/*
* Copyright (C) 2018 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "lang_id/common/flatbuffers/embedding-network-params-from-flatbuffer.h"
#include "lang_id/common/lite_base/endian.h"
#include "lang_id/common/lite_base/logging.h"
#include "lang_id/common/lite_base/macros.h"
namespace libtextclassifier3 {
namespace mobile {
namespace {
// Returns true if and only if ptr points to a location inside allowed_range.
bool IsPointerInRange(const char *ptr, StringPiece allowed_range) {
return (ptr >= allowed_range.data()) &&
(ptr < (allowed_range.data() + allowed_range.size()));
}
// Returns true if and only if the memory range [start, start +
// range_size_in_bytes) is included inside allowed_range.
//
// Special case: if range_size_in_bytes == 0 (empty range) then we require that
// start is nullptr or in the allowed_range.
bool IsMemoryRangeValid(const void *start, int range_size_in_bytes,
StringPiece allowed_range) {
const char *begin = reinterpret_cast<const char *>(start);
if (range_size_in_bytes < 0) {
return false;
}
if (range_size_in_bytes == 0) {
return (start == nullptr) || IsPointerInRange(begin, allowed_range);
}
const char *inclusive_end = begin + (range_size_in_bytes - 1);
return (begin <= inclusive_end) && IsPointerInRange(begin, allowed_range) &&
IsPointerInRange(inclusive_end, allowed_range);
}
bool VerifyQuantizationScales(EmbeddingNetworkParams::Matrix matrix,
StringPiece bytes) {
if (matrix.quant_scales == nullptr) {
SAFTM_LOG(ERROR) << "Quantization type "
<< static_cast<int>(matrix.quant_type)
<< "; but no quantization scales";
return false;
}
bool valid_scales = IsMemoryRangeValid(matrix.quant_scales,
matrix.rows * sizeof(float16), bytes);
if (!valid_scales) {
SAFTM_LOG(ERROR) << "quantization scales not fully inside bytes";
return false;
}
return true;
}
// Returns false if we detect a problem with |matrix|, true otherwise. E.g., we
// check that the array that starts at pointer matrix.elements is fully inside
// |bytes| (the range of bytes passed to the
// EmbeddingNetworkParamsFromFlatbuffer constructor).
bool VerifyMatrix(EmbeddingNetworkParams::Matrix matrix, StringPiece bytes) {
if ((matrix.rows < 0) || (matrix.cols < 0)) {
SAFTM_LOG(ERROR) << "Wrong matrix geometry: " << matrix.rows << " x "
<< matrix.cols;
return false;
}
const int num_elements = matrix.rows * matrix.cols;
// Number of bytes occupied by the num_elements elements that start at address
// matrix.elements.
int element_range_size_in_bytes = 0;
switch (matrix.quant_type) {
case QuantizationType::NONE:
element_range_size_in_bytes = num_elements * sizeof(float);
break;
case QuantizationType::UINT8: {
element_range_size_in_bytes = num_elements;
if (!VerifyQuantizationScales(matrix, bytes)) {
return false;
}
break;
}
case QuantizationType::UINT4: {
if (matrix.cols % 2 != 0) {
SAFTM_LOG(ERROR) << "UINT4 doesn't work with odd #cols" << matrix.cols;
return false;
}
element_range_size_in_bytes = num_elements / 2;
if (!VerifyQuantizationScales(matrix, bytes)) {
return false;
}
break;
}
case QuantizationType::FLOAT16: {
element_range_size_in_bytes = num_elements * sizeof(float16);
// No need to verify the scales: FLOAT16 quantization does not use scales.
break;
}
default:
SAFTM_LOG(ERROR) << "Unsupported quantization type "
<< static_cast<int>(matrix.quant_type);
return false;
}
if (matrix.elements == nullptr) {
SAFTM_LOG(ERROR) << "matrix.elements == nullptr";
return false;
}
bool valid =
IsMemoryRangeValid(matrix.elements, element_range_size_in_bytes, bytes);
if (!valid) {
SAFTM_LOG(ERROR) << "elements not fully inside bytes";
return false;
}
return true;
}
// Checks the geometry of the network layer represented by |weights| and |bias|,
// assuming the input to this layer has size |input_size|. Returns false if we
// detect any problem, true otherwise.
