TRUNCATE, dl, Ins[i].VT, Ret0);
        InVals.push_back(Ret0);
      }
    }
  }

  Chain = DAG.getCALLSEQ_END(Chain,
                             DAG.getIntPtrConstant(uniqueCallSite, dl, true),
                             DAG.getIntPtrConstant(uniqueCallSite + 1, dl,
                                                   true),
                             InFlag, dl);
  uniqueCallSite++;

  // set isTailCall to false for now, until we figure out how to express
  // tail call optimization in PTX
  isTailCall = false;
  return Chain;
}

// By default CONCAT_VECTORS is lowered by ExpandVectorBuildThroughStack()
// (see LegalizeDAG.cpp). This is slow and uses local memory.
// We use extract/insert/build vector just as what LegalizeOp() does in llvm 2.5
SDValue
NVPTXTargetLowering::LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) const {
  SDNode *Node = Op.getNode();
  SDLoc dl(Node);
  SmallVector<SDValue, 8> Ops;
  unsigned NumOperands = Node->getNumOperands();
  for (unsigned i = 0; i < NumOperands; ++i) {
    SDValue SubOp = Node->getOperand(i);
    EVT VVT = SubOp.getNode()->getValueType(0);
    EVT EltVT = VVT.getVectorElementType();
    unsigned NumSubElem = VVT.getVectorNumElements();
    for (unsigned j = 0; j < NumSubElem; ++j) {
      Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, SubOp,
                                DAG.getIntPtrConstant(j, dl)));
    }
  }
  return DAG.getBuildVector(Node->getValueType(0), dl, Ops);
}

/// LowerShiftRightParts - Lower SRL_PARTS, SRA_PARTS, which
/// 1) returns two i32 values and take a 2 x i32 value to shift plus a shift
///    amount, or
/// 2) returns two i64 values and take a 2 x i64 value to shift plus a shift
///    amount.
SDValue NVPTXTargetLowering::LowerShiftRightParts(SDValue Op,
                                                  SelectionDAG &DAG) const {
  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
  assert(Op.getOpcode() == ISD::SRA_PARTS || Op.getOpcode() == ISD::SRL_PARTS);

  EVT VT = Op.getValueType();
  unsigned VTBits = VT.getSizeInBits();
  SDLoc dl(Op);
  SDValue ShOpLo = Op.getOperand(0);
  SDValue ShOpHi = Op.getOperand(1);
  SDValue ShAmt  = Op.getOperand(2);
  unsigned Opc = (Op.getOpcode() == ISD::SRA_PARTS) ? ISD::SRA : ISD::SRL;

  if (VTBits == 32 && STI.getSmVersion() >= 35) {

    // For 32bit and sm35, we can use the funnel shift 'shf' instruction.
    // {dHi, dLo} = {aHi, aLo} >> Amt
    //   dHi = aHi >> Amt
    //   dLo = shf.r.clamp aLo, aHi, Amt

    SDValue Hi = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt);
    SDValue Lo = DAG.getNode(NVPTXISD::FUN_SHFR_CLAMP, dl, VT, ShOpLo, ShOpHi,
                             ShAmt);

    SDValue Ops[2] = { Lo, Hi };
    return DAG.getMergeValues(Ops, dl);
  }
  else {

    // {dHi, dLo} = {aHi, aLo} >> Amt
    // - if (Amt>=size) then
    //      dLo = aHi >> (Amt-size)
    //      dHi = aHi >> Amt (this is either all 0 or all 1)
    //   else
    //      dLo = (aLo >>logic Amt) | (aHi << (size-Amt))
    //      dHi = aHi >> Amt

    SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
                                   DAG.getConstant(VTBits, dl, MVT::i32),
                                   ShAmt);
    SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, ShAmt);
    SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
                                     DAG.getConstant(VTBits, dl, MVT::i32));
    SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, RevShAmt);
    SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
    SDValue TrueVal = DAG.getNode(Opc, dl, VT, ShOpHi, ExtraShAmt);

    SDValue Cmp = DAG.getSetCC(dl, MVT::i1, ShAmt,
                               DAG.getConstant(VTBits, dl, MVT::i32),
                               ISD::SETGE);
    SDValue Hi = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt);
    SDValue Lo = DAG.getNode(ISD::SELECT, dl, VT, Cmp, TrueVal, FalseVal);

    SDValue Ops[2] = { Lo, Hi };
    return DAG.getMergeValues(Ops, dl);
  }
}

/// LowerShiftLeftParts - Lower SHL_PARTS, which
/// 1) returns two i32 values and take a 2 x i32 value to shift plus a shift
///    amount, or
/// 2) returns two i64 values and take a 2 x i64 value to shift plus a shift
///    amount.
SDValue NVPTXTargetLowering::LowerShiftLeftParts(SDValue Op,
                                                 SelectionDAG &DAG) const {
  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
  assert(Op.getOpcode() == ISD::SHL_PARTS);

  EVT VT = Op.getValueType();
  unsigned VTBits = VT.getSizeInBits();
  SDLoc dl(Op);
  SDValue ShOpLo = Op.getOperand(0);
  SDValue ShOpHi = Op.getOperand(1);
  SDValue ShAmt  = Op.getOperand(2);

  if (VTBits == 32 && STI.getSmVersion() >= 35) {

    // For 32bit and sm35, we can use the funnel shift 'shf' instruction.
    // {dHi, dLo} = {aHi, aLo} << Amt
    //   dHi = shf.l.clamp aLo, aHi, Amt
    //   dLo = aLo << Amt

    SDValue Hi = DAG.getNode(NVPTXISD::FUN_SHFL_CLAMP, dl, VT, ShOpLo, ShOpHi,
                             ShAmt);
    SDValue Lo = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);

    SDValue Ops[2] = { Lo, Hi };
    return DAG.getMergeValues(Ops, dl);
  }
  else {

    // {dHi, dLo} = {aHi, aLo} << Amt
    // - if (Amt>=size) then
    //      dLo = aLo << Amt (all 0)
    //      dLo = aLo << (Amt-size)
    //   else
    //      dLo = aLo << Amt
    //      dHi = (aHi << Amt) | (aLo >> (size-Amt))

    SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
                                   DAG.getConstant(VTBits, dl, MVT::i32),
                                   ShAmt);
    SDValue Tmp1 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt);
    SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
                                     DAG.getConstant(VTBits, dl, MVT::i32));
    SDValue Tmp2 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt);
    SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
    SDValue TrueVal = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt);

    SDValue Cmp = DAG.getSetCC(dl, MVT::i1, ShAmt,
                               DAG.getConstant(VTBits, dl, MVT::i32),
                               ISD::SETGE);
    SDValue Lo = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
    SDValue Hi = DAG.getNode(ISD::SELECT, dl, VT, Cmp, TrueVal, FalseVal);

    SDValue Ops[2] = { Lo, Hi };
    return DAG.getMergeValues(Ops, dl);
  }
}

SDValue
NVPTXTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
  switch (Op.getOpcode()) {
  case ISD::RETURNADDR:
    return SDValue();
  case ISD::FRAMEADDR:
    return SDValue();
  case ISD::GlobalAddress:
    return LowerGlobalAddress(Op, DAG);
  case ISD::INTRINSIC_W_CHAIN:
    return Op;
  case ISD::BUILD_VECTOR:
  case ISD::EXTRACT_SUBVECTOR:
    return Op;
  case ISD::CONCAT_VECTORS:
    return LowerCONCAT_VECTORS(Op, DAG);
  case ISD::STORE:
    return LowerSTORE(Op, DAG);
  case ISD::LOAD:
    return LowerLOAD(Op, DAG);
  case ISD::SHL_PARTS:
    return LowerShiftLeftParts(Op, DAG);
  case ISD::SRA_PARTS:
  case ISD::SRL_PARTS:
    return LowerShiftRightParts(Op, DAG);
  case ISD::SELECT:
    return LowerSelect(Op, DAG);
  default:
    llvm_unreachable("Custom lowering not defined for operation");
  }
}

SDValue NVPTXTargetLowering::LowerSelect(SDValue Op, SelectionDAG &DAG) const {
  SDValue Op0 = Op->getOperand(0);
  SDValue Op1 = Op->getOperand(1);
  SDValue Op2 = Op->getOperand(2);
  SDLoc DL(Op.getNode());

  assert(Op.getValueType() == MVT::i1 && "Custom lowering enabled only for i1");

  Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Op1);
  Op2 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Op2);
  SDValue Select = DAG.getNode(ISD::SELECT, DL, MVT::i32, Op0, Op1, Op2);
  SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Select);

  return Trunc;
}

SDValue NVPTXTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
  if (Op.getValueType() == MVT::i1)
    return LowerLOADi1(Op, DAG);
  else
    return SDValue();
}

// v = ld i1* addr
//   =>
// v1 = ld i8* addr (-> i16)
// v = trunc i16 to i1
SDValue NVPTXTargetLowering::LowerLOADi1(SDValue Op, SelectionDAG &DAG) const {
  SDNode *Node = Op.getNode();
  LoadSDNode *LD = cast<LoadSDNode>(Node);
  SDLoc dl(Node);
  assert(LD->getExtensionType() == ISD::NON_EXTLOAD);
  assert(Node->getValueType(0) == MVT::i1 &&
         "Custom lowering for i1 load only");
  SDValue newLD =
      DAG.getLoad(MVT::i16, dl, LD->getChain(), LD->getBasePtr(),
                  LD->getPointerInfo(), LD->isVolatile(), LD->isNonTemporal(),
                  LD->isInvariant(), LD->getAlignment());
  SDValue result = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, newLD);
  // The legalizer (the caller) is expecting two values from the legalized
  // load, so we build a MergeValues node for it. See ExpandUnalignedLoad()
  // in LegalizeDAG.cpp which also uses MergeValues.
  SDValue Ops[] = { result, LD->getChain() };
  return DAG.getMergeValues(Ops, dl);
}

SDValue NVPTXTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
  EVT ValVT = Op.getOperand(1).getValueType();
  if (ValVT == MVT::i1)
    return LowerSTOREi1(Op, DAG);
  else if (ValVT.isVector())
    return LowerSTOREVector(Op, DAG);
  else
    return SDValue();
}

SDValue
NVPTXTargetLowering::LowerSTOREVector(SDValue Op, SelectionDAG &DAG) const {
  SDNode *N = Op.getNode();
  SDValue Val = N->getOperand(1);
  SDLoc DL(N);
  EVT ValVT = Val.getValueType();

  if (ValVT.isVector()) {
    // We only handle "native" vector sizes for now, e.g. <4 x double> is not
    // legal.  We can (and should) split that into 2 stores of <2 x double> here
    // but I'm leaving that as a TODO for now.
    if (!ValVT.isSimple())
      return SDValue();
    switch (ValVT.getSimpleVT().SimpleTy) {
    default:
      return SDValue();
    case MVT::v2i8:
    case MVT::v2i16:
    case MVT::v2i32:
    case MVT::v2i64:
    case MVT::v2f32:
    case MVT::v2f64:
    case MVT::v4i8:
    case MVT::v4i16:
    case MVT::v4i32:
    case MVT::v4f32:
      // This is a "native" vector type
      break;
    }

    MemSDNode *MemSD = cast<MemSDNode>(N);
    const DataLayout &TD = DAG.getDataLayout();

    unsigned Align = MemSD->getAlignment();
    unsigned PrefAlign =
        TD.getPrefTypeAlignment(ValVT.getTypeForEVT(*DAG.getContext()));
    if (Align < PrefAlign) {
      // This store is not sufficiently aligned, so bail out and let this vector
      // store be scalarized.  Note that we may still be able to emit smaller
      // vector stores.  For example, if we are storing a <4 x float> with an
      // alignment of 8, this check will fail but the legalizer will try again
      // with 2 x <2 x float>, which will succeed with an alignment of 8.
      return SDValue();
    }

    unsigned Opcode = 0;
    EVT EltVT = ValVT.getVectorElementType();
    unsigned NumElts = ValVT.getVectorNumElements();

    // Since StoreV2 is a target node, we cannot rely on DAG type legalization.
    // Therefore, we must ensure the type is legal.  For i1 and i8, we set the
    // stored type to i16 and propagate the "real" type as the memory type.
    bool NeedExt = false;
    if (EltVT.getSizeInBits() < 16)
      NeedExt = true;

    switch (NumElts) {
    default:
      return SDValue();
    case 2:
      Opcode = NVPTXISD::StoreV2;
      break;
    case 4: {
      Opcode = NVPTXISD::StoreV4;
      break;
    }
    }

    SmallVector<SDValue, 8> Ops;

    // First is the chain
    Ops.push_back(N->getOperand(0));

    // Then the split values
    for (unsigned i = 0; i < NumElts; ++i) {
      SDValue ExtVal = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Val,
                                   DAG.getIntPtrConstant(i, DL));
      if (NeedExt)
        ExtVal = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i16, ExtVal);
      Ops.push_back(ExtVal);
    }

    // Then any remaining arguments
    Ops.append(N->op_begin() + 2, N->op_end());

    SDValue NewSt = DAG.getMemIntrinsicNode(
        Opcode, DL, DAG.getVTList(MVT::Other), Ops,
        MemSD->getMemoryVT(), MemSD->getMemOperand());

    //return DCI.CombineTo(N, NewSt, true);
    return NewSt;
  }

  return SDValue();
}

// st i1 v, addr
//    =>
// v1 = zxt v to i16
// st.u8 i16, addr
SDValue NVPTXTargetLowering::LowerSTOREi1(SDValue Op, SelectionDAG &DAG) const {
  SDNode *Node = Op.getNode();
  SDLoc dl(Node);
  StoreSDNode *ST = cast<StoreSDNode>(Node);
  SDValue Tmp1 = ST->getChain();
  SDValue Tmp2 = ST->getBasePtr();
  SDValue Tmp3 = ST->getValue();
  assert(Tmp3.getValueType() == MVT::i1 && "Custom lowering for i1 store only");
  unsigned Alignment = ST->getAlignment();
  bool isVolatile = ST->isVolatile();
  bool isNonTemporal = ST->isNonTemporal();
  Tmp3 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Tmp3);
  SDValue Result = DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2,
                                     ST->getPointerInfo(), MVT::i8, isNonTemporal,
                                     isVolatile, Alignment);
  return Result;
}

SDValue
NVPTXTargetLowering::getParamSymbol(SelectionDAG &DAG, int idx, EVT v) const {
  std::string ParamSym;
  raw_string_ostream ParamStr(ParamSym);

  ParamStr << DAG.getMachineFunction().getName() << "_param_" << idx;
  ParamStr.flush();

  std::string *SavedStr =
    nvTM->getManagedStrPool()->getManagedString(ParamSym.c_str());
  return DAG.getTargetExternalSymbol(SavedStr->c_str(), v);
}

// Check to see if the kernel argument is image*_t or sampler_t

static bool isImageOrSamplerVal(const Value *arg, const Module *context) {
  static const char *const specialTypes[] = { "struct._image2d_t",
                                              "struct._image3d_t",
                                              "struct._sampler_t" };

  Type *Ty = arg->getType();
  auto *PTy = dyn_cast<PointerType>(Ty);

  if (!PTy)
    return false;

  if (!context)
    return false;

  auto *STy = dyn_cast<StructType>(PTy->getElementType());
  if (!STy || STy->isLiteral())
    return false;

  return std::find(std::begin(specialTypes), std::end(specialTypes),
                   STy->getName()) != std::end(specialTypes);
}

SDValue NVPTXTargetLowering::LowerFormalArguments(
    SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
    const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
    SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
  MachineFunction &MF = DAG.getMachineFunction();
  const DataLayout &DL = DAG.getDataLayout();
  auto PtrVT = getPointerTy(DAG.getDataLayout());

  const Function *F = MF.getFunction();
  const AttributeSet &PAL = F->getAttributes();
  const TargetLowering *TLI = STI.getTargetLowering();

  SDValue Root = DAG.getRoot();
  std::vector<SDValue> OutChains;

  bool isKernel = llvm::isKernelFunction(*F);
  bool isABI = (STI.getSmVersion() >= 20);
  assert(isABI && "Non-ABI compilation is not supported");
  if (!isABI)
    return Chain;

  std::vector<Type *> argTypes;
  std::vector<const Argument *> theArgs;
  for (const Argument &I : F->args()) {
    theArgs.push_back(&I);
    argTypes.push_back(I.getType());
  }
  // argTypes.size() (or theArgs.size()) and Ins.size() need not match.
  // Ins.size() will be larger
  //   * if there is an aggregate argument with multiple fields (each field
  //     showing up separately in Ins)
  //   * if there is a vector argument with more than typical vector-length
  //     elements (generally if more than 4) where each vector element is
  //     individually present in Ins.
  // So a different index should be used for indexing into Ins.
  // See similar issue in LowerCall.
  unsigned InsIdx = 0;

  int idx = 0;
  for (unsigned i = 0, e = theArgs.size(); i != e; ++i, ++idx, ++InsIdx) {
    Type *Ty = argTypes[i];

    // If the kernel argument is image*_t or sampler_t, convert it to
    // a i32 constant holding the parameter position. This can later
    // matched in the AsmPrinter to output the correct mangled name.
    if (isImageOrSamplerVal(
            theArgs[i],
            (theArgs[i]->getParent() ? theArgs[i]->getParent()->getParent()
                                     : nullptr))) {
      assert(isKernel && "Only kernels can have image/sampler params");
      InVals.push_back(DAG.getConstant(i + 1, dl, MVT::i32));
      continue;
    }

    if (theArgs[i]->use_empty()) {
      // argument is dead
      if (Ty->isAggregateType()) {
        SmallVector<EVT, 16> vtparts;

