/******************************************************************************
*
* Copyright (C) 2012 Ittiam Systems Pvt Ltd, Bangalore
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
******************************************************************************/
/**
*******************************************************************************
* @file
* ihevc_itrans_recon_8x8.c
*
* @brief
* Contains function definitions for inverse transform and reconstruction 8x8
*
*
* @author
* 100470
*
* @par List of Functions:
* - ihevc_itrans_recon_8x8()
*
* @remarks
* None
*
*******************************************************************************
*/
#include <stdio.h>
#include <string.h>
#include "ihevc_typedefs.h"
#include "ihevc_macros.h"
#include "ihevc_platform_macros.h"
#include "ihevc_defs.h"
#include "ihevc_trans_tables.h"
#include "ihevc_itrans_recon.h"
#include "ihevc_func_selector.h"
#include "ihevc_trans_macros.h"
/**
*******************************************************************************
*
* @brief
* This function performs Inverse transform and reconstruction for 8x8
* input block
*
* @par Description:
* Performs inverse transform and adds the prediction data and clips output
* to 8 bit
*
* @param[in] pi2_src
* Input 8x8 coefficients
*
* @param[in] pi2_tmp
* Temporary 8x8 buffer for storing inverse
*
* transform
* 1st stage output
*
* @param[in] pu1_pred
* Prediction 8x8 block
*
* @param[out] pu1_dst
* Output 8x8 block
*
* @param[in] src_strd
* Input stride
*
* @param[in] pred_strd
* Prediction stride
*
* @param[in] dst_strd
* Output Stride
*
* @param[in] shift
* Output shift
*
* @param[in] zero_cols
* Zero columns in pi2_src
*
* @returns Void
*
* @remarks
* None
*
*******************************************************************************
*/
void ihevc_itrans_recon_8x8(WORD16 *pi2_src,
WORD16 *pi2_tmp,
UWORD8 *pu1_pred,
UWORD8 *pu1_dst,
WORD32 src_strd,
WORD32 pred_strd,
WORD32 dst_strd,
WORD32 zero_cols,
WORD32 zero_rows)
{
WORD32 j, k;
WORD32 e[4], o[4];
WORD32 ee[2], eo[2];
WORD32 add;
WORD32 shift;
WORD16 *pi2_tmp_orig;
WORD32 trans_size;
WORD32 zero_rows_2nd_stage = zero_cols;
WORD32 row_limit_2nd_stage;
trans_size = TRANS_SIZE_8;
pi2_tmp_orig = pi2_tmp;
if((zero_cols & 0xF0) == 0xF0)
row_limit_2nd_stage = 4;
else
row_limit_2nd_stage = TRANS_SIZE_8;
if((zero_rows & 0xF0) == 0xF0) /* First 4 rows of input are non-zero */
{
/************************************************************************************************/
/**********************************START - IT_RECON_8x8******************************************/
/************************************************************************************************/
/* Inverse Transform 1st stage */
shift = IT_SHIFT_STAGE_1;
add = 1 << (shift - 1);
for(j = 0; j < row_limit_2nd_stage; j++)
{
