//===-- AMDGPUAsmParser.cpp - Parse SI asm to MCInst instructions ---------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "AMDKernelCodeT.h"
#include "MCTargetDesc/AMDGPUMCTargetDesc.h"
#include "MCTargetDesc/AMDGPUTargetStreamer.h"
#include "SIDefines.h"
#include "Utils/AMDGPUBaseInfo.h"
#include "Utils/AMDKernelCodeTUtils.h"
#include "Utils/AMDGPUAsmUtils.h"
#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallBitVector.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/ADT/Twine.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCInstrInfo.h"
#include "llvm/MC/MCParser/MCAsmLexer.h"
#include "llvm/MC/MCParser/MCAsmParser.h"
#include "llvm/MC/MCParser/MCParsedAsmOperand.h"
#include "llvm/MC/MCParser/MCTargetAsmParser.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/MC/MCStreamer.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/MC/MCSymbolELF.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ELF.h"
#include "llvm/Support/SourceMgr.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Support/MathExtras.h"
using namespace llvm;
namespace {
struct OptionalOperand;
enum RegisterKind { IS_UNKNOWN, IS_VGPR, IS_SGPR, IS_TTMP, IS_SPECIAL };
class AMDGPUOperand : public MCParsedAsmOperand {
enum KindTy {
Token,
Immediate,
Register,
Expression
} Kind;
SMLoc StartLoc, EndLoc;
public:
AMDGPUOperand(enum KindTy K) : MCParsedAsmOperand(), Kind(K) {}
typedef std::unique_ptr<AMDGPUOperand> Ptr;
struct Modifiers {
bool Abs;
bool Neg;
bool Sext;
bool hasFPModifiers() const { return Abs || Neg; }
bool hasIntModifiers() const { return Sext; }
bool hasModifiers() const { return hasFPModifiers() || hasIntModifiers(); }
int64_t getFPModifiersOperand() const {
int64_t Operand = 0;
Operand |= Abs ? SISrcMods::ABS : 0;
Operand |= Neg ? SISrcMods::NEG : 0;
return Operand;
}
int64_t getIntModifiersOperand() const {
int64_t Operand = 0;
Operand |= Sext ? SISrcMods::SEXT : 0;
return Operand;
}
int64_t getModifiersOperand() const {
assert(!(hasFPModifiers() && hasIntModifiers())
&& "fp and int modifiers should not be used simultaneously");
if (hasFPModifiers()) {
return getFPModifiersOperand();
} else if (hasIntModifiers()) {
return getIntModifiersOperand();
} else {
return 0;
}
}
friend raw_ostream &operator <<(raw_ostream &OS, AMDGPUOperand::Modifiers Mods);
};
enum ImmTy {
ImmTyNone,
ImmTyGDS,
ImmTyOffen,
ImmTyIdxen,
ImmTyAddr64,
ImmTyOffset,
ImmTyOffset0,
ImmTyOffset1,
ImmTyGLC,
ImmTySLC,
ImmTyTFE,
ImmTyClampSI,
ImmTyOModSI,
ImmTyDppCtrl,
ImmTyDppRowMask,
ImmTyDppBankMask,
ImmTyDppBoundCtrl,
ImmTySdwaDstSel,
ImmTySdwaSrc0Sel,
ImmTySdwaSrc1Sel,
ImmTySdwaDstUnused,
ImmTyDMask,
ImmTyUNorm,
ImmTyDA,
ImmTyR128,
ImmTyLWE,
ImmTyHwreg,
ImmTySendMsg,
};
struct TokOp {
const char *Data;
unsigned Length;
};
struct ImmOp {
bool IsFPImm;
ImmTy Type;
int64_t Val;
Modifiers Mods;
};
struct RegOp {
unsigned RegNo;
Modifiers Mods;
const MCRegisterInfo *TRI;
const MCSubtargetInfo *STI;
bool IsForcedVOP3;
};
union {
TokOp Tok;
ImmOp Imm;
RegOp Reg;
const MCExpr *Expr;
};
bool isToken() const override {
if (Kind == Token)
return true;
if (Kind != Expression || !Expr)
return false;
// When parsing operands, we can't always tell if something was meant to be
// a token, like 'gds', or an expression that references a global variable.
// In this case, we assume the string is an expression, and if we need to
// interpret is a token, then we treat the symbol name as the token.
return isa<MCSymbolRefExpr>(Expr);
}
bool isImm() const override {
return Kind == Immediate;
}
bool isInlinableImm() const {
if (!isImmTy(ImmTyNone)) {
// Only plain immediates are inlinable (e.g. "clamp" attribute is not)
return false;
}
// TODO: We should avoid using host float here. It would be better to
// check the float bit values which is what a few other places do.
// We've had bot failures before due to weird NaN support on mips hosts.
const float F = BitsToFloat(Imm.Val);
// TODO: Add 1/(2*pi) for VI
return (Imm.Val <= 64 && Imm.Val >= -16) ||
(F == 0.0 || F == 0.5 || F == -0.5 || F == 1.0 || F == -1.0 ||
F == 2.0 || F == -2.0 || F == 4.0 || F == -4.0);
}
bool isRegKind() const {
return Kind == Register;
}
bool isReg() const override {
return isRegKind() && !Reg.Mods.hasModifiers();
}
bool isRegOrImmWithInputMods() const {
return isRegKind() || isInlinableImm();
}
bool isImmTy(ImmTy ImmT) const {
return isImm() && Imm.Type == ImmT;
}
bool isImmModifier() const {
return isImm() && Imm.Type != ImmTyNone;
}
bool isClampSI() const { return isImmTy(ImmTyClampSI); }
bool isOModSI() const { return isImmTy(ImmTyOModSI); }
bool isDMask() const { return isImmTy(ImmTyDMask); }
bool isUNorm() const { return isImmTy(ImmTyUNorm); }
bool isDA() const { return isImmTy(ImmTyDA); }
bool isR128() const { return isImmTy(ImmTyUNorm); }
bool isLWE() const { return isImmTy(ImmTyLWE); }
bool isOffen() const { return isImmTy(ImmTyOffen); }
bool isIdxen() const { return isImmTy(ImmTyIdxen); }
bool isAddr64() const { return isImmTy(ImmTyAddr64); }
bool isOffset() const { return isImmTy(ImmTyOffset) && isUInt<16>(getImm()); }
bool isOffset0() const { return isImmTy(ImmTyOffset0) && isUInt<16>(getImm()); }
bool isOffset1() const { return isImmTy(ImmTyOffset1) && isUInt<8>(getImm()); }
bool isGDS() const { return isImmTy(ImmTyGDS); }
bool isGLC() const { return isImmTy(ImmTyGLC); }
bool isSLC() const { return isImmTy(ImmTySLC); }
bool isTFE() const { return isImmTy(ImmTyTFE); }
bool isBankMask() const { return isImmTy(ImmTyDppBankMask); }
bool isRowMask() const { return isImmTy(ImmTyDppRowMask); }
bool isBoundCtrl() const { return isImmTy(ImmTyDppBoundCtrl); }
bool isSDWADstSel() const { return isImmTy(ImmTySdwaDstSel); }
bool isSDWASrc0Sel() const { return isImmTy(ImmTySdwaSrc0Sel); }
bool isSDWASrc1Sel() const { return isImmTy(ImmTySdwaSrc1Sel); }
bool isSDWADstUnused() const { return isImmTy(ImmTySdwaDstUnused); }
bool isMod() const {
return isClampSI() || isOModSI();
}
bool isRegOrImm() const {
return isReg() || isImm();
}
bool isRegClass(unsigned RCID) const {
return isReg() && Reg.TRI->getRegClass(RCID).contains(getReg());
}
bool isSCSrc32() const {
return isInlinableImm() || isRegClass(AMDGPU::SReg_32RegClassID);
}
bool isSCSrc64() const {
return isInlinableImm() || isRegClass(AMDGPU::SReg_64RegClassID);
}
bool isSSrc32() const {
return isImm() || isSCSrc32() || isExpr();
}
bool isSSrc64() const {
// TODO: Find out how SALU supports extension of 32-bit literals to 64 bits.
// See isVSrc64().
return isImm() || isSCSrc64();
}
bool isVCSrc32() const {
return isInlinableImm() || isRegClass(AMDGPU::VS_32RegClassID);
}
bool isVCSrc64() const {
return isInlinableImm() || isRegClass(AMDGPU::VS_64RegClassID);
}
bool isVSrc32() const {
return isImm() || isVCSrc32();
}
bool isVSrc64() const {
// TODO: Check if the 64-bit value (coming from assembly source) can be
// narrowed to 32 bits (in the instruction stream). That require knowledge
// of instruction type (unsigned/signed, floating or "untyped"/B64),
// see [AMD GCN3 ISA 6.3.1].
// TODO: How 64-bit values are formed from 32-bit literals in _B64 insns?
return isImm() || isVCSrc64();
}
bool isMem() const override {
return false;
}
bool isExpr() const {
return Kind == Expression;
}
bool isSoppBrTarget() const {
return isExpr() || isImm();
}
bool isSWaitCnt() const;
bool isHwreg() const;
bool isSendMsg() const;
bool isSMRDOffset() const;
bool isSMRDLiteralOffset() const;
bool isDPPCtrl() const;
StringRef getExpressionAsToken() const {
assert(isExpr());
const MCSymbolRefExpr *S = cast<MCSymbolRefExpr>(Expr);
return S->getSymbol().getName();
}
StringRef getToken() const {
assert(isToken());
if (Kind == Expression)
return getExpressionAsToken();
return StringRef(Tok.Data, Tok.Length);
}
int64_t getImm() const {
assert(isImm());
return Imm.Val;
}
enum ImmTy getImmTy() const {
assert(isImm());
return Imm.Type;
}
unsigned getReg() const override {
return Reg.RegNo;
}
SMLoc getStartLoc() const override {
return StartLoc;
}
SMLoc getEndLoc() const override {
return EndLoc;
}
Modifiers getModifiers() const {
assert(isRegKind() || isImmTy(ImmTyNone));
return isRegKind() ? Reg.Mods : Imm.Mods;
}
void setModifiers(Modifiers Mods) {
assert(isRegKind() || isImmTy(ImmTyNone));
if (isRegKind())
Reg.Mods = Mods;
else
Imm.Mods = Mods;
}
bool hasModifiers() const {
return getModifiers().hasModifiers();
}
bool hasFPModifiers() const {
return getModifiers().hasFPModifiers();
}
bool hasIntModifiers() const {
return getModifiers().hasIntModifiers();
}
void addImmOperands(MCInst &Inst, unsigned N, bool ApplyModifiers = true) const {
if (isImmTy(ImmTyNone) && ApplyModifiers && Imm.Mods.hasFPModifiers()) {
// Apply modifiers to immediate value
int64_t Val = Imm.Val;
bool Negate = Imm.Mods.Neg; // Only negate can get here
if (Imm.IsFPImm) {
APFloat F(BitsToFloat(Val));
if (Negate) {
F.changeSign();
}
Val = F.bitcastToAPInt().getZExtValue();
} else {
Val = Negate ? -Val : Val;
}
Inst.addOperand(MCOperand::createImm(Val));
} else {
Inst.addOperand(MCOperand::createImm(getImm()));
}
}
void addRegOperands(MCInst &Inst, unsigned N) const {
Inst.addOperand(MCOperand::createReg(AMDGPU::getMCReg(getReg(), *Reg.STI)));
}
void addRegOrImmOperands(MCInst &Inst, unsigned N) const {
if (isRegKind())
addRegOperands(Inst, N);
else if (isExpr())
Inst.addOperand(MCOperand::createExpr(Expr));
else
addImmOperands(Inst, N);
}
void addRegOrImmWithInputModsOperands(MCInst &Inst, unsigned N) const {