        ComputePTXValueVTs(*this, DAG.getDataLayout(), Ty, vtparts);
        assert(vtparts.size() > 0 && "empty aggregate type not expected");
        for (unsigned parti = 0, parte = vtparts.size(); parti != parte;
             ++parti) {
          InVals.push_back(DAG.getNode(ISD::UNDEF, dl, Ins[InsIdx].VT));
          ++InsIdx;
        }
        if (vtparts.size() > 0)
          --InsIdx;
        continue;
      }
      if (Ty->isVectorTy()) {
        EVT ObjectVT = getValueType(DL, Ty);
        unsigned NumRegs = TLI->getNumRegisters(F->getContext(), ObjectVT);
        for (unsigned parti = 0; parti < NumRegs; ++parti) {
          InVals.push_back(DAG.getNode(ISD::UNDEF, dl, Ins[InsIdx].VT));
          ++InsIdx;
        }
        if (NumRegs > 0)
          --InsIdx;
        continue;
      }
      InVals.push_back(DAG.getNode(ISD::UNDEF, dl, Ins[InsIdx].VT));
      continue;
    }

    // In the following cases, assign a node order of "idx+1"
    // to newly created nodes. The SDNodes for params have to
    // appear in the same order as their order of appearance
    // in the original function. "idx+1" holds that order.
    if (!PAL.hasAttribute(i + 1, Attribute::ByVal)) {
      if (Ty->isAggregateType()) {
        SmallVector<EVT, 16> vtparts;
        SmallVector<uint64_t, 16> offsets;

        // NOTE: Here, we lose the ability to issue vector loads for vectors
        // that are a part of a struct.  This should be investigated in the
        // future.
        ComputePTXValueVTs(*this, DAG.getDataLayout(), Ty, vtparts, &offsets,
                           0);
        assert(vtparts.size() > 0 && "empty aggregate type not expected");
        bool aggregateIsPacked = false;
        if (StructType *STy = llvm::dyn_cast<StructType>(Ty))
          aggregateIsPacked = STy->isPacked();

        SDValue Arg = getParamSymbol(DAG, idx, PtrVT);
        for (unsigned parti = 0, parte = vtparts.size(); parti != parte;
             ++parti) {
          EVT partVT = vtparts[parti];
          Value *srcValue = Constant::getNullValue(
              PointerType::get(partVT.getTypeForEVT(F->getContext()),
                               llvm::ADDRESS_SPACE_PARAM));
          SDValue srcAddr =
              DAG.getNode(ISD::ADD, dl, PtrVT, Arg,
                          DAG.getConstant(offsets[parti], dl, PtrVT));
          unsigned partAlign = aggregateIsPacked
                                   ? 1
                                   : DL.getABITypeAlignment(
                                         partVT.getTypeForEVT(F->getContext()));
          SDValue p;
          if (Ins[InsIdx].VT.getSizeInBits() > partVT.getSizeInBits()) {
            ISD::LoadExtType ExtOp = Ins[InsIdx].Flags.isSExt() ? 
                                     ISD::SEXTLOAD : ISD::ZEXTLOAD;
            p = DAG.getExtLoad(ExtOp, dl, Ins[InsIdx].VT, Root, srcAddr,
                               MachinePointerInfo(srcValue), partVT, false,
                               false, false, partAlign);
          } else {
            p = DAG.getLoad(partVT, dl, Root, srcAddr,
                            MachinePointerInfo(srcValue), false, false, false,
                            partAlign);
          }
          if (p.getNode())
            p.getNode()->setIROrder(idx + 1);
          InVals.push_back(p);
          ++InsIdx;
        }
        if (vtparts.size() > 0)
          --InsIdx;
        continue;
      }
      if (Ty->isVectorTy()) {
        EVT ObjectVT = getValueType(DL, Ty);
        SDValue Arg = getParamSymbol(DAG, idx, PtrVT);
        unsigned NumElts = ObjectVT.getVectorNumElements();
        assert(TLI->getNumRegisters(F->getContext(), ObjectVT) == NumElts &&
               "Vector was not scalarized");
        EVT EltVT = ObjectVT.getVectorElementType();

        // V1 load
        // f32 = load ...
        if (NumElts == 1) {
          // We only have one element, so just directly load it
          Value *SrcValue = Constant::getNullValue(PointerType::get(
              EltVT.getTypeForEVT(F->getContext()), llvm::ADDRESS_SPACE_PARAM));
          SDValue P = DAG.getLoad(
              EltVT, dl, Root, Arg, MachinePointerInfo(SrcValue), false, false,
              true,
              DL.getABITypeAlignment(EltVT.getTypeForEVT(F->getContext())));
          if (P.getNode())
            P.getNode()->setIROrder(idx + 1);

          if (Ins[InsIdx].VT.getSizeInBits() > EltVT.getSizeInBits())
            P = DAG.getNode(ISD::ANY_EXTEND, dl, Ins[InsIdx].VT, P);
          InVals.push_back(P);
          ++InsIdx;
        } else if (NumElts == 2) {
          // V2 load
          // f32,f32 = load ...
          EVT VecVT = EVT::getVectorVT(F->getContext(), EltVT, 2);
          Value *SrcValue = Constant::getNullValue(PointerType::get(
              VecVT.getTypeForEVT(F->getContext()), llvm::ADDRESS_SPACE_PARAM));
          SDValue P = DAG.getLoad(
              VecVT, dl, Root, Arg, MachinePointerInfo(SrcValue), false, false,
              true,
              DL.getABITypeAlignment(VecVT.getTypeForEVT(F->getContext())));
          if (P.getNode())
            P.getNode()->setIROrder(idx + 1);

          SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, P,
                                     DAG.getIntPtrConstant(0, dl));
          SDValue Elt1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, P,
                                     DAG.getIntPtrConstant(1, dl));

          if (Ins[InsIdx].VT.getSizeInBits() > EltVT.getSizeInBits()) {
            Elt0 = DAG.getNode(ISD::ANY_EXTEND, dl, Ins[InsIdx].VT, Elt0);
            Elt1 = DAG.getNode(ISD::ANY_EXTEND, dl, Ins[InsIdx].VT, Elt1);
          }

          InVals.push_back(Elt0);
          InVals.push_back(Elt1);
          InsIdx += 2;
        } else {
          // V4 loads
          // We have at least 4 elements (<3 x Ty> expands to 4 elements) and
          // the
          // vector will be expanded to a power of 2 elements, so we know we can
          // always round up to the next multiple of 4 when creating the vector
          // loads.
          // e.g.  4 elem => 1 ld.v4
          //       6 elem => 2 ld.v4
          //       8 elem => 2 ld.v4
          //      11 elem => 3 ld.v4
          unsigned VecSize = 4;
          if (EltVT.getSizeInBits() == 64) {
            VecSize = 2;
          }
          EVT VecVT = EVT::getVectorVT(F->getContext(), EltVT, VecSize);
          unsigned Ofst = 0;
          for (unsigned i = 0; i < NumElts; i += VecSize) {
            Value *SrcValue = Constant::getNullValue(
                PointerType::get(VecVT.getTypeForEVT(F->getContext()),
                                 llvm::ADDRESS_SPACE_PARAM));
            SDValue SrcAddr = DAG.getNode(ISD::ADD, dl, PtrVT, Arg,
                                          DAG.getConstant(Ofst, dl, PtrVT));
            SDValue P = DAG.getLoad(
                VecVT, dl, Root, SrcAddr, MachinePointerInfo(SrcValue), false,
                false, true,
                DL.getABITypeAlignment(VecVT.getTypeForEVT(F->getContext())));
            if (P.getNode())
              P.getNode()->setIROrder(idx + 1);

            for (unsigned j = 0; j < VecSize; ++j) {
              if (i + j >= NumElts)
                break;
              SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, P,
                                        DAG.getIntPtrConstant(j, dl));
              if (Ins[InsIdx].VT.getSizeInBits() > EltVT.getSizeInBits())
                Elt = DAG.getNode(ISD::ANY_EXTEND, dl, Ins[InsIdx].VT, Elt);
              InVals.push_back(Elt);
            }
            Ofst += DL.getTypeAllocSize(VecVT.getTypeForEVT(F->getContext()));
          }
          InsIdx += NumElts;
        }

        if (NumElts > 0)
          --InsIdx;
        continue;
      }
      // A plain scalar.
      EVT ObjectVT = getValueType(DL, Ty);
      // If ABI, load from the param symbol
      SDValue Arg = getParamSymbol(DAG, idx, PtrVT);
      Value *srcValue = Constant::getNullValue(PointerType::get(
          ObjectVT.getTypeForEVT(F->getContext()), llvm::ADDRESS_SPACE_PARAM));
      SDValue p;
       if (ObjectVT.getSizeInBits() < Ins[InsIdx].VT.getSizeInBits()) {
        ISD::LoadExtType ExtOp = Ins[InsIdx].Flags.isSExt() ? 
                                       ISD::SEXTLOAD : ISD::ZEXTLOAD;
        p = DAG.getExtLoad(
            ExtOp, dl, Ins[InsIdx].VT, Root, Arg, MachinePointerInfo(srcValue),
            ObjectVT, false, false, false,
            DL.getABITypeAlignment(ObjectVT.getTypeForEVT(F->getContext())));
      } else {
        p = DAG.getLoad(
            Ins[InsIdx].VT, dl, Root, Arg, MachinePointerInfo(srcValue), false,
            false, false,
            DL.getABITypeAlignment(ObjectVT.getTypeForEVT(F->getContext())));
      }
      if (p.getNode())
        p.getNode()->setIROrder(idx + 1);
      InVals.push_back(p);
      continue;
    }

    // Param has ByVal attribute
    // Return MoveParam(param symbol).
    // Ideally, the param symbol can be returned directly,
    // but when SDNode builder decides to use it in a CopyToReg(),
    // machine instruction fails because TargetExternalSymbol
    // (not lowered) is target dependent, and CopyToReg assumes
    // the source is lowered.
    EVT ObjectVT = getValueType(DL, Ty);
    assert(ObjectVT == Ins[InsIdx].VT &&
           "Ins type did not match function type");
    SDValue Arg = getParamSymbol(DAG, idx, PtrVT);
    SDValue p = DAG.getNode(NVPTXISD::MoveParam, dl, ObjectVT, Arg);
    if (p.getNode())
      p.getNode()->setIROrder(idx + 1);
    if (isKernel)
      InVals.push_back(p);
    else {
      SDValue p2 = DAG.getNode(
          ISD::INTRINSIC_WO_CHAIN, dl, ObjectVT,
          DAG.getConstant(Intrinsic::nvvm_ptr_local_to_gen, dl, MVT::i32), p);
      InVals.push_back(p2);
    }
  }

  // Clang will check explicit VarArg and issue error if any. However, Clang
  // will let code with
  // implicit var arg like f() pass. See bug 617733.
  // We treat this case as if the arg list is empty.
  // if (F.isVarArg()) {
  // assert(0 && "VarArg not supported yet!");
  //}

  if (!OutChains.empty())
    DAG.setRoot(DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains));

  return Chain;
}

SDValue
NVPTXTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
                                 bool isVarArg,
                                 const SmallVectorImpl<ISD::OutputArg> &Outs,
                                 const SmallVectorImpl<SDValue> &OutVals,
                                 const SDLoc &dl, SelectionDAG &DAG) const {
  MachineFunction &MF = DAG.getMachineFunction();
  const Function *F = MF.getFunction();
  Type *RetTy = F->getReturnType();
  const DataLayout &TD = DAG.getDataLayout();

  bool isABI = (STI.getSmVersion() >= 20);
  assert(isABI && "Non-ABI compilation is not supported");
  if (!isABI)
    return Chain;

  if (VectorType *VTy = dyn_cast<VectorType>(RetTy)) {
    // If we have a vector type, the OutVals array will be the scalarized
    // components and we have combine them into 1 or more vector stores.
    unsigned NumElts = VTy->getNumElements();
    assert(NumElts == Outs.size() && "Bad scalarization of return value");

    // const_cast can be removed in later LLVM versions
    EVT EltVT = getValueType(TD, RetTy).getVectorElementType();
    bool NeedExtend = false;
    if (EltVT.getSizeInBits() < 16)
      NeedExtend = true;

    // V1 store
    if (NumElts == 1) {
      SDValue StoreVal = OutVals[0];
      // We only have one element, so just directly store it
      if (NeedExtend)
        StoreVal = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, StoreVal);
      SDValue Ops[] = { Chain, DAG.getConstant(0, dl, MVT::i32), StoreVal };
      Chain = DAG.getMemIntrinsicNode(NVPTXISD::StoreRetval, dl,
                                      DAG.getVTList(MVT::Other), Ops,
                                      EltVT, MachinePointerInfo());

    } else if (NumElts == 2) {
      // V2 store
      SDValue StoreVal0 = OutVals[0];
      SDValue StoreVal1 = OutVals[1];

      if (NeedExtend) {
        StoreVal0 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, StoreVal0);
        StoreVal1 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, StoreVal1);
      }

      SDValue Ops[] = { Chain, DAG.getConstant(0, dl, MVT::i32), StoreVal0,
                        StoreVal1 };
      Chain = DAG.getMemIntrinsicNode(NVPTXISD::StoreRetvalV2, dl,
                                      DAG.getVTList(MVT::Other), Ops,
                                      EltVT, MachinePointerInfo());
    } else {
      // V4 stores
      // We have at least 4 elements (<3 x Ty> expands to 4 elements) and the
      // vector will be expanded to a power of 2 elements, so we know we can
      // always round up to the next multiple of 4 when creating the vector
      // stores.
      // e.g.  4 elem => 1 st.v4
      //       6 elem => 2 st.v4
      //       8 elem => 2 st.v4
      //      11 elem => 3 st.v4

      unsigned VecSize = 4;
      if (OutVals[0].getValueType().getSizeInBits() == 64)
        VecSize = 2;

      unsigned Offset = 0;

      EVT VecVT =
          EVT::getVectorVT(F->getContext(), EltVT, VecSize);
      unsigned PerStoreOffset =
          TD.getTypeAllocSize(VecVT.getTypeForEVT(F->getContext()));

      for (unsigned i = 0; i < NumElts; i += VecSize) {
        // Get values
        SDValue StoreVal;
        SmallVector<SDValue, 8> Ops;
        Ops.push_back(Chain);
        Ops.push_back(DAG.getConstant(Offset, dl, MVT::i32));
        unsigned Opc = NVPTXISD::StoreRetvalV2;
        EVT ExtendedVT = (NeedExtend) ? MVT::i16 : OutVals[0].getValueType();

        StoreVal = OutVals[i];
        if (NeedExtend)
          StoreVal = DAG.getNode(ISD::ZERO_EXTEND, dl, ExtendedVT, StoreVal);
        Ops.push_back(StoreVal);

        if (i + 1 < NumElts) {
          StoreVal = OutVals[i + 1];
          if (NeedExtend)
            StoreVal = DAG.getNode(ISD::ZERO_EXTEND, dl, ExtendedVT, StoreVal);
        } else {
          StoreVal = DAG.getUNDEF(ExtendedVT);
        }
        Ops.push_back(StoreVal);

        if (VecSize == 4) {
          Opc = NVPTXISD::StoreRetvalV4;
          if (i + 2 < NumElts) {
            StoreVal = OutVals[i + 2];
            if (NeedExtend)
              StoreVal =
                  DAG.getNode(ISD::ZERO_EXTEND, dl, ExtendedVT, StoreVal);
          } else {
            StoreVal = DAG.getUNDEF(ExtendedVT);
          }
          Ops.push_back(StoreVal);

          if (i + 3 < NumElts) {
            StoreVal = OutVals[i + 3];
            if (NeedExtend)
              StoreVal =
                  DAG.getNode(ISD::ZERO_EXTEND, dl, ExtendedVT, StoreVal);
          } else {
            StoreVal = DAG.getUNDEF(ExtendedVT);
          }
          Ops.push_back(StoreVal);
        }

        // Chain = DAG.getNode(Opc, dl, MVT::Other, &Ops[0], Ops.size());
        Chain =
            DAG.getMemIntrinsicNode(Opc, dl, DAG.getVTList(MVT::Other), Ops,
                                    EltVT, MachinePointerInfo());
        Offset += PerStoreOffset;
      }
    }
  } else {
    SmallVector<EVT, 16> ValVTs;
    SmallVector<uint64_t, 16> Offsets;
    ComputePTXValueVTs(*this, DAG.getDataLayout(), RetTy, ValVTs, &Offsets, 0);
    assert(ValVTs.size() == OutVals.size() && "Bad return value decomposition");

    for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
      SDValue theVal = OutVals[i];
      EVT TheValType = theVal.getValueType();
      unsigned numElems = 1;
      if (TheValType.isVector())
        numElems = TheValType.getVectorNumElements();
      for (unsigned j = 0, je = numElems; j != je; ++j) {
        SDValue TmpVal = theVal;
        if (TheValType.isVector())
          TmpVal = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
                               TheValType.getVectorElementType(), TmpVal,
                               DAG.getIntPtrConstant(j, dl));
        EVT TheStoreType = ValVTs[i];
        if (RetTy->isIntegerTy() && TD.getTypeAllocSizeInBits(RetTy) < 32) {
          // The following zero-extension is for integer types only, and
          // specifically not for aggregates.
          TmpVal = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, TmpVal);
          TheStoreType = MVT::i32;
        }
        else if (TmpVal.getValueType().getSizeInBits() < 16)
          TmpVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i16, TmpVal);