/* Checking for Zero Cols */
if((zero_cols & 1) == 1)
{
memset(pi2_tmp, 0, trans_size * sizeof(WORD16));
}
else
{
/* Utilizing symmetry properties to the maximum to minimize the number of multiplications */
for(k = 0; k < 4; k++)
{
o[k] = g_ai2_ihevc_trans_8[1][k] * pi2_src[src_strd]
+ g_ai2_ihevc_trans_8[3][k]
* pi2_src[3 * src_strd];
}
eo[0] = g_ai2_ihevc_trans_8[2][0] * pi2_src[2 * src_strd];
eo[1] = g_ai2_ihevc_trans_8[2][1] * pi2_src[2 * src_strd];
ee[0] = g_ai2_ihevc_trans_8[0][0] * pi2_src[0];
ee[1] = g_ai2_ihevc_trans_8[0][1] * pi2_src[0];
/* Combining e and o terms at each hierarchy levels to calculate the final spatial domain vector */
e[0] = ee[0] + eo[0];
e[3] = ee[0] - eo[0];
e[1] = ee[1] + eo[1];
e[2] = ee[1] - eo[1];
for(k = 0; k < 4; k++)
{
pi2_tmp[k] =
CLIP_S16(((e[k] + o[k] + add) >> shift));
pi2_tmp[k + 4] =
CLIP_S16(((e[3 - k] - o[3 - k] + add) >> shift));
}
}
pi2_src++;
pi2_tmp += trans_size;
zero_cols = zero_cols >> 1;
}
pi2_tmp = pi2_tmp_orig;
/* Inverse Transform 2nd stage */
shift = IT_SHIFT_STAGE_2;
add = 1 << (shift - 1);
if((zero_rows_2nd_stage & 0xF0) == 0xF0) /* First 4 rows of output of 1st stage are non-zero */
{
for(j = 0; j < trans_size; j++)
{
/* Utilizing symmetry properties to the maximum to minimize the number of multiplications */
for(k = 0; k < 4; k++)
{
o[k] = g_ai2_ihevc_trans_8[1][k] * pi2_tmp[trans_size]
+ g_ai2_ihevc_trans_8[3][k] * pi2_tmp[3 * trans_size];
}
eo[0] = g_ai2_ihevc_trans_8[2][0] * pi2_tmp[2 * trans_size];
eo[1] = g_ai2_ihevc_trans_8[2][1] * pi2_tmp[2 * trans_size];
ee[0] = g_ai2_ihevc_trans_8[0][0] * pi2_tmp[0];
ee[1] = g_ai2_ihevc_trans_8[0][1] * pi2_tmp[0];
/* Combining e and o terms at each hierarchy levels to calculate the final spatial domain vector */
e[0] = ee[0] + eo[0];
e[3] = ee[0] - eo[0];
e[1] = ee[1] + eo[1];
e[2] = ee[1] - eo[1];
for(k = 0; k < 4; k++)
{
WORD32 itrans_out;
itrans_out =
CLIP_S16(((e[k] + o[k] + add) >> shift));
pu1_dst[k] = CLIP_U8((itrans_out + pu1_pred[k]));
itrans_out =
CLIP_S16(((e[3 - k] - o[3 - k] + add) >> shift));
pu1_dst[k + 4] = CLIP_U8((itrans_out + pu1_pred[k + 4]));
}
pi2_tmp++;
pu1_pred += pred_strd;
pu1_dst += dst_strd;
}
}
else /* All rows of output of 1st stage are non-zero */
{
for(j = 0; j < trans_size; j++)
{
/* Utilizing symmetry properties to the maximum to minimize the number of multiplications */
for(k = 0; k < 4; k++)
{
o[k] = g_ai2_ihevc_trans_8[1][k] * pi2_tmp[trans_size]
+ g_ai2_ihevc_trans_8[3][k]
* pi2_tmp[3 * trans_size]
+ g_ai2_ihevc_trans_8[5][k]
* pi2_tmp[5 * trans_size]
+ g_ai2_ihevc_trans_8[7][k]
* pi2_tmp[7 * trans_size];
}
eo[0] = g_ai2_ihevc_trans_8[2][0] * pi2_tmp[2 * trans_size]
+ g_ai2_ihevc_trans_8[6][0] * pi2_tmp[6 * trans_size];
eo[1] = g_ai2_ihevc_trans_8[2][1] * pi2_tmp[2 * trans_size]
+ g_ai2_ihevc_trans_8[6][1] * pi2_tmp[6 * trans_size];
