/*
* Copyright (C) 2018 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef NLP_SAFT_COMPONENTS_COMMON_MOBILE_EMBEDDING_NETWORK_PARAMS_H_
#define NLP_SAFT_COMPONENTS_COMMON_MOBILE_EMBEDDING_NETWORK_PARAMS_H_
#include <string>
#include "lang_id/common/fel/task-context.h"
#include "lang_id/common/lite_base/float16.h"
#include "lang_id/common/lite_base/logging.h"
namespace libtextclassifier3 {
enum class QuantizationType {
NONE = 0,
// Quantization to 8 bit unsigned ints.
UINT8,
// Quantization to 4 bit unsigned ints.
UINT4,
// Quantization to 16 bit floats, the type defined in
// lang_id/common/float16.h
FLOAT16,
// NOTE: for backward compatibility, if you add a new value to this enum, add
// it *at the end*, such that you do not change the integer values of the
// existing enum values.
};
// Converts "UINT8" -> QuantizationType::UINT8, and so on.
QuantizationType ParseQuantizationType(const string &s);
// API for accessing parameters for a feed-forward neural network with
// embeddings.
//
//
// In fact, we provide two APIs: a high-level (and highly-recommented) API, with
// methods named using the BigCamel notation (e.g., GetEmbeddingMatrix()) and a
// low-level API, using C-style names (e.g., softmax_num_cols()).
//
// Note: the API below is meant to allow the inference code (the class
// libtextclassifier3::mobile::EmbeddingNetwork) to use the data directly, with no need
// for transposing any matrix (which would require extra overhead on mobile
// devices). Hence, as indicated by the comments for the API methods, some of
// the matrices below are the transposes of the corresponding matrices from the
// original proto.
class EmbeddingNetworkParams {
public:
virtual ~EmbeddingNetworkParams() {}
// Returns true if these params are valid. False otherwise (e.g., if the
// underlying data is corrupted). If is_valid() returns false, clients should
// not call any other method on that instance of EmbeddingNetworkParams. If
// is_valid() returns true, then calls to the API methods below should not
// crash *if they are called with index parameters in bounds*. E.g., if
// is_valid() and 0 <= i < embeddings_size(), then GetEmbeddingMatrix(i)
// should not crash.
virtual bool is_valid() const = 0;
// **** High-level API.
// Simple representation of a matrix. This small struct that doesn't own any
// resource intentionally supports copy / assign, to simplify our APIs.
struct Matrix {
// Number of rows.
int rows = 0;
// Number of columns.
int cols = 0;
QuantizationType quant_type = QuantizationType::NONE;
// Pointer to matrix elements, in row-major order
// (https://en.wikipedia.org/wiki/Row-major_order) Not owned.
const void *elements = nullptr;
// Quantization scales: one scale for each row.
const ::libtextclassifier3::mobile::float16 *quant_scales = nullptr;
};
// Returns i-th embedding matrix. Crashes on out of bounds indices.
//
// This is the transpose of the corresponding matrix from the original proto.
Matrix GetEmbeddingMatrix(int i) const {
CheckIndex(i, embeddings_size(), "embedding matrix");
Matrix matrix;
matrix.rows = embeddings_num_rows(i);
matrix.cols = embeddings_num_cols(i);
matrix.elements = embeddings_weights(i);
matrix.quant_type = embeddings_quant_type(i);
matrix.quant_scales = embeddings_quant_scales(i);
return matrix;
}
// Returns weight matrix for i-th hidden layer. Crashes on out of bounds
// indices.
//
// This is the transpose of the corresponding matrix from the original proto.
Matrix GetHiddenLayerMatrix(int i) const {
CheckIndex(i, hidden_size(), "hidden layer");
Matrix matrix;
matrix.rows = hidden_num_rows(i);
matrix.cols = hidden_num_cols(i);
// Quantization not supported here.
matrix.quant_type = hidden_weights_quant_type(i);
matrix.elements = hidden_weights(i);
return matrix;
}
// Returns bias for i-th hidden layer. Technically a Matrix, but we expect it
// to be a row/column vector (i.e., num rows or num cols is 1). However, we
// don't CHECK for that: we just provide access to underlying data. Crashes
// on out of bounds indices.
Matrix GetHiddenLayerBias(int i) const {
CheckIndex(i, hidden_bias_size(), "hidden layer bias");
Matrix matrix;
matrix.rows = hidden_bias_num_rows(i);
matrix.cols = hidden_bias_num_cols(i);
// Quantization not supported here.
matrix.quant_type = QuantizationType::NONE;
matrix.elements = hidden_bias_weights(i);
return matrix;
}
// Returns true if a softmax layer exists.
bool HasSoftmax() const {
return softmax_size() == 1;
}
// Returns weight matrix for the softmax layer. Note: should be called only
// if HasSoftmax() is true.
//
// This is the transpose of the corresponding matrix from the original proto.
Matrix GetSoftmaxMatrix() const {
SAFTM_CHECK(HasSoftmax()) << "No softmax layer.";
Matrix matrix;
matrix.rows = softmax_num_rows(0);
matrix.cols = softmax_num_cols(0);
// Quantization not supported here.
matrix.quant_type = softmax_weights_quant_type(0);
matrix.elements = softmax_weights(0);
return matrix;
}
// Returns bias for the softmax layer. Technically a Matrix, but we expect it
// to be a row/column vector (i.e., num rows or num cols is 1). However, we
// don't CHECK for that: we just provide access to underlying data.