        SDValue Ops[] = {
          Chain,
          DAG.getConstant(Offsets[i], dl, MVT::i32),
          TmpVal };
        Chain = DAG.getMemIntrinsicNode(NVPTXISD::StoreRetval, dl,
                                        DAG.getVTList(MVT::Other), Ops,
                                        TheStoreType,
                                        MachinePointerInfo());
      }
    }
  }

  return DAG.getNode(NVPTXISD::RET_FLAG, dl, MVT::Other, Chain);
}


void NVPTXTargetLowering::LowerAsmOperandForConstraint(
    SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops,
    SelectionDAG &DAG) const {
  if (Constraint.length() > 1)
    return;
  else
    TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
}

static unsigned getOpcForTextureInstr(unsigned Intrinsic) {
  switch (Intrinsic) {
  default:
    return 0;

  case Intrinsic::nvvm_tex_1d_v4f32_s32:
    return NVPTXISD::Tex1DFloatS32;
  case Intrinsic::nvvm_tex_1d_v4f32_f32:
    return NVPTXISD::Tex1DFloatFloat;
  case Intrinsic::nvvm_tex_1d_level_v4f32_f32:
    return NVPTXISD::Tex1DFloatFloatLevel;
  case Intrinsic::nvvm_tex_1d_grad_v4f32_f32:
    return NVPTXISD::Tex1DFloatFloatGrad;
  case Intrinsic::nvvm_tex_1d_v4s32_s32:
    return NVPTXISD::Tex1DS32S32;
  case Intrinsic::nvvm_tex_1d_v4s32_f32:
    return NVPTXISD::Tex1DS32Float;
  case Intrinsic::nvvm_tex_1d_level_v4s32_f32:
    return NVPTXISD::Tex1DS32FloatLevel;
  case Intrinsic::nvvm_tex_1d_grad_v4s32_f32:
    return NVPTXISD::Tex1DS32FloatGrad;
  case Intrinsic::nvvm_tex_1d_v4u32_s32:
    return NVPTXISD::Tex1DU32S32;
  case Intrinsic::nvvm_tex_1d_v4u32_f32:
    return NVPTXISD::Tex1DU32Float;
  case Intrinsic::nvvm_tex_1d_level_v4u32_f32:
    return NVPTXISD::Tex1DU32FloatLevel;
  case Intrinsic::nvvm_tex_1d_grad_v4u32_f32:
    return NVPTXISD::Tex1DU32FloatGrad;

  case Intrinsic::nvvm_tex_1d_array_v4f32_s32:
    return NVPTXISD::Tex1DArrayFloatS32;
  case Intrinsic::nvvm_tex_1d_array_v4f32_f32:
    return NVPTXISD::Tex1DArrayFloatFloat;
  case Intrinsic::nvvm_tex_1d_array_level_v4f32_f32:
    return NVPTXISD::Tex1DArrayFloatFloatLevel;
  case Intrinsic::nvvm_tex_1d_array_grad_v4f32_f32:
    return NVPTXISD::Tex1DArrayFloatFloatGrad;
  case Intrinsic::nvvm_tex_1d_array_v4s32_s32:
    return NVPTXISD::Tex1DArrayS32S32;
  case Intrinsic::nvvm_tex_1d_array_v4s32_f32:
    return NVPTXISD::Tex1DArrayS32Float;
  case Intrinsic::nvvm_tex_1d_array_level_v4s32_f32:
    return NVPTXISD::Tex1DArrayS32FloatLevel;
  case Intrinsic::nvvm_tex_1d_array_grad_v4s32_f32:
    return NVPTXISD::Tex1DArrayS32FloatGrad;
  case Intrinsic::nvvm_tex_1d_array_v4u32_s32:
    return NVPTXISD::Tex1DArrayU32S32;
  case Intrinsic::nvvm_tex_1d_array_v4u32_f32:
    return NVPTXISD::Tex1DArrayU32Float;
  case Intrinsic::nvvm_tex_1d_array_level_v4u32_f32:
    return NVPTXISD::Tex1DArrayU32FloatLevel;
  case Intrinsic::nvvm_tex_1d_array_grad_v4u32_f32:
    return NVPTXISD::Tex1DArrayU32FloatGrad;

  case Intrinsic::nvvm_tex_2d_v4f32_s32:
    return NVPTXISD::Tex2DFloatS32;
  case Intrinsic::nvvm_tex_2d_v4f32_f32:
    return NVPTXISD::Tex2DFloatFloat;
  case Intrinsic::nvvm_tex_2d_level_v4f32_f32:
    return NVPTXISD::Tex2DFloatFloatLevel;
  case Intrinsic::nvvm_tex_2d_grad_v4f32_f32:
    return NVPTXISD::Tex2DFloatFloatGrad;
  case Intrinsic::nvvm_tex_2d_v4s32_s32:
    return NVPTXISD::Tex2DS32S32;
  case Intrinsic::nvvm_tex_2d_v4s32_f32:
    return NVPTXISD::Tex2DS32Float;
  case Intrinsic::nvvm_tex_2d_level_v4s32_f32:
    return NVPTXISD::Tex2DS32FloatLevel;
  case Intrinsic::nvvm_tex_2d_grad_v4s32_f32:
    return NVPTXISD::Tex2DS32FloatGrad;
  case Intrinsic::nvvm_tex_2d_v4u32_s32:
    return NVPTXISD::Tex2DU32S32;
  case Intrinsic::nvvm_tex_2d_v4u32_f32:
    return NVPTXISD::Tex2DU32Float;
  case Intrinsic::nvvm_tex_2d_level_v4u32_f32:
    return NVPTXISD::Tex2DU32FloatLevel;
  case Intrinsic::nvvm_tex_2d_grad_v4u32_f32:
    return NVPTXISD::Tex2DU32FloatGrad;

  case Intrinsic::nvvm_tex_2d_array_v4f32_s32:
    return NVPTXISD::Tex2DArrayFloatS32;
  case Intrinsic::nvvm_tex_2d_array_v4f32_f32:
    return NVPTXISD::Tex2DArrayFloatFloat;
  case Intrinsic::nvvm_tex_2d_array_level_v4f32_f32:
    return NVPTXISD::Tex2DArrayFloatFloatLevel;
  case Intrinsic::nvvm_tex_2d_array_grad_v4f32_f32:
    return NVPTXISD::Tex2DArrayFloatFloatGrad;
  case Intrinsic::nvvm_tex_2d_array_v4s32_s32:
    return NVPTXISD::Tex2DArrayS32S32;
  case Intrinsic::nvvm_tex_2d_array_v4s32_f32:
    return NVPTXISD::Tex2DArrayS32Float;
  case Intrinsic::nvvm_tex_2d_array_level_v4s32_f32:
    return NVPTXISD::Tex2DArrayS32FloatLevel;
  case Intrinsic::nvvm_tex_2d_array_grad_v4s32_f32:
    return NVPTXISD::Tex2DArrayS32FloatGrad;
  case Intrinsic::nvvm_tex_2d_array_v4u32_s32:
    return NVPTXISD::Tex2DArrayU32S32;
  case Intrinsic::nvvm_tex_2d_array_v4u32_f32:
    return NVPTXISD::Tex2DArrayU32Float;
  case Intrinsic::nvvm_tex_2d_array_level_v4u32_f32:
    return NVPTXISD::Tex2DArrayU32FloatLevel;
  case Intrinsic::nvvm_tex_2d_array_grad_v4u32_f32:
    return NVPTXISD::Tex2DArrayU32FloatGrad;

  case Intrinsic::nvvm_tex_3d_v4f32_s32:
    return NVPTXISD::Tex3DFloatS32;
  case Intrinsic::nvvm_tex_3d_v4f32_f32:
    return NVPTXISD::Tex3DFloatFloat;
  case Intrinsic::nvvm_tex_3d_level_v4f32_f32:
    return NVPTXISD::Tex3DFloatFloatLevel;
  case Intrinsic::nvvm_tex_3d_grad_v4f32_f32:
    return NVPTXISD::Tex3DFloatFloatGrad;
  case Intrinsic::nvvm_tex_3d_v4s32_s32:
    return NVPTXISD::Tex3DS32S32;
  case Intrinsic::nvvm_tex_3d_v4s32_f32:
    return NVPTXISD::Tex3DS32Float;
  case Intrinsic::nvvm_tex_3d_level_v4s32_f32:
    return NVPTXISD::Tex3DS32FloatLevel;
  case Intrinsic::nvvm_tex_3d_grad_v4s32_f32:
    return NVPTXISD::Tex3DS32FloatGrad;
  case Intrinsic::nvvm_tex_3d_v4u32_s32:
    return NVPTXISD::Tex3DU32S32;
  case Intrinsic::nvvm_tex_3d_v4u32_f32:
    return NVPTXISD::Tex3DU32Float;
  case Intrinsic::nvvm_tex_3d_level_v4u32_f32:
    return NVPTXISD::Tex3DU32FloatLevel;
  case Intrinsic::nvvm_tex_3d_grad_v4u32_f32:
    return NVPTXISD::Tex3DU32FloatGrad;

  case Intrinsic::nvvm_tex_cube_v4f32_f32:
    return NVPTXISD::TexCubeFloatFloat;
  case Intrinsic::nvvm_tex_cube_level_v4f32_f32:
    return NVPTXISD::TexCubeFloatFloatLevel;
  case Intrinsic::nvvm_tex_cube_v4s32_f32:
    return NVPTXISD::TexCubeS32Float;
  case Intrinsic::nvvm_tex_cube_level_v4s32_f32:
    return NVPTXISD::TexCubeS32FloatLevel;
  case Intrinsic::nvvm_tex_cube_v4u32_f32:
    return NVPTXISD::TexCubeU32Float;
  case Intrinsic::nvvm_tex_cube_level_v4u32_f32:
    return NVPTXISD::TexCubeU32FloatLevel;

  case Intrinsic::nvvm_tex_cube_array_v4f32_f32:
    return NVPTXISD::TexCubeArrayFloatFloat;
  case Intrinsic::nvvm_tex_cube_array_level_v4f32_f32:
    return NVPTXISD::TexCubeArrayFloatFloatLevel;
  case Intrinsic::nvvm_tex_cube_array_v4s32_f32:
    return NVPTXISD::TexCubeArrayS32Float;
  case Intrinsic::nvvm_tex_cube_array_level_v4s32_f32:
    return NVPTXISD::TexCubeArrayS32FloatLevel;
  case Intrinsic::nvvm_tex_cube_array_v4u32_f32:
    return NVPTXISD::TexCubeArrayU32Float;
  case Intrinsic::nvvm_tex_cube_array_level_v4u32_f32:
    return NVPTXISD::TexCubeArrayU32FloatLevel;

  case Intrinsic::nvvm_tld4_r_2d_v4f32_f32:
    return NVPTXISD::Tld4R2DFloatFloat;
  case Intrinsic::nvvm_tld4_g_2d_v4f32_f32:
    return NVPTXISD::Tld4G2DFloatFloat;
  case Intrinsic::nvvm_tld4_b_2d_v4f32_f32:
    return NVPTXISD::Tld4B2DFloatFloat;
  case Intrinsic::nvvm_tld4_a_2d_v4f32_f32:
    return NVPTXISD::Tld4A2DFloatFloat;
  case Intrinsic::nvvm_tld4_r_2d_v4s32_f32:
    return NVPTXISD::Tld4R2DS64Float;
  case Intrinsic::nvvm_tld4_g_2d_v4s32_f32:
    return NVPTXISD::Tld4G2DS64Float;
  case Intrinsic::nvvm_tld4_b_2d_v4s32_f32:
    return NVPTXISD::Tld4B2DS64Float;
  case Intrinsic::nvvm_tld4_a_2d_v4s32_f32:
    return NVPTXISD::Tld4A2DS64Float;
  case Intrinsic::nvvm_tld4_r_2d_v4u32_f32:
    return NVPTXISD::Tld4R2DU64Float;
  case Intrinsic::nvvm_tld4_g_2d_v4u32_f32:
    return NVPTXISD::Tld4G2DU64Float;
  case Intrinsic::nvvm_tld4_b_2d_v4u32_f32:
    return NVPTXISD::Tld4B2DU64Float;
  case Intrinsic::nvvm_tld4_a_2d_v4u32_f32:
    return NVPTXISD::Tld4A2DU64Float;

  case Intrinsic::nvvm_tex_unified_1d_v4f32_s32:
    return NVPTXISD::TexUnified1DFloatS32;
  case Intrinsic::nvvm_tex_unified_1d_v4f32_f32:
    return NVPTXISD::TexUnified1DFloatFloat;
  case Intrinsic::nvvm_tex_unified_1d_level_v4f32_f32:
    return NVPTXISD::TexUnified1DFloatFloatLevel;
  case Intrinsic::nvvm_tex_unified_1d_grad_v4f32_f32:
    return NVPTXISD::TexUnified1DFloatFloatGrad;
  case Intrinsic::nvvm_tex_unified_1d_v4s32_s32:
    return NVPTXISD::TexUnified1DS32S32;
  case Intrinsic::nvvm_tex_unified_1d_v4s32_f32:
    return NVPTXISD::TexUnified1DS32Float;
  case Intrinsic::nvvm_tex_unified_1d_level_v4s32_f32:
    return NVPTXISD::TexUnified1DS32FloatLevel;
  case Intrinsic::nvvm_tex_unified_1d_grad_v4s32_f32:
    return NVPTXISD::TexUnified1DS32FloatGrad;
  case Intrinsic::nvvm_tex_unified_1d_v4u32_s32:
    return NVPTXISD::TexUnified1DU32S32;
  case Intrinsic::nvvm_tex_unified_1d_v4u32_f32:
    return NVPTXISD::TexUnified1DU32Float;
  case Intrinsic::nvvm_tex_unified_1d_level_v4u32_f32:
    return NVPTXISD::TexUnified1DU32FloatLevel;
  case Intrinsic::nvvm_tex_unified_1d_grad_v4u32_f32:
    return NVPTXISD::TexUnified1DU32FloatGrad;

  case Intrinsic::nvvm_tex_unified_1d_array_v4f32_s32:
    return NVPTXISD::TexUnified1DArrayFloatS32;
  case Intrinsic::nvvm_tex_unified_1d_array_v4f32_f32:
    return NVPTXISD::TexUnified1DArrayFloatFloat;
  case Intrinsic::nvvm_tex_unified_1d_array_level_v4f32_f32:
    return NVPTXISD::TexUnified1DArrayFloatFloatLevel;
  case Intrinsic::nvvm_tex_unified_1d_array_grad_v4f32_f32:
    return NVPTXISD::TexUnified1DArrayFloatFloatGrad;
  case Intrinsic::nvvm_tex_unified_1d_array_v4s32_s32:
    return NVPTXISD::TexUnified1DArrayS32S32;
  case Intrinsic::nvvm_tex_unified_1d_array_v4s32_f32:
    return NVPTXISD::TexUnified1DArrayS32Float;
  case Intrinsic::nvvm_tex_unified_1d_array_level_v4s32_f32:
    return NVPTXISD::TexUnified1DArrayS32FloatLevel;
  case Intrinsic::nvvm_tex_unified_1d_array_grad_v4s32_f32:
    return NVPTXISD::TexUnified1DArrayS32FloatGrad;
  case Intrinsic::nvvm_tex_unified_1d_array_v4u32_s32:
    return NVPTXISD::TexUnified1DArrayU32S32;
  case Intrinsic::nvvm_tex_unified_1d_array_v4u32_f32:
    return NVPTXISD::TexUnified1DArrayU32Float;
  case Intrinsic::nvvm_tex_unified_1d_array_level_v4u32_f32:
    return NVPTXISD::TexUnified1DArrayU32FloatLevel;
  case Intrinsic::nvvm_tex_unified_1d_array_grad_v4u32_f32:
    return NVPTXISD::TexUnified1DArrayU32FloatGrad;

  case Intrinsic::nvvm_tex_unified_2d_v4f32_s32:
    return NVPTXISD::TexUnified2DFloatS32;
  case Intrinsic::nvvm_tex_unified_2d_v4f32_f32:
    return NVPTXISD::TexUnified2DFloatFloat;
  case Intrinsic::nvvm_tex_unified_2d_level_v4f32_f32:
    return NVPTXISD::TexUnified2DFloatFloatLevel;
  case Intrinsic::nvvm_tex_unified_2d_grad_v4f32_f32:
    return NVPTXISD::TexUnified2DFloatFloatGrad;
  case Intrinsic::nvvm_tex_unified_2d_v4s32_s32:
    return NVPTXISD::TexUnified2DS32S32;
  case Intrinsic::nvvm_tex_unified_2d_v4s32_f32:
    return NVPTXISD::TexUnified2DS32Float;
  case Intrinsic::nvvm_tex_unified_2d_level_v4s32_f32:
    return NVPTXISD::TexUnified2DS32FloatLevel;
  case Intrinsic::nvvm_tex_unified_2d_grad_v4s32_f32:
    return NVPTXISD::TexUnified2DS32FloatGrad;
  case Intrinsic::nvvm_tex_unified_2d_v4u32_s32:
    return NVPTXISD::TexUnified2DU32S32;
  case Intrinsic::nvvm_tex_unified_2d_v4u32_f32:
    return NVPTXISD::TexUnified2DU32Float;
  case Intrinsic::nvvm_tex_unified_2d_level_v4u32_f32:
    return NVPTXISD::TexUnified2DU32FloatLevel;
  case Intrinsic::nvvm_tex_unified_2d_grad_v4u32_f32:
    return NVPTXISD::TexUnified2DU32FloatGrad;