ee[0] = g_ai2_ihevc_trans_8[0][0] * pi2_tmp[0]
+ g_ai2_ihevc_trans_8[4][0] * pi2_tmp[4 * trans_size];
ee[1] = g_ai2_ihevc_trans_8[0][1] * pi2_tmp[0]
+ g_ai2_ihevc_trans_8[4][1] * pi2_tmp[4 * trans_size];
/* Combining e and o terms at each hierarchy levels to calculate the final spatial domain vector */
e[0] = ee[0] + eo[0];
e[3] = ee[0] - eo[0];
e[1] = ee[1] + eo[1];
e[2] = ee[1] - eo[1];
for(k = 0; k < 4; k++)
{
WORD32 itrans_out;
itrans_out =
CLIP_S16(((e[k] + o[k] + add) >> shift));
pu1_dst[k] = CLIP_U8((itrans_out + pu1_pred[k]));
itrans_out =
CLIP_S16(((e[3 - k] - o[3 - k] + add) >> shift));
pu1_dst[k + 4] = CLIP_U8((itrans_out + pu1_pred[k + 4]));
}
pi2_tmp++;
pu1_pred += pred_strd;
pu1_dst += dst_strd;
}
}
/************************************************************************************************/
/************************************END - IT_RECON_8x8******************************************/
/************************************************************************************************/
}
else /* All rows of input are non-zero */
{
/************************************************************************************************/
/**********************************START - IT_RECON_8x8******************************************/
/************************************************************************************************/
/* Inverse Transform 1st stage */
shift = IT_SHIFT_STAGE_1;
add = 1 << (shift - 1);
for(j = 0; j < row_limit_2nd_stage; j++)
{
/* Checking for Zero Cols */
if((zero_cols & 1) == 1)
{
memset(pi2_tmp, 0, trans_size * sizeof(WORD16));
}
else
{
/* Utilizing symmetry properties to the maximum to minimize the number of multiplications */
for(k = 0; k < 4; k++)
{
o[k] = g_ai2_ihevc_trans_8[1][k] * pi2_src[src_strd]
+ g_ai2_ihevc_trans_8[3][k]
* pi2_src[3 * src_strd]
+ g_ai2_ihevc_trans_8[5][k]
* pi2_src[5 * src_strd]
+ g_ai2_ihevc_trans_8[7][k]
* pi2_src[7 * src_strd];
}
eo[0] = g_ai2_ihevc_trans_8[2][0] * pi2_src[2 * src_strd]
+ g_ai2_ihevc_trans_8[6][0] * pi2_src[6 * src_strd];
eo[1] = g_ai2_ihevc_trans_8[2][1] * pi2_src[2 * src_strd]
+ g_ai2_ihevc_trans_8[6][1] * pi2_src[6 * src_strd];
ee[0] = g_ai2_ihevc_trans_8[0][0] * pi2_src[0]
+ g_ai2_ihevc_trans_8[4][0] * pi2_src[4 * src_strd];
ee[1] = g_ai2_ihevc_trans_8[0][1] * pi2_src[0]
+ g_ai2_ihevc_trans_8[4][1] * pi2_src[4 * src_strd];
/* Combining e and o terms at each hierarchy levels to calculate the final spatial domain vector */
e[0] = ee[0] + eo[0];
e[3] = ee[0] - eo[0];
e[1] = ee[1] + eo[1];
e[2] = ee[1] - eo[1];
for(k = 0; k < 4; k++)
{
pi2_tmp[k] =
CLIP_S16(((e[k] + o[k] + add) >> shift));
pi2_tmp[k + 4] =
CLIP_S16(((e[3 - k] - o[3 - k] + add) >> shift));
}
}
pi2_src++;
pi2_tmp += trans_size;
zero_cols = zero_cols >> 1;
}
pi2_tmp = pi2_tmp_orig;
/* Inverse Transform 2nd stage */
