/******************************************************************************
*
* Copyright (C) 2012 Ittiam Systems Pvt Ltd, Bangalore
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
******************************************************************************/
/**
*******************************************************************************
* @file
* ihevc_iquant_recon.c
*
* @brief
* Contains function definitions for inverse quantization and
* reconstruction
*
* @author
* 100470
*
* @par List of Functions:
* - ihevc_iquant_recon_4x4_ttype1()
* - ihevc_iquant_recon_4x4()
* - ihevc_iquant_recon_8x8()
* - ihevc_iquant_recon_16x16()
* - ihevc_iquant_recon_32x32()
*
* @remarks
* None
*
*******************************************************************************
*/
#include <stdio.h>
#include <string.h>
#include "ihevc_typedefs.h"
#include "ihevc_macros.h"
#include "ihevc_platform_macros.h"
#include "ihevc_defs.h"
#include "ihevc_trans_tables.h"
#include "ihevc_iquant_recon.h"
#include "ihevc_func_selector.h"
#include "ihevc_trans_macros.h"
/* All the functions here are replicated from ihevc_iquant_itrans_recon.c and modified to */
/* include reconstruction */
/**
*******************************************************************************
*
* @brief
* This function performs inverse quantization type 1 and reconstruction
* for 4x4 input block
*
* @par Description:
* This function performs inverse quantization and reconstruction for 4x4
* input block
*
* @param[in] pi2_src
* Input 4x4 coefficients
*
* @param[in] pu1_pred
* Prediction 4x4 block
*
* @param[in] pi2_dequant_coeff
* Dequant Coeffs
*
* @param[out] pu1_dst
* Output 4x4 block
*
* @param[in] qp_div
* Quantization parameter / 6
*
* @param[in] qp_rem
* Quantization parameter % 6
*
* @param[in] src_strd
* Input stride
*
* @param[in] pred_strd
* Prediction stride
*
* @param[in] dst_strd
* Output Stride
*
* @param[in] zero_cols
* Zero columns in pi2_src
*
* @returns Void
*
* @remarks
* None
*
*******************************************************************************
*/
void ihevc_iquant_recon_4x4_ttype1(WORD16 *pi2_src,
UWORD8 *pu1_pred,
WORD16 *pi2_dequant_coeff,
UWORD8 *pu1_dst,
WORD32 qp_div, /* qpscaled / 6 */
WORD32 qp_rem, /* qpscaled % 6 */
WORD32 src_strd,
WORD32 pred_strd,
WORD32 dst_strd,
WORD32 zero_cols)
{
{
/* Inverse Quant and recon */
{
WORD32 i, j;
WORD32 shift_iq;
WORD32 trans_size;
/* Inverse Quantization constants */
{
WORD32 log2_trans_size, bit_depth;
log2_trans_size = 2;
bit_depth = 8 + 0;
shift_iq = bit_depth + log2_trans_size - 5;
}
trans_size = TRANS_SIZE_4;
for(i = 0; i < trans_size; i++)
{
/* Checking for Zero Cols */
if((zero_cols & 1) == 1)
{
for(j = 0; j < trans_size; j++)
pu1_dst[j * dst_strd] = pu1_pred[j * pred_strd];
}
else
{
for(j = 0; j < trans_size; j++)
{
WORD32 iquant_out;
IQUANT_4x4(iquant_out,
pi2_src[j * src_strd],
pi2_dequant_coeff[j * trans_size] * g_ihevc_iquant_scales[qp_rem],
shift_iq, qp_div);
iquant_out = (iquant_out + 16) >> 5;
pu1_dst[j * dst_strd] =
CLIP_U8(iquant_out + pu1_pred[j * pred_strd]);
}
}
pi2_src++;
pi2_dequant_coeff++;
pu1_pred++;
pu1_dst++;
zero_cols = zero_cols >> 1;
}
}
}
}
/**
*******************************************************************************
*
* @brief
* This function performs inverse quantization and reconstruction for 4x4
* input block
*
* @par Description:
* This function performs inverse quantization and reconstruction for 4x4
* input block
*
* @param[in] pi2_src
* Input 4x4 coefficients
*
* @param[in] pu1_pred
* Prediction 4x4 block
*
* @param[in] pi2_dequant_coeff
* Dequant Coeffs
*
* @param[out] pu1_dst
* Output 4x4 block
*
* @param[in] qp_div
