/*
* Copyright © 2009-2011 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include <assert.h>
#include <stdint.h>
#include <stdlib.h>
#include <stdio.h>
#include <stdbool.h>
#include <stdarg.h>
#include <string.h>
#include "libdrm_macros.h"
#include "xf86drm.h"
#include "intel_chipset.h"
#include "intel_bufmgr.h"
/* Struct for tracking drm_intel_decode state. */
struct drm_intel_decode {
/** stdio file where the output should land. Defaults to stdout. */
FILE *out;
/** PCI device ID. */
uint32_t devid;
/**
* Shorthand device identifier: 3 is 915, 4 is 965, 5 is
* Ironlake, etc.
*/
int gen;
/** GPU address of the start of the current packet. */
uint32_t hw_offset;
/** CPU virtual address of the start of the current packet. */
uint32_t *data;
/** DWORDs of remaining batchbuffer data starting from the packet. */
uint32_t count;
/** GPU address of the start of the batchbuffer data. */
uint32_t base_hw_offset;
/** CPU Virtual address of the start of the batchbuffer data. */
uint32_t *base_data;
/** Number of DWORDs of batchbuffer data. */
uint32_t base_count;
/** @{
* GPU head and tail pointers, which will be noted in the dump, or ~0.
*/
uint32_t head, tail;
/** @} */
/**
* Whether to dump the dwords after MI_BATCHBUFFER_END.
*
* This sometimes provides clues in corrupted batchbuffers,
* and is used by the intel-gpu-tools.
*/
bool dump_past_end;
bool overflowed;
};
static FILE *out;
static uint32_t saved_s2 = 0, saved_s4 = 0;
static char saved_s2_set = 0, saved_s4_set = 0;
static uint32_t head_offset = 0xffffffff; /* undefined */
static uint32_t tail_offset = 0xffffffff; /* undefined */
#ifndef ARRAY_SIZE
#define ARRAY_SIZE(A) (sizeof(A)/sizeof(A[0]))
#endif
#define BUFFER_FAIL(_count, _len, _name) do { \
fprintf(out, "Buffer size too small in %s (%d < %d)\n", \
(_name), (_count), (_len)); \
return _count; \
} while (0)
static float int_as_float(uint32_t intval)
{
union intfloat {
uint32_t i;
float f;
} uval;
uval.i = intval;
return uval.f;
}
static void DRM_PRINTFLIKE(3, 4)
instr_out(struct drm_intel_decode *ctx, unsigned int index,
const char *fmt, ...)
{
va_list va;
const char *parseinfo;
uint32_t offset = ctx->hw_offset + index * 4;
if (index > ctx->count) {
if (!ctx->overflowed) {
fprintf(out, "ERROR: Decode attempted to continue beyond end of batchbuffer\n");
ctx->overflowed = true;
}
return;
}
if (offset == head_offset)
parseinfo = "HEAD";
else if (offset == tail_offset)
parseinfo = "TAIL";
else
parseinfo = " ";
fprintf(out, "0x%08x: %s 0x%08x: %s", offset, parseinfo,
ctx->data[index], index == 0 ? "" : " ");
va_start(va, fmt);
vfprintf(out, fmt, va);
va_end(va);
}
static int
decode_MI_SET_CONTEXT(struct drm_intel_decode *ctx)
{
uint32_t data = ctx->data[1];
if (ctx->gen > 7)
return 1;
instr_out(ctx, 0, "MI_SET_CONTEXT\n");
instr_out(ctx, 1, "gtt offset = 0x%x%s%s\n",
data & ~0xfff,
data & (1<<1)? ", Force Restore": "",
data & (1<<0)? ", Restore Inhibit": "");
return 2;
}
static int
decode_MI_WAIT_FOR_EVENT(struct drm_intel_decode *ctx)
{
const char *cc_wait;
int cc_shift = 0;
uint32_t data = ctx->data[0];
if (ctx->gen <= 5)
cc_shift = 9;
else
cc_shift = 16;
switch ((data >> cc_shift) & 0x1f) {
case 1:
cc_wait = ", cc wait 1";