Modifiers Mods = getModifiers();
Inst.addOperand(MCOperand::createImm(Mods.getModifiersOperand()));
if (isRegKind()) {
addRegOperands(Inst, N);
} else {
addImmOperands(Inst, N, false);
}
}
void addRegOrImmWithFPInputModsOperands(MCInst &Inst, unsigned N) const {
assert(!hasIntModifiers());
addRegOrImmWithInputModsOperands(Inst, N);
}
void addRegOrImmWithIntInputModsOperands(MCInst &Inst, unsigned N) const {
assert(!hasFPModifiers());
addRegOrImmWithInputModsOperands(Inst, N);
}
void addSoppBrTargetOperands(MCInst &Inst, unsigned N) const {
if (isImm())
addImmOperands(Inst, N);
else {
assert(isExpr());
Inst.addOperand(MCOperand::createExpr(Expr));
}
}
void printImmTy(raw_ostream& OS, ImmTy Type) const {
switch (Type) {
case ImmTyNone: OS << "None"; break;
case ImmTyGDS: OS << "GDS"; break;
case ImmTyOffen: OS << "Offen"; break;
case ImmTyIdxen: OS << "Idxen"; break;
case ImmTyAddr64: OS << "Addr64"; break;
case ImmTyOffset: OS << "Offset"; break;
case ImmTyOffset0: OS << "Offset0"; break;
case ImmTyOffset1: OS << "Offset1"; break;
case ImmTyGLC: OS << "GLC"; break;
case ImmTySLC: OS << "SLC"; break;
case ImmTyTFE: OS << "TFE"; break;
case ImmTyClampSI: OS << "ClampSI"; break;
case ImmTyOModSI: OS << "OModSI"; break;
case ImmTyDppCtrl: OS << "DppCtrl"; break;
case ImmTyDppRowMask: OS << "DppRowMask"; break;
case ImmTyDppBankMask: OS << "DppBankMask"; break;
case ImmTyDppBoundCtrl: OS << "DppBoundCtrl"; break;
case ImmTySdwaDstSel: OS << "SdwaDstSel"; break;
case ImmTySdwaSrc0Sel: OS << "SdwaSrc0Sel"; break;
case ImmTySdwaSrc1Sel: OS << "SdwaSrc1Sel"; break;
case ImmTySdwaDstUnused: OS << "SdwaDstUnused"; break;
case ImmTyDMask: OS << "DMask"; break;
case ImmTyUNorm: OS << "UNorm"; break;
case ImmTyDA: OS << "DA"; break;
case ImmTyR128: OS << "R128"; break;
case ImmTyLWE: OS << "LWE"; break;
case ImmTyHwreg: OS << "Hwreg"; break;
case ImmTySendMsg: OS << "SendMsg"; break;
}
}
void print(raw_ostream &OS) const override {
switch (Kind) {
case Register:
OS << "<register " << getReg() << " mods: " << Reg.Mods << '>';
break;
case Immediate:
OS << '<' << getImm();
if (getImmTy() != ImmTyNone) {
OS << " type: "; printImmTy(OS, getImmTy());
}
OS << " mods: " << Imm.Mods << '>';
break;
case Token:
OS << '\'' << getToken() << '\'';
break;
case Expression:
OS << "<expr " << *Expr << '>';
break;
}
}
static AMDGPUOperand::Ptr CreateImm(int64_t Val, SMLoc Loc,
enum ImmTy Type = ImmTyNone,
bool IsFPImm = false) {
auto Op = llvm::make_unique<AMDGPUOperand>(Immediate);
Op->Imm.Val = Val;
Op->Imm.IsFPImm = IsFPImm;
Op->Imm.Type = Type;
Op->Imm.Mods = {false, false, false};
Op->StartLoc = Loc;
Op->EndLoc = Loc;
return Op;
}
static AMDGPUOperand::Ptr CreateToken(StringRef Str, SMLoc Loc,
bool HasExplicitEncodingSize = true) {
auto Res = llvm::make_unique<AMDGPUOperand>(Token);
Res->Tok.Data = Str.data();
Res->Tok.Length = Str.size();
Res->StartLoc = Loc;
Res->EndLoc = Loc;
return Res;
}
static AMDGPUOperand::Ptr CreateReg(unsigned RegNo, SMLoc S,
SMLoc E,
const MCRegisterInfo *TRI,
const MCSubtargetInfo *STI,
bool ForceVOP3) {
auto Op = llvm::make_unique<AMDGPUOperand>(Register);
Op->Reg.RegNo = RegNo;
Op->Reg.TRI = TRI;
Op->Reg.STI = STI;
Op->Reg.Mods = {false, false, false};
Op->Reg.IsForcedVOP3 = ForceVOP3;
Op->StartLoc = S;
Op->EndLoc = E;
return Op;
}
static AMDGPUOperand::Ptr CreateExpr(const class MCExpr *Expr, SMLoc S) {
auto Op = llvm::make_unique<AMDGPUOperand>(Expression);
Op->Expr = Expr;
Op->StartLoc = S;
Op->EndLoc = S;
return Op;
}
};
raw_ostream &operator <<(raw_ostream &OS, AMDGPUOperand::Modifiers Mods) {
OS << "abs:" << Mods.Abs << " neg: " << Mods.Neg << " sext:" << Mods.Sext;
return OS;
}
class AMDGPUAsmParser : public MCTargetAsmParser {
const MCInstrInfo &MII;
MCAsmParser &Parser;
unsigned ForcedEncodingSize;
bool ForcedDPP;
bool ForcedSDWA;
bool isSI() const {
return AMDGPU::isSI(getSTI());
}
bool isCI() const {
return AMDGPU::isCI(getSTI());
}
bool isVI() const {
return AMDGPU::isVI(getSTI());
}
bool hasSGPR102_SGPR103() const {
return !isVI();
}
/// @name Auto-generated Match Functions
/// {
#define GET_ASSEMBLER_HEADER
#include "AMDGPUGenAsmMatcher.inc"
/// }
private:
bool ParseDirectiveMajorMinor(uint32_t &Major, uint32_t &Minor);
bool ParseDirectiveHSACodeObjectVersion();
bool ParseDirectiveHSACodeObjectISA();
bool ParseAMDKernelCodeTValue(StringRef ID, amd_kernel_code_t &Header);
bool ParseDirectiveAMDKernelCodeT();
bool ParseSectionDirectiveHSAText();
bool subtargetHasRegister(const MCRegisterInfo &MRI, unsigned RegNo) const;
bool ParseDirectiveAMDGPUHsaKernel();
bool ParseDirectiveAMDGPUHsaModuleGlobal();
bool ParseDirectiveAMDGPUHsaProgramGlobal();
bool ParseSectionDirectiveHSADataGlobalAgent();
bool ParseSectionDirectiveHSADataGlobalProgram();
bool ParseSectionDirectiveHSARodataReadonlyAgent();
bool AddNextRegisterToList(unsigned& Reg, unsigned& RegWidth, RegisterKind RegKind, unsigned Reg1, unsigned RegNum);
bool ParseAMDGPURegister(RegisterKind& RegKind, unsigned& Reg, unsigned& RegNum, unsigned& RegWidth);
void cvtMubufImpl(MCInst &Inst, const OperandVector &Operands, bool IsAtomic, bool IsAtomicReturn);
public:
enum AMDGPUMatchResultTy {
Match_PreferE32 = FIRST_TARGET_MATCH_RESULT_TY
};
AMDGPUAsmParser(const MCSubtargetInfo &STI, MCAsmParser &_Parser,
const MCInstrInfo &MII,
const MCTargetOptions &Options)
: MCTargetAsmParser(Options, STI), MII(MII), Parser(_Parser),
ForcedEncodingSize(0),
ForcedDPP(false),
ForcedSDWA(false) {
MCAsmParserExtension::Initialize(Parser);
if (getSTI().getFeatureBits().none()) {
// Set default features.
copySTI().ToggleFeature("SOUTHERN_ISLANDS");
}
setAvailableFeatures(ComputeAvailableFeatures(getSTI().getFeatureBits()));
{
// TODO: make those pre-defined variables read-only.
// Currently there is none suitable machinery in the core llvm-mc for this.
// MCSymbol::isRedefinable is intended for another purpose, and
// AsmParser::parseDirectiveSet() cannot be specialized for specific target.
AMDGPU::IsaVersion Isa = AMDGPU::getIsaVersion(getSTI().getFeatureBits());
MCContext &Ctx = getContext();
MCSymbol *Sym = Ctx.getOrCreateSymbol(Twine(".option.machine_version_major"));
Sym->setVariableValue(MCConstantExpr::create(Isa.Major, Ctx));
Sym = Ctx.getOrCreateSymbol(Twine(".option.machine_version_minor"));
Sym->setVariableValue(MCConstantExpr::create(Isa.Minor, Ctx));
Sym = Ctx.getOrCreateSymbol(Twine(".option.machine_version_stepping"));
Sym->setVariableValue(MCConstantExpr::create(Isa.Stepping, Ctx));
}
}
AMDGPUTargetStreamer &getTargetStreamer() {
MCTargetStreamer &TS = *getParser().getStreamer().getTargetStreamer();
return static_cast<AMDGPUTargetStreamer &>(TS);
}
void setForcedEncodingSize(unsigned Size) { ForcedEncodingSize = Size; }
void setForcedDPP(bool ForceDPP_) { ForcedDPP = ForceDPP_; }
void setForcedSDWA(bool ForceSDWA_) { ForcedSDWA = ForceSDWA_; }
unsigned getForcedEncodingSize() const { return ForcedEncodingSize; }
bool isForcedVOP3() const { return ForcedEncodingSize == 64; }
bool isForcedDPP() const { return ForcedDPP; }
bool isForcedSDWA() const { return ForcedSDWA; }
std::unique_ptr<AMDGPUOperand> parseRegister();
bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc) override;
unsigned checkTargetMatchPredicate(MCInst &Inst) override;
unsigned validateTargetOperandClass(MCParsedAsmOperand &Op,
unsigned Kind) override;
bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
OperandVector &Operands, MCStreamer &Out,
uint64_t &ErrorInfo,
bool MatchingInlineAsm) override;
bool ParseDirective(AsmToken DirectiveID) override;
OperandMatchResultTy parseOperand(OperandVector &Operands, StringRef Mnemonic);
StringRef parseMnemonicSuffix(StringRef Name);
bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name,
SMLoc NameLoc, OperandVector &Operands) override;
OperandMatchResultTy parseIntWithPrefix(const char *Prefix, int64_t &Int);
OperandMatchResultTy parseIntWithPrefix(const char *Prefix,
OperandVector &Operands,
enum AMDGPUOperand::ImmTy ImmTy = AMDGPUOperand::ImmTyNone,
bool (*ConvertResult)(int64_t&) = 0);
OperandMatchResultTy parseNamedBit(const char *Name, OperandVector &Operands,
enum AMDGPUOperand::ImmTy ImmTy = AMDGPUOperand::ImmTyNone);
OperandMatchResultTy parseStringWithPrefix(StringRef Prefix, StringRef &Value);
OperandMatchResultTy parseImm(OperandVector &Operands);
OperandMatchResultTy parseRegOrImm(OperandVector &Operands);
OperandMatchResultTy parseRegOrImmWithFPInputMods(OperandVector &Operands);
OperandMatchResultTy parseRegOrImmWithIntInputMods(OperandVector &Operands);
void cvtDSOffset01(MCInst &Inst, const OperandVector &Operands);
void cvtDS(MCInst &Inst, const OperandVector &Operands);
bool parseCnt(int64_t &IntVal);
OperandMatchResultTy parseSWaitCntOps(OperandVector &Operands);
OperandMatchResultTy parseHwreg(OperandVector &Operands);
private:
struct OperandInfoTy {
int64_t Id;
bool IsSymbolic;
OperandInfoTy(int64_t Id_) : Id(Id_), IsSymbolic(false) { }
};
bool parseSendMsgConstruct(OperandInfoTy &Msg, OperandInfoTy &Operation, int64_t &StreamId);
bool parseHwregConstruct(OperandInfoTy &HwReg, int64_t &Offset, int64_t &Width);
public:
OperandMatchResultTy parseOptionalOperand(OperandVector &Operands);
OperandMatchResultTy parseSendMsgOp(OperandVector &Operands);
OperandMatchResultTy parseSOppBrTarget(OperandVector &Operands);
void cvtMubuf(MCInst &Inst, const OperandVector &Operands) { cvtMubufImpl(Inst, Operands, false, false); }