  case Intrinsic::nvvm_tex_unified_2d_array_v4f32_s32:
    return NVPTXISD::TexUnified2DArrayFloatS32;
  case Intrinsic::nvvm_tex_unified_2d_array_v4f32_f32:
    return NVPTXISD::TexUnified2DArrayFloatFloat;
  case Intrinsic::nvvm_tex_unified_2d_array_level_v4f32_f32:
    return NVPTXISD::TexUnified2DArrayFloatFloatLevel;
  case Intrinsic::nvvm_tex_unified_2d_array_grad_v4f32_f32:
    return NVPTXISD::TexUnified2DArrayFloatFloatGrad;
  case Intrinsic::nvvm_tex_unified_2d_array_v4s32_s32:
    return NVPTXISD::TexUnified2DArrayS32S32;
  case Intrinsic::nvvm_tex_unified_2d_array_v4s32_f32:
    return NVPTXISD::TexUnified2DArrayS32Float;
  case Intrinsic::nvvm_tex_unified_2d_array_level_v4s32_f32:
    return NVPTXISD::TexUnified2DArrayS32FloatLevel;
  case Intrinsic::nvvm_tex_unified_2d_array_grad_v4s32_f32:
    return NVPTXISD::TexUnified2DArrayS32FloatGrad;
  case Intrinsic::nvvm_tex_unified_2d_array_v4u32_s32:
    return NVPTXISD::TexUnified2DArrayU32S32;
  case Intrinsic::nvvm_tex_unified_2d_array_v4u32_f32:
    return NVPTXISD::TexUnified2DArrayU32Float;
  case Intrinsic::nvvm_tex_unified_2d_array_level_v4u32_f32:
    return NVPTXISD::TexUnified2DArrayU32FloatLevel;
  case Intrinsic::nvvm_tex_unified_2d_array_grad_v4u32_f32:
    return NVPTXISD::TexUnified2DArrayU32FloatGrad;

  case Intrinsic::nvvm_tex_unified_3d_v4f32_s32:
    return NVPTXISD::TexUnified3DFloatS32;
  case Intrinsic::nvvm_tex_unified_3d_v4f32_f32:
    return NVPTXISD::TexUnified3DFloatFloat;
  case Intrinsic::nvvm_tex_unified_3d_level_v4f32_f32:
    return NVPTXISD::TexUnified3DFloatFloatLevel;
  case Intrinsic::nvvm_tex_unified_3d_grad_v4f32_f32:
    return NVPTXISD::TexUnified3DFloatFloatGrad;
  case Intrinsic::nvvm_tex_unified_3d_v4s32_s32:
    return NVPTXISD::TexUnified3DS32S32;
  case Intrinsic::nvvm_tex_unified_3d_v4s32_f32:
    return NVPTXISD::TexUnified3DS32Float;
  case Intrinsic::nvvm_tex_unified_3d_level_v4s32_f32:
    return NVPTXISD::TexUnified3DS32FloatLevel;
  case Intrinsic::nvvm_tex_unified_3d_grad_v4s32_f32:
    return NVPTXISD::TexUnified3DS32FloatGrad;
  case Intrinsic::nvvm_tex_unified_3d_v4u32_s32:
    return NVPTXISD::TexUnified3DU32S32;
  case Intrinsic::nvvm_tex_unified_3d_v4u32_f32:
    return NVPTXISD::TexUnified3DU32Float;
  case Intrinsic::nvvm_tex_unified_3d_level_v4u32_f32:
    return NVPTXISD::TexUnified3DU32FloatLevel;
  case Intrinsic::nvvm_tex_unified_3d_grad_v4u32_f32:
    return NVPTXISD::TexUnified3DU32FloatGrad;

  case Intrinsic::nvvm_tex_unified_cube_v4f32_f32:
    return NVPTXISD::TexUnifiedCubeFloatFloat;
  case Intrinsic::nvvm_tex_unified_cube_level_v4f32_f32:
    return NVPTXISD::TexUnifiedCubeFloatFloatLevel;
  case Intrinsic::nvvm_tex_unified_cube_v4s32_f32:
    return NVPTXISD::TexUnifiedCubeS32Float;
  case Intrinsic::nvvm_tex_unified_cube_level_v4s32_f32:
    return NVPTXISD::TexUnifiedCubeS32FloatLevel;
  case Intrinsic::nvvm_tex_unified_cube_v4u32_f32:
    return NVPTXISD::TexUnifiedCubeU32Float;
  case Intrinsic::nvvm_tex_unified_cube_level_v4u32_f32:
    return NVPTXISD::TexUnifiedCubeU32FloatLevel;

  case Intrinsic::nvvm_tex_unified_cube_array_v4f32_f32:
    return NVPTXISD::TexUnifiedCubeArrayFloatFloat;
  case Intrinsic::nvvm_tex_unified_cube_array_level_v4f32_f32:
    return NVPTXISD::TexUnifiedCubeArrayFloatFloatLevel;
  case Intrinsic::nvvm_tex_unified_cube_array_v4s32_f32:
    return NVPTXISD::TexUnifiedCubeArrayS32Float;
  case Intrinsic::nvvm_tex_unified_cube_array_level_v4s32_f32:
    return NVPTXISD::TexUnifiedCubeArrayS32FloatLevel;
  case Intrinsic::nvvm_tex_unified_cube_array_v4u32_f32:
    return NVPTXISD::TexUnifiedCubeArrayU32Float;
  case Intrinsic::nvvm_tex_unified_cube_array_level_v4u32_f32:
    return NVPTXISD::TexUnifiedCubeArrayU32FloatLevel;

  case Intrinsic::nvvm_tld4_unified_r_2d_v4f32_f32:
    return NVPTXISD::Tld4UnifiedR2DFloatFloat;
  case Intrinsic::nvvm_tld4_unified_g_2d_v4f32_f32:
    return NVPTXISD::Tld4UnifiedG2DFloatFloat;
  case Intrinsic::nvvm_tld4_unified_b_2d_v4f32_f32:
    return NVPTXISD::Tld4UnifiedB2DFloatFloat;
  case Intrinsic::nvvm_tld4_unified_a_2d_v4f32_f32:
    return NVPTXISD::Tld4UnifiedA2DFloatFloat;
  case Intrinsic::nvvm_tld4_unified_r_2d_v4s32_f32:
    return NVPTXISD::Tld4UnifiedR2DS64Float;
  case Intrinsic::nvvm_tld4_unified_g_2d_v4s32_f32:
    return NVPTXISD::Tld4UnifiedG2DS64Float;
  case Intrinsic::nvvm_tld4_unified_b_2d_v4s32_f32:
    return NVPTXISD::Tld4UnifiedB2DS64Float;
  case Intrinsic::nvvm_tld4_unified_a_2d_v4s32_f32:
    return NVPTXISD::Tld4UnifiedA2DS64Float;
  case Intrinsic::nvvm_tld4_unified_r_2d_v4u32_f32:
    return NVPTXISD::Tld4UnifiedR2DU64Float;
  case Intrinsic::nvvm_tld4_unified_g_2d_v4u32_f32:
    return NVPTXISD::Tld4UnifiedG2DU64Float;
  case Intrinsic::nvvm_tld4_unified_b_2d_v4u32_f32:
    return NVPTXISD::Tld4UnifiedB2DU64Float;
  case Intrinsic::nvvm_tld4_unified_a_2d_v4u32_f32:
    return NVPTXISD::Tld4UnifiedA2DU64Float;
  }
}

static unsigned getOpcForSurfaceInstr(unsigned Intrinsic) {
  switch (Intrinsic) {
  default:
    return 0;
  case Intrinsic::nvvm_suld_1d_i8_clamp:
    return NVPTXISD::Suld1DI8Clamp;
  case Intrinsic::nvvm_suld_1d_i16_clamp:
    return NVPTXISD::Suld1DI16Clamp;
  case Intrinsic::nvvm_suld_1d_i32_clamp:
    return NVPTXISD::Suld1DI32Clamp;
  case Intrinsic::nvvm_suld_1d_i64_clamp:
    return NVPTXISD::Suld1DI64Clamp;
  case Intrinsic::nvvm_suld_1d_v2i8_clamp:
    return NVPTXISD::Suld1DV2I8Clamp;
  case Intrinsic::nvvm_suld_1d_v2i16_clamp:
    return NVPTXISD::Suld1DV2I16Clamp;
  case Intrinsic::nvvm_suld_1d_v2i32_clamp:
    return NVPTXISD::Suld1DV2I32Clamp;
  case Intrinsic::nvvm_suld_1d_v2i64_clamp:
    return NVPTXISD::Suld1DV2I64Clamp;
  case Intrinsic::nvvm_suld_1d_v4i8_clamp:
    return NVPTXISD::Suld1DV4I8Clamp;
  case Intrinsic::nvvm_suld_1d_v4i16_clamp:
    return NVPTXISD::Suld1DV4I16Clamp;
  case Intrinsic::nvvm_suld_1d_v4i32_clamp:
    return NVPTXISD::Suld1DV4I32Clamp;
  case Intrinsic::nvvm_suld_1d_array_i8_clamp:
    return NVPTXISD::Suld1DArrayI8Clamp;
  case Intrinsic::nvvm_suld_1d_array_i16_clamp:
    return NVPTXISD::Suld1DArrayI16Clamp;
  case Intrinsic::nvvm_suld_1d_array_i32_clamp:
    return NVPTXISD::Suld1DArrayI32Clamp;
  case Intrinsic::nvvm_suld_1d_array_i64_clamp:
    return NVPTXISD::Suld1DArrayI64Clamp;
  case Intrinsic::nvvm_suld_1d_array_v2i8_clamp:
    return NVPTXISD::Suld1DArrayV2I8Clamp;
  case Intrinsic::nvvm_suld_1d_array_v2i16_clamp:
    return NVPTXISD::Suld1DArrayV2I16Clamp;
  case Intrinsic::nvvm_suld_1d_array_v2i32_clamp:
    return NVPTXISD::Suld1DArrayV2I32Clamp;
  case Intrinsic::nvvm_suld_1d_array_v2i64_clamp:
    return NVPTXISD::Suld1DArrayV2I64Clamp;
  case Intrinsic::nvvm_suld_1d_array_v4i8_clamp:
    return NVPTXISD::Suld1DArrayV4I8Clamp;
  case Intrinsic::nvvm_suld_1d_array_v4i16_clamp:
    return NVPTXISD::Suld1DArrayV4I16Clamp;
  case Intrinsic::nvvm_suld_1d_array_v4i32_clamp:
    return NVPTXISD::Suld1DArrayV4I32Clamp;
  case Intrinsic::nvvm_suld_2d_i8_clamp:
    return NVPTXISD::Suld2DI8Clamp;
  case Intrinsic::nvvm_suld_2d_i16_clamp:
    return NVPTXISD::Suld2DI16Clamp;
  case Intrinsic::nvvm_suld_2d_i32_clamp:
    return NVPTXISD::Suld2DI32Clamp;
  case Intrinsic::nvvm_suld_2d_i64_clamp:
    return NVPTXISD::Suld2DI64Clamp;
  case Intrinsic::nvvm_suld_2d_v2i8_clamp:
    return NVPTXISD::Suld2DV2I8Clamp;
  case Intrinsic::nvvm_suld_2d_v2i16_clamp:
    return NVPTXISD::Suld2DV2I16Clamp;
  case Intrinsic::nvvm_suld_2d_v2i32_clamp:
    return NVPTXISD::Suld2DV2I32Clamp;
  case Intrinsic::nvvm_suld_2d_v2i64_clamp:
    return NVPTXISD::Suld2DV2I64Clamp;
  case Intrinsic::nvvm_suld_2d_v4i8_clamp:
    return NVPTXISD::Suld2DV4I8Clamp;
  case Intrinsic::nvvm_suld_2d_v4i16_clamp:
    return NVPTXISD::Suld2DV4I16Clamp;
  case Intrinsic::nvvm_suld_2d_v4i32_clamp:
    return NVPTXISD::Suld2DV4I32Clamp;
  case Intrinsic::nvvm_suld_2d_array_i8_clamp:
    return NVPTXISD::Suld2DArrayI8Clamp;
  case Intrinsic::nvvm_suld_2d_array_i16_clamp:
    return NVPTXISD::Suld2DArrayI16Clamp;
  case Intrinsic::nvvm_suld_2d_array_i32_clamp:
    return NVPTXISD::Suld2DArrayI32Clamp;
  case Intrinsic::nvvm_suld_2d_array_i64_clamp:
    return NVPTXISD::Suld2DArrayI64Clamp;
  case Intrinsic::nvvm_suld_2d_array_v2i8_clamp:
    return NVPTXISD::Suld2DArrayV2I8Clamp;
  case Intrinsic::nvvm_suld_2d_array_v2i16_clamp:
    return NVPTXISD::Suld2DArrayV2I16Clamp;
  case Intrinsic::nvvm_suld_2d_array_v2i32_clamp:
    return NVPTXISD::Suld2DArrayV2I32Clamp;
  case Intrinsic::nvvm_suld_2d_array_v2i64_clamp:
    return NVPTXISD::Suld2DArrayV2I64Clamp;
  case Intrinsic::nvvm_suld_2d_array_v4i8_clamp:
    return NVPTXISD::Suld2DArrayV4I8Clamp;
  case Intrinsic::nvvm_suld_2d_array_v4i16_clamp:
    return NVPTXISD::Suld2DArrayV4I16Clamp;
  case Intrinsic::nvvm_suld_2d_array_v4i32_clamp:
    return NVPTXISD::Suld2DArrayV4I32Clamp;
  case Intrinsic::nvvm_suld_3d_i8_clamp:
    return NVPTXISD::Suld3DI8Clamp;
  case Intrinsic::nvvm_suld_3d_i16_clamp:
    return NVPTXISD::Suld3DI16Clamp;
  case Intrinsic::nvvm_suld_3d_i32_clamp:
    return NVPTXISD::Suld3DI32Clamp;
  case Intrinsic::nvvm_suld_3d_i64_clamp:
    return NVPTXISD::Suld3DI64Clamp;
  case Intrinsic::nvvm_suld_3d_v2i8_clamp:
    return NVPTXISD::Suld3DV2I8Clamp;
  case Intrinsic::nvvm_suld_3d_v2i16_clamp:
    return NVPTXISD::Suld3DV2I16Clamp;
  case Intrinsic::nvvm_suld_3d_v2i32_clamp:
    return NVPTXISD::Suld3DV2I32Clamp;
  case Intrinsic::nvvm_suld_3d_v2i64_clamp:
    return NVPTXISD::Suld3DV2I64Clamp;
  case Intrinsic::nvvm_suld_3d_v4i8_clamp:
    return NVPTXISD::Suld3DV4I8Clamp;
  case Intrinsic::nvvm_suld_3d_v4i16_clamp:
    return NVPTXISD::Suld3DV4I16Clamp;
  case Intrinsic::nvvm_suld_3d_v4i32_clamp:
    return NVPTXISD::Suld3DV4I32Clamp;
  case Intrinsic::nvvm_suld_1d_i8_trap:
    return NVPTXISD::Suld1DI8Trap;
  case Intrinsic::nvvm_suld_1d_i16_trap:
    return NVPTXISD::Suld1DI16Trap;
  case Intrinsic::nvvm_suld_1d_i32_trap:
    return NVPTXISD::Suld1DI32Trap;
  case Intrinsic::nvvm_suld_1d_i64_trap:
    return NVPTXISD::Suld1DI64Trap;
  case Intrinsic::nvvm_suld_1d_v2i8_trap:
    return NVPTXISD::Suld1DV2I8Trap;
  case Intrinsic::nvvm_suld_1d_v2i16_trap:
    return NVPTXISD::Suld1DV2I16Trap;
  case Intrinsic::nvvm_suld_1d_v2i32_trap:
    return NVPTXISD::Suld1DV2I32Trap;
  case Intrinsic::nvvm_suld_1d_v2i64_trap:
    return NVPTXISD::Suld1DV2I64Trap;
  case Intrinsic::nvvm_suld_1d_v4i8_trap:
    return NVPTXISD::Suld1DV4I8Trap;
  case Intrinsic::nvvm_suld_1d_v4i16_trap:
    return NVPTXISD::Suld1DV4I16Trap;
  case Intrinsic::nvvm_suld_1d_v4i32_trap:
    return NVPTXISD::Suld1DV4I32Trap;
  case Intrinsic::nvvm_suld_1d_array_i8_trap:
    return NVPTXISD::Suld1DArrayI8Trap;
  case Intrinsic::nvvm_suld_1d_array_i16_trap:
    return NVPTXISD::Suld1DArrayI16Trap;
  case Intrinsic::nvvm_suld_1d_array_i32_trap:
    return NVPTXISD::Suld1DArrayI32Trap;
  case Intrinsic::nvvm_suld_1d_array_i64_trap:
    return NVPTXISD::Suld1DArrayI64Trap;
  case Intrinsic::nvvm_suld_1d_array_v2i8_trap:
    return NVPTXISD::Suld1DArrayV2I8Trap;
  case Intrinsic::nvvm_suld_1d_array_v2i16_trap:
    return NVPTXISD::Suld1DArrayV2I16Trap;
  case Intrinsic::nvvm_suld_1d_array_v2i32_trap:
    return NVPTXISD::Suld1DArrayV2I32Trap;
  case Intrinsic::nvvm_suld_1d_array_v2i64_trap:
    return NVPTXISD::Suld1DArrayV2I64Trap;
  case Intrinsic::nvvm_suld_1d_array_v4i8_trap:
    return NVPTXISD::Suld1DArrayV4I8Trap;
  case Intrinsic::nvvm_suld_1d_array_v4i16_trap:
    return NVPTXISD::Suld1DArrayV4I16Trap;
  case Intrinsic::nvvm_suld_1d_array_v4i32_trap:
    return NVPTXISD::Suld1DArrayV4I32Trap;
  case Intrinsic::nvvm_suld_2d_i8_trap:
    return NVPTXISD::Suld2DI8Trap;
  case Intrinsic::nvvm_suld_2d_i16_trap:
    return NVPTXISD::Suld2DI16Trap;
  case Intrinsic::nvvm_suld_2d_i32_trap:
    return NVPTXISD::Suld2DI32Trap;
  case Intrinsic::nvvm_suld_2d_i64_trap:
    return NVPTXISD::Suld2DI64Trap;
  case Intrinsic::nvvm_suld_2d_v2i8_trap:
    return NVPTXISD::Suld2DV2I8Trap;
  case Intrinsic::nvvm_suld_2d_v2i16_trap:
    return NVPTXISD::Suld2DV2I16Trap;
  case Intrinsic::nvvm_suld_2d_v2i32_trap:
    return NVPTXISD::Suld2DV2I32Trap;
  case Intrinsic::nvvm_suld_2d_v2i64_trap:
    return NVPTXISD::Suld2DV2I64Trap;
  case Intrinsic::nvvm_suld_2d_v4i8_trap:
    return NVPTXISD::Suld2DV4I8Trap;
  case Intrinsic::nvvm_suld_2d_v4i16_trap:
    return NVPTXISD::Suld2DV4I16Trap;
  case Intrinsic::nvvm_suld_2d_v4i32_trap:
    return NVPTXISD::Suld2DV4I32Trap;
  case Intrinsic::nvvm_suld_2d_array_i8_trap:
    return NVPTXISD::Suld2DArrayI8Trap;
  case Intrinsic::nvvm_suld_2d_array_i16_trap:
    return NVPTXISD::Suld2DArrayI16Trap;
  case Intrinsic::nvvm_suld_2d_array_i32_trap:
    return NVPTXISD::Suld2DArrayI32Trap;
  case Intrinsic::nvvm_suld_2d_array_i64_trap:
    return NVPTXISD::Suld2DArrayI64Trap;
  case Intrinsic::nvvm_suld_2d_array_v2i8_trap:
    return NVPTXISD::Suld2DArrayV2I8Trap;
  case Intrinsic::nvvm_suld_2d_array_v2i16_trap:
    return NVPTXISD::Suld2DArrayV2I16Trap;
  case Intrinsic::nvvm_suld_2d_array_v2i32_trap:
    return NVPTXISD::Suld2DArrayV2I32Trap;
  case Intrinsic::nvvm_suld_2d_array_v2i64_trap:
    return NVPTXISD::Suld2DArrayV2I64Trap;
  case Intrinsic::nvvm_suld_2d_array_v4i8_trap:
    return NVPTXISD::Suld2DArrayV4I8Trap;
  case Intrinsic::nvvm_suld_2d_array_v4i16_trap:
    return NVPTXISD::Suld2DArrayV4I16Trap;
  case Intrinsic::nvvm_suld_2d_array_v4i32_trap:
    return NVPTXISD::Suld2DArrayV4I32Trap;
  case Intrinsic::nvvm_suld_3d_i8_trap:
    return NVPTXISD::Suld3DI8Trap;
  case Intrinsic::nvvm_suld_3d_i16_trap:
    return NVPTXISD::Suld3DI16Trap;
  case Intrinsic::nvvm_suld_3d_i32_trap:
    return NVPTXISD::Suld3DI32Trap;
  case Intrinsic::nvvm_suld_3d_i64_trap:
    return NVPTXISD::Suld3DI64Trap;
  case Intrinsic::nvvm_suld_3d_v2i8_trap:
    return NVPTXISD::Suld3DV2I8Trap;
  case Intrinsic::nvvm_suld_3d_v2i16_trap:
    return NVPTXISD::Suld3DV2I16Trap;
  case Intrinsic::nvvm_suld_3d_v2i32_trap:
    return NVPTXISD::Suld3DV2I32Trap;
  case Intrinsic::nvvm_suld_3d_v2i64_trap:
    return NVPTXISD::Suld3DV2I64Trap;
  case Intrinsic::nvvm_suld_3d_v4i8_trap:
    return NVPTXISD::Suld3DV4I8Trap;
  case Intrinsic::nvvm_suld_3d_v4i16_trap:
    return NVPTXISD::Suld3DV4I16Trap;
  case Intrinsic::nvvm_suld_3d_v4i32_trap:
    return NVPTXISD::Suld3DV4I32Trap;
  case Intrinsic::nvvm_suld_1d_i8_zero:
    return NVPTXISD::Suld1DI8Zero;
  case Intrinsic::nvvm_suld_1d_i16_zero:
    return NVPTXISD::Suld1DI16Zero;
  case Intrinsic::nvvm_suld_1d_i32_zero:
    return NVPTXISD::Suld1DI32Zero;
  case Intrinsic::nvvm_suld_1d_i64_zero:
    return NVPTXISD::Suld1DI64Zero;
  case Intrinsic::nvvm_suld_1d_v2i8_zero:
    return NVPTXISD::Suld1DV2I8Zero;
  case Intrinsic::nvvm_suld_1d_v2i16_zero:
    return NVPTXISD::Suld1DV2I16Zero;
  case Intrinsic::nvvm_suld_1d_v2i32_zero:
    return NVPTXISD::Suld1DV2I32Zero;
  case Intrinsic::nvvm_suld_1d_v2i64_zero:
    return NVPTXISD::Suld1DV2I64Zero;
  case Intrinsic::nvvm_suld_1d_v4i8_zero:
    return NVPTXISD::Suld1DV4I8Zero;
  case Intrinsic::nvvm_suld_1d_v4i16_zero:
    return NVPTXISD::Suld1DV4I16Zero;
  case Intrinsic::nvvm_suld_1d_v4i32_zero:
    return NVPTXISD::Suld1DV4I32Zero;
  case Intrinsic::nvvm_suld_1d_array_i8_zero:
    return NVPTXISD::Suld1DArrayI8Zero;
  case Intrinsic::nvvm_suld_1d_array_i16_zero:
    return NVPTXISD::Suld1DArrayI16Zero;
  case Intrinsic::nvvm_suld_1d_array_i32_zero:
    return NVPTXISD::Suld1DArrayI32Zero;
  case Intrinsic::nvvm_suld_1d_array_i64_zero:
    return NVPTXISD::Suld1DArrayI64Zero;
  case Intrinsic::nvvm_suld_1d_array_v2i8_zero:
    return NVPTXISD::Suld1DArrayV2I8Zero;
  case Intrinsic::nvvm_suld_1d_array_v2i16_zero:
    return NVPTXISD::Suld1DArrayV2I16Zero;
  case Intrinsic::nvvm_suld_1d_array_v2i32_zero:
    return NVPTXISD::Suld1DArrayV2I32Zero;
  case Intrinsic::nvvm_suld_1d_array_v2i64_zero:
    return NVPTXISD::Suld1DArrayV2I64Zero;
  case Intrinsic::nvvm_suld_1d_array_v4i8_zero:
    return NVPTXISD::Suld1DArrayV4I8Zero;
  case Intrinsic::nvvm_suld_1d_array_v4i16_zero:
    return NVPTXISD::Suld1DArrayV4I16Zero;
  case Intrinsic::nvvm_suld_1d_array_v4i32_zero:
    return NVPTXISD::Suld1DArrayV4I32Zero;
  case Intrinsic::nvvm_suld_2d_i8_zero:
    return NVPTXISD::Suld2DI8Zero;
  case Intrinsic::nvvm_suld_2d_i16_zero:
    return NVPTXISD::Suld2DI16Zero;
  case Intrinsic::nvvm_suld_2d_i32_zero:
    return NVPTXISD::Suld2DI32Zero;
  case Intrinsic::nvvm_suld_2d_i64_zero:
    return NVPTXISD::Suld2DI64Zero;
  case Intrinsic::nvvm_suld_2d_v2i8_zero:
    return NVPTXISD::Suld2DV2I8Zero;
  case Intrinsic::nvvm_suld_2d_v2i16_zero:
    return NVPTXISD::Suld2DV2I16Zero;
  case Intrinsic::nvvm_suld_2d_v2i32_zero:
    return NVPTXISD::Suld2DV2I32Zero;
  case Intrinsic::nvvm_suld_2d_v2i64_zero:
    return NVPTXISD::Suld2DV2I64Zero;
  case Intrinsic::nvvm_suld_2d_v4i8_zero:
    return NVPTXISD::Suld2DV4I8Zero;
  case Intrinsic::nvvm_suld_2d_v4i16_zero:
    return NVPTXISD::Suld2DV4I16Zero;
  case Intrinsic::nvvm_suld_2d_v4i32_zero:
    return NVPTXISD::Suld2DV4I32Zero;
  case Intrinsic::nvvm_suld_2d_array_i8_zero:
    return NVPTXISD::Suld2DArrayI8Zero;
  case Intrinsic::nvvm_suld_2d_array_i16_zero:
    return NVPTXISD::Suld2DArrayI16Zero;
  case Intrinsic::nvvm_suld_2d_array_i32_zero:
    return NVPTXISD::Suld2DArrayI32Zero;
  case Intrinsic::nvvm_suld_2d_array_i64_zero:
    return NVPTXISD::Suld2DArrayI64Zero;
  case Intrinsic::nvvm_suld_2d_array_v2i8_zero:
    return NVPTXISD::Suld2DArrayV2I8Zero;
  case Intrinsic::nvvm_suld_2d_array_v2i16_zero:
    return NVPTXISD::Suld2DArrayV2I16Zero;
  case Intrinsic::nvvm_suld_2d_array_v2i32_zero:
    return NVPTXISD::Suld2DArrayV2I32Zero;
  case Intrinsic::nvvm_suld_2d_array_v2i64_zero:
    return NVPTXISD::Suld2DArrayV2I64Zero;
  case Intrinsic::nvvm_suld_2d_array_v4i8_zero:
    return NVPTXISD::Suld2DArrayV4I8Zero;
  case Intrinsic::nvvm_suld_2d_array_v4i16_zero:
    return NVPTXISD::Suld2DArrayV4I16Zero;
  case Intrinsic::nvvm_suld_2d_array_v4i32_zero:
    return NVPTXISD::Suld2DArrayV4I32Zero;
  case Intrinsic::nvvm_suld_3d_i8_zero:
    return NVPTXISD::Suld3DI8Zero;
  case Intrinsic::nvvm_suld_3d_i16_zero:
    return NVPTXISD::Suld3DI16Zero;
  case Intrinsic::nvvm_suld_3d_i32_zero:
    return NVPTXISD::Suld3DI32Zero;
  case Intrinsic::nvvm_suld_3d_i64_zero:
    return NVPTXISD::Suld3DI64Zero;
  case Intrinsic::nvvm_suld_3d_v2i8_zero:
    return NVPTXISD::Suld3DV2I8Zero;
  case Intrinsic::nvvm_suld_3d_v2i16_zero:
    return NVPTXISD::Suld3DV2I16Zero;
  case Intrinsic::nvvm_suld_3d_v2i32_zero:
    return NVPTXISD::Suld3DV2I32Zero;
  case Intrinsic::nvvm_suld_3d_v2i64_zero:
    return NVPTXISD::Suld3DV2I64Zero;
  case Intrinsic::nvvm_suld_3d_v4i8_zero:
    return NVPTXISD::Suld3DV4I8Zero;
  case Intrinsic::nvvm_suld_3d_v4i16_zero:
    return NVPTXISD::Suld3DV4I16Zero;
  case Intrinsic::nvvm_suld_3d_v4i32_zero:
    return NVPTXISD::Suld3DV4I32Zero;
  }
}