break;
case 2:
cc_wait = ", cc wait 2";
break;
case 3:
cc_wait = ", cc wait 3";
break;
case 4:
cc_wait = ", cc wait 4";
break;
case 5:
cc_wait = ", cc wait 4";
break;
default:
cc_wait = "";
break;
}
if (ctx->gen <= 5) {
instr_out(ctx, 0, "MI_WAIT_FOR_EVENT%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
data & (1<<18)? ", pipe B start vblank wait": "",
data & (1<<17)? ", pipe A start vblank wait": "",
data & (1<<16)? ", overlay flip pending wait": "",
data & (1<<14)? ", pipe B hblank wait": "",
data & (1<<13)? ", pipe A hblank wait": "",
cc_wait,
data & (1<<8)? ", plane C pending flip wait": "",
data & (1<<7)? ", pipe B vblank wait": "",
data & (1<<6)? ", plane B pending flip wait": "",
data & (1<<5)? ", pipe B scan line wait": "",
data & (1<<4)? ", fbc idle wait": "",
data & (1<<3)? ", pipe A vblank wait": "",
data & (1<<2)? ", plane A pending flip wait": "",
data & (1<<1)? ", plane A scan line wait": "");
} else {
instr_out(ctx, 0, "MI_WAIT_FOR_EVENT%s%s%s%s%s%s%s%s%s%s%s%s\n",
data & (1<<20)? ", sprite C pending flip wait": "", /* ivb */
cc_wait,
data & (1<<13)? ", pipe B hblank wait": "",
data & (1<<11)? ", pipe B vblank wait": "",
data & (1<<10)? ", sprite B pending flip wait": "",
data & (1<<9)? ", plane B pending flip wait": "",
data & (1<<8)? ", plane B scan line wait": "",
data & (1<<5)? ", pipe A hblank wait": "",
data & (1<<3)? ", pipe A vblank wait": "",
data & (1<<2)? ", sprite A pending flip wait": "",
data & (1<<1)? ", plane A pending flip wait": "",
data & (1<<0)? ", plane A scan line wait": "");
}
return 1;
}
static int
decode_mi(struct drm_intel_decode *ctx)
{
unsigned int opcode, len = -1;
const char *post_sync_op = "";
uint32_t *data = ctx->data;
struct {
uint32_t opcode;
int len_mask;
unsigned int min_len;
unsigned int max_len;
const char *name;
int (*func)(struct drm_intel_decode *ctx);
} opcodes_mi[] = {
{ 0x08, 0, 1, 1, "MI_ARB_ON_OFF" },
{ 0x0a, 0, 1, 1, "MI_BATCH_BUFFER_END" },
{ 0x30, 0x3f, 3, 3, "MI_BATCH_BUFFER" },
{ 0x31, 0x3f, 2, 2, "MI_BATCH_BUFFER_START" },
{ 0x14, 0x3f, 3, 3, "MI_DISPLAY_BUFFER_INFO" },
{ 0x04, 0, 1, 1, "MI_FLUSH" },
{ 0x22, 0x1f, 3, 3, "MI_LOAD_REGISTER_IMM" },
{ 0x13, 0x3f, 2, 2, "MI_LOAD_SCAN_LINES_EXCL" },
{ 0x12, 0x3f, 2, 2, "MI_LOAD_SCAN_LINES_INCL" },
{ 0x00, 0, 1, 1, "MI_NOOP" },
{ 0x11, 0x3f, 2, 2, "MI_OVERLAY_FLIP" },
{ 0x07, 0, 1, 1, "MI_REPORT_HEAD" },
{ 0x18, 0x3f, 2, 2, "MI_SET_CONTEXT", decode_MI_SET_CONTEXT },
{ 0x20, 0x3f, 3, 4, "MI_STORE_DATA_IMM" },
{ 0x21, 0x3f, 3, 4, "MI_STORE_DATA_INDEX" },
{ 0x24, 0x3f, 3, 3, "MI_STORE_REGISTER_MEM" },
{ 0x02, 0, 1, 1, "MI_USER_INTERRUPT" },
{ 0x03, 0, 1, 1, "MI_WAIT_FOR_EVENT", decode_MI_WAIT_FOR_EVENT },
{ 0x16, 0x7f, 3, 3, "MI_SEMAPHORE_MBOX" },
{ 0x26, 0x1f, 3, 4, "MI_FLUSH_DW" },
{ 0x28, 0x3f, 3, 3, "MI_REPORT_PERF_COUNT" },
{ 0x29, 0xff, 3, 3, "MI_LOAD_REGISTER_MEM" },
{ 0x0b, 0, 1, 1, "MI_SUSPEND_FLUSH"},
}, *opcode_mi = NULL;
/* check instruction length */
for (opcode = 0; opcode < sizeof(opcodes_mi) / sizeof(opcodes_mi[0]);
opcode++) {
if ((data[0] & 0x1f800000) >> 23 == opcodes_mi[opcode].opcode) {
len = 1;
if (opcodes_mi[opcode].max_len > 1) {
len =
(data[0] & opcodes_mi[opcode].len_mask) + 2;