void cvtMubufAtomic(MCInst &Inst, const OperandVector &Operands) { cvtMubufImpl(Inst, Operands, true, false); }
void cvtMubufAtomicReturn(MCInst &Inst, const OperandVector &Operands) { cvtMubufImpl(Inst, Operands, true, true); }
AMDGPUOperand::Ptr defaultGLC() const;
AMDGPUOperand::Ptr defaultSLC() const;
AMDGPUOperand::Ptr defaultTFE() const;
AMDGPUOperand::Ptr defaultDMask() const;
AMDGPUOperand::Ptr defaultUNorm() const;
AMDGPUOperand::Ptr defaultDA() const;
AMDGPUOperand::Ptr defaultR128() const;
AMDGPUOperand::Ptr defaultLWE() const;
AMDGPUOperand::Ptr defaultSMRDOffset() const;
AMDGPUOperand::Ptr defaultSMRDLiteralOffset() const;
OperandMatchResultTy parseOModOperand(OperandVector &Operands);
void cvtId(MCInst &Inst, const OperandVector &Operands);
void cvtVOP3_2_mod(MCInst &Inst, const OperandVector &Operands);
void cvtVOP3(MCInst &Inst, const OperandVector &Operands);
void cvtMIMG(MCInst &Inst, const OperandVector &Operands);
void cvtMIMGAtomic(MCInst &Inst, const OperandVector &Operands);
OperandMatchResultTy parseDPPCtrl(OperandVector &Operands);
AMDGPUOperand::Ptr defaultRowMask() const;
AMDGPUOperand::Ptr defaultBankMask() const;
AMDGPUOperand::Ptr defaultBoundCtrl() const;
void cvtDPP(MCInst &Inst, const OperandVector &Operands);
OperandMatchResultTy parseSDWASel(OperandVector &Operands, StringRef Prefix,
AMDGPUOperand::ImmTy Type);
OperandMatchResultTy parseSDWADstUnused(OperandVector &Operands);
void cvtSdwaVOP1(MCInst &Inst, const OperandVector &Operands);
void cvtSdwaVOP2(MCInst &Inst, const OperandVector &Operands);
void cvtSdwaVOPC(MCInst &Inst, const OperandVector &Operands);
void cvtSDWA(MCInst &Inst, const OperandVector &Operands,
uint64_t BasicInstType);
};
struct OptionalOperand {
const char *Name;
AMDGPUOperand::ImmTy Type;
bool IsBit;
bool (*ConvertResult)(int64_t&);
};
}
static int getRegClass(RegisterKind Is, unsigned RegWidth) {
if (Is == IS_VGPR) {
switch (RegWidth) {
default: return -1;
case 1: return AMDGPU::VGPR_32RegClassID;
case 2: return AMDGPU::VReg_64RegClassID;
case 3: return AMDGPU::VReg_96RegClassID;
case 4: return AMDGPU::VReg_128RegClassID;
case 8: return AMDGPU::VReg_256RegClassID;
case 16: return AMDGPU::VReg_512RegClassID;
}
} else if (Is == IS_TTMP) {
switch (RegWidth) {
default: return -1;
case 1: return AMDGPU::TTMP_32RegClassID;
case 2: return AMDGPU::TTMP_64RegClassID;
case 4: return AMDGPU::TTMP_128RegClassID;
}
} else if (Is == IS_SGPR) {
switch (RegWidth) {
default: return -1;
case 1: return AMDGPU::SGPR_32RegClassID;
case 2: return AMDGPU::SGPR_64RegClassID;
case 4: return AMDGPU::SGPR_128RegClassID;
case 8: return AMDGPU::SReg_256RegClassID;
case 16: return AMDGPU::SReg_512RegClassID;
}
}
return -1;
}
static unsigned getSpecialRegForName(StringRef RegName) {
return StringSwitch<unsigned>(RegName)
.Case("exec", AMDGPU::EXEC)
.Case("vcc", AMDGPU::VCC)
.Case("flat_scratch", AMDGPU::FLAT_SCR)
.Case("m0", AMDGPU::M0)
.Case("scc", AMDGPU::SCC)
.Case("tba", AMDGPU::TBA)
.Case("tma", AMDGPU::TMA)
.Case("flat_scratch_lo", AMDGPU::FLAT_SCR_LO)
.Case("flat_scratch_hi", AMDGPU::FLAT_SCR_HI)
.Case("vcc_lo", AMDGPU::VCC_LO)
.Case("vcc_hi", AMDGPU::VCC_HI)
.Case("exec_lo", AMDGPU::EXEC_LO)
.Case("exec_hi", AMDGPU::EXEC_HI)
.Case("tma_lo", AMDGPU::TMA_LO)
.Case("tma_hi", AMDGPU::TMA_HI)
.Case("tba_lo", AMDGPU::TBA_LO)
.Case("tba_hi", AMDGPU::TBA_HI)
.Default(0);
}
bool AMDGPUAsmParser::ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc) {
auto R = parseRegister();
if (!R) return true;
assert(R->isReg());
RegNo = R->getReg();
StartLoc = R->getStartLoc();
EndLoc = R->getEndLoc();
return false;
}
bool AMDGPUAsmParser::AddNextRegisterToList(unsigned& Reg, unsigned& RegWidth, RegisterKind RegKind, unsigned Reg1, unsigned RegNum)
{
switch (RegKind) {
case IS_SPECIAL:
if (Reg == AMDGPU::EXEC_LO && Reg1 == AMDGPU::EXEC_HI) { Reg = AMDGPU::EXEC; RegWidth = 2; return true; }
if (Reg == AMDGPU::FLAT_SCR_LO && Reg1 == AMDGPU::FLAT_SCR_HI) { Reg = AMDGPU::FLAT_SCR; RegWidth = 2; return true; }
if (Reg == AMDGPU::VCC_LO && Reg1 == AMDGPU::VCC_HI) { Reg = AMDGPU::VCC; RegWidth = 2; return true; }
if (Reg == AMDGPU::TBA_LO && Reg1 == AMDGPU::TBA_HI) { Reg = AMDGPU::TBA; RegWidth = 2; return true; }
if (Reg == AMDGPU::TMA_LO && Reg1 == AMDGPU::TMA_HI) { Reg = AMDGPU::TMA; RegWidth = 2; return true; }
return false;
case IS_VGPR:
case IS_SGPR:
case IS_TTMP:
if (Reg1 != Reg + RegWidth) { return false; }
RegWidth++;
return true;
default:
assert(false); return false;
}
}
bool AMDGPUAsmParser::ParseAMDGPURegister(RegisterKind& RegKind, unsigned& Reg, unsigned& RegNum, unsigned& RegWidth)
{
const MCRegisterInfo *TRI = getContext().getRegisterInfo();
if (getLexer().is(AsmToken::Identifier)) {
StringRef RegName = Parser.getTok().getString();
if ((Reg = getSpecialRegForName(RegName))) {
Parser.Lex();
RegKind = IS_SPECIAL;
} else {
unsigned RegNumIndex = 0;
if (RegName[0] == 'v') {
RegNumIndex = 1;
RegKind = IS_VGPR;
} else if (RegName[0] == 's') {
RegNumIndex = 1;
RegKind = IS_SGPR;
} else if (RegName.startswith("ttmp")) {
RegNumIndex = strlen("ttmp");
RegKind = IS_TTMP;
} else {
return false;
}
if (RegName.size() > RegNumIndex) {
// Single 32-bit register: vXX.
if (RegName.substr(RegNumIndex).getAsInteger(10, RegNum))
return false;
Parser.Lex();
RegWidth = 1;
} else {
// Range of registers: v[XX:YY]. ":YY" is optional.
Parser.Lex();
int64_t RegLo, RegHi;
if (getLexer().isNot(AsmToken::LBrac))
return false;
Parser.Lex();
if (getParser().parseAbsoluteExpression(RegLo))
return false;
const bool isRBrace = getLexer().is(AsmToken::RBrac);
if (!isRBrace && getLexer().isNot(AsmToken::Colon))
return false;
Parser.Lex();
if (isRBrace) {
RegHi = RegLo;
} else {
if (getParser().parseAbsoluteExpression(RegHi))
return false;
if (getLexer().isNot(AsmToken::RBrac))
return false;
Parser.Lex();
}
RegNum = (unsigned) RegLo;
RegWidth = (RegHi - RegLo) + 1;
}
}
} else if (getLexer().is(AsmToken::LBrac)) {
// List of consecutive registers: [s0,s1,s2,s3]
Parser.Lex();
if (!ParseAMDGPURegister(RegKind, Reg, RegNum, RegWidth))
return false;
if (RegWidth != 1)
return false;
RegisterKind RegKind1;
unsigned Reg1, RegNum1, RegWidth1;
do {
if (getLexer().is(AsmToken::Comma)) {
Parser.Lex();
} else if (getLexer().is(AsmToken::RBrac)) {
Parser.Lex();
break;
} else if (ParseAMDGPURegister(RegKind1, Reg1, RegNum1, RegWidth1)) {
if (RegWidth1 != 1) {
return false;
}
if (RegKind1 != RegKind) {
return false;
}
if (!AddNextRegisterToList(Reg, RegWidth, RegKind1, Reg1, RegNum1)) {
return false;
}
} else {
return false;
}
} while (true);
} else {
return false;
}
switch (RegKind) {
case IS_SPECIAL:
RegNum = 0;
RegWidth = 1;
break;
case IS_VGPR:
case IS_SGPR:
case IS_TTMP:
{
unsigned Size = 1;
if (RegKind == IS_SGPR || RegKind == IS_TTMP) {
// SGPR and TTMP registers must be are aligned. Max required alignment is 4 dwords.
Size = std::min(RegWidth, 4u);
}
if (RegNum % Size != 0)
return false;
RegNum = RegNum / Size;
int RCID = getRegClass(RegKind, RegWidth);
if (RCID == -1)
return false;
const MCRegisterClass RC = TRI->getRegClass(RCID);
if (RegNum >= RC.getNumRegs())
return false;
Reg = RC.getRegister(RegNum);
break;
}
default:
assert(false); return false;
}
if (!subtargetHasRegister(*TRI, Reg))
return false;
return true;
}
std::unique_ptr<AMDGPUOperand> AMDGPUAsmParser::parseRegister() {
const auto &Tok = Parser.getTok();
SMLoc StartLoc = Tok.getLoc();
SMLoc EndLoc = Tok.getEndLoc();
const MCRegisterInfo *TRI = getContext().getRegisterInfo();
RegisterKind RegKind;
unsigned Reg, RegNum, RegWidth;
if (!ParseAMDGPURegister(RegKind, Reg, RegNum, RegWidth)) {
return nullptr;
}
return AMDGPUOperand::CreateReg(Reg, StartLoc, EndLoc,
TRI, &getSTI(), false);
}
AMDGPUAsmParser::OperandMatchResultTy
AMDGPUAsmParser::parseImm(OperandVector &Operands) {
bool Minus = false;
if (getLexer().getKind() == AsmToken::Minus) {
Minus = true;
Parser.Lex();
}
SMLoc S = Parser.getTok().getLoc();
switch(getLexer().getKind()) {
case AsmToken::Integer: {
int64_t IntVal;
if (getParser().parseAbsoluteExpression(IntVal))
return MatchOperand_ParseFail;
if (!isInt<32>(IntVal) && !isUInt<32>(IntVal)) {
Error(S, "invalid immediate: only 32-bit values are legal");
return MatchOperand_ParseFail;
}
if (Minus)
IntVal *= -1;
Operands.push_back(AMDGPUOperand::CreateImm(IntVal, S));
return MatchOperand_Success;
}
case AsmToken::Real: {
// FIXME: We should emit an error if a double precisions floating-point
// value is used. I'm not sure the best way to detect this.
int64_t IntVal;
if (getParser().parseAbsoluteExpression(IntVal))
return MatchOperand_ParseFail;
APFloat F((float)BitsToDouble(IntVal));
if (Minus)
F.changeSign();
Operands.push_back(
AMDGPUOperand::CreateImm(F.bitcastToAPInt().getZExtValue(), S,
AMDGPUOperand::ImmTyNone, true));
return MatchOperand_Success;
}
default:
return Minus ? MatchOperand_ParseFail : MatchOperand_NoMatch;
}
}
AMDGPUAsmParser::OperandMatchResultTy
AMDGPUAsmParser::parseRegOrImm(OperandVector &Operands) {
auto res = parseImm(Operands);
if (res != MatchOperand_NoMatch) {
return res;
}
if (auto R = parseRegister()) {
assert(R->isReg());
R->Reg.IsForcedVOP3 = isForcedVOP3();
Operands.push_back(std::move(R));
return MatchOperand_Success;
}
return MatchOperand_ParseFail;
}
AMDGPUAsmParser::OperandMatchResultTy
AMDGPUAsmParser::parseRegOrImmWithFPInputMods(OperandVector &Operands) {
// XXX: During parsing we can't determine if minus sign means
// negate-modifier or negative immediate value.