// llvm.ptx.memcpy.const and llvm.ptx.memmove.const need to be modeled as
// TgtMemIntrinsic
// because we need the information that is only available in the "Value" type
// of destination
// pointer. In particular, the address space information.
bool NVPTXTargetLowering::getTgtMemIntrinsic(
    IntrinsicInfo &Info, const CallInst &I, unsigned Intrinsic) const {
  switch (Intrinsic) {
  default:
    return false;

  case Intrinsic::nvvm_atomic_load_add_f32:
    Info.opc = ISD::INTRINSIC_W_CHAIN;
    Info.memVT = MVT::f32;
    Info.ptrVal = I.getArgOperand(0);
    Info.offset = 0;
    Info.vol = 0;
    Info.readMem = true;
    Info.writeMem = true;
    Info.align = 0;
    return true;

  case Intrinsic::nvvm_atomic_load_inc_32:
  case Intrinsic::nvvm_atomic_load_dec_32:
    Info.opc = ISD::INTRINSIC_W_CHAIN;
    Info.memVT = MVT::i32;
    Info.ptrVal = I.getArgOperand(0);
    Info.offset = 0;
    Info.vol = 0;
    Info.readMem = true;
    Info.writeMem = true;
    Info.align = 0;
    return true;

  case Intrinsic::nvvm_ldu_global_i:
  case Intrinsic::nvvm_ldu_global_f:
  case Intrinsic::nvvm_ldu_global_p: {
    auto &DL = I.getModule()->getDataLayout();
    Info.opc = ISD::INTRINSIC_W_CHAIN;
    if (Intrinsic == Intrinsic::nvvm_ldu_global_i)
      Info.memVT = getValueType(DL, I.getType());
    else if(Intrinsic == Intrinsic::nvvm_ldu_global_p)
      Info.memVT = getPointerTy(DL);
    else
      Info.memVT = getValueType(DL, I.getType());
    Info.ptrVal = I.getArgOperand(0);
    Info.offset = 0;
    Info.vol = 0;
    Info.readMem = true;
    Info.writeMem = false;
    Info.align = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();

    return true;
  }
  case Intrinsic::nvvm_ldg_global_i:
  case Intrinsic::nvvm_ldg_global_f:
  case Intrinsic::nvvm_ldg_global_p: {
    auto &DL = I.getModule()->getDataLayout();

    Info.opc = ISD::INTRINSIC_W_CHAIN;
    if (Intrinsic == Intrinsic::nvvm_ldg_global_i)
      Info.memVT = getValueType(DL, I.getType());
    else if(Intrinsic == Intrinsic::nvvm_ldg_global_p)
      Info.memVT = getPointerTy(DL);
    else
      Info.memVT = getValueType(DL, I.getType());
    Info.ptrVal = I.getArgOperand(0);
    Info.offset = 0;
    Info.vol = 0;
    Info.readMem = true;
    Info.writeMem = false;
    Info.align = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();