if (len < opcodes_mi[opcode].min_len
|| len > opcodes_mi[opcode].max_len) {
fprintf(out,
"Bad length (%d) in %s, [%d, %d]\n",
len, opcodes_mi[opcode].name,
opcodes_mi[opcode].min_len,
opcodes_mi[opcode].max_len);
}
}
opcode_mi = &opcodes_mi[opcode];
break;
}
}
if (opcode_mi && opcode_mi->func)
return opcode_mi->func(ctx);
switch ((data[0] & 0x1f800000) >> 23) {
case 0x0a:
instr_out(ctx, 0, "MI_BATCH_BUFFER_END\n");
return -1;
case 0x16:
instr_out(ctx, 0, "MI_SEMAPHORE_MBOX%s%s%s%s %u\n",
data[0] & (1 << 22) ? " global gtt," : "",
data[0] & (1 << 21) ? " update semaphore," : "",
data[0] & (1 << 20) ? " compare semaphore," : "",
data[0] & (1 << 18) ? " use compare reg" : "",
(data[0] & (0x3 << 16)) >> 16);
instr_out(ctx, 1, "value\n");
instr_out(ctx, 2, "address\n");
return len;
case 0x21:
instr_out(ctx, 0, "MI_STORE_DATA_INDEX%s\n",
data[0] & (1 << 21) ? " use per-process HWS," : "");
instr_out(ctx, 1, "index\n");
instr_out(ctx, 2, "dword\n");
if (len == 4)
instr_out(ctx, 3, "upper dword\n");
return len;
case 0x00:
if (data[0] & (1 << 22))
instr_out(ctx, 0,
"MI_NOOP write NOPID reg, val=0x%x\n",
data[0] & ((1 << 22) - 1));
else
instr_out(ctx, 0, "MI_NOOP\n");
return len;
case 0x26:
switch (data[0] & (0x3 << 14)) {
case (0 << 14):
post_sync_op = "no write";
break;
case (1 << 14):
post_sync_op = "write data";
break;
case (2 << 14):
post_sync_op = "reserved";
break;
case (3 << 14):
post_sync_op = "write TIMESTAMP";
break;
}
instr_out(ctx, 0,
"MI_FLUSH_DW%s%s%s%s post_sync_op='%s' %s%s\n",
data[0] & (1 << 22) ?
" enable protected mem (BCS-only)," : "",
data[0] & (1 << 21) ? " store in hws," : "",
data[0] & (1 << 18) ? " invalidate tlb," : "",
data[0] & (1 << 17) ? " flush gfdt," : "",
post_sync_op,
data[0] & (1 << 8) ? " enable notify interrupt," : "",
data[0] & (1 << 7) ?
" invalidate video state (BCS-only)," : "");
if (data[0] & (1 << 21))
instr_out(ctx, 1, "hws index\n");
else
instr_out(ctx, 1, "address\n");
instr_out(ctx, 2, "dword\n");
if (len == 4)
instr_out(ctx, 3, "upper dword\n");
return len;
}
for (opcode = 0; opcode < sizeof(opcodes_mi) / sizeof(opcodes_mi[0]);
opcode++) {
if ((data[0] & 0x1f800000) >> 23 == opcodes_mi[opcode].opcode) {
unsigned int i;
instr_out(ctx, 0, "%s\n",
opcodes_mi[opcode].name);
for (i = 1; i < len; i++) {
instr_out(ctx, i, "dword %d\n", i);
}
return len;
}
}
instr_out(ctx, 0, "MI UNKNOWN\n");
return 1;
}
static void
decode_2d_br00(struct drm_intel_decode *ctx, const char *cmd)
{
instr_out(ctx, 0,
"%s (rgb %sabled, alpha %sabled, src tile %d, dst tile %d)\n",
cmd,
(ctx->data[0] & (1 << 20)) ? "en" : "dis",
(ctx->data[0] & (1 << 21)) ? "en" : "dis",
(ctx->data[0] >> 15) & 1,
(ctx->data[0] >> 11) & 1);
}
static void
decode_2d_br01(struct drm_intel_decode *ctx)
{
const char *format;
switch ((ctx->data[1] >> 24) & 0x3) {
case 0:
format = "8";
break;
case 1:
format = "565";
break;
case 2:
format = "1555";
break;
case 3:
format = "8888";
break;
}
instr_out(ctx, 1,
"format %s, pitch %d, rop 0x%02x, "
"clipping %sabled, %s%s \n",
format,
(short)(ctx->data[1] & 0xffff),
(ctx->data[1] >> 16) & 0xff,
ctx->data[1] & (1 << 30) ? "en" : "dis",
ctx->data[1] & (1 << 31) ? "solid pattern enabled, " : "",
ctx->data[1] & (1 << 31) ?