// By default we suppose it is modifier.
bool Negate = false, Abs = false, Abs2 = false;
if (getLexer().getKind()== AsmToken::Minus) {
Parser.Lex();
Negate = true;
}
if (getLexer().getKind() == AsmToken::Identifier && Parser.getTok().getString() == "abs") {
Parser.Lex();
Abs2 = true;
if (getLexer().isNot(AsmToken::LParen)) {
Error(Parser.getTok().getLoc(), "expected left paren after abs");
return MatchOperand_ParseFail;
}
Parser.Lex();
}
if (getLexer().getKind() == AsmToken::Pipe) {
if (Abs2) {
Error(Parser.getTok().getLoc(), "expected register or immediate");
return MatchOperand_ParseFail;
}
Parser.Lex();
Abs = true;
}
auto Res = parseRegOrImm(Operands);
if (Res != MatchOperand_Success) {
return Res;
}
AMDGPUOperand::Modifiers Mods = {false, false, false};
if (Negate) {
Mods.Neg = true;
}
if (Abs) {
if (getLexer().getKind() != AsmToken::Pipe) {
Error(Parser.getTok().getLoc(), "expected vertical bar");
return MatchOperand_ParseFail;
}
Parser.Lex();
Mods.Abs = true;
}
if (Abs2) {
if (getLexer().isNot(AsmToken::RParen)) {
Error(Parser.getTok().getLoc(), "expected closing parentheses");
return MatchOperand_ParseFail;
}
Parser.Lex();
Mods.Abs = true;
}
if (Mods.hasFPModifiers()) {
AMDGPUOperand &Op = static_cast<AMDGPUOperand &>(*Operands.back());
Op.setModifiers(Mods);
}
return MatchOperand_Success;
}
AMDGPUAsmParser::OperandMatchResultTy
AMDGPUAsmParser::parseRegOrImmWithIntInputMods(OperandVector &Operands) {
bool Sext = false;
if (getLexer().getKind() == AsmToken::Identifier && Parser.getTok().getString() == "sext") {
Parser.Lex();
Sext = true;
if (getLexer().isNot(AsmToken::LParen)) {
Error(Parser.getTok().getLoc(), "expected left paren after sext");
return MatchOperand_ParseFail;
}
Parser.Lex();
}
auto Res = parseRegOrImm(Operands);
if (Res != MatchOperand_Success) {
return Res;
}
AMDGPUOperand::Modifiers Mods = {false, false, false};
if (Sext) {
if (getLexer().isNot(AsmToken::RParen)) {
Error(Parser.getTok().getLoc(), "expected closing parentheses");
return MatchOperand_ParseFail;
}
Parser.Lex();
Mods.Sext = true;
}
if (Mods.hasIntModifiers()) {
AMDGPUOperand &Op = static_cast<AMDGPUOperand &>(*Operands.back());
Op.setModifiers(Mods);
}
return MatchOperand_Success;
}
unsigned AMDGPUAsmParser::checkTargetMatchPredicate(MCInst &Inst) {
uint64_t TSFlags = MII.get(Inst.getOpcode()).TSFlags;
if ((getForcedEncodingSize() == 32 && (TSFlags & SIInstrFlags::VOP3)) ||
(getForcedEncodingSize() == 64 && !(TSFlags & SIInstrFlags::VOP3)) ||
(isForcedDPP() && !(TSFlags & SIInstrFlags::DPP)) ||
(isForcedSDWA() && !(TSFlags & SIInstrFlags::SDWA)) )
return Match_InvalidOperand;
if ((TSFlags & SIInstrFlags::VOP3) &&
(TSFlags & SIInstrFlags::VOPAsmPrefer32Bit) &&
getForcedEncodingSize() != 64)
return Match_PreferE32;
return Match_Success;
}
bool AMDGPUAsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
OperandVector &Operands,
MCStreamer &Out,
uint64_t &ErrorInfo,
bool MatchingInlineAsm) {
MCInst Inst;
switch (MatchInstructionImpl(Operands, Inst, ErrorInfo, MatchingInlineAsm)) {
default: break;
case Match_Success:
Inst.setLoc(IDLoc);
Out.EmitInstruction(Inst, getSTI());
return false;
case Match_MissingFeature:
return Error(IDLoc, "instruction not supported on this GPU");
case Match_MnemonicFail:
return Error(IDLoc, "unrecognized instruction mnemonic");
case Match_InvalidOperand: {
SMLoc ErrorLoc = IDLoc;
if (ErrorInfo != ~0ULL) {
if (ErrorInfo >= Operands.size()) {
return Error(IDLoc, "too few operands for instruction");
}
ErrorLoc = ((AMDGPUOperand &)*Operands[ErrorInfo]).getStartLoc();
if (ErrorLoc == SMLoc())
ErrorLoc = IDLoc;
}
return Error(ErrorLoc, "invalid operand for instruction");
}
case Match_PreferE32:
return Error(IDLoc, "internal error: instruction without _e64 suffix "
"should be encoded as e32");
}
llvm_unreachable("Implement any new match types added!");
}
bool AMDGPUAsmParser::ParseDirectiveMajorMinor(uint32_t &Major,
uint32_t &Minor) {
if (getLexer().isNot(AsmToken::Integer))
return TokError("invalid major version");
Major = getLexer().getTok().getIntVal();
Lex();
if (getLexer().isNot(AsmToken::Comma))
return TokError("minor version number required, comma expected");
Lex();
if (getLexer().isNot(AsmToken::Integer))
return TokError("invalid minor version");
Minor = getLexer().getTok().getIntVal();
Lex();
return false;
}
bool AMDGPUAsmParser::ParseDirectiveHSACodeObjectVersion() {
uint32_t Major;
uint32_t Minor;
if (ParseDirectiveMajorMinor(Major, Minor))
return true;
getTargetStreamer().EmitDirectiveHSACodeObjectVersion(Major, Minor);
return false;
}
bool AMDGPUAsmParser::ParseDirectiveHSACodeObjectISA() {
uint32_t Major;
uint32_t Minor;
uint32_t Stepping;
StringRef VendorName;
StringRef ArchName;
// If this directive has no arguments, then use the ISA version for the
// targeted GPU.
if (getLexer().is(AsmToken::EndOfStatement)) {
AMDGPU::IsaVersion Isa = AMDGPU::getIsaVersion(getSTI().getFeatureBits());
getTargetStreamer().EmitDirectiveHSACodeObjectISA(Isa.Major, Isa.Minor,
Isa.Stepping,
"AMD", "AMDGPU");
return false;
}
if (ParseDirectiveMajorMinor(Major, Minor))
return true;
if (getLexer().isNot(AsmToken::Comma))
return TokError("stepping version number required, comma expected");
Lex();
if (getLexer().isNot(AsmToken::Integer))
return TokError("invalid stepping version");
Stepping = getLexer().getTok().getIntVal();
Lex();
if (getLexer().isNot(AsmToken::Comma))
return TokError("vendor name required, comma expected");
Lex();
if (getLexer().isNot(AsmToken::String))
return TokError("invalid vendor name");
VendorName = getLexer().getTok().getStringContents();
Lex();
if (getLexer().isNot(AsmToken::Comma))
return TokError("arch name required, comma expected");
Lex();
if (getLexer().isNot(AsmToken::String))
return TokError("invalid arch name");
ArchName = getLexer().getTok().getStringContents();
Lex();
getTargetStreamer().EmitDirectiveHSACodeObjectISA(Major, Minor, Stepping,
VendorName, ArchName);
return false;
}
bool AMDGPUAsmParser::ParseAMDKernelCodeTValue(StringRef ID,
amd_kernel_code_t &Header) {
SmallString<40> ErrStr;
raw_svector_ostream Err(ErrStr);
if (!parseAmdKernelCodeField(ID, getParser(), Header, Err)) {
return TokError(Err.str());
}
Lex();
return false;
}
bool AMDGPUAsmParser::ParseDirectiveAMDKernelCodeT() {
amd_kernel_code_t Header;
AMDGPU::initDefaultAMDKernelCodeT(Header, getSTI().getFeatureBits());
while (true) {
// Lex EndOfStatement. This is in a while loop, because lexing a comment
// will set the current token to EndOfStatement.
while(getLexer().is(AsmToken::EndOfStatement))
Lex();
if (getLexer().isNot(AsmToken::Identifier))
return TokError("expected value identifier or .end_amd_kernel_code_t");
StringRef ID = getLexer().getTok().getIdentifier();
Lex();
if (ID == ".end_amd_kernel_code_t")
break;
if (ParseAMDKernelCodeTValue(ID, Header))
return true;
}
getTargetStreamer().EmitAMDKernelCodeT(Header);
return false;
}
bool AMDGPUAsmParser::ParseSectionDirectiveHSAText() {
getParser().getStreamer().SwitchSection(
AMDGPU::getHSATextSection(getContext()));
return false;
}
bool AMDGPUAsmParser::ParseDirectiveAMDGPUHsaKernel() {
if (getLexer().isNot(AsmToken::Identifier))
return TokError("expected symbol name");
StringRef KernelName = Parser.getTok().getString();
getTargetStreamer().EmitAMDGPUSymbolType(KernelName,
ELF::STT_AMDGPU_HSA_KERNEL);
Lex();
return false;
}
bool AMDGPUAsmParser::ParseDirectiveAMDGPUHsaModuleGlobal() {
if (getLexer().isNot(AsmToken::Identifier))
return TokError("expected symbol name");
StringRef GlobalName = Parser.getTok().getIdentifier();
getTargetStreamer().EmitAMDGPUHsaModuleScopeGlobal(GlobalName);
Lex();
return false;
}
bool AMDGPUAsmParser::ParseDirectiveAMDGPUHsaProgramGlobal() {
if (getLexer().isNot(AsmToken::Identifier))
return TokError("expected symbol name");
StringRef GlobalName = Parser.getTok().getIdentifier();
getTargetStreamer().EmitAMDGPUHsaProgramScopeGlobal(GlobalName);
Lex();
return false;
}
bool AMDGPUAsmParser::ParseSectionDirectiveHSADataGlobalAgent() {
getParser().getStreamer().SwitchSection(
AMDGPU::getHSADataGlobalAgentSection(getContext()));
return false;
}
bool AMDGPUAsmParser::ParseSectionDirectiveHSADataGlobalProgram() {
getParser().getStreamer().SwitchSection(
AMDGPU::getHSADataGlobalProgramSection(getContext()));
return false;
}
bool AMDGPUAsmParser::ParseSectionDirectiveHSARodataReadonlyAgent() {
getParser().getStreamer().SwitchSection(
AMDGPU::getHSARodataReadonlyAgentSection(getContext()));
return false;
}
bool AMDGPUAsmParser::ParseDirective(AsmToken DirectiveID) {
StringRef IDVal = DirectiveID.getString();
if (IDVal == ".hsa_code_object_version")
return ParseDirectiveHSACodeObjectVersion();
if (IDVal == ".hsa_code_object_isa")
return ParseDirectiveHSACodeObjectISA();
if (IDVal == ".amd_kernel_code_t")
return ParseDirectiveAMDKernelCodeT();
if (IDVal == ".hsatext")
return ParseSectionDirectiveHSAText();
if (IDVal == ".amdgpu_hsa_kernel")
return ParseDirectiveAMDGPUHsaKernel();
if (IDVal == ".amdgpu_hsa_module_global")
return ParseDirectiveAMDGPUHsaModuleGlobal();
if (IDVal == ".amdgpu_hsa_program_global")
return ParseDirectiveAMDGPUHsaProgramGlobal();
if (IDVal == ".hsadata_global_agent")
return ParseSectionDirectiveHSADataGlobalAgent();
if (IDVal == ".hsadata_global_program")
return ParseSectionDirectiveHSADataGlobalProgram();
if (IDVal == ".hsarodata_readonly_agent")
return ParseSectionDirectiveHSARodataReadonlyAgent();
return true;
}
bool AMDGPUAsmParser::subtargetHasRegister(const MCRegisterInfo &MRI,
unsigned RegNo) const {
if (isCI())
return true;
if (isSI()) {
// No flat_scr
switch (RegNo) {
case AMDGPU::FLAT_SCR:
case AMDGPU::FLAT_SCR_LO:
case AMDGPU::FLAT_SCR_HI:
return false;
default:
return true;
}
}
// VI only has 102 SGPRs, so make sure we aren't trying to use the 2 more that
// SI/CI have.
for (MCRegAliasIterator R(AMDGPU::SGPR102_SGPR103, &MRI, true);
R.isValid(); ++R) {
if (*R == RegNo)
return false;
}
return true;
}
AMDGPUAsmParser::OperandMatchResultTy
AMDGPUAsmParser::parseOperand(OperandVector &Operands, StringRef Mnemonic) {
// Try to parse with a custom parser
OperandMatchResultTy ResTy = MatchOperandParserImpl(Operands, Mnemonic);
// If we successfully parsed the operand or if there as an error parsing,
// we are done.
//
// If we are parsing after we reach EndOfStatement then this means we
// are appending default values to the Operands list. This is only done
// by custom parser, so we shouldn't continue on to the generic parsing.
if (ResTy == MatchOperand_Success || ResTy == MatchOperand_ParseFail ||
getLexer().is(AsmToken::EndOfStatement))
return ResTy;
ResTy = parseRegOrImm(Operands);
if (ResTy == MatchOperand_Success)
return ResTy;
if (getLexer().getKind() == AsmToken::Identifier) {
// If this identifier is a symbol, we want to create an expression for it.