    return true;
  }

  case Intrinsic::nvvm_tex_1d_v4f32_s32:
  case Intrinsic::nvvm_tex_1d_v4f32_f32:
  case Intrinsic::nvvm_tex_1d_level_v4f32_f32:
  case Intrinsic::nvvm_tex_1d_grad_v4f32_f32:
  case Intrinsic::nvvm_tex_1d_array_v4f32_s32:
  case Intrinsic::nvvm_tex_1d_array_v4f32_f32:
  case Intrinsic::nvvm_tex_1d_array_level_v4f32_f32:
  case Intrinsic::nvvm_tex_1d_array_grad_v4f32_f32:
  case Intrinsic::nvvm_tex_2d_v4f32_s32:
  case Intrinsic::nvvm_tex_2d_v4f32_f32:
  case Intrinsic::nvvm_tex_2d_level_v4f32_f32:
  case Intrinsic::nvvm_tex_2d_grad_v4f32_f32:
  case Intrinsic::nvvm_tex_2d_array_v4f32_s32:
  case Intrinsic::nvvm_tex_2d_array_v4f32_f32:
  case Intrinsic::nvvm_tex_2d_array_level_v4f32_f32:
  case Intrinsic::nvvm_tex_2d_array_grad_v4f32_f32:
  case Intrinsic::nvvm_tex_3d_v4f32_s32:
  case Intrinsic::nvvm_tex_3d_v4f32_f32:
  case Intrinsic::nvvm_tex_3d_level_v4f32_f32:
  case Intrinsic::nvvm_tex_3d_grad_v4f32_f32:
  case Intrinsic::nvvm_tex_cube_v4f32_f32:
  case Intrinsic::nvvm_tex_cube_level_v4f32_f32:
  case Intrinsic::nvvm_tex_cube_array_v4f32_f32:
  case Intrinsic::nvvm_tex_cube_array_level_v4f32_f32:
  case Intrinsic::nvvm_tld4_r_2d_v4f32_f32:
  case Intrinsic::nvvm_tld4_g_2d_v4f32_f32:
  case Intrinsic::nvvm_tld4_b_2d_v4f32_f32:
  case Intrinsic::nvvm_tld4_a_2d_v4f32_f32:
  case Intrinsic::nvvm_tex_unified_1d_v4f32_s32:
  case Intrinsic::nvvm_tex_unified_1d_v4f32_f32:
  case Intrinsic::nvvm_tex_unified_1d_level_v4f32_f32:
  case Intrinsic::nvvm_tex_unified_1d_grad_v4f32_f32:
  case Intrinsic::nvvm_tex_unified_1d_array_v4f32_s32:
  case Intrinsic::nvvm_tex_unified_1d_array_v4f32_f32:
  case Intrinsic::nvvm_tex_unified_1d_array_level_v4f32_f32:
  case Intrinsic::nvvm_tex_unified_1d_array_grad_v4f32_f32:
  case Intrinsic::nvvm_tex_unified_2d_v4f32_s32:
  case Intrinsic::nvvm_tex_unified_2d_v4f32_f32:
  case Intrinsic::nvvm_tex_unified_2d_level_v4f32_f32:
  case Intrinsic::nvvm_tex_unified_2d_grad_v4f32_f32:
  case Intrinsic::nvvm_tex_unified_2d_array_v4f32_s32:
  case Intrinsic::nvvm_tex_unified_2d_array_v4f32_f32:
  case Intrinsic::nvvm_tex_unified_2d_array_level_v4f32_f32:
  case Intrinsic::nvvm_tex_unified_2d_array_grad_v4f32_f32:
  case Intrinsic::nvvm_tex_unified_3d_v4f32_s32:
  case Intrinsic::nvvm_tex_unified_3d_v4f32_f32:
  case Intrinsic::nvvm_tex_unified_3d_level_v4f32_f32:
  case Intrinsic::nvvm_tex_unified_3d_grad_v4f32_f32:
  case Intrinsic::nvvm_tex_unified_cube_v4f32_f32:
  case Intrinsic::nvvm_tex_unified_cube_level_v4f32_f32:
  case Intrinsic::nvvm_tex_unified_cube_array_v4f32_f32:
  case Intrinsic::nvvm_tex_unified_cube_array_level_v4f32_f32:
  case Intrinsic::nvvm_tld4_unified_r_2d_v4f32_f32:
  case Intrinsic::nvvm_tld4_unified_g_2d_v4f32_f32:
  case Intrinsic::nvvm_tld4_unified_b_2d_v4f32_f32:
  case Intrinsic::nvvm_tld4_unified_a_2d_v4f32_f32: {
    Info.opc = getOpcForTextureInstr(Intrinsic);
    Info.memVT = MVT::v4f32;
    Info.ptrVal = nullptr;
    Info.offset = 0;
    Info.vol = 0;
    Info.readMem = true;
    Info.writeMem = false;
    Info.align = 16;
    return true;
  }
  case Intrinsic::nvvm_tex_1d_v4s32_s32:
  case Intrinsic::nvvm_tex_1d_v4s32_f32:
  case Intrinsic::nvvm_tex_1d_level_v4s32_f32:
  case Intrinsic::nvvm_tex_1d_grad_v4s32_f32:
  case Intrinsic::nvvm_tex_1d_array_v4s32_s32:
  case Intrinsic::nvvm_tex_1d_array_v4s32_f32:
  case Intrinsic::nvvm_tex_1d_array_level_v4s32_f32:
  case Intrinsic::nvvm_tex_1d_array_grad_v4s32_f32:
  case Intrinsic::nvvm_tex_2d_v4s32_s32:
  case Intrinsic::nvvm_tex_2d_v4s32_f32:
  case Intrinsic::nvvm_tex_2d_level_v4s32_f32:
  case Intrinsic::nvvm_tex_2d_grad_v4s32_f32:
  case Intrinsic::nvvm_tex_2d_array_v4s32_s32:
  case Intrinsic::nvvm_tex_2d_array_v4s32_f32:
  case Intrinsic::nvvm_tex_2d_array_level_v4s32_f32:
  case Intrinsic::nvvm_tex_2d_array_grad_v4s32_f32:
  case Intrinsic::nvvm_tex_3d_v4s32_s32:
  case Intrinsic::nvvm_tex_3d_v4s32_f32:
  case Intrinsic::nvvm_tex_3d_level_v4s32_f32:
  case Intrinsic::nvvm_tex_3d_grad_v4s32_f32:
  case Intrinsic::nvvm_tex_cube_v4s32_f32:
  case Intrinsic::nvvm_tex_cube_level_v4s32_f32:
  case Intrinsic::nvvm_tex_cube_array_v4s32_f32:
  case Intrinsic::nvvm_tex_cube_array_level_v4s32_f32:
  case Intrinsic::nvvm_tex_cube_v4u32_f32:
  case Intrinsic::nvvm_tex_cube_level_v4u32_f32:
  case Intrinsic::nvvm_tex_cube_array_v4u32_f32:
  case Intrinsic::nvvm_tex_cube_array_level_v4u32_f32:
  case Intrinsic::nvvm_tex_1d_v4u32_s32:
  case Intrinsic::nvvm_tex_1d_v4u32_f32:
  case Intrinsic::nvvm_tex_1d_level_v4u32_f32:
  case Intrinsic::nvvm_tex_1d_grad_v4u32_f32:
  case Intrinsic::nvvm_tex_1d_array_v4u32_s32:
  case Intrinsic::nvvm_tex_1d_array_v4u32_f32:
  case Intrinsic::nvvm_tex_1d_array_level_v4u32_f32:
  case Intrinsic::nvvm_tex_1d_array_grad_v4u32_f32:
  case Intrinsic::nvvm_tex_2d_v4u32_s32:
  case Intrinsic::nvvm_tex_2d_v4u32_f32:
  case Intrinsic::nvvm_tex_2d_level_v4u32_f32:
  case Intrinsic::nvvm_tex_2d_grad_v4u32_f32:
  case Intrinsic::nvvm_tex_2d_array_v4u32_s32:
  case Intrinsic::nvvm_tex_2d_array_v4u32_f32:
  case Intrinsic::nvvm_tex_2d_array_level_v4u32_f32:
  case Intrinsic::nvvm_tex_2d_array_grad_v4u32_f32:
  case Intrinsic::nvvm_tex_3d_v4u32_s32:
  case Intrinsic::nvvm_tex_3d_v4u32_f32:
  case Intrinsic::nvvm_tex_3d_level_v4u32_f32:
  case Intrinsic::nvvm_tex_3d_grad_v4u32_f32:
  case Intrinsic::nvvm_tld4_r_2d_v4s32_f32:
  case Intrinsic::nvvm_tld4_g_2d_v4s32_f32:
  case Intrinsic::nvvm_tld4_b_2d_v4s32_f32:
  case Intrinsic::nvvm_tld4_a_2d_v4s32_f32:
  case Intrinsic::nvvm_tld4_r_2d_v4u32_f32:
  case Intrinsic::nvvm_tld4_g_2d_v4u32_f32:
  case Intrinsic::nvvm_tld4_b_2d_v4u32_f32:
  case Intrinsic::nvvm_tld4_a_2d_v4u32_f32:
  case Intrinsic::nvvm_tex_unified_1d_v4s32_s32:
  case Intrinsic::nvvm_tex_unified_1d_v4s32_f32:
  case Intrinsic::nvvm_tex_unified_1d_level_v4s32_f32:
  case Intrinsic::nvvm_tex_unified_1d_grad_v4s32_f32:
  case Intrinsic::nvvm_tex_unified_1d_array_v4s32_s32:
  case Intrinsic::nvvm_tex_unified_1d_array_v4s32_f32:
  case Intrinsic::nvvm_tex_unified_1d_array_level_v4s32_f32:
  case Intrinsic::nvvm_tex_unified_1d_array_grad_v4s32_f32:
  case Intrinsic::nvvm_tex_unified_2d_v4s32_s32:
  case Intrinsic::nvvm_tex_unified_2d_v4s32_f32:
  case Intrinsic::nvvm_tex_unified_2d_level_v4s32_f32:
  case Intrinsic::nvvm_tex_unified_2d_grad_v4s32_f32:
  case Intrinsic::nvvm_tex_unified_2d_array_v4s32_s32:
  case Intrinsic::nvvm_tex_unified_2d_array_v4s32_f32:
  case Intrinsic::nvvm_tex_unified_2d_array_level_v4s32_f32:
  case Intrinsic::nvvm_tex_unified_2d_array_grad_v4s32_f32:
  case Intrinsic::nvvm_tex_unified_3d_v4s32_s32:
  case Intrinsic::nvvm_tex_unified_3d_v4s32_f32:
  case Intrinsic::nvvm_tex_unified_3d_level_v4s32_f32:
  case Intrinsic::nvvm_tex_unified_3d_grad_v4s32_f32:
  case Intrinsic::nvvm_tex_unified_1d_v4u32_s32:
  case Intrinsic::nvvm_tex_unified_1d_v4u32_f32:
  case Intrinsic::nvvm_tex_unified_1d_level_v4u32_f32:
  case Intrinsic::nvvm_tex_unified_1d_grad_v4u32_f32:
  case Intrinsic::nvvm_tex_unified_1d_array_v4u32_s32:
  case Intrinsic::nvvm_tex_unified_1d_array_v4u32_f32:
  case Intrinsic::nvvm_tex_unified_1d_array_level_v4u32_f32:
  case Intrinsic::nvvm_tex_unified_1d_array_grad_v4u32_f32:
  case Intrinsic::nvvm_tex_unified_2d_v4u32_s32:
  case Intrinsic::nvvm_tex_unified_2d_v4u32_f32:
  case Intrinsic::nvvm_tex_unified_2d_level_v4u32_f32:
  case Intrinsic::nvvm_tex_unified_2d_grad_v4u32_f32:
  case Intrinsic::nvvm_tex_unified_2d_array_v4u32_s32:
  case Intrinsic::nvvm_tex_unified_2d_array_v4u32_f32:
  case Intrinsic::nvvm_tex_unified_2d_array_level_v4u32_f32:
  case Intrinsic::nvvm_tex_unified_2d_array_grad_v4u32_f32:
  case Intrinsic::nvvm_tex_unified_3d_v4u32_s32:
  case Intrinsic::nvvm_tex_unified_3d_v4u32_f32:
  case Intrinsic::nvvm_tex_unified_3d_level_v4u32_f32:
  case Intrinsic::nvvm_tex_unified_3d_grad_v4u32_f32:
  case Intrinsic::nvvm_tex_unified_cube_v4s32_f32:
  case Intrinsic::nvvm_tex_unified_cube_level_v4s32_f32:
  case Intrinsic::nvvm_tex_unified_cube_array_v4s32_f32:
  case Intrinsic::nvvm_tex_unified_cube_array_level_v4s32_f32:
  case Intrinsic::nvvm_tex_unified_cube_v4u32_f32:
  case Intrinsic::nvvm_tex_unified_cube_level_v4u32_f32:
  case Intrinsic::nvvm_tex_unified_cube_array_v4u32_f32:
  case Intrinsic::nvvm_tex_unified_cube_array_level_v4u32_f32:
  case Intrinsic::nvvm_tld4_unified_r_2d_v4s32_f32:
  case Intrinsic::nvvm_tld4_unified_g_2d_v4s32_f32:
  case Intrinsic::nvvm_tld4_unified_b_2d_v4s32_f32:
  case Intrinsic::nvvm_tld4_unified_a_2d_v4s32_f32:
  case Intrinsic::nvvm_tld4_unified_r_2d_v4u32_f32:
  case Intrinsic::nvvm_tld4_unified_g_2d_v4u32_f32:
  case Intrinsic::nvvm_tld4_unified_b_2d_v4u32_f32:
  case Intrinsic::nvvm_tld4_unified_a_2d_v4u32_f32: {
    Info.opc = getOpcForTextureInstr(Intrinsic);
    Info.memVT = MVT::v4i32;
    Info.ptrVal = nullptr;
    Info.offset = 0;
    Info.vol = 0;
    Info.readMem = true;
    Info.writeMem = false;
    Info.align = 16;
    return true;
  }
  case Intrinsic::nvvm_suld_1d_i8_clamp:
  case Intrinsic::nvvm_suld_1d_v2i8_clamp:
  case Intrinsic::nvvm_suld_1d_v4i8_clamp:
  case Intrinsic::nvvm_suld_1d_array_i8_clamp:
  case Intrinsic::nvvm_suld_1d_array_v2i8_clamp:
  case Intrinsic::nvvm_suld_1d_array_v4i8_clamp:
  case Intrinsic::nvvm_suld_2d_i8_clamp:
  case Intrinsic::nvvm_suld_2d_v2i8_clamp:
  case Intrinsic::nvvm_suld_2d_v4i8_clamp:
  case Intrinsic::nvvm_suld_2d_array_i8_clamp:
  case Intrinsic::nvvm_suld_2d_array_v2i8_clamp:
  case Intrinsic::nvvm_suld_2d_array_v4i8_clamp:
  case Intrinsic::nvvm_suld_3d_i8_clamp:
  case Intrinsic::nvvm_suld_3d_v2i8_clamp:
  case Intrinsic::nvvm_suld_3d_v4i8_clamp:
  case Intrinsic::nvvm_suld_1d_i8_trap:
  case Intrinsic::nvvm_suld_1d_v2i8_trap:
  case Intrinsic::nvvm_suld_1d_v4i8_trap:
  case Intrinsic::nvvm_suld_1d_array_i8_trap:
  case Intrinsic::nvvm_suld_1d_array_v2i8_trap:
  case Intrinsic::nvvm_suld_1d_array_v4i8_trap:
  case Intrinsic::nvvm_suld_2d_i8_trap:
  case Intrinsic::nvvm_suld_2d_v2i8_trap:
  case Intrinsic::nvvm_suld_2d_v4i8_trap:
  case Intrinsic::nvvm_suld_2d_array_i8_trap:
  case Intrinsic::nvvm_suld_2d_array_v2i8_trap:
  case Intrinsic::nvvm_suld_2d_array_v4i8_trap:
  case Intrinsic::nvvm_suld_3d_i8_trap:
  case Intrinsic::nvvm_suld_3d_v2i8_trap:
  case Intrinsic::nvvm_suld_3d_v4i8_trap:
  case Intrinsic::nvvm_suld_1d_i8_zero:
  case Intrinsic::nvvm_suld_1d_v2i8_zero:
  case Intrinsic::nvvm_suld_1d_v4i8_zero:
  case Intrinsic::nvvm_suld_1d_array_i8_zero:
  case Intrinsic::nvvm_suld_1d_array_v2i8_zero:
  case Intrinsic::nvvm_suld_1d_array_v4i8_zero:
  case Intrinsic::nvvm_suld_2d_i8_zero:
  case Intrinsic::nvvm_suld_2d_v2i8_zero:
  case Intrinsic::nvvm_suld_2d_v4i8_zero:
  case Intrinsic::nvvm_suld_2d_array_i8_zero:
  case Intrinsic::nvvm_suld_2d_array_v2i8_zero:
  case Intrinsic::nvvm_suld_2d_array_v4i8_zero:
  case Intrinsic::nvvm_suld_3d_i8_zero:
  case Intrinsic::nvvm_suld_3d_v2i8_zero:
  case Intrinsic::nvvm_suld_3d_v4i8_zero: {
    Info.opc = getOpcForSurfaceInstr(Intrinsic);
    Info.memVT = MVT::i8;
    Info.ptrVal = nullptr;
    Info.offset = 0;
    Info.vol = 0;
    Info.readMem = true;
    Info.writeMem = false;
    Info.align = 16;
    return true;
  }
  case Intrinsic::nvvm_suld_1d_i16_clamp:
  case Intrinsic::nvvm_suld_1d_v2i16_clamp:
  case Intrinsic::nvvm_suld_1d_v4i16_clamp:
  case Intrinsic::nvvm_suld_1d_array_i16_clamp:
  case Intrinsic::nvvm_suld_1d_array_v2i16_clamp:
  case Intrinsic::nvvm_suld_1d_array_v4i16_clamp:
  case Intrinsic::nvvm_suld_2d_i16_clamp:
  case Intrinsic::nvvm_suld_2d_v2i16_clamp:
  case Intrinsic::nvvm_suld_2d_v4i16_clamp:
  case Intrinsic::nvvm_suld_2d_array_i16_clamp:
  case Intrinsic::nvvm_suld_2d_array_v2i16_clamp:
  case Intrinsic::nvvm_suld_2d_array_v4i16_clamp:
  case Intrinsic::nvvm_suld_3d_i16_clamp:
  case Intrinsic::nvvm_suld_3d_v2i16_clamp:
  case Intrinsic::nvvm_suld_3d_v4i16_clamp:
  case Intrinsic::nvvm_suld_1d_i16_trap:
  case Intrinsic::nvvm_suld_1d_v2i16_trap:
  case Intrinsic::nvvm_suld_1d_v4i16_trap:
  case Intrinsic::nvvm_suld_1d_array_i16_trap:
  case Intrinsic::nvvm_suld_1d_array_v2i16_trap:
  case Intrinsic::nvvm_suld_1d_array_v4i16_trap:
  case Intrinsic::nvvm_suld_2d_i16_trap:
  case Intrinsic::nvvm_suld_2d_v2i16_trap:
  case Intrinsic::nvvm_suld_2d_v4i16_trap:
  case Intrinsic::nvvm_suld_2d_array_i16_trap:
  case Intrinsic::nvvm_suld_2d_array_v2i16_trap:
  case Intrinsic::nvvm_suld_2d_array_v4i16_trap:
  case Intrinsic::nvvm_suld_3d_i16_trap:
  case Intrinsic::nvvm_suld_3d_v2i16_trap:
  case Intrinsic::nvvm_suld_3d_v4i16_trap:
  case Intrinsic::nvvm_suld_1d_i16_zero:
  case Intrinsic::nvvm_suld_1d_v2i16_zero:
  case Intrinsic::nvvm_suld_1d_v4i16_zero:
  case Intrinsic::nvvm_suld_1d_array_i16_zero:
  case Intrinsic::nvvm_suld_1d_array_v2i16_zero:
  case Intrinsic::nvvm_suld_1d_array_v4i16_zero:
  case Intrinsic::nvvm_suld_2d_i16_zero:
  case Intrinsic::nvvm_suld_2d_v2i16_zero:
  case Intrinsic::nvvm_suld_2d_v4i16_zero:
  case Intrinsic::nvvm_suld_2d_array_i16_zero:
  case Intrinsic::nvvm_suld_2d_array_v2i16_zero:
  case Intrinsic::nvvm_suld_2d_array_v4i16_zero:
  case Intrinsic::nvvm_suld_3d_i16_zero:
  case Intrinsic::nvvm_suld_3d_v2i16_zero:
  case Intrinsic::nvvm_suld_3d_v4i16_zero: {
    Info.opc = getOpcForSurfaceInstr(Intrinsic);
    Info.memVT = MVT::i16;
    Info.ptrVal = nullptr;
    Info.offset = 0;
    Info.vol = 0;
    Info.readMem = true;
    Info.writeMem = false;
    Info.align = 16;
    return true;
  }
  case Intrinsic::nvvm_suld_1d_i32_clamp:
  case Intrinsic::nvvm_suld_1d_v2i32_clamp:
  case Intrinsic::nvvm_suld_1d_v4i32_clamp:
  case Intrinsic::nvvm_suld_1d_array_i32_clamp:
  case Intrinsic::nvvm_suld_1d_array_v2i32_clamp:
  case Intrinsic::nvvm_suld_1d_array_v4i32_clamp:
  case Intrinsic::nvvm_suld_2d_i32_clamp:
  case Intrinsic::nvvm_suld_2d_v2i32_clamp:
  case Intrinsic::nvvm_suld_2d_v4i32_clamp:
  case Intrinsic::nvvm_suld_2d_array_i32_clamp:
  case Intrinsic::nvvm_suld_2d_array_v2i32_clamp:
  case Intrinsic::nvvm_suld_2d_array_v4i32_clamp:
  case Intrinsic::nvvm_suld_3d_i32_clamp:
  case Intrinsic::nvvm_suld_3d_v2i32_clamp:
  case Intrinsic::nvvm_suld_3d_v4i32_clamp:
  case Intrinsic::nvvm_suld_1d_i32_trap:
  case Intrinsic::nvvm_suld_1d_v2i32_trap:
  case Intrinsic::nvvm_suld_1d_v4i32_trap:
  case Intrinsic::nvvm_suld_1d_array_i32_trap:
  case Intrinsic::nvvm_suld_1d_array_v2i32_trap:
  case Intrinsic::nvvm_suld_1d_array_v4i32_trap:
  case Intrinsic::nvvm_suld_2d_i32_trap:
  case Intrinsic::nvvm_suld_2d_v2i32_trap:
  case Intrinsic::nvvm_suld_2d_v4i32_trap:
  case Intrinsic::nvvm_suld_2d_array_i32_trap:
  case Intrinsic::nvvm_suld_2d_array_v2i32_trap:
  case Intrinsic::nvvm_suld_2d_array_v4i32_trap:
  case Intrinsic::nvvm_suld_3d_i32_trap:
  case Intrinsic::nvvm_suld_3d_v2i32_trap:
  case Intrinsic::nvvm_suld_3d_v4i32_trap:
  case Intrinsic::nvvm_suld_1d_i32_zero:
  case Intrinsic::nvvm_suld_1d_v2i32_zero:
  case Intrinsic::nvvm_suld_1d_v4i32_zero:
  case Intrinsic::nvvm_suld_1d_array_i32_zero:
  case Intrinsic::nvvm_suld_1d_array_v2i32_zero:
  case Intrinsic::nvvm_suld_1d_array_v4i32_zero:
  case Intrinsic::nvvm_suld_2d_i32_zero:
  case Intrinsic::nvvm_suld_2d_v2i32_zero:
  case Intrinsic::nvvm_suld_2d_v4i32_zero:
  case Intrinsic::nvvm_suld_2d_array_i32_zero:
  case Intrinsic::nvvm_suld_2d_array_v2i32_zero:
  case Intrinsic::nvvm_suld_2d_array_v4i32_zero:
  case Intrinsic::nvvm_suld_3d_i32_zero:
  case Intrinsic::nvvm_suld_3d_v2i32_zero:
  case Intrinsic::nvvm_suld_3d_v4i32_zero: {
    Info.opc = getOpcForSurfaceInstr(Intrinsic);
    Info.memVT = MVT::i32;
    Info.ptrVal = nullptr;
    Info.offset = 0;
    Info.vol = 0;
    Info.readMem = true;
    Info.writeMem = false;
    Info.align = 16;
    return true;
  }
  case Intrinsic::nvvm_suld_1d_i64_clamp:
  case Intrinsic::nvvm_suld_1d_v2i64_clamp:
  case Intrinsic::nvvm_suld_1d_array_i64_clamp:
  case Intrinsic::nvvm_suld_1d_array_v2i64_clamp:
  case Intrinsic::nvvm_suld_2d_i64_clamp:
  case Intrinsic::nvvm_suld_2d_v2i64_clamp:
  case Intrinsic::nvvm_suld_2d_array_i64_clamp:
  case Intrinsic::nvvm_suld_2d_array_v2i64_clamp:
  case Intrinsic::nvvm_suld_3d_i64_clamp:
  case Intrinsic::nvvm_suld_3d_v2i64_clamp:
  case Intrinsic::nvvm_suld_1d_i64_trap:
  case Intrinsic::nvvm_suld_1d_v2i64_trap:
  case Intrinsic::nvvm_suld_1d_array_i64_trap:
  case Intrinsic::nvvm_suld_1d_array_v2i64_trap:
  case Intrinsic::nvvm_suld_2d_i64_trap:
  case Intrinsic::nvvm_suld_2d_v2i64_trap:
  case Intrinsic::nvvm_suld_2d_array_i64_trap:
  case Intrinsic::nvvm_suld_2d_array_v2i64_trap:
  case Intrinsic::nvvm_suld_3d_i64_trap:
  case Intrinsic::nvvm_suld_3d_v2i64_trap:
  case Intrinsic::nvvm_suld_1d_i64_zero:
  case Intrinsic::nvvm_suld_1d_v2i64_zero:
  case Intrinsic::nvvm_suld_1d_array_i64_zero:
  case Intrinsic::nvvm_suld_1d_array_v2i64_zero:
  case Intrinsic::nvvm_suld_2d_i64_zero:
  case Intrinsic::nvvm_suld_2d_v2i64_zero:
  case Intrinsic::nvvm_suld_2d_array_i64_zero:
  case Intrinsic::nvvm_suld_2d_array_v2i64_zero:
  case Intrinsic::nvvm_suld_3d_i64_zero:
  case Intrinsic::nvvm_suld_3d_v2i64_zero: {
    Info.opc = getOpcForSurfaceInstr(Intrinsic);
    Info.memVT = MVT::i64;
    Info.ptrVal = nullptr;
    Info.offset = 0;
    Info.vol = 0;
    Info.readMem = true;
    Info.writeMem = false;
    Info.align = 16;
    return true;
  }
  }
  return false;
}