* Quantization parameter / 6
*
* @param[in] qp_rem
* Quantization parameter % 6
*
* @param[in] src_strd
* Input stride
*
* @param[in] pred_strd
* Prediction stride
*
* @param[in] dst_strd
* Output Stride
*
* @param[in] zero_cols
* Zero columns in pi2_src
*
* @returns Void
*
* @remarks
* None
*
*******************************************************************************
*/
void ihevc_iquant_recon_4x4(WORD16 *pi2_src,
UWORD8 *pu1_pred,
WORD16 *pi2_dequant_coeff,
UWORD8 *pu1_dst,
WORD32 qp_div, /* qpscaled / 6 */
WORD32 qp_rem, /* qpscaled % 6 */
WORD32 src_strd,
WORD32 pred_strd,
WORD32 dst_strd,
WORD32 zero_cols)
{
{
/* Inverse Quant and recon */
{
WORD32 i, j;
WORD32 shift_iq;
WORD32 trans_size;
/* Inverse Quantization constants */
{
WORD32 log2_trans_size, bit_depth;
log2_trans_size = 2;
bit_depth = 8 + 0;
shift_iq = bit_depth + log2_trans_size - 5;
}
trans_size = TRANS_SIZE_4;
for(i = 0; i < trans_size; i++)
{
/* Checking for Zero Cols */
if((zero_cols & 1) == 1)
{
for(j = 0; j < trans_size; j++)
pu1_dst[j * dst_strd] = pu1_pred[j * pred_strd];
}
else
{
for(j = 0; j < trans_size; j++)
{
WORD32 iquant_out;
IQUANT_4x4(iquant_out,
pi2_src[j * src_strd],
pi2_dequant_coeff[j * trans_size] * g_ihevc_iquant_scales[qp_rem],
shift_iq, qp_div);
iquant_out = (iquant_out + 16) >> 5;
pu1_dst[j * dst_strd] =
CLIP_U8(iquant_out + pu1_pred[j * pred_strd]);
}
}
pi2_src++;
pi2_dequant_coeff++;
pu1_pred++;
pu1_dst++;
zero_cols = zero_cols >> 1;
}
}
}
}
/**
*******************************************************************************
*
* @brief
* This function performs inverse quantization and reconstruction for 8x8
* input block
*
* @par Description:
* This function performs inverse quantization and reconstruction for 8x8
* input block
*
* @param[in] pi2_src
* Input 8x8 coefficients
*
* @param[in] pu1_pred
* Prediction 8x8 block
*
* @param[in] pi2_dequant_coeff
* Dequant Coeffs
*
* @param[out] pu1_dst
* Output 8x8 block
*
* @param[in] qp_div
* Quantization parameter / 6
*
* @param[in] qp_rem
* Quantization parameter % 6
*
* @param[in] src_strd
* Input stride
*
* @param[in] pred_strd
* Prediction stride
*
* @param[in] dst_strd
* Output Stride
*
* @param[in] zero_cols
* Zero columns in pi2_src
*
* @returns Void
*
* @remarks
* None
*
*******************************************************************************
*/
void ihevc_iquant_recon_8x8(WORD16 *pi2_src,
UWORD8 *pu1_pred,
WORD16 *pi2_dequant_coeff,
UWORD8 *pu1_dst,
WORD32 qp_div, /* qpscaled / 6 */
WORD32 qp_rem, /* qpscaled % 6 */
WORD32 src_strd,
WORD32 pred_strd,
WORD32 dst_strd,
WORD32 zero_cols)
{
{
/* Inverse Quant and recon */
{
WORD32 i, j;
WORD32 shift_iq;
WORD32 trans_size;
/* Inverse Quantization constants */
{
WORD32 log2_trans_size, bit_depth;
log2_trans_size = 3;
bit_depth = 8 + 0;
shift_iq = bit_depth + log2_trans_size - 5;
}
trans_size = TRANS_SIZE_8;
for(i = 0; i < trans_size; i++)
{
/* Checking for Zero Cols */
if((zero_cols & 1) == 1)
{
for(j = 0; j < trans_size; j++)
pu1_dst[j * dst_strd] = pu1_pred[j * pred_strd];
}
else
{
for(j = 0; j < trans_size; j++)
{
WORD32 iquant_out;
IQUANT(iquant_out,
pi2_src[j * src_strd],
pi2_dequant_coeff[j * trans_size] * g_ihevc_iquant_scales[qp_rem],
shift_iq, qp_div);
iquant_out = (iquant_out + 16) >> 5;
pu1_dst[j * dst_strd] =
CLIP_U8(iquant_out + pu1_pred[j * pred_strd]);
}
}
pi2_src++;
pi2_dequant_coeff++;
pu1_pred++;
pu1_dst++;
zero_cols = zero_cols >> 1;
}
}
}
}
/**
*******************************************************************************
*
* @brief
* This function performs inverse quantization and reconstruction for 16x16
* input block
*
* @par Description:
* This function performs inverse quantization and reconstruction for 16x16