// It is a little difficult to distinguish between a symbol name, and
// an instruction flag like 'gds'. In order to do this, we parse
// all tokens as expressions and then treate the symbol name as the token
// string when we want to interpret the operand as a token.
const auto &Tok = Parser.getTok();
SMLoc S = Tok.getLoc();
const MCExpr *Expr = nullptr;
if (!Parser.parseExpression(Expr)) {
Operands.push_back(AMDGPUOperand::CreateExpr(Expr, S));
return MatchOperand_Success;
}
Operands.push_back(AMDGPUOperand::CreateToken(Tok.getString(), Tok.getLoc()));
Parser.Lex();
return MatchOperand_Success;
}
return MatchOperand_NoMatch;
}
StringRef AMDGPUAsmParser::parseMnemonicSuffix(StringRef Name) {
// Clear any forced encodings from the previous instruction.
setForcedEncodingSize(0);
setForcedDPP(false);
setForcedSDWA(false);
if (Name.endswith("_e64")) {
setForcedEncodingSize(64);
return Name.substr(0, Name.size() - 4);
} else if (Name.endswith("_e32")) {
setForcedEncodingSize(32);
return Name.substr(0, Name.size() - 4);
} else if (Name.endswith("_dpp")) {
setForcedDPP(true);
return Name.substr(0, Name.size() - 4);
} else if (Name.endswith("_sdwa")) {
setForcedSDWA(true);
return Name.substr(0, Name.size() - 5);
}
return Name;
}
bool AMDGPUAsmParser::ParseInstruction(ParseInstructionInfo &Info,
StringRef Name,
SMLoc NameLoc, OperandVector &Operands) {
// Add the instruction mnemonic
Name = parseMnemonicSuffix(Name);
Operands.push_back(AMDGPUOperand::CreateToken(Name, NameLoc));
while (!getLexer().is(AsmToken::EndOfStatement)) {
AMDGPUAsmParser::OperandMatchResultTy Res = parseOperand(Operands, Name);
// Eat the comma or space if there is one.
if (getLexer().is(AsmToken::Comma))
Parser.Lex();
switch (Res) {
case MatchOperand_Success: break;
case MatchOperand_ParseFail:
Error(getLexer().getLoc(), "failed parsing operand.");
while (!getLexer().is(AsmToken::EndOfStatement)) {
Parser.Lex();
}
return true;
case MatchOperand_NoMatch:
Error(getLexer().getLoc(), "not a valid operand.");
while (!getLexer().is(AsmToken::EndOfStatement)) {
Parser.Lex();
}
return true;
}
}
return false;
}
//===----------------------------------------------------------------------===//
// Utility functions
//===----------------------------------------------------------------------===//
AMDGPUAsmParser::OperandMatchResultTy
AMDGPUAsmParser::parseIntWithPrefix(const char *Prefix, int64_t &Int) {
switch(getLexer().getKind()) {
default: return MatchOperand_NoMatch;
case AsmToken::Identifier: {
StringRef Name = Parser.getTok().getString();
if (!Name.equals(Prefix)) {
return MatchOperand_NoMatch;
}
Parser.Lex();
if (getLexer().isNot(AsmToken::Colon))
return MatchOperand_ParseFail;
Parser.Lex();
if (getLexer().isNot(AsmToken::Integer))
return MatchOperand_ParseFail;
if (getParser().parseAbsoluteExpression(Int))
return MatchOperand_ParseFail;
break;
}
}
return MatchOperand_Success;
}
AMDGPUAsmParser::OperandMatchResultTy
AMDGPUAsmParser::parseIntWithPrefix(const char *Prefix, OperandVector &Operands,
enum AMDGPUOperand::ImmTy ImmTy,
bool (*ConvertResult)(int64_t&)) {
SMLoc S = Parser.getTok().getLoc();
int64_t Value = 0;
AMDGPUAsmParser::OperandMatchResultTy Res = parseIntWithPrefix(Prefix, Value);
if (Res != MatchOperand_Success)
return Res;
if (ConvertResult && !ConvertResult(Value)) {
return MatchOperand_ParseFail;
}
Operands.push_back(AMDGPUOperand::CreateImm(Value, S, ImmTy));
return MatchOperand_Success;
}
AMDGPUAsmParser::OperandMatchResultTy
AMDGPUAsmParser::parseNamedBit(const char *Name, OperandVector &Operands,
enum AMDGPUOperand::ImmTy ImmTy) {
int64_t Bit = 0;
SMLoc S = Parser.getTok().getLoc();
// We are at the end of the statement, and this is a default argument, so
// use a default value.
if (getLexer().isNot(AsmToken::EndOfStatement)) {
switch(getLexer().getKind()) {
case AsmToken::Identifier: {
StringRef Tok = Parser.getTok().getString();
if (Tok == Name) {
Bit = 1;
Parser.Lex();
} else if (Tok.startswith("no") && Tok.endswith(Name)) {
Bit = 0;
Parser.Lex();
} else {
return MatchOperand_NoMatch;
}
break;
}
default:
return MatchOperand_NoMatch;
}
}
Operands.push_back(AMDGPUOperand::CreateImm(Bit, S, ImmTy));
return MatchOperand_Success;
}
typedef std::map<enum AMDGPUOperand::ImmTy, unsigned> OptionalImmIndexMap;
void addOptionalImmOperand(MCInst& Inst, const OperandVector& Operands,
OptionalImmIndexMap& OptionalIdx,
enum AMDGPUOperand::ImmTy ImmT, int64_t Default = 0) {
auto i = OptionalIdx.find(ImmT);
if (i != OptionalIdx.end()) {
unsigned Idx = i->second;
((AMDGPUOperand &)*Operands[Idx]).addImmOperands(Inst, 1);
} else {
Inst.addOperand(MCOperand::createImm(Default));
}
}
AMDGPUAsmParser::OperandMatchResultTy
AMDGPUAsmParser::parseStringWithPrefix(StringRef Prefix, StringRef &Value) {
if (getLexer().isNot(AsmToken::Identifier)) {
return MatchOperand_NoMatch;
}
StringRef Tok = Parser.getTok().getString();
if (Tok != Prefix) {
return MatchOperand_NoMatch;
}
Parser.Lex();
if (getLexer().isNot(AsmToken::Colon)) {
return MatchOperand_ParseFail;
}
Parser.Lex();
if (getLexer().isNot(AsmToken::Identifier)) {
return MatchOperand_ParseFail;
}
Value = Parser.getTok().getString();
return MatchOperand_Success;
}
//===----------------------------------------------------------------------===//
// ds
//===----------------------------------------------------------------------===//
void AMDGPUAsmParser::cvtDSOffset01(MCInst &Inst,
const OperandVector &Operands) {
OptionalImmIndexMap OptionalIdx;
for (unsigned i = 1, e = Operands.size(); i != e; ++i) {
AMDGPUOperand &Op = ((AMDGPUOperand &)*Operands[i]);
// Add the register arguments
if (Op.isReg()) {
Op.addRegOperands(Inst, 1);
continue;
}
// Handle optional arguments
OptionalIdx[Op.getImmTy()] = i;
}
addOptionalImmOperand(Inst, Operands, OptionalIdx, AMDGPUOperand::ImmTyOffset0);
addOptionalImmOperand(Inst, Operands, OptionalIdx, AMDGPUOperand::ImmTyOffset1);
addOptionalImmOperand(Inst, Operands, OptionalIdx, AMDGPUOperand::ImmTyGDS);
Inst.addOperand(MCOperand::createReg(AMDGPU::M0)); // m0
}
void AMDGPUAsmParser::cvtDS(MCInst &Inst, const OperandVector &Operands) {
std::map<enum AMDGPUOperand::ImmTy, unsigned> OptionalIdx;
bool GDSOnly = false;
for (unsigned i = 1, e = Operands.size(); i != e; ++i) {
AMDGPUOperand &Op = ((AMDGPUOperand &)*Operands[i]);
// Add the register arguments
if (Op.isReg()) {
Op.addRegOperands(Inst, 1);
continue;
}
if (Op.isToken() && Op.getToken() == "gds") {
GDSOnly = true;
continue;
}
// Handle optional arguments
OptionalIdx[Op.getImmTy()] = i;
}
addOptionalImmOperand(Inst, Operands, OptionalIdx, AMDGPUOperand::ImmTyOffset);
addOptionalImmOperand(Inst, Operands, OptionalIdx, AMDGPUOperand::ImmTyGDS);
if (!GDSOnly) {
addOptionalImmOperand(Inst, Operands, OptionalIdx, AMDGPUOperand::ImmTyGDS);
}
Inst.addOperand(MCOperand::createReg(AMDGPU::M0)); // m0
}
//===----------------------------------------------------------------------===//
// s_waitcnt
//===----------------------------------------------------------------------===//
bool AMDGPUAsmParser::parseCnt(int64_t &IntVal) {
StringRef CntName = Parser.getTok().getString();
int64_t CntVal;
Parser.Lex();
if (getLexer().isNot(AsmToken::LParen))
return true;
Parser.Lex();
if (getLexer().isNot(AsmToken::Integer))
return true;
if (getParser().parseAbsoluteExpression(CntVal))
return true;
if (getLexer().isNot(AsmToken::RParen))
return true;
Parser.Lex();
if (getLexer().is(AsmToken::Amp) || getLexer().is(AsmToken::Comma))
Parser.Lex();
int CntShift;
int CntMask;
if (CntName == "vmcnt") {
CntMask = 0xf;
CntShift = 0;
} else if (CntName == "expcnt") {
CntMask = 0x7;
CntShift = 4;
} else if (CntName == "lgkmcnt") {
CntMask = 0xf;
CntShift = 8;
} else {
return true;
}
IntVal &= ~(CntMask << CntShift);
IntVal |= (CntVal << CntShift);
return false;
}
AMDGPUAsmParser::OperandMatchResultTy
AMDGPUAsmParser::parseSWaitCntOps(OperandVector &Operands) {
// Disable all counters by default.
// vmcnt [3:0]
// expcnt [6:4]
// lgkmcnt [11:8]
int64_t CntVal = 0xf7f;
SMLoc S = Parser.getTok().getLoc();
switch(getLexer().getKind()) {
default: return MatchOperand_ParseFail;
case AsmToken::Integer:
// The operand can be an integer value.
if (getParser().parseAbsoluteExpression(CntVal))
return MatchOperand_ParseFail;
break;
case AsmToken::Identifier:
do {
if (parseCnt(CntVal))
return MatchOperand_ParseFail;
} while(getLexer().isNot(AsmToken::EndOfStatement));
break;
}
Operands.push_back(AMDGPUOperand::CreateImm(CntVal, S));
return MatchOperand_Success;
}
bool AMDGPUAsmParser::parseHwregConstruct(OperandInfoTy &HwReg, int64_t &Offset, int64_t &Width) {
using namespace llvm::AMDGPU::Hwreg;
if (Parser.getTok().getString() != "hwreg")
return true;
Parser.Lex();
if (getLexer().isNot(AsmToken::LParen))
return true;
Parser.Lex();
if (getLexer().is(AsmToken::Identifier)) {
HwReg.IsSymbolic = true;
HwReg.Id = ID_UNKNOWN_;
const StringRef tok = Parser.getTok().getString();
for (int i = ID_SYMBOLIC_FIRST_; i < ID_SYMBOLIC_LAST_; ++i) {
if (tok == IdSymbolic[i]) {
HwReg.Id = i;
break;
}
}
Parser.Lex();
} else {
HwReg.IsSymbolic = false;
if (getLexer().isNot(AsmToken::Integer))
return true;
if (getParser().parseAbsoluteExpression(HwReg.Id))
return true;
}
if (getLexer().is(AsmToken::RParen)) {
Parser.Lex();
return false;
}
// optional params
if (getLexer().isNot(AsmToken::Comma))
return true;
Parser.Lex();
if (getLexer().isNot(AsmToken::Integer))
return true;
if (getParser().parseAbsoluteExpression(Offset))
return true;
if (getLexer().isNot(AsmToken::Comma))
return true;
Parser.Lex();
if (getLexer().isNot(AsmToken::Integer))
return true;
if (getParser().parseAbsoluteExpression(Width))
return true;
if (getLexer().isNot(AsmToken::RParen))
return true;
Parser.Lex();
return false;
}
AMDGPUAsmParser::OperandMatchResultTy
AMDGPUAsmParser::parseHwreg(OperandVector &Operands) {
using namespace llvm::AMDGPU::Hwreg;
int64_t Imm16Val = 0;
SMLoc S = Parser.getTok().getLoc();
switch(getLexer().getKind()) {
default: return MatchOperand_NoMatch;
case AsmToken::Integer:
// The operand can be an integer value.
if (getParser().parseAbsoluteExpression(Imm16Val))
return MatchOperand_NoMatch;
if (Imm16Val < 0 || !isUInt<16>(Imm16Val)) {
Error(S, "invalid immediate: only 16-bit values are legal");
// Do not return error code, but create an imm operand anyway and proceed
// to the next operand, if any. That avoids unneccessary error messages.
