/*
* Copyright (C) 2018 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
// Generic feature extractor for extracting features from objects. The feature
// extractor can be used for extracting features from any object. The feature
// extractor and feature function classes are template classes that have to
// be instantiated for extracting feature from a specific object type.
//
// A feature extractor consists of a hierarchy of feature functions. Each
// feature function extracts one or more feature type and value pairs from the
// object.
//
// The feature extractor has a modular design where new feature functions can be
// registered as components. The feature extractor is initialized from a
// descriptor represented by a protocol buffer. The feature extractor can also
// be initialized from a text-based source specification of the feature
// extractor. Feature specification parsers can be added as components. By
// default the feature extractor can be read from an ASCII protocol buffer or in
// a simple feature modeling language (fml).
// A feature function is invoked with a focus. Nested feature function can be
// invoked with another focus determined by the parent feature function.
#ifndef NLP_SAFT_COMPONENTS_COMMON_MOBILE_FEL_FEATURE_EXTRACTOR_H_
#define NLP_SAFT_COMPONENTS_COMMON_MOBILE_FEL_FEATURE_EXTRACTOR_H_
#include <stddef.h>
#include <string>
#include <vector>
#include "lang_id/common/fel/feature-descriptors.h"
#include "lang_id/common/fel/feature-types.h"
#include "lang_id/common/fel/task-context.h"
#include "lang_id/common/fel/workspace.h"
#include "lang_id/common/lite_base/attributes.h"
#include "lang_id/common/lite_base/integral-types.h"
#include "lang_id/common/lite_base/logging.h"
#include "lang_id/common/lite_base/macros.h"
#include "lang_id/common/registry.h"
#include "lang_id/common/stl-util.h"
namespace libtextclassifier3 {
namespace mobile {
// TODO(djweiss) Clean this up as well.
// Use the same type for feature values as is used for predicated.
typedef int64 Predicate;
typedef Predicate FeatureValue;
// A union used to represent discrete and continuous feature values.
union FloatFeatureValue {
public:
explicit FloatFeatureValue(FeatureValue v) : discrete_value(v) {}
FloatFeatureValue(uint32 i, float w) : id(i), weight(w) {}
FeatureValue discrete_value;
struct {
uint32 id;
float weight;
};
};
// A feature vector contains feature type and value pairs.
class FeatureVector {
public:
FeatureVector() {}
// Adds feature type and value pair to feature vector.
void add(FeatureType *type, FeatureValue value) {
features_.emplace_back(type, value);
}
// Removes all elements from the feature vector.
void clear() { features_.clear(); }
// Returns the number of elements in the feature vector.
int size() const { return features_.size(); }
// Reserves space in the underlying feature vector.
void reserve(int n) { features_.reserve(n); }
// Returns feature type for an element in the feature vector.
FeatureType *type(int index) const { return features_[index].type; }
// Returns feature value for an element in the feature vector.
FeatureValue value(int index) const { return features_[index].value; }
private:
// Structure for holding feature type and value pairs.
struct Element {
Element() : type(nullptr), value(-1) {}
Element(FeatureType *t, FeatureValue v) : type(t), value(v) {}
FeatureType *type;
FeatureValue value;
};
// Array for storing feature vector elements.
std::vector<Element> features_;
SAFTM_DISALLOW_COPY_AND_ASSIGN(FeatureVector);
};
// The generic feature extractor is the type-independent part of a feature
// extractor. This holds the descriptor for the feature extractor and the
// collection of feature types used in the feature extractor. The feature
// types are not available until FeatureExtractor<>::Init() has been called.
class GenericFeatureExtractor {
public:
GenericFeatureExtractor();
virtual ~GenericFeatureExtractor();
// Initializes the feature extractor from the FEL specification |source|.
//
// Returns true on success, false otherwise (e.g., FEL syntax error).
SAFTM_MUST_USE_RESULT bool Parse(const string &source);
// Returns the feature extractor descriptor.
const FeatureExtractorDescriptor &descriptor() const { return descriptor_; }
FeatureExtractorDescriptor *mutable_descriptor() { return &descriptor_; }
// Returns the number of feature types in the feature extractor. Invalid
// before Init() has been called.
int feature_types() const { return feature_types_.size(); }
protected:
// Initializes the feature types used by the extractor. Called from
// FeatureExtractor<>::Init().
//
// Returns true on success, false otherwise.
SAFTM_MUST_USE_RESULT bool InitializeFeatureTypes();
private:
// Initializes the top-level feature functions.
//
// Returns true on success, false otherwise.