* input block
*
* @param[in] pi2_src
* Input 16x16 coefficients
*
* @param[in] pu1_pred
* Prediction 16x16 block
*
* @param[in] pi2_dequant_coeff
* Dequant Coeffs
*
* @param[out] pu1_dst
* Output 16x16 block
*
* @param[in] qp_div
* Quantization parameter / 6
*
* @param[in] qp_rem
* Quantization parameter % 6
*
* @param[in] src_strd
* Input stride
*
* @param[in] pred_strd
* Prediction stride
*
* @param[in] dst_strd
* Output Stride
*
* @param[in] zero_cols
* Zero columns in pi2_src
*
* @returns Void
*
* @remarks
* None
*
*******************************************************************************
*/
void ihevc_iquant_recon_16x16(WORD16 *pi2_src,
UWORD8 *pu1_pred,
WORD16 *pi2_dequant_coeff,
UWORD8 *pu1_dst,
WORD32 qp_div, /* qpscaled / 6 */
WORD32 qp_rem, /* qpscaled % 6 */
WORD32 src_strd,
WORD32 pred_strd,
WORD32 dst_strd,
WORD32 zero_cols)
{
{
/* Inverse Quant and recon */
{
WORD32 i, j;
WORD32 shift_iq;
WORD32 trans_size;
/* Inverse Quantization constants */
{
WORD32 log2_trans_size, bit_depth;
log2_trans_size = 4;
bit_depth = 8 + 0;
shift_iq = bit_depth + log2_trans_size - 5;
}
trans_size = TRANS_SIZE_16;
for(i = 0; i < trans_size; i++)
{
/* Checking for Zero Cols */
if((zero_cols & 1) == 1)
{
for(j = 0; j < trans_size; j++)
pu1_dst[j * dst_strd] = pu1_pred[j * pred_strd];
}
else
{
for(j = 0; j < trans_size; j++)
{
WORD32 iquant_out;
IQUANT(iquant_out,
pi2_src[j * src_strd],
pi2_dequant_coeff[j * trans_size] * g_ihevc_iquant_scales[qp_rem],
shift_iq, qp_div);
iquant_out = (iquant_out + 16) >> 5;
pu1_dst[j * dst_strd] =
CLIP_U8(iquant_out + pu1_pred[j * pred_strd]);
}
}
pi2_src++;
pi2_dequant_coeff++;
pu1_pred++;
pu1_dst++;
zero_cols = zero_cols >> 1;
}
}
}
}
/**
*******************************************************************************
*
* @brief
* This function performs inverse quantization and reconstruction for 32x32
* input block
*
* @par Description:
* This function performs inverse quantization and reconstruction for 32x32
* input block
*
* @param[in] pi2_src
* Input 32x32 coefficients
*
* @param[in] pu1_pred
* Prediction 32x32 block
*
* @param[in] pi2_dequant_coeff
* Dequant Coeffs
*
* @param[out] pu1_dst
* Output 32x32 block
*
* @param[in] qp_div
* Quantization parameter / 6
*
* @param[in] qp_rem
* Quantization parameter % 6
*
* @param[in] src_strd
* Input stride
*
* @param[in] pred_strd
* Prediction stride
*
* @param[in] dst_strd
* Output Stride
*
* @param[in] zero_cols
* Zero columns in pi2_src
*
* @returns Void
*
* @remarks
* None
*
*******************************************************************************
*/
void ihevc_iquant_recon_32x32(WORD16 *pi2_src,
UWORD8 *pu1_pred,
WORD16 *pi2_dequant_coeff,
UWORD8 *pu1_dst,
WORD32 qp_div, /* qpscaled / 6 */
WORD32 qp_rem, /* qpscaled % 6 */
WORD32 src_strd,
WORD32 pred_strd,
WORD32 dst_strd,
WORD32 zero_cols)
{
{
/* Inverse Quant and recon */
{
WORD32 i, j;
WORD32 shift_iq;
WORD32 trans_size;
/* Inverse Quantization constants */
{
WORD32 log2_trans_size, bit_depth;
log2_trans_size = 5;
bit_depth = 8 + 0;
shift_iq = bit_depth + log2_trans_size - 5;
}
trans_size = TRANS_SIZE_32;
for(i = 0; i < trans_size; i++)
{
/* Checking for Zero Cols */
if((zero_cols & 1) == 1)
{
for(j = 0; j < trans_size; j++)
pu1_dst[j * dst_strd] = pu1_pred[j * pred_strd];
}
else
{
for(j = 0; j < trans_size; j++)
{
WORD32 iquant_out;
IQUANT(iquant_out,
pi2_src[j * src_strd],
pi2_dequant_coeff[j * trans_size] * g_ihevc_iquant_scales[qp_rem],
shift_iq, qp_div);
iquant_out = (iquant_out + 16) >> 5;
pu1_dst[j * dst_strd] =
CLIP_U8(iquant_out + pu1_pred[j * pred_strd]);
}
}
pi2_src++;
pi2_dequant_coeff++;
pu1_pred++;
pu1_dst++;
zero_cols = zero_cols >> 1;
}
}
}
}