}
break;
case AsmToken::Identifier: {
OperandInfoTy HwReg(ID_UNKNOWN_);
int64_t Offset = OFFSET_DEFAULT_;
int64_t Width = WIDTH_M1_DEFAULT_ + 1;
if (parseHwregConstruct(HwReg, Offset, Width))
return MatchOperand_ParseFail;
if (HwReg.Id < 0 || !isUInt<ID_WIDTH_>(HwReg.Id)) {
if (HwReg.IsSymbolic)
Error(S, "invalid symbolic name of hardware register");
else
Error(S, "invalid code of hardware register: only 6-bit values are legal");
}
if (Offset < 0 || !isUInt<OFFSET_WIDTH_>(Offset))
Error(S, "invalid bit offset: only 5-bit values are legal");
if ((Width-1) < 0 || !isUInt<WIDTH_M1_WIDTH_>(Width-1))
Error(S, "invalid bitfield width: only values from 1 to 32 are legal");
Imm16Val = (HwReg.Id << ID_SHIFT_) | (Offset << OFFSET_SHIFT_) | ((Width-1) << WIDTH_M1_SHIFT_);
}
break;
}
Operands.push_back(AMDGPUOperand::CreateImm(Imm16Val, S, AMDGPUOperand::ImmTyHwreg));
return MatchOperand_Success;
}
bool AMDGPUOperand::isSWaitCnt() const {
return isImm();
}
bool AMDGPUOperand::isHwreg() const {
return isImmTy(ImmTyHwreg);
}
bool AMDGPUAsmParser::parseSendMsgConstruct(OperandInfoTy &Msg, OperandInfoTy &Operation, int64_t &StreamId) {
using namespace llvm::AMDGPU::SendMsg;
if (Parser.getTok().getString() != "sendmsg")
return true;
Parser.Lex();
if (getLexer().isNot(AsmToken::LParen))
return true;
Parser.Lex();
if (getLexer().is(AsmToken::Identifier)) {
Msg.IsSymbolic = true;
Msg.Id = ID_UNKNOWN_;
const std::string tok = Parser.getTok().getString();
for (int i = ID_GAPS_FIRST_; i < ID_GAPS_LAST_; ++i) {
switch(i) {
default: continue; // Omit gaps.
case ID_INTERRUPT: case ID_GS: case ID_GS_DONE: case ID_SYSMSG: break;
}
if (tok == IdSymbolic[i]) {
Msg.Id = i;
break;
}
}
Parser.Lex();
} else {
Msg.IsSymbolic = false;
if (getLexer().isNot(AsmToken::Integer))
return true;
if (getParser().parseAbsoluteExpression(Msg.Id))
return true;
if (getLexer().is(AsmToken::Integer))
if (getParser().parseAbsoluteExpression(Msg.Id))
Msg.Id = ID_UNKNOWN_;
}
if (Msg.Id == ID_UNKNOWN_) // Don't know how to parse the rest.
return false;
if (!(Msg.Id == ID_GS || Msg.Id == ID_GS_DONE || Msg.Id == ID_SYSMSG)) {
if (getLexer().isNot(AsmToken::RParen))
return true;
Parser.Lex();
return false;
}
if (getLexer().isNot(AsmToken::Comma))
return true;
Parser.Lex();
assert(Msg.Id == ID_GS || Msg.Id == ID_GS_DONE || Msg.Id == ID_SYSMSG);
Operation.Id = ID_UNKNOWN_;
if (getLexer().is(AsmToken::Identifier)) {
Operation.IsSymbolic = true;
const char* const *S = (Msg.Id == ID_SYSMSG) ? OpSysSymbolic : OpGsSymbolic;
const int F = (Msg.Id == ID_SYSMSG) ? OP_SYS_FIRST_ : OP_GS_FIRST_;
const int L = (Msg.Id == ID_SYSMSG) ? OP_SYS_LAST_ : OP_GS_LAST_;
const StringRef Tok = Parser.getTok().getString();
for (int i = F; i < L; ++i) {
if (Tok == S[i]) {
Operation.Id = i;
break;
}
}
Parser.Lex();
} else {
Operation.IsSymbolic = false;
if (getLexer().isNot(AsmToken::Integer))
return true;
if (getParser().parseAbsoluteExpression(Operation.Id))
return true;
}
if ((Msg.Id == ID_GS || Msg.Id == ID_GS_DONE) && Operation.Id != OP_GS_NOP) {
// Stream id is optional.
if (getLexer().is(AsmToken::RParen)) {
Parser.Lex();
return false;
}
if (getLexer().isNot(AsmToken::Comma))
return true;
Parser.Lex();
if (getLexer().isNot(AsmToken::Integer))
return true;
if (getParser().parseAbsoluteExpression(StreamId))
return true;
}
if (getLexer().isNot(AsmToken::RParen))
return true;
Parser.Lex();
return false;
}
AMDGPUAsmParser::OperandMatchResultTy
AMDGPUAsmParser::parseSendMsgOp(OperandVector &Operands) {
using namespace llvm::AMDGPU::SendMsg;
int64_t Imm16Val = 0;
SMLoc S = Parser.getTok().getLoc();
switch(getLexer().getKind()) {
default:
return MatchOperand_NoMatch;
case AsmToken::Integer:
// The operand can be an integer value.
if (getParser().parseAbsoluteExpression(Imm16Val))
return MatchOperand_NoMatch;
if (Imm16Val < 0 || !isUInt<16>(Imm16Val)) {
Error(S, "invalid immediate: only 16-bit values are legal");
// Do not return error code, but create an imm operand anyway and proceed
// to the next operand, if any. That avoids unneccessary error messages.
}
break;
case AsmToken::Identifier: {
OperandInfoTy Msg(ID_UNKNOWN_);
OperandInfoTy Operation(OP_UNKNOWN_);
int64_t StreamId = STREAM_ID_DEFAULT_;
if (parseSendMsgConstruct(Msg, Operation, StreamId))
return MatchOperand_ParseFail;
do {
// Validate and encode message ID.
if (! ((ID_INTERRUPT <= Msg.Id && Msg.Id <= ID_GS_DONE)
|| Msg.Id == ID_SYSMSG)) {
if (Msg.IsSymbolic)
Error(S, "invalid/unsupported symbolic name of message");
else
Error(S, "invalid/unsupported code of message");
break;
}
Imm16Val = (Msg.Id << ID_SHIFT_);
// Validate and encode operation ID.
if (Msg.Id == ID_GS || Msg.Id == ID_GS_DONE) {
if (! (OP_GS_FIRST_ <= Operation.Id && Operation.Id < OP_GS_LAST_)) {
if (Operation.IsSymbolic)
Error(S, "invalid symbolic name of GS_OP");
else
Error(S, "invalid code of GS_OP: only 2-bit values are legal");
break;
}
if (Operation.Id == OP_GS_NOP
&& Msg.Id != ID_GS_DONE) {
Error(S, "invalid GS_OP: NOP is for GS_DONE only");
break;
}
Imm16Val |= (Operation.Id << OP_SHIFT_);
}
if (Msg.Id == ID_SYSMSG) {
if (! (OP_SYS_FIRST_ <= Operation.Id && Operation.Id < OP_SYS_LAST_)) {
if (Operation.IsSymbolic)
Error(S, "invalid/unsupported symbolic name of SYSMSG_OP");
else
Error(S, "invalid/unsupported code of SYSMSG_OP");
break;
}
Imm16Val |= (Operation.Id << OP_SHIFT_);
}
// Validate and encode stream ID.
if ((Msg.Id == ID_GS || Msg.Id == ID_GS_DONE) && Operation.Id != OP_GS_NOP) {
if (! (STREAM_ID_FIRST_ <= StreamId && StreamId < STREAM_ID_LAST_)) {
Error(S, "invalid stream id: only 2-bit values are legal");
break;
}
Imm16Val |= (StreamId << STREAM_ID_SHIFT_);
}
} while (0);
}
break;
}
Operands.push_back(AMDGPUOperand::CreateImm(Imm16Val, S, AMDGPUOperand::ImmTySendMsg));
return MatchOperand_Success;
}
bool AMDGPUOperand::isSendMsg() const {
return isImmTy(ImmTySendMsg);
}
//===----------------------------------------------------------------------===//
// sopp branch targets
//===----------------------------------------------------------------------===//
AMDGPUAsmParser::OperandMatchResultTy
AMDGPUAsmParser::parseSOppBrTarget(OperandVector &Operands) {
SMLoc S = Parser.getTok().getLoc();
switch (getLexer().getKind()) {
default: return MatchOperand_ParseFail;
case AsmToken::Integer: {
int64_t Imm;
if (getParser().parseAbsoluteExpression(Imm))
return MatchOperand_ParseFail;
Operands.push_back(AMDGPUOperand::CreateImm(Imm, S));
return MatchOperand_Success;
}
case AsmToken::Identifier:
Operands.push_back(AMDGPUOperand::CreateExpr(
MCSymbolRefExpr::create(getContext().getOrCreateSymbol(
Parser.getTok().getString()), getContext()), S));
Parser.Lex();
return MatchOperand_Success;
}
}
//===----------------------------------------------------------------------===//
// mubuf
//===----------------------------------------------------------------------===//
AMDGPUOperand::Ptr AMDGPUAsmParser::defaultGLC() const {
return AMDGPUOperand::CreateImm(0, SMLoc(), AMDGPUOperand::ImmTyGLC);
}
AMDGPUOperand::Ptr AMDGPUAsmParser::defaultSLC() const {
return AMDGPUOperand::CreateImm(0, SMLoc(), AMDGPUOperand::ImmTySLC);
}
AMDGPUOperand::Ptr AMDGPUAsmParser::defaultTFE() const {
return AMDGPUOperand::CreateImm(0, SMLoc(), AMDGPUOperand::ImmTyTFE);
}
void AMDGPUAsmParser::cvtMubufImpl(MCInst &Inst,
const OperandVector &Operands,
bool IsAtomic, bool IsAtomicReturn) {
OptionalImmIndexMap OptionalIdx;
assert(IsAtomicReturn ? IsAtomic : true);
for (unsigned i = 1, e = Operands.size(); i != e; ++i) {
AMDGPUOperand &Op = ((AMDGPUOperand &)*Operands[i]);
// Add the register arguments
if (Op.isReg()) {
Op.addRegOperands(Inst, 1);
continue;
}
// Handle the case where soffset is an immediate
if (Op.isImm() && Op.getImmTy() == AMDGPUOperand::ImmTyNone) {
Op.addImmOperands(Inst, 1);
continue;
}
// Handle tokens like 'offen' which are sometimes hard-coded into the
// asm string. There are no MCInst operands for these.
if (Op.isToken()) {
continue;
}
assert(Op.isImm());
// Handle optional arguments
OptionalIdx[Op.getImmTy()] = i;
}
// Copy $vdata_in operand and insert as $vdata for MUBUF_Atomic RTN insns.
if (IsAtomicReturn) {
MCInst::iterator I = Inst.begin(); // $vdata_in is always at the beginning.
