/*
* Copyright (C) 2018 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "utils/tflite/token_encoder.h"
#include <vector>
#include "utils/tflite/encoder_common.h"
#include "tensorflow/lite/kernels/kernel_util.h"
#include "tensorflow/lite/model.h"
namespace libtextclassifier3 {
namespace {
// Input parameters for the op.
// The number of tokens per message as (1, conversation length) int tensor.
constexpr const int kInputNumTokens = 0;
// The number of messages, the conversation length, int scalar.
constexpr const int kInputNumInputs = 1;
// Maximum output length of the encoding, int scalar.
constexpr const int kInputMaxLength = 2;
// Additional attributes to align to the sentence pieces, e.g. user ids per
// message.
constexpr const int kInputAttr = 3;
// Output parameters for the op.
// Relative position of each token in the input text,
// (1, max output length) int tensor.
constexpr const int kOutputPosition = 0;
// Output length after trimming to the maximum output length specified.
// int scalar.
constexpr const int kOutputLengths = 1;
// Padded and sentence piece aligned provided attributes, e.g. user id per
// sentence piece.
constexpr const int kOutputAttr = 2;
TfLiteStatus ResizeOutputTensors(TfLiteContext* context, TfLiteNode* node,
int max_output_length) {
TF_LITE_ENSURE_OK(
context,
ResizeOutputTensor(
max_output_length,
&context->tensors[node->outputs->data[kOutputPosition]], context));
const int num_output_attrs = node->outputs->size - kOutputAttr;
for (int i = 0; i < num_output_attrs; ++i) {
TF_LITE_ENSURE_OK(
context,
ResizeOutputTensor(
max_output_length,
&context->tensors[node->outputs->data[kOutputAttr + i]], context));
}
return kTfLiteOk;
}
TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
// Check that the batch dimension is kBatchSize.
const TfLiteTensor& num_tokens =
context->tensors[node->inputs->data[kInputNumTokens]];
TF_LITE_ENSURE_EQ(context, num_tokens.dims->size, kEncoderInputRank);
TF_LITE_ENSURE_EQ(context, num_tokens.dims->data[0], kEncoderBatchSize);
TfLiteTensor& output_lengths =
context->tensors[node->outputs->data[kOutputLengths]];
TfLiteTensor& output_positions =
context->tensors[node->outputs->data[kOutputPosition]];
TF_LITE_ENSURE_OK(context,
context->ResizeTensor(context, &output_lengths,
CreateIntArray({kEncoderBatchSize})));
// Check that there are enough outputs for attributes.
const int num_output_attrs = node->outputs->size - kOutputAttr;
TF_LITE_ENSURE_EQ(context, node->inputs->size - kInputAttr, num_output_attrs);
// Copy attribute types from input to output tensors.
for (int i = 0; i < num_output_attrs; ++i) {
TfLiteTensor& input = context->tensors[node->inputs->data[kInputAttr + i]];
TfLiteTensor& output =
context->tensors[node->outputs->data[kOutputAttr + i]];
output.type = input.type;
}
const TfLiteTensor& output_length =
context->tensors[node->inputs->data[kInputMaxLength]];
if (tflite::IsConstantTensor(&output_length)) {
return ResizeOutputTensors(context, node, output_length.data.i64[0]);
} else {
tflite::SetTensorToDynamic(&output_positions);
for (int i = 0; i < num_output_attrs; ++i) {
TfLiteTensor& output_attr =
context->tensors[node->outputs->data[kOutputAttr + i]];
tflite::SetTensorToDynamic(&output_attr);
}
}
return kTfLiteOk;
}
TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
const TfLiteTensor& num_tokens =
context->tensors[node->inputs->data[kInputNumTokens]];
const int num_inputs =
context->tensors[node->inputs->data[kInputNumInputs]].data.i32[0];
const TfLiteTensor& output_length =
context->tensors[node->inputs->data[kInputMaxLength]];
TfLiteTensor& output_positions =
context->tensors[node->outputs->data[kOutputPosition]];
if (!tflite::IsConstantTensor(&output_length)) {
TF_LITE_ENSURE_OK(
context, ResizeOutputTensors(context, node, output_length.data.i64[0]));
}
std::vector<int> encoded_offsets;
std::vector<int> encoded_positions;
encoded_offsets.reserve(num_inputs);
const int max_output_length = output_positions.dims->data[1];
const int max_encoded_position = max_output_length;
int total_tokens = 0;
for (int i = 0; i < num_inputs; ++i) {
const int num_message_tokens =
num_tokens.data.i32[i] + 2; /* num_tokens + start and end token. */
total_tokens += num_message_tokens;
encoded_offsets.push_back(total_tokens);
for (int k = 0; k < num_message_tokens; k++) {
encoded_positions.push_back(std::min(k, max_encoded_position - 1));
}
}
const int num_skip = CopyDataToTensorAndPadOrTruncate(
max_output_length, encoded_positions,
/*padding_value=*/max_encoded_position, &output_positions);
TfLiteTensor& output_lengths =
context->tensors[node->outputs->data[kOutputLengths]];
output_lengths.data.i32[0] = encoded_positions.size() - num_skip;
// Process attributes, all checks of sizes and types are done in Prepare.
const int num_output_attrs = node->outputs->size - kOutputAttr;
TF_LITE_ENSURE_EQ(context, node->inputs->size - kInputAttr, num_output_attrs);
for (int i = 0; i < num_output_attrs; ++i) {
TfLiteStatus attr_status = CopyValuesToTensorAndPadOrTruncate(
context->tensors[node->inputs->data[kInputAttr + i]], encoded_offsets,
num_skip, context,
&context->tensors[node->outputs->data[kOutputAttr + i]]);
if (attr_status != kTfLiteOk) {
return attr_status;
}
}
return kTfLiteOk;
}
} // namespace
} // namespace libtextclassifier3
namespace tflite {
namespace ops {
namespace custom {
TfLiteRegistration* Register_TOKEN_ENCODER() {
static TfLiteRegistration registration = {/*init=*/nullptr, /*free=*/nullptr,
libtextclassifier3::Prepare,
libtextclassifier3::Eval};
return ®istration;
}
} // namespace custom
} // namespace ops
} // namespace tflite