/*
* Copyright (C) 2018 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "actions/ngram-model.h"
#include <algorithm>
#include "actions/feature-processor.h"
#include "utils/hash/farmhash.h"
#include "utils/strings/stringpiece.h"
namespace libtextclassifier3 {
namespace {
// An iterator to iterate over the initial tokens of the n-grams of a model.
class FirstTokenIterator
: public std::iterator<std::random_access_iterator_tag,
/*value_type=*/uint32, /*difference_type=*/ptrdiff_t,
/*pointer=*/const uint32*,
/*reference=*/uint32&> {
public:
explicit FirstTokenIterator(const NGramLinearRegressionModel* model,
int index)
: model_(model), index_(index) {}
FirstTokenIterator& operator++() {
index_++;
return *this;
}
FirstTokenIterator& operator+=(ptrdiff_t dist) {
index_ += dist;
return *this;
}
ptrdiff_t operator-(const FirstTokenIterator& other_it) const {
return index_ - other_it.index_;
}
uint32 operator*() const {
const uint32 token_offset = (*model_->ngram_start_offsets())[index_];
return (*model_->hashed_ngram_tokens())[token_offset];
}
int index() const { return index_; }
private:
const NGramLinearRegressionModel* model_;
int index_;
};
} // anonymous namespace
std::unique_ptr<NGramModel> NGramModel::Create(
const NGramLinearRegressionModel* model, const Tokenizer* tokenizer,
const UniLib* unilib) {
if (model == nullptr) {
return nullptr;
}
if (tokenizer == nullptr && model->tokenizer_options() == nullptr) {
TC3_LOG(ERROR) << "No tokenizer options specified.";
return nullptr;
}
return std::unique_ptr<NGramModel>(new NGramModel(model, tokenizer, unilib));
}
NGramModel::NGramModel(const NGramLinearRegressionModel* model,
const Tokenizer* tokenizer, const UniLib* unilib)
: model_(model) {
// Create new tokenizer if options are specified, reuse feature processor
// tokenizer otherwise.
if (model->tokenizer_options() != nullptr) {
owned_tokenizer_ = CreateTokenizer(model->tokenizer_options(), unilib);
tokenizer_ = owned_tokenizer_.get();
} else {
tokenizer_ = tokenizer;
}
}
// Returns whether a given n-gram matches the token stream.
bool NGramModel::IsNGramMatch(const uint32* tokens, size_t num_tokens,
const uint32* ngram_tokens,
size_t num_ngram_tokens, int max_skips) const {
int token_idx = 0, ngram_token_idx = 0, skip_remain = 0;
for (; token_idx < num_tokens && ngram_token_idx < num_ngram_tokens;) {
if (tokens[token_idx] == ngram_tokens[ngram_token_idx]) {
// Token matches. Advance both and reset the skip budget.
++token_idx;
++ngram_token_idx;
skip_remain = max_skips;
} else if (skip_remain > 0) {
// No match, but we have skips left, so just advance over the token.
++token_idx;
skip_remain--;
} else {
// No match and we're out of skips. Reject.
return false;
}
}
return ngram_token_idx == num_ngram_tokens;
}
// Calculates the total number of skip-grams that can be created for a stream
// with the given number of tokens.
uint64 NGramModel::GetNumSkipGrams(int num_tokens, int max_ngram_length,
int max_skips) {
// Start with unigrams.
uint64 total = num_tokens;
for (int ngram_len = 2;
ngram_len <= max_ngram_length && ngram_len <= num_tokens; ++ngram_len) {
// We can easily compute the expected length of the n-gram (with skips),
// but it doesn't account for the fact that they may be longer than the
// input and should be pruned.
// Instead, we iterate over the distribution of effective n-gram lengths
// and add each length individually.
const int num_gaps = ngram_len - 1;
const int len_min = ngram_len;
const int len_max = ngram_len + num_gaps * max_skips;
const int len_mid = (len_max + len_min) / 2;
for (int len_i = len_min; len_i <= len_max; ++len_i) {
if (len_i > num_tokens) continue;
const int num_configs_of_len_i =
len_i <= len_mid ? len_i - len_min + 1 : len_max - len_i + 1;
const int num_start_offsets = num_tokens - len_i + 1;
total += num_configs_of_len_i * num_start_offsets;
}
}
return total;
}
std::pair<int, int> NGramModel::GetFirstTokenMatches(uint32 token_hash) const {
const int num_ngrams = model_->ngram_weights()->size();
const auto start_it = FirstTokenIterator(model_, 0);
const auto end_it = FirstTokenIterator(model_, num_ngrams);
const int start = std::lower_bound(start_it, end_it, token_hash).index();
const int end = std::upper_bound(start_it, end_it, token_hash).index();
return std::make_pair(start, end);
}
bool NGramModel::Eval(const UnicodeText& text, float* score) const {
const std::vector<Token> raw_tokens = tokenizer_->Tokenize(text);
// If we have no tokens, then just bail early.
if (raw_tokens.empty()) {
if (score != nullptr) {
*score = model_->default_token_weight();
}
return false;
}
// Hash the tokens.
std::vector<uint32> tokens;
tokens.reserve(raw_tokens.size());
for (const Token& raw_token : raw_tokens) {
tokens.push_back(tc3farmhash::Fingerprint32(raw_token.value.data(),
raw_token.value.length()));
}
// Calculate the total number of skip-grams that can be generated for the
// input text.
const uint64 num_candidates = GetNumSkipGrams(
tokens.size(), model_->max_denom_ngram_length(), model_->max_skips());
// For each token, see whether it denotes the start of an n-gram in the model.
int num_matches = 0;
float weight_matches = 0.f;
for (size_t start_i = 0; start_i < tokens.size(); ++start_i) {
const std::pair<int, int> ngram_range =
GetFirstTokenMatches(tokens[start_i]);
for (int ngram_idx = ngram_range.first; ngram_idx < ngram_range.second;
++ngram_idx) {
const uint16 ngram_tokens_begin =
(*model_->ngram_start_offsets())[ngram_idx];
const uint16 ngram_tokens_end =
(*model_->ngram_start_offsets())[ngram_idx + 1];
if (IsNGramMatch(
/*tokens=*/tokens.data() + start_i,
/*num_tokens=*/tokens.size() - start_i,
/*ngram_tokens=*/model_->hashed_ngram_tokens()->data() +
ngram_tokens_begin,
/*num_ngram_tokens=*/ngram_tokens_end - ngram_tokens_begin,
/*max_skips=*/model_->max_skips())) {
++num_matches;
weight_matches += (*model_->ngram_weights())[ngram_idx];
}
}
}
// Calculate the score.
const int num_misses = num_candidates - num_matches;
const float internal_score =
(weight_matches + (model_->default_token_weight() * num_misses)) /
num_candidates;
if (score != nullptr) {
*score = internal_score;
}
return internal_score > model_->threshold();
}
} // namespace libtextclassifier3