Inst.insert(I, *I);
}
addOptionalImmOperand(Inst, Operands, OptionalIdx, AMDGPUOperand::ImmTyOffset);
if (!IsAtomic) { // glc is hard-coded.
addOptionalImmOperand(Inst, Operands, OptionalIdx, AMDGPUOperand::ImmTyGLC);
}
addOptionalImmOperand(Inst, Operands, OptionalIdx, AMDGPUOperand::ImmTySLC);
addOptionalImmOperand(Inst, Operands, OptionalIdx, AMDGPUOperand::ImmTyTFE);
}
//===----------------------------------------------------------------------===//
// mimg
//===----------------------------------------------------------------------===//
void AMDGPUAsmParser::cvtMIMG(MCInst &Inst, const OperandVector &Operands) {
unsigned I = 1;
const MCInstrDesc &Desc = MII.get(Inst.getOpcode());
for (unsigned J = 0; J < Desc.getNumDefs(); ++J) {
((AMDGPUOperand &)*Operands[I++]).addRegOperands(Inst, 1);
}
OptionalImmIndexMap OptionalIdx;
for (unsigned E = Operands.size(); I != E; ++I) {
AMDGPUOperand &Op = ((AMDGPUOperand &)*Operands[I]);
// Add the register arguments
if (Op.isRegOrImm()) {
Op.addRegOrImmOperands(Inst, 1);
continue;
} else if (Op.isImmModifier()) {
OptionalIdx[Op.getImmTy()] = I;
} else {
assert(false);
}
}
addOptionalImmOperand(Inst, Operands, OptionalIdx, AMDGPUOperand::ImmTyDMask);
addOptionalImmOperand(Inst, Operands, OptionalIdx, AMDGPUOperand::ImmTyUNorm);
addOptionalImmOperand(Inst, Operands, OptionalIdx, AMDGPUOperand::ImmTyGLC);
addOptionalImmOperand(Inst, Operands, OptionalIdx, AMDGPUOperand::ImmTyDA);
addOptionalImmOperand(Inst, Operands, OptionalIdx, AMDGPUOperand::ImmTyR128);
addOptionalImmOperand(Inst, Operands, OptionalIdx, AMDGPUOperand::ImmTyTFE);
addOptionalImmOperand(Inst, Operands, OptionalIdx, AMDGPUOperand::ImmTyLWE);
addOptionalImmOperand(Inst, Operands, OptionalIdx, AMDGPUOperand::ImmTySLC);
}
void AMDGPUAsmParser::cvtMIMGAtomic(MCInst &Inst, const OperandVector &Operands) {
unsigned I = 1;
const MCInstrDesc &Desc = MII.get(Inst.getOpcode());
for (unsigned J = 0; J < Desc.getNumDefs(); ++J) {
((AMDGPUOperand &)*Operands[I++]).addRegOperands(Inst, 1);
}
// Add src, same as dst
((AMDGPUOperand &)*Operands[I]).addRegOperands(Inst, 1);
OptionalImmIndexMap OptionalIdx;
for (unsigned E = Operands.size(); I != E; ++I) {
AMDGPUOperand &Op = ((AMDGPUOperand &)*Operands[I]);
// Add the register arguments
if (Op.isRegOrImm()) {
Op.addRegOrImmOperands(Inst, 1);
continue;
} else if (Op.isImmModifier()) {
OptionalIdx[Op.getImmTy()] = I;
} else {
assert(false);
}
}
addOptionalImmOperand(Inst, Operands, OptionalIdx, AMDGPUOperand::ImmTyDMask);
addOptionalImmOperand(Inst, Operands, OptionalIdx, AMDGPUOperand::ImmTyUNorm);
addOptionalImmOperand(Inst, Operands, OptionalIdx, AMDGPUOperand::ImmTyGLC);
addOptionalImmOperand(Inst, Operands, OptionalIdx, AMDGPUOperand::ImmTyDA);
addOptionalImmOperand(Inst, Operands, OptionalIdx, AMDGPUOperand::ImmTyR128);
addOptionalImmOperand(Inst, Operands, OptionalIdx, AMDGPUOperand::ImmTyTFE);
addOptionalImmOperand(Inst, Operands, OptionalIdx, AMDGPUOperand::ImmTyLWE);
addOptionalImmOperand(Inst, Operands, OptionalIdx, AMDGPUOperand::ImmTySLC);
}
AMDGPUOperand::Ptr AMDGPUAsmParser::defaultDMask() const {
return AMDGPUOperand::CreateImm(0, SMLoc(), AMDGPUOperand::ImmTyDMask);
}
AMDGPUOperand::Ptr AMDGPUAsmParser::defaultUNorm() const {
return AMDGPUOperand::CreateImm(0, SMLoc(), AMDGPUOperand::ImmTyUNorm);
}
AMDGPUOperand::Ptr AMDGPUAsmParser::defaultDA() const {
return AMDGPUOperand::CreateImm(0, SMLoc(), AMDGPUOperand::ImmTyDA);
}
AMDGPUOperand::Ptr AMDGPUAsmParser::defaultR128() const {
return AMDGPUOperand::CreateImm(0, SMLoc(), AMDGPUOperand::ImmTyR128);
}
AMDGPUOperand::Ptr AMDGPUAsmParser::defaultLWE() const {
return AMDGPUOperand::CreateImm(0, SMLoc(), AMDGPUOperand::ImmTyLWE);
}
//===----------------------------------------------------------------------===//
// smrd
//===----------------------------------------------------------------------===//
bool AMDGPUOperand::isSMRDOffset() const {
// FIXME: Support 20-bit offsets on VI. We need to to pass subtarget
// information here.
return isImm() && isUInt<8>(getImm());
}
bool AMDGPUOperand::isSMRDLiteralOffset() const {
// 32-bit literals are only supported on CI and we only want to use them
// when the offset is > 8-bits.
return isImm() && !isUInt<8>(getImm()) && isUInt<32>(getImm());
}
AMDGPUOperand::Ptr AMDGPUAsmParser::defaultSMRDOffset() const {
return AMDGPUOperand::CreateImm(0, SMLoc(), AMDGPUOperand::ImmTyOffset);
}
AMDGPUOperand::Ptr AMDGPUAsmParser::defaultSMRDLiteralOffset() const {
return AMDGPUOperand::CreateImm(0, SMLoc(), AMDGPUOperand::ImmTyOffset);
}
//===----------------------------------------------------------------------===//
// vop3
//===----------------------------------------------------------------------===//
static bool ConvertOmodMul(int64_t &Mul) {
if (Mul != 1 && Mul != 2 && Mul != 4)
return false;
Mul >>= 1;
return true;
}
static bool ConvertOmodDiv(int64_t &Div) {
if (Div == 1) {
Div = 0;
return true;
}
if (Div == 2) {
Div = 3;
return true;
}
return false;
}
static bool ConvertBoundCtrl(int64_t &BoundCtrl) {
if (BoundCtrl == 0) {
BoundCtrl = 1;
return true;
} else if (BoundCtrl == -1) {
BoundCtrl = 0;
return true;
}
return false;
}
// Note: the order in this table matches the order of operands in AsmString.
static const OptionalOperand AMDGPUOptionalOperandTable[] = {
{"offen", AMDGPUOperand::ImmTyOffen, true, nullptr},
{"idxen", AMDGPUOperand::ImmTyIdxen, true, nullptr},
{"addr64", AMDGPUOperand::ImmTyAddr64, true, nullptr},
{"offset0", AMDGPUOperand::ImmTyOffset0, false, nullptr},
{"offset1", AMDGPUOperand::ImmTyOffset1, false, nullptr},
{"gds", AMDGPUOperand::ImmTyGDS, true, nullptr},
{"offset", AMDGPUOperand::ImmTyOffset, false, nullptr},
{"glc", AMDGPUOperand::ImmTyGLC, true, nullptr},
{"slc", AMDGPUOperand::ImmTySLC, true, nullptr},
{"tfe", AMDGPUOperand::ImmTyTFE, true, nullptr},
{"clamp", AMDGPUOperand::ImmTyClampSI, true, nullptr},
{"omod", AMDGPUOperand::ImmTyOModSI, false, ConvertOmodMul},
{"unorm", AMDGPUOperand::ImmTyUNorm, true, nullptr},
{"da", AMDGPUOperand::ImmTyDA, true, nullptr},
{"r128", AMDGPUOperand::ImmTyR128, true, nullptr},
{"lwe", AMDGPUOperand::ImmTyLWE, true, nullptr},
{"dmask", AMDGPUOperand::ImmTyDMask, false, nullptr},
{"row_mask", AMDGPUOperand::ImmTyDppRowMask, false, nullptr},
{"bank_mask", AMDGPUOperand::ImmTyDppBankMask, false, nullptr},
{"bound_ctrl", AMDGPUOperand::ImmTyDppBoundCtrl, false, ConvertBoundCtrl},
{"dst_sel", AMDGPUOperand::ImmTySdwaDstSel, false, nullptr},
{"src0_sel", AMDGPUOperand::ImmTySdwaSrc0Sel, false, nullptr},
{"src1_sel", AMDGPUOperand::ImmTySdwaSrc1Sel, false, nullptr},
{"dst_unused", AMDGPUOperand::ImmTySdwaDstUnused, false, nullptr},
};
AMDGPUAsmParser::OperandMatchResultTy AMDGPUAsmParser::parseOptionalOperand(OperandVector &Operands) {
OperandMatchResultTy res;
for (const OptionalOperand &Op : AMDGPUOptionalOperandTable) {
// try to parse any optional operand here
if (Op.IsBit) {
res = parseNamedBit(Op.Name, Operands, Op.Type);
} else if (Op.Type == AMDGPUOperand::ImmTyOModSI) {
res = parseOModOperand(Operands);
} else if (Op.Type == AMDGPUOperand::ImmTySdwaDstSel ||
Op.Type == AMDGPUOperand::ImmTySdwaSrc0Sel ||
Op.Type == AMDGPUOperand::ImmTySdwaSrc1Sel) {
res = parseSDWASel(Operands, Op.Name, Op.Type);
} else if (Op.Type == AMDGPUOperand::ImmTySdwaDstUnused) {
res = parseSDWADstUnused(Operands);
} else {
res = parseIntWithPrefix(Op.Name, Operands, Op.Type, Op.ConvertResult);
}
if (res != MatchOperand_NoMatch) {
return res;
}
}
return MatchOperand_NoMatch;
}
AMDGPUAsmParser::OperandMatchResultTy AMDGPUAsmParser::parseOModOperand(OperandVector &Operands)
{
StringRef Name = Parser.getTok().getString();
if (Name == "mul") {
return parseIntWithPrefix("mul", Operands, AMDGPUOperand::ImmTyOModSI, ConvertOmodMul);
} else if (Name == "div") {
return parseIntWithPrefix("div", Operands, AMDGPUOperand::ImmTyOModSI, ConvertOmodDiv);
} else {
return MatchOperand_NoMatch;
}
}
void AMDGPUAsmParser::cvtId(MCInst &Inst, const OperandVector &Operands) {
unsigned I = 1;
const MCInstrDesc &Desc = MII.get(Inst.getOpcode());
for (unsigned J = 0; J < Desc.getNumDefs(); ++J) {
((AMDGPUOperand &)*Operands[I++]).addRegOperands(Inst, 1);
}
for (unsigned E = Operands.size(); I != E; ++I)
((AMDGPUOperand &)*Operands[I]).addRegOrImmOperands(Inst, 1);
}
void AMDGPUAsmParser::cvtVOP3_2_mod(MCInst &Inst, const OperandVector &Operands) {
uint64_t TSFlags = MII.get(Inst.getOpcode()).TSFlags;
if (TSFlags & SIInstrFlags::VOP3) {
cvtVOP3(Inst, Operands);
} else {
cvtId(Inst, Operands);
}
}
void AMDGPUAsmParser::cvtVOP3(MCInst &Inst, const OperandVector &Operands) {
OptionalImmIndexMap OptionalIdx;
unsigned I = 1;
const MCInstrDesc &Desc = MII.get(Inst.getOpcode());
for (unsigned J = 0; J < Desc.getNumDefs(); ++J) {
((AMDGPUOperand &)*Operands[I++]).addRegOperands(Inst, 1);
}
for (unsigned E = Operands.size(); I != E; ++I) {
AMDGPUOperand &Op = ((AMDGPUOperand &)*Operands[I]);
if (Op.isRegOrImmWithInputMods()) {
// only fp modifiers allowed in VOP3
Op.addRegOrImmWithFPInputModsOperands(Inst, 2);
} else if (Op.isImm()) {
OptionalIdx[Op.getImmTy()] = I;
} else {
assert(false);
}
}
addOptionalImmOperand(Inst, Operands, OptionalIdx, AMDGPUOperand::ImmTyClampSI);
addOptionalImmOperand(Inst, Operands, OptionalIdx, AMDGPUOperand::ImmTyOModSI);
}
//===----------------------------------------------------------------------===//
// dpp
//===----------------------------------------------------------------------===//
bool AMDGPUOperand::isDPPCtrl() const {
bool result = isImm() && getImmTy() == ImmTyDppCtrl && isUInt<9>(getImm());
if (result) {
int64_t Imm = getImm();
return ((Imm >= 0x000) && (Imm <= 0x0ff)) ||
((Imm >= 0x101) && (Imm <= 0x10f)) ||
((Imm >= 0x111) && (Imm <= 0x11f)) ||
((Imm >= 0x121) && (Imm <= 0x12f)) ||
(Imm == 0x130) ||
(Imm == 0x134) ||
(Imm == 0x138) ||
(Imm == 0x13c) ||
(Imm == 0x140) ||
(Imm == 0x141) ||