SAFTM_MUST_USE_RESULT virtual bool InitializeFeatureFunctions() = 0;
// Returns all feature types used by the extractor. The feature types are
// added to the result array.
virtual void GetFeatureTypes(std::vector<FeatureType *> *types) const = 0;
// Descriptor for the feature extractor. This is a protocol buffer that
// contains all the information about the feature extractor. The feature
// functions are initialized from the information in the descriptor.
FeatureExtractorDescriptor descriptor_;
// All feature types used by the feature extractor. The collection of all the
// feature types describes the feature space of the feature set produced by
// the feature extractor. Not owned.
std::vector<FeatureType *> feature_types_;
};
// The generic feature function is the type-independent part of a feature
// function. Each feature function is associated with the descriptor that it is
// instantiated from. The feature types associated with this feature function
// will be established by the time FeatureExtractor<>::Init() completes.
class GenericFeatureFunction {
public:
// A feature value that represents the absence of a value.
static constexpr FeatureValue kNone = -1;
GenericFeatureFunction();
virtual ~GenericFeatureFunction();
// Sets up the feature function. NB: FeatureTypes of nested functions are not
// guaranteed to be available until Init().
//
// Returns true on success, false otherwise.
SAFTM_MUST_USE_RESULT virtual bool Setup(TaskContext *context) {
return true;
}
// Initializes the feature function. NB: The FeatureType of this function must
// be established when this method completes.
//
// Returns true on success, false otherwise.
SAFTM_MUST_USE_RESULT virtual bool Init(TaskContext *context) { return true; }
// Requests workspaces from a registry to obtain indices into a WorkspaceSet
// for any Workspace objects used by this feature function. NB: This will be
// called after Init(), so it can depend on resources and arguments.
virtual void RequestWorkspaces(WorkspaceRegistry *registry) {}
// Appends the feature types produced by the feature function to types. The
// default implementation appends feature_type(), if non-null. Invalid
// before Init() has been called.
virtual void GetFeatureTypes(std::vector<FeatureType *> *types) const;
// Returns the feature type for feature produced by this feature function. If
// the feature function produces features of different types this returns
// null. Invalid before Init() has been called.
virtual FeatureType *GetFeatureType() const;
// Returns value of parameter |name| from the feature function descriptor.
// If the parameter is not present, returns the indicated |default_value|.
string GetParameter(const string &name, const string &default_value) const;
// Returns value of int parameter |name| from feature function descriptor.
// If the parameter is not present, or its value can't be parsed as an int,
// returns |default_value|.
int GetIntParameter(const string &name, int default_value) const;
// Returns value of bool parameter |name| from feature function descriptor.
// If the parameter is not present, or its value is not "true" or "false",
// returns |default_value|. NOTE: this method is case sensitive, it doesn't
// do any lower-casing.
bool GetBoolParameter(const string &name, bool default_value) const;
// Returns the FEL function description for the feature function, i.e. the
// name and parameters without the nested features.
string FunctionName() const {
string output;
ToFELFunction(*descriptor_, &output);
return output;
}
// Returns the prefix for nested feature functions. This is the prefix of this
// feature function concatenated with the feature function name.
string SubPrefix() const {
return prefix_.empty() ? FunctionName() : prefix_ + "." + FunctionName();
}
// Returns/sets the feature extractor this function belongs to.
const GenericFeatureExtractor *extractor() const { return extractor_; }
void set_extractor(const GenericFeatureExtractor *extractor) {
extractor_ = extractor;
}
// Returns/sets the feature function descriptor.
const FeatureFunctionDescriptor *descriptor() const { return descriptor_; }
void set_descriptor(const FeatureFunctionDescriptor *descriptor) {
descriptor_ = descriptor;
}
// Returns a descriptive name for the feature function. The name is taken from
// the descriptor for the feature function. If the name is empty or the
// feature function is a variable the name is the FEL representation of the
// feature, including the prefix.
string name() const;
// Returns the argument from the feature function descriptor. It defaults to
// 0 if the argument has not been specified.
int argument() const {
return descriptor_->has_argument() ? descriptor_->argument() : 0;
}
// Returns/sets/clears function name prefix.
const string &prefix() const { return prefix_; }
void set_prefix(const string &prefix) { prefix_ = prefix; }
protected:
// Returns the feature type for single-type feature functions.
FeatureType *feature_type() const { return feature_type_; }
// Sets the feature type for single-type feature functions. This takes
// ownership of feature_type. Can only be called once.
void set_feature_type(FeatureType *feature_type) {
SAFTM_CHECK_EQ(feature_type_, nullptr);
feature_type_ = feature_type;
}
private:
// Feature extractor this feature function belongs to. Not owned. Set to a
// pointer != nullptr as soon as this object is created by Instantiate().