/// isLegalAddressingMode - Return true if the addressing mode represented
/// by AM is legal for this target, for a load/store of the specified type.
/// Used to guide target specific optimizations, like loop strength reduction
/// (LoopStrengthReduce.cpp) and memory optimization for address mode
/// (CodeGenPrepare.cpp)
bool NVPTXTargetLowering::isLegalAddressingMode(const DataLayout &DL,
                                                const AddrMode &AM, Type *Ty,
                                                unsigned AS) const {

  // AddrMode - This represents an addressing mode of:
  //    BaseGV + BaseOffs + BaseReg + Scale*ScaleReg
  //
  // The legal address modes are
  // - [avar]
  // - [areg]
  // - [areg+immoff]
  // - [immAddr]

  if (AM.BaseGV) {
    return !AM.BaseOffs && !AM.HasBaseReg && !AM.Scale;
  }

  switch (AM.Scale) {
  case 0: // "r", "r+i" or "i" is allowed
    break;
  case 1:
    if (AM.HasBaseReg) // "r+r+i" or "r+r" is not allowed.
      return false;
    // Otherwise we have r+i.
    break;
  default:
    // No scale > 1 is allowed
    return false;
  }
  return true;
}

//===----------------------------------------------------------------------===//
//                         NVPTX Inline Assembly Support
//===----------------------------------------------------------------------===//

/// getConstraintType - Given a constraint letter, return the type of
/// constraint it is for this target.
NVPTXTargetLowering::ConstraintType
NVPTXTargetLowering::getConstraintType(StringRef Constraint) const {
  if (Constraint.size() == 1) {
    switch (Constraint[0]) {
    default:
      break;
    case 'b':
    case 'r':
    case 'h':
    case 'c':
    case 'l':
    case 'f':
    case 'd':
    case '0':
    case 'N':
      return C_RegisterClass;
    }
  }
  return TargetLowering::getConstraintType(Constraint);
}

std::pair<unsigned, const TargetRegisterClass *>
NVPTXTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
                                                  StringRef Constraint,
                                                  MVT VT) const {
  if (Constraint.size() == 1) {
    switch (Constraint[0]) {
    case 'b':
      return std::make_pair(0U, &NVPTX::Int1RegsRegClass);
    case 'c':
      return std::make_pair(0U, &NVPTX::Int16RegsRegClass);
    case 'h':
      return std::make_pair(0U, &NVPTX::Int16RegsRegClass);
    case 'r':
      return std::make_pair(0U, &NVPTX::Int32RegsRegClass);
    case 'l':
    case 'N':
      return std::make_pair(0U, &NVPTX::Int64RegsRegClass);
    case 'f':
      return std::make_pair(0U, &NVPTX::Float32RegsRegClass);
    case 'd':
      return std::make_pair(0U, &NVPTX::Float64RegsRegClass);
    }
  }
  return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
}

//===----------------------------------------------------------------------===//
//                         NVPTX DAG Combining
//===----------------------------------------------------------------------===//

bool NVPTXTargetLowering::allowFMA(MachineFunction &MF,
                                   CodeGenOpt::Level OptLevel) const {
  const Function *F = MF.getFunction();
  const TargetOptions &TO = MF.getTarget().Options;

  // Always honor command-line argument
  if (FMAContractLevelOpt.getNumOccurrences() > 0) {
    return FMAContractLevelOpt > 0;
  } else if (OptLevel == 0) {
    // Do not contract if we're not optimizing the code
    return false;
  } else if (TO.AllowFPOpFusion == FPOpFusion::Fast || TO.UnsafeFPMath) {
    // Honor TargetOptions flags that explicitly say fusion is okay
    return true;
  } else if (F->hasFnAttribute("unsafe-fp-math")) {
    // Check for unsafe-fp-math=true coming from Clang
    Attribute Attr = F->getFnAttribute("unsafe-fp-math");
    StringRef Val = Attr.getValueAsString();
    if (Val == "true")
      return true;
  }

  // We did not have a clear indication that fusion is allowed, so assume not
  return false;
}

/// PerformADDCombineWithOperands - Try DAG combinations for an ADD with
/// operands N0 and N1.  This is a helper for PerformADDCombine that is
/// called with the default operands, and if that fails, with commuted
/// operands.
static SDValue PerformADDCombineWithOperands(SDNode *N, SDValue N0, SDValue N1,
                                           TargetLowering::DAGCombinerInfo &DCI,
                                             const NVPTXSubtarget &Subtarget,
                                             CodeGenOpt::Level OptLevel) {
  SelectionDAG  &DAG = DCI.DAG;
  // Skip non-integer, non-scalar case
  EVT VT=N0.getValueType();
  if (VT.isVector())
    return SDValue();

  // fold (add (mul a, b), c) -> (mad a, b, c)
  //
  if (N0.getOpcode() == ISD::MUL) {
    assert (VT.isInteger());
    // For integer:
    // Since integer multiply-add costs the same as integer multiply
    // but is more costly than integer add, do the fusion only when
    // the mul is only used in the add.
    if (OptLevel==CodeGenOpt::None || VT != MVT::i32 ||
        !N0.getNode()->hasOneUse())
      return SDValue();

    // Do the folding
    return DAG.getNode(NVPTXISD::IMAD, SDLoc(N), VT,
                       N0.getOperand(0), N0.getOperand(1), N1);
  }
  else if (N0.getOpcode() == ISD::FMUL) {
    if (VT == MVT::f32 || VT == MVT::f64) {
      const auto *TLI = static_cast<const NVPTXTargetLowering *>(
          &DAG.getTargetLoweringInfo());
      if (!TLI->allowFMA(DAG.getMachineFunction(), OptLevel))
        return SDValue();

      // For floating point:
      // Do the fusion only when the mul has less than 5 uses and all
      // are add.
      // The heuristic is that if a use is not an add, then that use
      // cannot be fused into fma, therefore mul is still needed anyway.
      // If there are more than 4 uses, even if they are all add, fusing
      // them will increase register pressue.
      //
      int numUses = 0;
      int nonAddCount = 0;
      for (SDNode::use_iterator UI = N0.getNode()->use_begin(),
           UE = N0.getNode()->use_end();
           UI != UE; ++UI) {
        numUses++;
        SDNode *User = *UI;
        if (User->getOpcode() != ISD::FADD)
          ++nonAddCount;
      }
      if (numUses >= 5)
        return SDValue();
      if (nonAddCount) {
        int orderNo = N->getIROrder();
        int orderNo2 = N0.getNode()->getIROrder();
        // simple heuristics here for considering potential register
        // pressure, the logics here is that the differnce are used
        // to measure the distance between def and use, the longer distance
        // more likely cause register pressure.
        if (orderNo - orderNo2 < 500)
          return SDValue();

        // Now, check if at least one of the FMUL's operands is live beyond the node N,
        // which guarantees that the FMA will not increase register pressure at node N.
        bool opIsLive = false;
        const SDNode *left = N0.getOperand(0).getNode();
        const SDNode *right = N0.getOperand(1).getNode();

        if (isa<ConstantSDNode>(left) || isa<ConstantSDNode>(right))
          opIsLive = true;

        if (!opIsLive)
          for (SDNode::use_iterator UI = left->use_begin(), UE = left->use_end(); UI != UE; ++UI) {
            SDNode *User = *UI;
            int orderNo3 = User->getIROrder();
            if (orderNo3 > orderNo) {
              opIsLive = true;
              break;
            }
          }

        if (!opIsLive)
          for (SDNode::use_iterator UI = right->use_begin(), UE = right->use_end(); UI != UE; ++UI) {
            SDNode *User = *UI;
            int orderNo3 = User->getIROrder();
            if (orderNo3 > orderNo) {
              opIsLive = true;
              break;
            }
          }

        if (!opIsLive)
          return SDValue();
      }

      return DAG.getNode(ISD::FMA, SDLoc(N), VT,
                         N0.getOperand(0), N0.getOperand(1), N1);
    }
  }

  return SDValue();
}

/// PerformADDCombine - Target-specific dag combine xforms for ISD::ADD.
///
static SDValue PerformADDCombine(SDNode *N,
                                 TargetLowering::DAGCombinerInfo &DCI,
                                 const NVPTXSubtarget &Subtarget,
                                 CodeGenOpt::Level OptLevel) {
  SDValue N0 = N->getOperand(0);
  SDValue N1 = N->getOperand(1);

  // First try with the default operand order.
  if (SDValue Result =
          PerformADDCombineWithOperands(N, N0, N1, DCI, Subtarget, OptLevel))
    return Result;

  // If that didn't work, try again with the operands commuted.
  return PerformADDCombineWithOperands(N, N1, N0, DCI, Subtarget, OptLevel);
}

static SDValue PerformANDCombine(SDNode *N,
                                 TargetLowering::DAGCombinerInfo &DCI) {
  // The type legalizer turns a vector load of i8 values into a zextload to i16
  // registers, optionally ANY_EXTENDs it (if target type is integer),
  // and ANDs off the high 8 bits. Since we turn this load into a
  // target-specific DAG node, the DAG combiner fails to eliminate these AND
  // nodes. Do that here.
  SDValue Val = N->getOperand(0);
  SDValue Mask = N->getOperand(1);

  if (isa<ConstantSDNode>(Val)) {
    std::swap(Val, Mask);
  }

  SDValue AExt;
  // Generally, we will see zextload -> IMOV16rr -> ANY_EXTEND -> and
  if (Val.getOpcode() == ISD::ANY_EXTEND) {
    AExt = Val;
    Val = Val->getOperand(0);
  }

  if (Val->isMachineOpcode() && Val->getMachineOpcode() == NVPTX::IMOV16rr) {
    Val = Val->getOperand(0);
  }

  if (Val->getOpcode() == NVPTXISD::LoadV2 ||
      Val->getOpcode() == NVPTXISD::LoadV4) {
    ConstantSDNode *MaskCnst = dyn_cast<ConstantSDNode>(Mask);
    if (!MaskCnst) {
      // Not an AND with a constant
      return SDValue();
    }

    uint64_t MaskVal = MaskCnst->getZExtValue();
    if (MaskVal != 0xff) {
      // Not an AND that chops off top 8 bits
      return SDValue();
    }

    MemSDNode *Mem = dyn_cast<MemSDNode>(Val);
    if (!Mem) {
      // Not a MemSDNode?!?
      return SDValue();
    }

    EVT MemVT = Mem->getMemoryVT();
    if (MemVT != MVT::v2i8 && MemVT != MVT::v4i8) {
      // We only handle the i8 case
      return SDValue();
    }

    unsigned ExtType =
      cast<ConstantSDNode>(Val->getOperand(Val->getNumOperands()-1))->
        getZExtValue();
    if (ExtType == ISD::SEXTLOAD) {
      // If for some reason the load is a sextload, the and is needed to zero
      // out the high 8 bits
      return SDValue();
    }

    bool AddTo = false;
    if (AExt.getNode() != 0) {
      // Re-insert the ext as a zext.
      Val = DCI.DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N),
                            AExt.getValueType(), Val);
      AddTo = true;
    }

    // If we get here, the AND is unnecessary.  Just replace it with the load
    DCI.CombineTo(N, Val, AddTo);
  }

  return SDValue();
}

static SDValue PerformSELECTCombine(SDNode *N,
                                    TargetLowering::DAGCombinerInfo &DCI) {
  // Currently this detects patterns for integer min and max and
  // lowers them to PTX-specific intrinsics that enable hardware
  // support.

  const SDValue Cond = N->getOperand(0);
  if (Cond.getOpcode() != ISD::SETCC) return SDValue();

  const SDValue LHS = Cond.getOperand(0);
  const SDValue RHS = Cond.getOperand(1);
  const SDValue True = N->getOperand(1);
  const SDValue False = N->getOperand(2);
  if (!(LHS == True && RHS == False) && !(LHS == False && RHS == True))
    return SDValue();

  const EVT VT = N->getValueType(0);
  if (VT != MVT::i32 && VT != MVT::i64) return SDValue();

  const ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
  SDValue Larger;  // The larger of LHS and RHS when condition is true.
  switch (CC) {
    case ISD::SETULT:
    case ISD::SETULE:
    case ISD::SETLT:
    case ISD::SETLE:
      Larger = RHS;
      break;

    case ISD::SETGT:
    case ISD::SETGE:
    case ISD::SETUGT:
    case ISD::SETUGE:
      Larger = LHS;
      break;

    default:
      return SDValue();
  }
  const bool IsMax = (Larger == True);
  const bool IsSigned = ISD::isSignedIntSetCC(CC);

  unsigned IntrinsicId;
  if (VT == MVT::i32) {
    if (IsSigned)
      IntrinsicId = IsMax ? Intrinsic::nvvm_max_i : Intrinsic::nvvm_min_i;
    else
      IntrinsicId = IsMax ? Intrinsic::nvvm_max_ui : Intrinsic::nvvm_min_ui;
  } else {
    assert(VT == MVT::i64);
    if (IsSigned)
      IntrinsicId = IsMax ? Intrinsic::nvvm_max_ll : Intrinsic::nvvm_min_ll;
    else
      IntrinsicId = IsMax ? Intrinsic::nvvm_max_ull : Intrinsic::nvvm_min_ull;
  }