(Imm == 0x142) ||
(Imm == 0x143);
}
return false;
}
AMDGPUAsmParser::OperandMatchResultTy
AMDGPUAsmParser::parseDPPCtrl(OperandVector &Operands) {
SMLoc S = Parser.getTok().getLoc();
StringRef Prefix;
int64_t Int;
if (getLexer().getKind() == AsmToken::Identifier) {
Prefix = Parser.getTok().getString();
} else {
return MatchOperand_NoMatch;
}
if (Prefix == "row_mirror") {
Int = 0x140;
} else if (Prefix == "row_half_mirror") {
Int = 0x141;
} else {
// Check to prevent parseDPPCtrlOps from eating invalid tokens
if (Prefix != "quad_perm"
&& Prefix != "row_shl"
&& Prefix != "row_shr"
&& Prefix != "row_ror"
&& Prefix != "wave_shl"
&& Prefix != "wave_rol"
&& Prefix != "wave_shr"
&& Prefix != "wave_ror"
&& Prefix != "row_bcast") {
return MatchOperand_NoMatch;
}
Parser.Lex();
if (getLexer().isNot(AsmToken::Colon))
return MatchOperand_ParseFail;
if (Prefix == "quad_perm") {
// quad_perm:[%d,%d,%d,%d]
Parser.Lex();
if (getLexer().isNot(AsmToken::LBrac))
return MatchOperand_ParseFail;
Parser.Lex();
if (getLexer().isNot(AsmToken::Integer))
return MatchOperand_ParseFail;
Int = getLexer().getTok().getIntVal();
Parser.Lex();
if (getLexer().isNot(AsmToken::Comma))
return MatchOperand_ParseFail;
Parser.Lex();
if (getLexer().isNot(AsmToken::Integer))
return MatchOperand_ParseFail;
Int += (getLexer().getTok().getIntVal() << 2);
Parser.Lex();
if (getLexer().isNot(AsmToken::Comma))
return MatchOperand_ParseFail;
Parser.Lex();
if (getLexer().isNot(AsmToken::Integer))
return MatchOperand_ParseFail;
Int += (getLexer().getTok().getIntVal() << 4);
Parser.Lex();
if (getLexer().isNot(AsmToken::Comma))
return MatchOperand_ParseFail;
Parser.Lex();
if (getLexer().isNot(AsmToken::Integer))
return MatchOperand_ParseFail;
Int += (getLexer().getTok().getIntVal() << 6);
Parser.Lex();
if (getLexer().isNot(AsmToken::RBrac))
return MatchOperand_ParseFail;
} else {
// sel:%d
Parser.Lex();
if (getLexer().isNot(AsmToken::Integer))
return MatchOperand_ParseFail;
Int = getLexer().getTok().getIntVal();
if (Prefix == "row_shl") {
Int |= 0x100;
} else if (Prefix == "row_shr") {
Int |= 0x110;
} else if (Prefix == "row_ror") {
Int |= 0x120;
} else if (Prefix == "wave_shl") {
Int = 0x130;
} else if (Prefix == "wave_rol") {
Int = 0x134;
} else if (Prefix == "wave_shr") {
Int = 0x138;
} else if (Prefix == "wave_ror") {
Int = 0x13C;
} else if (Prefix == "row_bcast") {
if (Int == 15) {
Int = 0x142;
} else if (Int == 31) {
Int = 0x143;
} else {
return MatchOperand_ParseFail;
}
} else {
return MatchOperand_ParseFail;
}
}
}
Parser.Lex(); // eat last token
Operands.push_back(AMDGPUOperand::CreateImm(Int, S,
AMDGPUOperand::ImmTyDppCtrl));
return MatchOperand_Success;
}
AMDGPUOperand::Ptr AMDGPUAsmParser::defaultRowMask() const {
return AMDGPUOperand::CreateImm(0xf, SMLoc(), AMDGPUOperand::ImmTyDppRowMask);
}
AMDGPUOperand::Ptr AMDGPUAsmParser::defaultBankMask() const {
return AMDGPUOperand::CreateImm(0xf, SMLoc(), AMDGPUOperand::ImmTyDppBankMask);
}
AMDGPUOperand::Ptr AMDGPUAsmParser::defaultBoundCtrl() const {
return AMDGPUOperand::CreateImm(0, SMLoc(), AMDGPUOperand::ImmTyDppBoundCtrl);
}
void AMDGPUAsmParser::cvtDPP(MCInst &Inst, const OperandVector &Operands) {
OptionalImmIndexMap OptionalIdx;
unsigned I = 1;
const MCInstrDesc &Desc = MII.get(Inst.getOpcode());
for (unsigned J = 0; J < Desc.getNumDefs(); ++J) {
((AMDGPUOperand &)*Operands[I++]).addRegOperands(Inst, 1);
}
for (unsigned E = Operands.size(); I != E; ++I) {
AMDGPUOperand &Op = ((AMDGPUOperand &)*Operands[I]);
// Add the register arguments
if (Op.isRegOrImmWithInputMods()) {
// Only float modifiers supported in DPP
Op.addRegOrImmWithFPInputModsOperands(Inst, 2);
} else if (Op.isDPPCtrl()) {
Op.addImmOperands(Inst, 1);
} else if (Op.isImm()) {
// Handle optional arguments
OptionalIdx[Op.getImmTy()] = I;
} else {
llvm_unreachable("Invalid operand type");
}
}
addOptionalImmOperand(Inst, Operands, OptionalIdx, AMDGPUOperand::ImmTyDppRowMask, 0xf);
addOptionalImmOperand(Inst, Operands, OptionalIdx, AMDGPUOperand::ImmTyDppBankMask, 0xf);
addOptionalImmOperand(Inst, Operands, OptionalIdx, AMDGPUOperand::ImmTyDppBoundCtrl);
}
//===----------------------------------------------------------------------===//
// sdwa
//===----------------------------------------------------------------------===//
AMDGPUAsmParser::OperandMatchResultTy
AMDGPUAsmParser::parseSDWASel(OperandVector &Operands, StringRef Prefix,
AMDGPUOperand::ImmTy Type) {
SMLoc S = Parser.getTok().getLoc();
StringRef Value;
AMDGPUAsmParser::OperandMatchResultTy res;
res = parseStringWithPrefix(Prefix, Value);
if (res != MatchOperand_Success) {
return res;
}
int64_t Int;
Int = StringSwitch<int64_t>(Value)
.Case("BYTE_0", 0)
.Case("BYTE_1", 1)
.Case("BYTE_2", 2)
.Case("BYTE_3", 3)
.Case("WORD_0", 4)
.Case("WORD_1", 5)
.Case("DWORD", 6)
.Default(0xffffffff);
Parser.Lex(); // eat last token
if (Int == 0xffffffff) {
return MatchOperand_ParseFail;
}
Operands.push_back(AMDGPUOperand::CreateImm(Int, S, Type));
return MatchOperand_Success;
}
AMDGPUAsmParser::OperandMatchResultTy
AMDGPUAsmParser::parseSDWADstUnused(OperandVector &Operands) {
SMLoc S = Parser.getTok().getLoc();
StringRef Value;
AMDGPUAsmParser::OperandMatchResultTy res;
res = parseStringWithPrefix("dst_unused", Value);
if (res != MatchOperand_Success) {
return res;
}
int64_t Int;
Int = StringSwitch<int64_t>(Value)
.Case("UNUSED_PAD", 0)
.Case("UNUSED_SEXT", 1)
.Case("UNUSED_PRESERVE", 2)
.Default(0xffffffff);
Parser.Lex(); // eat last token
if (Int == 0xffffffff) {
return MatchOperand_ParseFail;
}
Operands.push_back(AMDGPUOperand::CreateImm(Int, S,
AMDGPUOperand::ImmTySdwaDstUnused));
return MatchOperand_Success;
}
void AMDGPUAsmParser::cvtSdwaVOP1(MCInst &Inst, const OperandVector &Operands) {
cvtSDWA(Inst, Operands, SIInstrFlags::VOP1);
}
void AMDGPUAsmParser::cvtSdwaVOP2(MCInst &Inst, const OperandVector &Operands) {
cvtSDWA(Inst, Operands, SIInstrFlags::VOP2);
}
void AMDGPUAsmParser::cvtSdwaVOPC(MCInst &Inst, const OperandVector &Operands) {
cvtSDWA(Inst, Operands, SIInstrFlags::VOPC);
}
void AMDGPUAsmParser::cvtSDWA(MCInst &Inst, const OperandVector &Operands,
uint64_t BasicInstType) {
OptionalImmIndexMap OptionalIdx;
unsigned I = 1;
const MCInstrDesc &Desc = MII.get(Inst.getOpcode());
for (unsigned J = 0; J < Desc.getNumDefs(); ++J) {
((AMDGPUOperand &)*Operands[I++]).addRegOperands(Inst, 1);
}
for (unsigned E = Operands.size(); I != E; ++I) {
AMDGPUOperand &Op = ((AMDGPUOperand &)*Operands[I]);
// Add the register arguments
if (BasicInstType == SIInstrFlags::VOPC &&
Op.isReg() &&
Op.Reg.RegNo == AMDGPU::VCC) {
// VOPC sdwa use "vcc" token as dst. Skip it.
continue;
} else if (Op.isRegOrImmWithInputMods()) {
Op.addRegOrImmWithInputModsOperands(Inst, 2);
} else if (Op.isImm()) {
// Handle optional arguments
OptionalIdx[Op.getImmTy()] = I;
} else {
llvm_unreachable("Invalid operand type");
}
}
addOptionalImmOperand(Inst, Operands, OptionalIdx, AMDGPUOperand::ImmTyClampSI, 0);
if (Inst.getOpcode() == AMDGPU::V_NOP_sdwa) {
// V_NOP_sdwa has no optional sdwa arguments
return;
}
switch (BasicInstType) {
case SIInstrFlags::VOP1: {
addOptionalImmOperand(Inst, Operands, OptionalIdx, AMDGPUOperand::ImmTySdwaDstSel, 6);
addOptionalImmOperand(Inst, Operands, OptionalIdx, AMDGPUOperand::ImmTySdwaDstUnused, 2);
addOptionalImmOperand(Inst, Operands, OptionalIdx, AMDGPUOperand::ImmTySdwaSrc0Sel, 6);
break;
}
case SIInstrFlags::VOP2: {
addOptionalImmOperand(Inst, Operands, OptionalIdx, AMDGPUOperand::ImmTySdwaDstSel, 6);
addOptionalImmOperand(Inst, Operands, OptionalIdx, AMDGPUOperand::ImmTySdwaDstUnused, 2);
addOptionalImmOperand(Inst, Operands, OptionalIdx, AMDGPUOperand::ImmTySdwaSrc0Sel, 6);
addOptionalImmOperand(Inst, Operands, OptionalIdx, AMDGPUOperand::ImmTySdwaSrc1Sel, 6);
break;
}
case SIInstrFlags::VOPC: {
addOptionalImmOperand(Inst, Operands, OptionalIdx, AMDGPUOperand::ImmTySdwaSrc0Sel, 6);
addOptionalImmOperand(Inst, Operands, OptionalIdx, AMDGPUOperand::ImmTySdwaSrc1Sel, 6);
break;
}
default:
llvm_unreachable("Invalid instruction type. Only VOP1, VOP2 and VOPC allowed");
}
}
/// Force static initialization.
extern "C" void LLVMInitializeAMDGPUAsmParser() {
RegisterMCAsmParser<AMDGPUAsmParser> A(TheAMDGPUTarget);
RegisterMCAsmParser<AMDGPUAsmParser> B(TheGCNTarget);
}
#define GET_REGISTER_MATCHER
#define GET_MATCHER_IMPLEMENTATION
#include "AMDGPUGenAsmMatcher.inc"
// This fuction should be defined after auto-generated include so that we have
// MatchClassKind enum defined
unsigned AMDGPUAsmParser::validateTargetOperandClass(MCParsedAsmOperand &Op,
unsigned Kind) {
// Tokens like "glc" would be parsed as immediate operands in ParseOperand().
// But MatchInstructionImpl() expects to meet token and fails to validate
// operand. This method checks if we are given immediate operand but expect to
// get corresponding token.
AMDGPUOperand &Operand = (AMDGPUOperand&)Op;
switch (Kind) {
case MCK_addr64:
return Operand.isAddr64() ? Match_Success : Match_InvalidOperand;
case MCK_gds:
return Operand.isGDS() ? Match_Success : Match_InvalidOperand;
case MCK_glc:
return Operand.isGLC() ? Match_Success : Match_InvalidOperand;
case MCK_idxen:
return Operand.isIdxen() ? Match_Success : Match_InvalidOperand;
case MCK_offen:
return Operand.isOffen() ? Match_Success : Match_InvalidOperand;
case MCK_SSrc32:
// When operands have expression values, they will return true for isToken,
// because it is not possible to distinguish between a token and an
// expression at parse time. MatchInstructionImpl() will always try to
// match an operand as a token, when isToken returns true, and when the
// name of the expression is not a valid token, the match will fail,
// so we need to handle it here.
return Operand.isSSrc32() ? Match_Success : Match_InvalidOperand;
case MCK_SoppBrTarget:
return Operand.isSoppBrTarget() ? Match_Success : Match_InvalidOperand;
default: return Match_InvalidOperand;
}
}