/******************************************************************************
* *
* Copyright (C) 2018 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*****************************************************************************
* Originally developed and contributed by Ittiam Systems Pvt. Ltd, Bangalore
*/
#include <ixheaacd_type_def.h>
#include "ixheaacd_bitbuffer.h"
#include "ixheaacd_config.h"
#include "ixheaacd_mps_polyphase.h"
#include "ixheaacd_mps_dec.h"
#include "ixheaacd_mps_interface.h"
#include <math.h>
#define max(a, b) ((a) > (b) ? (a) : (b))
#define min(a, b) ((a) < (b) ? (a) : (b))
#define DIR_DIFF_IN 0
#define DOWNMIX_IN 1
#define LAMDA (4.0f)
#define GES_ALPHA (0.99637864f)
#define GES_BETA (0.9643691f)
extern WORD32
ixheaacd_hybrid_band_71_to_processing_band_20_map[MAX_HYBRID_BANDS_MPS];
VOID ixheaacd_mps_env_init(ia_mps_dec_state_struct *self) {
WORD32 i;
for (i = 0; i < 3; i++) {
self->guided_env_shaping.avg_energy_prev[i] = 32768.f * 32768.f;
}
}
static VOID ixheaacd_mps_est_normalized_envelope(ia_mps_dec_state_struct *self,
WORD32 inp, WORD32 ch,
FLOAT32 *env) {
FLOAT32 slot_energy[MAX_TIME_SLOTS][MAX_PARAMETER_BANDS] = {{0}};
FLOAT32 pb_energy[MAX_PARAMETER_BANDS] = {0};
FLOAT32 whitening_weight[MAX_PARAMETER_BANDS];
WORD32 ii, jj, param_band;
WORD32 k_start = 10;
WORD32 k_stop = 18;
FLOAT32 total_energy = 0, avg_energy = 0;
WORD32 ch_offset;
switch (inp) {
case DIR_DIFF_IN:
ch_offset = 0;
for (ii = 0; ii < self->time_slots; ii++) {
for (jj = 0; jj < self->hyb_band_count; jj++) {
slot_energy[ii]
[ixheaacd_hybrid_band_71_to_processing_band_20_map[jj]] +=
((self->hyb_dir_out[ch][ii][jj].re +
self->hyb_diff_out[ch][ii][jj].re) *
(self->hyb_dir_out[ch][ii][jj].re +
self->hyb_diff_out[ch][ii][jj].re)) +
((self->hyb_dir_out[ch][ii][jj].im +
self->hyb_diff_out[ch][ii][jj].im) *
(self->hyb_dir_out[ch][ii][jj].im +
self->hyb_diff_out[ch][ii][jj].im));
}
}
break;
case DOWNMIX_IN:
ch_offset = self->out_ch_count;
for (ii = 0; ii < self->time_slots; ii++) {
for (jj = 0; jj < self->hyb_band_count; jj++) {
slot_energy[ii]
[ixheaacd_hybrid_band_71_to_processing_band_20_map[jj]] +=
self->hyb_in[ch][ii][jj].re * self->hyb_in[ch][ii][jj].re +
self->hyb_in[ch][ii][jj].im * self->hyb_in[ch][ii][jj].im;
}
}
break;
default:
ch_offset = 0;
break;
}
for (param_band = k_start; param_band <= k_stop; param_band++)
pb_energy[param_band] =
self->guided_env_shaping.pb_energy_prev[ch + ch_offset][param_band];
avg_energy = self->guided_env_shaping.avg_energy_prev[ch + ch_offset];
for (ii = 0; ii < self->time_slots; ii++) {
total_energy = 0;
for (param_band = k_start; param_band <= k_stop; param_band++) {
pb_energy[param_band] = (1 - GES_ALPHA) * slot_energy[ii][param_band] +
GES_ALPHA * pb_energy[param_band];
total_energy += slot_energy[ii][param_band];
}
total_energy /= (k_stop - k_start + 1);
total_energy =
(1 - GES_ALPHA) * total_energy +
GES_ALPHA * self->guided_env_shaping.frame_energy_prev[ch + ch_offset];
self->guided_env_shaping.frame_energy_prev[ch + ch_offset] = total_energy;
for (param_band = k_start; param_band <= k_stop; param_band++) {
whitening_weight[param_band] =
total_energy / (pb_energy[param_band] + ABS_THR);
}
env[ii] = 0;
for (param_band = k_start; param_band <= k_stop; param_band++) {
env[ii] += slot_energy[ii][param_band] * whitening_weight[param_band];
}
avg_energy = (1 - GES_BETA) * env[ii] + GES_BETA * avg_energy;
env[ii] = (FLOAT32)sqrt(env[ii] / (avg_energy + ABS_THR));
}
for (param_band = k_start; param_band <= k_stop; param_band++)
self->guided_env_shaping.pb_energy_prev[ch + ch_offset][param_band] =
pb_energy[param_band];
self->guided_env_shaping.avg_energy_prev[ch + ch_offset] = avg_energy;
}
VOID ixheaacd_mps_time_env_shaping(ia_mps_dec_state_struct *self) {
FLOAT32 dir_energy[MAX_TIME_SLOTS];
FLOAT32 dmx_energy[MAX_TIME_SLOTS];
WORD32 ch, time_slot, jj;
WORD32 band_start;
FLOAT32 gain, ratio;
FLOAT32 amp_direct = 0;
FLOAT32 amp_diff = 0;
FLOAT32 amp_ratio;
band_start = 6;
ixheaacd_mps_est_normalized_envelope(self, DOWNMIX_IN, 0, dmx_energy);
for (ch = 0; ch < self->out_ch_count; ch++) {
ixheaacd_mps_est_normalized_envelope(self, DIR_DIFF_IN, ch, dir_energy);
if (self->temp_shape_enable_ch_ges[ch]) {
for (time_slot = 0; time_slot < self->time_slots; time_slot++) {
gain = self->env_shape_data[ch][time_slot] * dmx_energy[time_slot] /
(dir_energy[time_slot] + 1e-9f);
amp_direct = 0;
amp_diff = 0;
for (jj = band_start; jj < self->hyb_band_count; jj++) {
amp_direct += self->hyb_dir_out[ch][time_slot][jj].re *
self->hyb_dir_out[ch][time_slot][jj].re +
self->hyb_dir_out[ch][time_slot][jj].im *
self->hyb_dir_out[ch][time_slot][jj].im;
amp_diff += self->hyb_diff_out[ch][time_slot][jj].re *
self->hyb_diff_out[ch][time_slot][jj].re +
self->hyb_diff_out[ch][time_slot][jj].im *
self->hyb_diff_out[ch][time_slot][jj].im;
}
amp_ratio = (FLOAT32)sqrt(amp_diff / (amp_direct + ABS_THR));
ratio = min(max((gain + amp_ratio * (gain - 1)), 1 / LAMDA), LAMDA);
for (jj = band_start; jj < self->hyb_band_count; jj++) {
self->hyb_dir_out[ch][time_slot][jj].re *= ratio;
self->hyb_dir_out[ch][time_slot][jj].im *= ratio;
}
}
}
}
}