shift = IT_SHIFT_STAGE_2;
add = 1 << (shift - 1);
if((zero_rows_2nd_stage & 0xF0) == 0xF0) /* First 4 rows of output of 1st stage are non-zero */
{
for(j = 0; j < trans_size; j++)
{
/* Utilizing symmetry properties to the maximum to minimize the number of multiplications */
for(k = 0; k < 4; k++)
{
o[k] = g_ai2_ihevc_trans_8[1][k] * pi2_tmp[trans_size]
+ g_ai2_ihevc_trans_8[3][k] * pi2_tmp[3 * trans_size];
}
eo[0] = g_ai2_ihevc_trans_8[2][0] * pi2_tmp[2 * trans_size];
eo[1] = g_ai2_ihevc_trans_8[2][1] * pi2_tmp[2 * trans_size];
ee[0] = g_ai2_ihevc_trans_8[0][0] * pi2_tmp[0];
ee[1] = g_ai2_ihevc_trans_8[0][1] * pi2_tmp[0];
/* Combining e and o terms at each hierarchy levels to calculate the final spatial domain vector */
e[0] = ee[0] + eo[0];
e[3] = ee[0] - eo[0];
e[1] = ee[1] + eo[1];
e[2] = ee[1] - eo[1];
for(k = 0; k < 4; k++)
{
WORD32 itrans_out;
itrans_out =
CLIP_S16(((e[k] + o[k] + add) >> shift));
pu1_dst[k] = CLIP_U8((itrans_out + pu1_pred[k]));
itrans_out =
CLIP_S16(((e[3 - k] - o[3 - k] + add) >> shift));
pu1_dst[k + 4] = CLIP_U8((itrans_out + pu1_pred[k + 4]));
}
pi2_tmp++;
pu1_pred += pred_strd;
pu1_dst += dst_strd;
}
}
else /* All rows of output of 1st stage are non-zero */
{
for(j = 0; j < trans_size; j++)
{
/* Utilizing symmetry properties to the maximum to minimize the number of multiplications */
for(k = 0; k < 4; k++)
{
o[k] = g_ai2_ihevc_trans_8[1][k] * pi2_tmp[trans_size]
+ g_ai2_ihevc_trans_8[3][k]
* pi2_tmp[3 * trans_size]
+ g_ai2_ihevc_trans_8[5][k]
* pi2_tmp[5 * trans_size]
+ g_ai2_ihevc_trans_8[7][k]
* pi2_tmp[7 * trans_size];
}
eo[0] = g_ai2_ihevc_trans_8[2][0] * pi2_tmp[2 * trans_size]
+ g_ai2_ihevc_trans_8[6][0] * pi2_tmp[6 * trans_size];
eo[1] = g_ai2_ihevc_trans_8[2][1] * pi2_tmp[2 * trans_size]
+ g_ai2_ihevc_trans_8[6][1] * pi2_tmp[6 * trans_size];
ee[0] = g_ai2_ihevc_trans_8[0][0] * pi2_tmp[0]
+ g_ai2_ihevc_trans_8[4][0] * pi2_tmp[4 * trans_size];
ee[1] = g_ai2_ihevc_trans_8[0][1] * pi2_tmp[0]
+ g_ai2_ihevc_trans_8[4][1] * pi2_tmp[4 * trans_size];
/* Combining e and o terms at each hierarchy levels to calculate the final spatial domain vector */
e[0] = ee[0] + eo[0];
e[3] = ee[0] - eo[0];
e[1] = ee[1] + eo[1];
e[2] = ee[1] - eo[1];
for(k = 0; k < 4; k++)
{
WORD32 itrans_out;
itrans_out =
CLIP_S16(((e[k] + o[k] + add) >> shift));
pu1_dst[k] = CLIP_U8((itrans_out + pu1_pred[k]));
itrans_out =
CLIP_S16(((e[3 - k] - o[3 - k] + add) >> shift));
pu1_dst[k + 4] = CLIP_U8((itrans_out + pu1_pred[k + 4]));
}
pi2_tmp++;
pu1_pred += pred_strd;
pu1_dst += dst_strd;
}
}
/************************************************************************************************/
/************************************END - IT_RECON_8x8******************************************/
/************************************************************************************************/
}
}