  SDLoc DL(N);
  return DCI.DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
                         DCI.DAG.getConstant(IntrinsicId, DL, VT), LHS, RHS);
}

enum OperandSignedness {
  Signed = 0,
  Unsigned,
  Unknown
};

/// IsMulWideOperandDemotable - Checks if the provided DAG node is an operand
/// that can be demoted to \p OptSize bits without loss of information. The
/// signedness of the operand, if determinable, is placed in \p S.
static bool IsMulWideOperandDemotable(SDValue Op,
                                      unsigned OptSize,
                                      OperandSignedness &S) {
  S = Unknown;

  if (Op.getOpcode() == ISD::SIGN_EXTEND ||
      Op.getOpcode() == ISD::SIGN_EXTEND_INREG) {
    EVT OrigVT = Op.getOperand(0).getValueType();
    if (OrigVT.getSizeInBits() <= OptSize) {
      S = Signed;
      return true;
    }
  } else if (Op.getOpcode() == ISD::ZERO_EXTEND) {
    EVT OrigVT = Op.getOperand(0).getValueType();
    if (OrigVT.getSizeInBits() <= OptSize) {
      S = Unsigned;
      return true;
    }
  }

  return false;
}

/// AreMulWideOperandsDemotable - Checks if the given LHS and RHS operands can
/// be demoted to \p OptSize bits without loss of information. If the operands
/// contain a constant, it should appear as the RHS operand. The signedness of
/// the operands is placed in \p IsSigned.
static bool AreMulWideOperandsDemotable(SDValue LHS, SDValue RHS,
                                        unsigned OptSize,
                                        bool &IsSigned) {

  OperandSignedness LHSSign;

  // The LHS operand must be a demotable op
  if (!IsMulWideOperandDemotable(LHS, OptSize, LHSSign))
    return false;

  // We should have been able to determine the signedness from the LHS
  if (LHSSign == Unknown)
    return false;

  IsSigned = (LHSSign == Signed);

  // The RHS can be a demotable op or a constant
  if (ConstantSDNode *CI = dyn_cast<ConstantSDNode>(RHS)) {
    const APInt &Val = CI->getAPIntValue();
    if (LHSSign == Unsigned) {
      return Val.isIntN(OptSize);
    } else {
      return Val.isSignedIntN(OptSize);
    }
  } else {
    OperandSignedness RHSSign;
    if (!IsMulWideOperandDemotable(RHS, OptSize, RHSSign))
      return false;

    return LHSSign == RHSSign;
  }
}

/// TryMULWIDECombine - Attempt to replace a multiply of M bits with a multiply
/// of M/2 bits that produces an M-bit result (i.e. mul.wide). This transform
/// works on both multiply DAG nodes and SHL DAG nodes with a constant shift
/// amount.
static SDValue TryMULWIDECombine(SDNode *N,
                                 TargetLowering::DAGCombinerInfo &DCI) {
  EVT MulType = N->getValueType(0);
  if (MulType != MVT::i32 && MulType != MVT::i64) {
    return SDValue();
  }

  SDLoc DL(N);
  unsigned OptSize = MulType.getSizeInBits() >> 1;
  SDValue LHS = N->getOperand(0);
  SDValue RHS = N->getOperand(1);

  // Canonicalize the multiply so the constant (if any) is on the right
  if (N->getOpcode() == ISD::MUL) {
    if (isa<ConstantSDNode>(LHS)) {
      std::swap(LHS, RHS);
    }
  }

  // If we have a SHL, determine the actual multiply amount
  if (N->getOpcode() == ISD::SHL) {
    ConstantSDNode *ShlRHS = dyn_cast<ConstantSDNode>(RHS);
    if (!ShlRHS) {
      return SDValue();
    }

    APInt ShiftAmt = ShlRHS->getAPIntValue();
    unsigned BitWidth = MulType.getSizeInBits();
    if (ShiftAmt.sge(0) && ShiftAmt.slt(BitWidth)) {
      APInt MulVal = APInt(BitWidth, 1) << ShiftAmt;
      RHS = DCI.DAG.getConstant(MulVal, DL, MulType);
    } else {
      return SDValue();
    }
  }

  bool Signed;
  // Verify that our operands are demotable
  if (!AreMulWideOperandsDemotable(LHS, RHS, OptSize, Signed)) {
    return SDValue();
  }

  EVT DemotedVT;
  if (MulType == MVT::i32) {
    DemotedVT = MVT::i16;
  } else {
    DemotedVT = MVT::i32;
  }

  // Truncate the operands to the correct size. Note that these are just for
  // type consistency and will (likely) be eliminated in later phases.
  SDValue TruncLHS =
    DCI.DAG.getNode(ISD::TRUNCATE, DL, DemotedVT, LHS);
  SDValue TruncRHS =
    DCI.DAG.getNode(ISD::TRUNCATE, DL, DemotedVT, RHS);

  unsigned Opc;
  if (Signed) {
    Opc = NVPTXISD::MUL_WIDE_SIGNED;
  } else {
    Opc = NVPTXISD::MUL_WIDE_UNSIGNED;
  }

  return DCI.DAG.getNode(Opc, DL, MulType, TruncLHS, TruncRHS);
}

/// PerformMULCombine - Runs PTX-specific DAG combine patterns on MUL nodes.
static SDValue PerformMULCombine(SDNode *N,
                                 TargetLowering::DAGCombinerInfo &DCI,
                                 CodeGenOpt::Level OptLevel) {
  if (OptLevel > 0) {
    // Try mul.wide combining at OptLevel > 0
    if (SDValue Ret = TryMULWIDECombine(N, DCI))
      return Ret;
  }

  return SDValue();
}

/// PerformSHLCombine - Runs PTX-specific DAG combine patterns on SHL nodes.
static SDValue PerformSHLCombine(SDNode *N,
                                 TargetLowering::DAGCombinerInfo &DCI,
                                 CodeGenOpt::Level OptLevel) {
  if (OptLevel > 0) {
    // Try mul.wide combining at OptLevel > 0
    if (SDValue Ret = TryMULWIDECombine(N, DCI))
      return Ret;
  }

  return SDValue();
}

SDValue NVPTXTargetLowering::PerformDAGCombine(SDNode *N,
                                               DAGCombinerInfo &DCI) const {
  CodeGenOpt::Level OptLevel = getTargetMachine().getOptLevel();
  switch (N->getOpcode()) {
    default: break;
    case ISD::ADD:
    case ISD::FADD:
      return PerformADDCombine(N, DCI, STI, OptLevel);
    case ISD::MUL:
      return PerformMULCombine(N, DCI, OptLevel);
    case ISD::SHL:
      return PerformSHLCombine(N, DCI, OptLevel);
    case ISD::AND:
      return PerformANDCombine(N, DCI);
    case ISD::SELECT:
      return PerformSELECTCombine(N, DCI);
  }
  return SDValue();
}

/// ReplaceVectorLoad - Convert vector loads into multi-output scalar loads.
static void ReplaceLoadVector(SDNode *N, SelectionDAG &DAG,
                              SmallVectorImpl<SDValue> &Results) {
  EVT ResVT = N->getValueType(0);
  SDLoc DL(N);

  assert(ResVT.isVector() && "Vector load must have vector type");

  // We only handle "native" vector sizes for now, e.g. <4 x double> is not
  // legal.  We can (and should) split that into 2 loads of <2 x double> here
  // but I'm leaving that as a TODO for now.
  assert(ResVT.isSimple() && "Can only handle simple types");
  switch (ResVT.getSimpleVT().SimpleTy) {
  default:
    return;
  case MVT::v2i8:
  case MVT::v2i16:
  case MVT::v2i32:
  case MVT::v2i64:
  case MVT::v2f32:
  case MVT::v2f64:
  case MVT::v4i8:
  case MVT::v4i16:
  case MVT::v4i32:
  case MVT::v4f32:
    // This is a "native" vector type
    break;
  }

  LoadSDNode *LD = cast<LoadSDNode>(N);

  unsigned Align = LD->getAlignment();
  auto &TD = DAG.getDataLayout();
  unsigned PrefAlign =
      TD.getPrefTypeAlignment(ResVT.getTypeForEVT(*DAG.getContext()));
  if (Align < PrefAlign) {
    // This load is not sufficiently aligned, so bail out and let this vector
    // load be scalarized.  Note that we may still be able to emit smaller
    // vector loads.  For example, if we are loading a <4 x float> with an
    // alignment of 8, this check will fail but the legalizer will try again
    // with 2 x <2 x float>, which will succeed with an alignment of 8.
    return;
  }

  EVT EltVT = ResVT.getVectorElementType();
  unsigned NumElts = ResVT.getVectorNumElements();

  // Since LoadV2 is a target node, we cannot rely on DAG type legalization.
  // Therefore, we must ensure the type is legal.  For i1 and i8, we set the
  // loaded type to i16 and propagate the "real" type as the memory type.
  bool NeedTrunc = false;
  if (EltVT.getSizeInBits() < 16) {
    EltVT = MVT::i16;
    NeedTrunc = true;
  }

  unsigned Opcode = 0;
  SDVTList LdResVTs;

  switch (NumElts) {
  default:
    return;
  case 2:
    Opcode = NVPTXISD::LoadV2;
    LdResVTs = DAG.getVTList(EltVT, EltVT, MVT::Other);
    break;
  case 4: {
    Opcode = NVPTXISD::LoadV4;
    EVT ListVTs[] = { EltVT, EltVT, EltVT, EltVT, MVT::Other };
    LdResVTs = DAG.getVTList(ListVTs);
    break;
  }
  }

  // Copy regular operands
  SmallVector<SDValue, 8> OtherOps(N->op_begin(), N->op_end());

  // The select routine does not have access to the LoadSDNode instance, so
  // pass along the extension information
  OtherOps.push_back(DAG.getIntPtrConstant(LD->getExtensionType(), DL));

  SDValue NewLD = DAG.getMemIntrinsicNode(Opcode, DL, LdResVTs, OtherOps,
                                          LD->getMemoryVT(),
                                          LD->getMemOperand());

  SmallVector<SDValue, 4> ScalarRes;

  for (unsigned i = 0; i < NumElts; ++i) {
    SDValue Res = NewLD.getValue(i);
    if (NeedTrunc)
      Res = DAG.getNode(ISD::TRUNCATE, DL, ResVT.getVectorElementType(), Res);
    ScalarRes.push_back(Res);
  }

  SDValue LoadChain = NewLD.getValue(NumElts);

  SDValue BuildVec = DAG.getBuildVector(ResVT, DL, ScalarRes);

  Results.push_back(BuildVec);
  Results.push_back(LoadChain);
}

static void ReplaceINTRINSIC_W_CHAIN(SDNode *N, SelectionDAG &DAG,
                                     SmallVectorImpl<SDValue> &Results) {
  SDValue Chain = N->getOperand(0);
  SDValue Intrin = N->getOperand(1);
  SDLoc DL(N);

  // Get the intrinsic ID
  unsigned IntrinNo = cast<ConstantSDNode>(Intrin.getNode())->getZExtValue();
  switch (IntrinNo) {
  default:
    return;
  case Intrinsic::nvvm_ldg_global_i:
  case Intrinsic::nvvm_ldg_global_f:
  case Intrinsic::nvvm_ldg_global_p:
  case Intrinsic::nvvm_ldu_global_i:
  case Intrinsic::nvvm_ldu_global_f:
  case Intrinsic::nvvm_ldu_global_p: {
    EVT ResVT = N->getValueType(0);

    if (ResVT.isVector()) {
      // Vector LDG/LDU

      unsigned NumElts = ResVT.getVectorNumElements();
      EVT EltVT = ResVT.getVectorElementType();

      // Since LDU/LDG are target nodes, we cannot rely on DAG type
      // legalization.
      // Therefore, we must ensure the type is legal.  For i1 and i8, we set the
      // loaded type to i16 and propagate the "real" type as the memory type.
      bool NeedTrunc = false;
      if (EltVT.getSizeInBits() < 16) {
        EltVT = MVT::i16;
        NeedTrunc = true;
      }

      unsigned Opcode = 0;
      SDVTList LdResVTs;

      switch (NumElts) {
      default:
        return;
      case 2:
        switch (IntrinNo) {
        default:
          return;
        case Intrinsic::nvvm_ldg_global_i:
        case Intrinsic::nvvm_ldg_global_f:
        case Intrinsic::nvvm_ldg_global_p:
          Opcode = NVPTXISD::LDGV2;
          break;
        case Intrinsic::nvvm_ldu_global_i:
        case Intrinsic::nvvm_ldu_global_f:
        case Intrinsic::nvvm_ldu_global_p:
          Opcode = NVPTXISD::LDUV2;
          break;
        }
        LdResVTs = DAG.getVTList(EltVT, EltVT, MVT::Other);
        break;
      case 4: {
        switch (IntrinNo) {
        default:
          return;
        case Intrinsic::nvvm_ldg_global_i:
        case Intrinsic::nvvm_ldg_global_f:
        case Intrinsic::nvvm_ldg_global_p:
          Opcode = NVPTXISD::LDGV4;
          break;
        case Intrinsic::nvvm_ldu_global_i:
        case Intrinsic::nvvm_ldu_global_f:
        case Intrinsic::nvvm_ldu_global_p:
          Opcode = NVPTXISD::LDUV4;
          break;
        }
        EVT ListVTs[] = { EltVT, EltVT, EltVT, EltVT, MVT::Other };
        LdResVTs = DAG.getVTList(ListVTs);
        break;
      }
      }

      SmallVector<SDValue, 8> OtherOps;

      // Copy regular operands

      OtherOps.push_back(Chain); // Chain
                                 // Skip operand 1 (intrinsic ID)
      // Others
      OtherOps.append(N->op_begin() + 2, N->op_end());

      MemIntrinsicSDNode *MemSD = cast<MemIntrinsicSDNode>(N);

      SDValue NewLD = DAG.getMemIntrinsicNode(Opcode, DL, LdResVTs, OtherOps,
                                              MemSD->getMemoryVT(),
                                              MemSD->getMemOperand());

      SmallVector<SDValue, 4> ScalarRes;

      for (unsigned i = 0; i < NumElts; ++i) {
        SDValue Res = NewLD.getValue(i);
        if (NeedTrunc)
          Res =
              DAG.getNode(ISD::TRUNCATE, DL, ResVT.getVectorElementType(), Res);
        ScalarRes.push_back(Res);
      }

      SDValue LoadChain = NewLD.getValue(NumElts);

      SDValue BuildVec =
          DAG.getBuildVector(ResVT, DL, ScalarRes);

      Results.push_back(BuildVec);
      Results.push_back(LoadChain);
    } else {
      // i8 LDG/LDU
      assert(ResVT.isSimple() && ResVT.getSimpleVT().SimpleTy == MVT::i8 &&
             "Custom handling of non-i8 ldu/ldg?");

      // Just copy all operands as-is
      SmallVector<SDValue, 4> Ops(N->op_begin(), N->op_end());

      // Force output to i16
      SDVTList LdResVTs = DAG.getVTList(MVT::i16, MVT::Other);

      MemIntrinsicSDNode *MemSD = cast<MemIntrinsicSDNode>(N);

      // We make sure the memory type is i8, which will be used during isel
      // to select the proper instruction.
      SDValue NewLD =
          DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, LdResVTs, Ops,
                                  MVT::i8, MemSD->getMemOperand());

      Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i8,
                                    NewLD.getValue(0)));
      Results.push_back(NewLD.getValue(1));
    }
  }
  }
}

void NVPTXTargetLowering::ReplaceNodeResults(
    SDNode *N, SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG) const {
  switch (N->getOpcode()) {
  default:
    report_fatal_error("Unhandled custom legalization");
  case ISD::LOAD:
    ReplaceLoadVector(N, DAG, Results);
    return;
  case ISD::INTRINSIC_W_CHAIN:
    ReplaceINTRINSIC_W_CHAIN(N, DAG, Results);
    return;
  }
}

// Pin NVPTXSection's and NVPTXTargetObjectFile's vtables to this file.
void NVPTXSection::anchor() {}

NVPTXTargetObjectFile::~NVPTXTargetObjectFile() {
  delete static_cast<NVPTXSection *>(TextSection);
  delete static_cast<NVPTXSection *>(DataSection);
  delete static_cast<NVPTXSection *>(BSSSection);
  delete static_cast<NVPTXSection *>(ReadOnlySection);

  delete static_cast<NVPTXSection *>(StaticCtorSection);
  delete static_cast<NVPTXSection *>(StaticDtorSection);
  delete static_cast<NVPTXSection *>(LSDASection);
  delete static_cast<NVPTXSection *>(EHFrameSection);
  delete static_cast<NVPTXSection *>(DwarfAbbrevSection);
  delete static_cast<NVPTXSection *>(DwarfInfoSection);
  delete static_cast<NVPTXSection *>(DwarfLineSection);
  delete static_cast<NVPTXSection *>(DwarfFrameSection);
  delete static_cast<NVPTXSection *>(DwarfPubTypesSection);
  delete static_cast<const NVPTXSection *>(DwarfDebugInlineSection);
  delete static_cast<NVPTXSection *>(DwarfStrSection);
  delete static_cast<NVPTXSection *>(DwarfLocSection);
  delete static_cast<NVPTXSection *>(DwarfARangesSection);
  delete static_cast<NVPTXSection *>(DwarfRangesSection);
  delete static_cast<NVPTXSection *>(DwarfMacinfoSection);
}

MCSection *
NVPTXTargetObjectFile::SelectSectionForGlobal(const GlobalValue *GV,
                                              SectionKind Kind, Mangler &Mang,
                                              const TargetMachine &TM) const {
  return getDataSection();
}