bool GoodLayerGeometry(int input_size,
const EmbeddingNetworkParams::Matrix &weights,
const EmbeddingNetworkParams::Matrix &bias) {
if (weights.rows != input_size) {
SAFTM_LOG(ERROR) << "#rows " << weights.rows << " != " << input_size;
return false;
}
if ((bias.rows != 1) && (bias.cols != 1)) {
SAFTM_LOG(ERROR) << "bad bias vector geometry: " << bias.rows << " x "
<< bias.cols;
return false;
}
int bias_dimension = bias.rows * bias.cols;
if (weights.cols != bias_dimension) {
SAFTM_LOG(ERROR) << "#cols " << weights.cols << " != " << bias_dimension;
return false;
}
return true;
}
} // namespace
EmbeddingNetworkParamsFromFlatbuffer::EmbeddingNetworkParamsFromFlatbuffer(
StringPiece bytes) {
// We expect valid_ to be initialized to false at this point. We set it to
// true only if we successfully complete all initialization. On error, we
// return early, leaving valid_ set to false.
SAFTM_DCHECK(!valid_);
// NOTE: current EmbeddingNetworkParams API works only on little-endian
// machines. Fortunately, all modern devices are little-endian so, instead of
// a costly API change, we support only the little-endian case.
//
// Technical explanation: for each Matrix, our API provides a pointer to the
// matrix elements (see Matrix field |elements|). For unquantized matrices,
// that's a const float *pointer; the client code (e.g., Neurosis) uses those
// floats directly. That is correct if the EmbeddingNetworkParams come from a
// proto, where the proto parsing already handled the endianness differences.
// But in the flatbuffer case, that's a pointer to floats in little-endian
// format (flatbuffers always use little-endian). If our API provided access
// to only one element at a time, the accessor method could swap the bytes "on
// the fly", using temporary variables. Instead, our API provides a pointer
// to all elements: as their number is variable (and underlying data is
// immutable), we can't ensure the bytes of all those elements are swapped
// without extra memory allocation to store the swapped bytes (which is what
// using flatbuffers is supposed to prevent).
if (!LittleEndian::IsLittleEndian()) {
SAFTM_LOG(INFO) << "Not a little-endian machine";
return;
}
const uint8_t *start = reinterpret_cast<const uint8_t *>(bytes.data());
if (start == nullptr) {
// Note: as |bytes| is expected to be a valid EmbeddingNetwork flatbuffer,
// it should contain the 4-char identifier "NS00" (or a later version). It
// can't be empty; hence StringPiece(nullptr, 0) is not legal here.
SAFTM_LOG(ERROR) << "nullptr bytes";
return;
}
flatbuffers::Verifier verifier(start, bytes.size());
if (!saft_fbs::VerifyEmbeddingNetworkBuffer(verifier)) {
SAFTM_LOG(ERROR) << "Not a valid EmbeddingNetwork flatbuffer";
return;
}
network_ = saft_fbs::GetEmbeddingNetwork(start);
if (network_ == nullptr) {
SAFTM_LOG(ERROR) << "Unable to interpret bytes as a flatbuffer";
return;
}
// Perform a few extra checks before declaring this object valid.