// Normal methods can safely assume this is != nullptr.
const GenericFeatureExtractor *extractor_ = nullptr;
// Descriptor for feature function. Not owned. Set to a pointer != nullptr
// as soon as this object is created by Instantiate(). Normal methods can
// safely assume this is != nullptr.
const FeatureFunctionDescriptor *descriptor_ = nullptr;
// Feature type for features produced by this feature function. If the
// feature function produces features of multiple feature types this is null
// and the feature function must return it's feature types in
// GetFeatureTypes(). Owned.
FeatureType *feature_type_ = nullptr;
// Prefix used for sub-feature types of this function.
string prefix_;
};
// Feature function that can extract features from an object. Templated on
// two type arguments:
//
// OBJ: The "object" from which features are extracted; e.g., a sentence. This
// should be a plain type, rather than a reference or pointer.
//
// ARGS: A set of 0 or more types that are used to "index" into some part of the
// object that should be extracted, e.g. an int token index for a sentence
// object. This should not be a reference type.
template <class OBJ, class... ARGS>
class FeatureFunction
: public GenericFeatureFunction,
public RegisterableClass<FeatureFunction<OBJ, ARGS...> > {
public:
using Self = FeatureFunction<OBJ, ARGS...>;
// Preprocesses the object. This will be called prior to calling Evaluate()
// or Compute() on that object.
virtual void Preprocess(WorkspaceSet *workspaces, const OBJ *object) const {}
// Appends features computed from the object and focus to the result. The
// default implementation delegates to Compute(), adding a single value if
// available. Multi-valued feature functions must override this method.
virtual void Evaluate(const WorkspaceSet &workspaces, const OBJ &object,
ARGS... args, FeatureVector *result) const {
FeatureValue value = Compute(workspaces, object, args...);
if (value != kNone) result->add(feature_type(), value);
}
// Returns a feature value computed from the object and focus, or kNone if no
// value is computed. Single-valued feature functions only need to override
// this method.
virtual FeatureValue Compute(const WorkspaceSet &workspaces,
const OBJ &object, ARGS... args) const {
return kNone;
}
// Instantiates a new feature function in a feature extractor from a feature
// descriptor.
//
// Returns a pointer to the newly-created object if everything goes well.
// Returns nullptr if the feature function could not be instantiated (e.g., if
// the function with that name is not registered; this usually happens because
// the relevant cc_library was not linked-in).
static Self *Instantiate(const GenericFeatureExtractor *extractor,
const FeatureFunctionDescriptor *fd,
const string &prefix) {
Self *f = Self::Create(fd->type());
if (f != nullptr) {
f->set_extractor(extractor);
f->set_descriptor(fd);
f->set_prefix(prefix);
}
return f;
}
private:
// Special feature function class for resolving variable references. The type
// of the feature function is used for resolving the variable reference. When
// evaluated it will either get the feature value(s) from the variable portion
// of the feature vector, if present, or otherwise it will call the referenced
// feature extractor function directly to extract the feature(s).
class Reference;
};
// Base class for features with nested feature functions. The nested functions
// are of type NES, which may be different from the type of the parent function.
// NB: NestedFeatureFunction will ensure that all initialization of nested
// functions takes place during Setup() and Init() -- after the nested features
// are initialized, the parent feature is initialized via SetupNested() and
// InitNested(). Alternatively, a derived classes that overrides Setup() and
// Init() directly should call Parent::Setup(), Parent::Init(), etc. first.
//
// Note: NestedFeatureFunction cannot know how to call Preprocess, Evaluate, or
// Compute, since the nested functions may be of a different type.
template <class NES, class OBJ, class... ARGS>
class NestedFeatureFunction : public FeatureFunction<OBJ, ARGS...> {
public:
using Parent = NestedFeatureFunction<NES, OBJ, ARGS...>;
// Clean up nested functions.
~NestedFeatureFunction() override { utils::STLDeleteElements(&nested_); }
// By default, just appends the nested feature types.
void GetFeatureTypes(std::vector<FeatureType *> *types) const override {
SAFTM_CHECK(!this->nested().empty())
<< "Nested features require nested features to be defined.";
for (auto *function : nested_) function->GetFeatureTypes(types);
}
// Sets up the nested features.
//
// Returns true on success, false otherwise.
SAFTM_MUST_USE_RESULT bool Setup(TaskContext *context) override {
bool success = CreateNested(this->extractor(), this->descriptor(), &nested_,
this->SubPrefix());
if (!success) return false;
for (auto *function : nested_) {
if (!function->Setup(context)) return false;
}
if (!SetupNested(context)) return false;
return true;
}
// Sets up this NestedFeatureFunction specifically.