Matrix GetSoftmaxBias() const {
SAFTM_CHECK(HasSoftmax()) << "No softmax layer.";
Matrix matrix;
matrix.rows = softmax_bias_num_rows(0);
matrix.cols = softmax_bias_num_cols(0);
// Quantization not supported here.
matrix.quant_type = QuantizationType::NONE;
matrix.elements = softmax_bias_weights(0);
return matrix;
}
// Updates the EmbeddingNetwork-related parameters from task_context. Returns
// true on success, false on error.
virtual bool UpdateTaskContextParameters(
mobile::TaskContext *task_context) = 0;
// **** Low-level API.
//
// * Most low-level API methods are documented by giving an equivalent
// function call on proto, the original proto (of type
// EmbeddingNetworkProto) which was used to generate the C++ code.
//
// * To simplify our generation code, optional proto fields of message type
// are treated as repeated fields with 0 or 1 instances. As such, we have
// *_size() methods for such optional fields: they return 0 or 1.
//
// * "transpose(M)" denotes the transpose of a matrix M.
// ** Access methods for repeated MatrixParams embeddings.
//
// Returns proto.embeddings_size().
virtual int embeddings_size() const = 0;
// Returns number of rows of transpose(proto.embeddings(i)).
virtual int embeddings_num_rows(int i) const = 0;
// Returns number of columns of transpose(proto.embeddings(i)).
virtual int embeddings_num_cols(int i) const = 0;
// Returns pointer to elements of transpose(proto.embeddings(i)), in row-major
// order. NOTE: for unquantized embeddings, this returns a pointer to float;
// for quantized embeddings, this returns a pointer to uint8.
virtual const void *embeddings_weights(int i) const = 0;
virtual QuantizationType embeddings_quant_type(int i) const {
return QuantizationType::NONE;
}
virtual const ::libtextclassifier3::mobile::float16 *embeddings_quant_scales(
int i) const {
return nullptr;
}
// ** Access methods for repeated MatrixParams hidden.
//
// Returns embedding_network_proto.hidden_size().
virtual int hidden_size() const = 0;
// Returns embedding_network_proto.hidden(i).rows().
virtual int hidden_num_rows(int i) const = 0;
// Returns embedding_network_proto.hidden(i).rows().
virtual int hidden_num_cols(int i) const = 0;
// Returns quantization mode for the weights of the i-th hidden layer.
virtual QuantizationType hidden_weights_quant_type(int i) const {
return QuantizationType::NONE;
}
// Returns pointer to beginning of array of floats with all values from
// embedding_network_proto.hidden(i).
virtual const void *hidden_weights(int i) const = 0;
// ** Access methods for repeated MatrixParams hidden_bias.
//
// Returns proto.hidden_bias_size().
virtual int hidden_bias_size() const = 0;
// Returns number of rows of proto.hidden_bias(i).
virtual int hidden_bias_num_rows(int i) const = 0;
// Returns number of columns of proto.hidden_bias(i).
virtual int hidden_bias_num_cols(int i) const = 0;
// Returns pointer to elements of proto.hidden_bias(i), in row-major order.
virtual const void *hidden_bias_weights(int i) const = 0;
// ** Access methods for optional MatrixParams softmax.
//
// Returns 1 if proto has optional field softmax, 0 otherwise.
virtual int softmax_size() const = 0;
// Returns number of rows of transpose(proto.softmax()).
virtual int softmax_num_rows(int i) const = 0;
// Returns number of columns of transpose(proto.softmax()).
virtual int softmax_num_cols(int i) const = 0;
// Returns quantization mode for the softmax weights.
virtual QuantizationType softmax_weights_quant_type(int i) const {
return QuantizationType::NONE;
}
// Returns pointer to elements of transpose(proto.softmax()), in row-major
// order.
virtual const void *softmax_weights(int i) const = 0;
// ** Access methods for optional MatrixParams softmax_bias.
//
// Returns 1 if proto has optional field softmax_bias, 0 otherwise.
virtual int softmax_bias_size() const = 0;
// Returns number of rows of proto.softmax_bias().
virtual int softmax_bias_num_rows(int i) const = 0;
// Returns number of columns of proto.softmax_bias().
virtual int softmax_bias_num_cols(int i) const = 0;
// Returns pointer to elements of proto.softmax_bias(), in row-major order.
virtual const void *softmax_bias_weights(int i) const = 0;
// ** Access methods for repeated int32 embedding_num_features.
//
// Returns proto.embedding_num_features_size().
virtual int embedding_num_features_size() const = 0;
// Returns proto.embedding_num_features(i).
virtual int embedding_num_features(int i) const = 0;
// ** Access methods for is_precomputed
//
// Returns proto.has_is_precomputed().
virtual bool has_is_precomputed() const = 0;
// Returns proto.is_precomputed().
virtual bool is_precomputed() const = 0;
protected:
void CheckIndex(int index, int size, const string &description) const {
SAFTM_CHECK_GE(index, 0)
<< "Out-of-range index for " << description << ": " << index;
SAFTM_CHECK_LT(index, size)
<< "Out-of-range index for " << description << ": " << index;
}
}; // class EmbeddingNetworkParams
} // namespace nlp_saft
#endif // NLP_SAFT_COMPONENTS_COMMON_MOBILE_EMBEDDING_NETWORK_PARAMS_H_