valid_ = ValidityChecking(bytes);
}
bool EmbeddingNetworkParamsFromFlatbuffer::ValidityChecking(
StringPiece bytes) const {
int input_size = 0;
for (int i = 0; i < embeddings_size(); ++i) {
Matrix embeddings = GetEmbeddingMatrix(i);
if (!VerifyMatrix(embeddings, bytes)) {
SAFTM_LOG(ERROR) << "Bad embedding matrix #" << i;
return false;
}
input_size += embedding_num_features(i) * embeddings.cols;
}
int current_size = input_size;
for (int i = 0; i < hidden_size(); ++i) {
Matrix weights = GetHiddenLayerMatrix(i);
if (!VerifyMatrix(weights, bytes)) {
SAFTM_LOG(ERROR) << "Bad weights matrix for hidden layer #" << i;
return false;
}
Matrix bias = GetHiddenLayerBias(i);
if (!VerifyMatrix(bias, bytes)) {
SAFTM_LOG(ERROR) << "Bad bias vector for hidden layer #" << i;
return false;
}
if (!GoodLayerGeometry(current_size, weights, bias)) {
SAFTM_LOG(ERROR) << "Bad geometry for hidden layer #" << i;
return false;
}
current_size = weights.cols;
}
if (HasSoftmax()) {
Matrix weights = GetSoftmaxMatrix();
if (!VerifyMatrix(weights, bytes)) {
SAFTM_LOG(ERROR) << "Bad weights matrix for softmax";
return false;
}
Matrix bias = GetSoftmaxBias();
if (!VerifyMatrix(bias, bytes)) {
SAFTM_LOG(ERROR) << "Bad bias vector for softmax";
return false;
}
if (!GoodLayerGeometry(current_size, weights, bias)) {
SAFTM_LOG(ERROR) << "Bad geometry for softmax layer";
return false;
}
}
return true;
}
// static
bool EmbeddingNetworkParamsFromFlatbuffer::InRangeIndex(int index, int limit,
const char *info) {
if ((index >= 0) && (index < limit)) {
return true;
} else {
SAFTM_LOG(ERROR) << info << " index " << index << " outside range [0, "
<< limit << ")";
return false;
}
}
int EmbeddingNetworkParamsFromFlatbuffer::SafeGetNumInputChunks() const {
const auto *input_chunks = network_->input_chunks();
if (input_chunks == nullptr) {
SAFTM_LOG(ERROR) << "nullptr input_chunks";
return 0;
}
return input_chunks->size();
}
const saft_fbs::InputChunk *
EmbeddingNetworkParamsFromFlatbuffer::SafeGetInputChunk(int i) const {
if (!InRangeIndex(i, SafeGetNumInputChunks(), "input chunks")) {
return nullptr;
}
const auto *input_chunks = network_->input_chunks();
if (input_chunks == nullptr) {
// Execution should not reach this point, due to how SafeGetNumInputChunks()
// is implemented. Still, just to be sure:
SAFTM_LOG(ERROR) << "nullptr input_chunks";
return nullptr;
}
const saft_fbs::InputChunk *input_chunk = input_chunks->Get(i);
if (input_chunk == nullptr) {
SAFTM_LOG(ERROR) << "nullptr input chunk #" << i;
}
return input_chunk;
}
const saft_fbs::Matrix *
EmbeddingNetworkParamsFromFlatbuffer::SafeGetEmbeddingMatrix(int i) const {
const saft_fbs::InputChunk *input_chunk = SafeGetInputChunk(i);
if (input_chunk == nullptr) return nullptr;
const saft_fbs::Matrix *matrix = input_chunk->embedding();
if (matrix == nullptr) {
SAFTM_LOG(ERROR) << "nullptr embeding matrix #" << i;
}
return matrix;
}
int EmbeddingNetworkParamsFromFlatbuffer::SafeGetNumLayers() const {
const auto *layers = network_->layers();
if (layers == nullptr) {
SAFTM_LOG(ERROR) << "nullptr layers";
return 0;
}
return layers->size();
}
const saft_fbs::NeuralLayer *EmbeddingNetworkParamsFromFlatbuffer::SafeGetLayer(
int i) const {
if (!InRangeIndex(i, SafeGetNumLayers(), "layer")) {
return nullptr;
}
const auto *layers = network_->layers();
if (layers == nullptr) {
// Execution should not reach this point, due to how SafeGetNumLayers()
// is implemented. Still, just to be sure:
SAFTM_LOG(ERROR) << "nullptr layers";
return nullptr;
}
const saft_fbs::NeuralLayer *layer = layers->Get(i);