//
// Returns true on success, false otherwise.
SAFTM_MUST_USE_RESULT virtual bool SetupNested(TaskContext *context) {
return true;
}
// Initializes the nested features.
//
// Returns true on success, false otherwise.
SAFTM_MUST_USE_RESULT bool Init(TaskContext *context) override {
for (auto *function : nested_) {
if (!function->Init(context)) return false;
}
if (!InitNested(context)) return false;
return true;
}
// Initializes this NestedFeatureFunction specifically.
//
// Returns true on success, false otherwise.
SAFTM_MUST_USE_RESULT virtual bool InitNested(TaskContext *context) {
return true;
}
// Gets all the workspaces needed for the nested functions.
void RequestWorkspaces(WorkspaceRegistry *registry) override {
for (auto *function : nested_) function->RequestWorkspaces(registry);
}
// Returns the list of nested feature functions.
const std::vector<NES *> &nested() const { return nested_; }
// Instantiates nested feature functions for a feature function. Creates and
// initializes one feature function for each sub-descriptor in the feature
// descriptor.
//
// Returns true on success, false otherwise.
SAFTM_MUST_USE_RESULT static bool CreateNested(
const GenericFeatureExtractor *extractor,
const FeatureFunctionDescriptor *fd, std::vector<NES *> *functions,
const string &prefix) {
for (int i = 0; i < fd->feature_size(); ++i) {
const FeatureFunctionDescriptor &sub = fd->feature(i);
NES *f = NES::Instantiate(extractor, &sub, prefix);
if (f == nullptr) return false;
functions->push_back(f);
}
return true;
}
protected:
// The nested feature functions, if any, in order of declaration in the
// feature descriptor. Owned.
std::vector<NES *> nested_;
};
// Base class for a nested feature function that takes nested features with the
// same signature as these features, i.e. a meta feature. For this class, we can
// provide preprocessing of the nested features.
template <class OBJ, class... ARGS>
class MetaFeatureFunction
: public NestedFeatureFunction<FeatureFunction<OBJ, ARGS...>, OBJ,
ARGS...> {
public:
// Preprocesses using the nested features.
void Preprocess(WorkspaceSet *workspaces, const OBJ *object) const override {
for (auto *function : this->nested_) {
function->Preprocess(workspaces, object);
}
}
};
// Template for a special type of locator: The locator of type
// FeatureFunction<OBJ, ARGS...> calls nested functions of type
// FeatureFunction<OBJ, IDX, ARGS...>, where the derived class DER is
// responsible for translating by providing the following:
//
// // Gets the new additional focus.
// IDX GetFocus(const WorkspaceSet &workspaces, const OBJ &object);
//
// This is useful to e.g. add a token focus to a parser state based on some
// desired property of that state.
template <class DER, class OBJ, class IDX, class... ARGS>
class FeatureAddFocusLocator
: public NestedFeatureFunction<FeatureFunction<OBJ, IDX, ARGS...>, OBJ,
ARGS...> {
public:
void Preprocess(WorkspaceSet *workspaces, const OBJ *object) const override {
for (auto *function : this->nested_) {
function->Preprocess(workspaces, object);
}
}
void Evaluate(const WorkspaceSet &workspaces, const OBJ &object, ARGS... args,
FeatureVector *result) const override {
IDX focus =
static_cast<const DER *>(this)->GetFocus(workspaces, object, args...);
for (auto *function : this->nested()) {
function->Evaluate(workspaces, object, focus, args..., result);
}
}
// Returns the first nested feature's computed value.
FeatureValue Compute(const WorkspaceSet &workspaces, const OBJ &object,
ARGS... args) const override {
IDX focus =
static_cast<const DER *>(this)->GetFocus(workspaces, object, args...);
return this->nested()[0]->Compute(workspaces, object, focus, args...);
}
};
// CRTP feature locator class. This is a meta feature that modifies ARGS and
// then calls the nested feature functions with the modified ARGS. Note that in
// order for this template to work correctly, all of ARGS must be types for
// which the reference operator & can be interpreted as a pointer to the
// argument. The derived class DER must implement the UpdateFocus method which
// takes pointers to the ARGS arguments:
//
// // Updates the current arguments.
// void UpdateArgs(const OBJ &object, ARGS *...args) const;
template <class DER, class OBJ, class... ARGS>
class FeatureLocator : public MetaFeatureFunction<OBJ, ARGS...> {
public:
// Feature locators have an additional check that there is no intrinsic type.
void GetFeatureTypes(std::vector<FeatureType *> *types) const override {
SAFTM_CHECK_EQ(this->feature_type(), nullptr)
<< "FeatureLocators should not have an intrinsic type.";
MetaFeatureFunction<OBJ, ARGS...>::GetFeatureTypes(types);
}
// Evaluates the locator.
void Evaluate(const WorkspaceSet &workspaces, const OBJ &object, ARGS... args,
FeatureVector *result) const override {
static_cast<const DER *>(this)->UpdateArgs(workspaces, object, &args...);
for (auto *function : this->nested()) {
function->Evaluate(workspaces, object, args..., result);
}
}
// Returns the first nested feature's computed value.
FeatureValue Compute(const WorkspaceSet &workspaces, const OBJ &object,
ARGS... args) const override {
static_cast<const DER *>(this)->UpdateArgs(workspaces, object, &args...);
return this->nested()[0]->Compute(workspaces, object, args...);
}
};
// Feature extractor for extracting features from objects of a certain class.
// Template type parameters are as defined for FeatureFunction.
template <class OBJ, class... ARGS>
class FeatureExtractor : public GenericFeatureExtractor {
public:
// Feature function type for top-level functions in the feature extractor.
typedef FeatureFunction<OBJ, ARGS...> Function;
typedef FeatureExtractor<OBJ, ARGS...> Self;
// Feature locator type for the feature extractor.
template <class DER>
using Locator = FeatureLocator<DER, OBJ, ARGS...>;
// Initializes feature extractor.
FeatureExtractor() {}
~FeatureExtractor() override { utils::STLDeleteElements(&functions_); }
// Sets up the feature extractor. Note that only top-level functions exist
// until Setup() is called. This does not take ownership over the context,
// which must outlive this.
//
// Returns true on success, false otherwise.
SAFTM_MUST_USE_RESULT bool Setup(TaskContext *context) {
for (Function *function : functions_) {
if (!function->Setup(context)) return false;
}
return true;
}
// Initializes the feature extractor. Must be called after Setup(). This
// does not take ownership over the context, which must outlive this.
//
// Returns true on success, false otherwise.
SAFTM_MUST_USE_RESULT bool Init(TaskContext *context) {
for (Function *function : functions_) {
if (!function->Init(context)) return false;
}
if (!this->InitializeFeatureTypes()) return false;
return true;
}
// Requests workspaces from the registry. Must be called after Init(), and
// before Preprocess(). Does not take ownership over registry. This should be
// the same registry used to initialize the WorkspaceSet used in Preprocess()
// and ExtractFeatures(). NB: This is a different ordering from that used in
// SentenceFeatureRepresentation style feature computation.
void RequestWorkspaces(WorkspaceRegistry *registry) {
for (auto *function : functions_) function->RequestWorkspaces(registry);
}
// Preprocesses the object using feature functions for the phase. Must be
// called before any calls to ExtractFeatures() on that object and phase.
void Preprocess(WorkspaceSet *workspaces, const OBJ *object) const {
for (Function *function : functions_) {
function->Preprocess(workspaces, object);
}
}
// Extracts features from an object with a focus. This invokes all the
// top-level feature functions in the feature extractor. Only feature
// functions belonging to the specified phase are invoked.
void ExtractFeatures(const WorkspaceSet &workspaces, const OBJ &object,
ARGS... args, FeatureVector *result) const {
result->reserve(this->feature_types());
// Extract features.
for (int i = 0; i < functions_.size(); ++i) {
functions_[i]->Evaluate(workspaces, object, args..., result);
}
}
private:
// Creates and initializes all feature functions in the feature extractor.
//
// Returns true on success, false otherwise.
SAFTM_MUST_USE_RESULT bool InitializeFeatureFunctions() override {
// Create all top-level feature functions.
for (int i = 0; i < descriptor().feature_size(); ++i) {
const FeatureFunctionDescriptor &fd = descriptor().feature(i);
Function *function = Function::Instantiate(this, &fd, "");
if (function == nullptr) return false;
functions_.push_back(function);
}
return true;
}
// Collect all feature types used in the feature extractor.
void GetFeatureTypes(std::vector<FeatureType *> *types) const override {
for (int i = 0; i < functions_.size(); ++i) {
functions_[i]->GetFeatureTypes(types);
}
}
// Top-level feature functions (and variables) in the feature extractor.
// Owned.
std::vector<Function *> functions_;
};
} // namespace mobile
} // namespace nlp_saft
#endif // NLP_SAFT_COMPONENTS_COMMON_MOBILE_FEL_FEATURE_EXTRACTOR_H_