if (layer == nullptr) {
SAFTM_LOG(ERROR) << "nullptr layer #" << i;
}
return layer;
}
const saft_fbs::Matrix *
EmbeddingNetworkParamsFromFlatbuffer::SafeGetLayerWeights(int i) const {
const saft_fbs::NeuralLayer *layer = SafeGetLayer(i);
if (layer == nullptr) return nullptr;
const saft_fbs::Matrix *weights = layer->weights();
if (weights == nullptr) {
SAFTM_LOG(ERROR) << "nullptr weights for layer #" << i;
}
return weights;
}
const saft_fbs::Matrix *EmbeddingNetworkParamsFromFlatbuffer::SafeGetLayerBias(
int i) const {
const saft_fbs::NeuralLayer *layer = SafeGetLayer(i);
if (layer == nullptr) return nullptr;
const saft_fbs::Matrix *bias = layer->bias();
if (bias == nullptr) {
SAFTM_LOG(ERROR) << "nullptr bias for layer #" << i;
}
return bias;
}
// static
const float *EmbeddingNetworkParamsFromFlatbuffer::SafeGetValues(
const saft_fbs::Matrix *matrix) {
if (matrix == nullptr) return nullptr;
const flatbuffers::Vector<float> *values = matrix->values();
if (values == nullptr) {
SAFTM_LOG(ERROR) << "nullptr values";
}
return values->data();
}
// static
const uint8_t *EmbeddingNetworkParamsFromFlatbuffer::SafeGetQuantizedValues(
const saft_fbs::Matrix *matrix) {
if (matrix == nullptr) return nullptr;
const flatbuffers::Vector<uint8_t> *quantized_values =
matrix->quantized_values();
if (quantized_values == nullptr) {
SAFTM_LOG(ERROR) << "nullptr quantized_values";
}
return quantized_values->data();
}
// static
const float16 *EmbeddingNetworkParamsFromFlatbuffer::SafeGetScales(
const saft_fbs::Matrix *matrix) {
if (matrix == nullptr) return nullptr;
const flatbuffers::Vector<uint16_t> *scales = matrix->scales();
if (scales == nullptr) {
SAFTM_LOG(ERROR) << "nullptr scales";
}
return scales->data();
}
const saft_fbs::NeuralLayer *
EmbeddingNetworkParamsFromFlatbuffer::SafeGetSoftmaxLayer() const {
int num_layers = SafeGetNumLayers();
if (num_layers <= 0) {
SAFTM_LOG(ERROR) << "No softmax layer";
return nullptr;
}
return SafeGetLayer(num_layers - 1);
}
QuantizationType EmbeddingNetworkParamsFromFlatbuffer::SafeGetQuantizationType(
const saft_fbs::Matrix *matrix) const {
if (matrix == nullptr) {
return QuantizationType::NONE;
}
saft_fbs::QuantizationType quantization_type = matrix->quantization_type();
// Conversion from nlp_saft::saft_fbs::QuantizationType to
// nlp_saft::QuantizationType (due to legacy reasons, we have both).
switch (quantization_type) {
case saft_fbs::QuantizationType_NONE:
return QuantizationType::NONE;
case saft_fbs::QuantizationType_UINT8:
return QuantizationType::UINT8;
case saft_fbs::QuantizationType_UINT4:
return QuantizationType::UINT4;
case saft_fbs::QuantizationType_FLOAT16:
return QuantizationType::FLOAT16;
default:
SAFTM_LOG(ERROR) << "Unsupported quantization type "
<< static_cast<int>(quantization_type);
return QuantizationType::NONE;
}
}
const void *EmbeddingNetworkParamsFromFlatbuffer::SafeGetValuesOfMatrix(
const saft_fbs::Matrix *matrix) const {
if (matrix == nullptr) {
return nullptr;
}
saft_fbs::QuantizationType quantization_type = matrix->quantization_type();
switch (quantization_type) {
case saft_fbs::QuantizationType_NONE:
return SafeGetValues(matrix);
case saft_fbs::QuantizationType_UINT8:
SAFTM_FALLTHROUGH_INTENDED;
case saft_fbs::QuantizationType_UINT4:
SAFTM_FALLTHROUGH_INTENDED;
case saft_fbs::QuantizationType_FLOAT16:
return SafeGetQuantizedValues(matrix);
default:
SAFTM_LOG(ERROR) << "Unsupported quantization type "
<< static_cast<int>(quantization_type);
return nullptr;
}
}
} // namespace mobile
} // namespace nlp_saft