"mono pattern transparency enabled, " : "");
}
static int
decode_2d(struct drm_intel_decode *ctx)
{
unsigned int opcode, len;
uint32_t *data = ctx->data;
struct {
uint32_t opcode;
unsigned int min_len;
unsigned int max_len;
const char *name;
} opcodes_2d[] = {
{ 0x40, 5, 5, "COLOR_BLT" },
{ 0x43, 6, 6, "SRC_COPY_BLT" },
{ 0x01, 8, 8, "XY_SETUP_BLT" },
{ 0x11, 9, 9, "XY_SETUP_MONO_PATTERN_SL_BLT" },
{ 0x03, 3, 3, "XY_SETUP_CLIP_BLT" },
{ 0x24, 2, 2, "XY_PIXEL_BLT" },
{ 0x25, 3, 3, "XY_SCANLINES_BLT" },
{ 0x26, 4, 4, "Y_TEXT_BLT" },
{ 0x31, 5, 134, "XY_TEXT_IMMEDIATE_BLT" },
{ 0x50, 6, 6, "XY_COLOR_BLT" },
{ 0x51, 6, 6, "XY_PAT_BLT" },
{ 0x76, 8, 8, "XY_PAT_CHROMA_BLT" },
{ 0x72, 7, 135, "XY_PAT_BLT_IMMEDIATE" },
{ 0x77, 9, 137, "XY_PAT_CHROMA_BLT_IMMEDIATE" },
{ 0x52, 9, 9, "XY_MONO_PAT_BLT" },
{ 0x59, 7, 7, "XY_MONO_PAT_FIXED_BLT" },
{ 0x53, 8, 8, "XY_SRC_COPY_BLT" },
{ 0x54, 8, 8, "XY_MONO_SRC_COPY_BLT" },
{ 0x71, 9, 137, "XY_MONO_SRC_COPY_IMMEDIATE_BLT" },
{ 0x55, 9, 9, "XY_FULL_BLT" },
{ 0x55, 9, 137, "XY_FULL_IMMEDIATE_PATTERN_BLT" },
{ 0x56, 9, 9, "XY_FULL_MONO_SRC_BLT" },
{ 0x75, 10, 138, "XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT" },
{ 0x57, 12, 12, "XY_FULL_MONO_PATTERN_BLT" },
{ 0x58, 12, 12, "XY_FULL_MONO_PATTERN_MONO_SRC_BLT"},
};
switch ((data[0] & 0x1fc00000) >> 22) {
case 0x25:
instr_out(ctx, 0,
"XY_SCANLINES_BLT (pattern seed (%d, %d), dst tile %d)\n",
(data[0] >> 12) & 0x8,
(data[0] >> 8) & 0x8, (data[0] >> 11) & 1);
len = (data[0] & 0x000000ff) + 2;
if (len != 3)
fprintf(out, "Bad count in XY_SCANLINES_BLT\n");
instr_out(ctx, 1, "dest (%d,%d)\n",
data[1] & 0xffff, data[1] >> 16);
instr_out(ctx, 2, "dest (%d,%d)\n",
data[2] & 0xffff, data[2] >> 16);
return len;
case 0x01:
decode_2d_br00(ctx, "XY_SETUP_BLT");
len = (data[0] & 0x000000ff) + 2;
if (len != 8)
fprintf(out, "Bad count in XY_SETUP_BLT\n");
decode_2d_br01(ctx);
instr_out(ctx, 2, "cliprect (%d,%d)\n",
data[2] & 0xffff, data[2] >> 16);
instr_out(ctx, 3, "cliprect (%d,%d)\n",
data[3] & 0xffff, data[3] >> 16);
instr_out(ctx, 4, "setup dst offset 0x%08x\n",
data[4]);
instr_out(ctx, 5, "setup background color\n");
instr_out(ctx, 6, "setup foreground color\n");
instr_out(ctx, 7, "color pattern offset\n");
return len;
case 0x03:
decode_2d_br00(ctx, "XY_SETUP_CLIP_BLT");
len = (data[0] & 0x000000ff) + 2;
if (len != 3)
fprintf(out, "Bad count in XY_SETUP_CLIP_BLT\n");
instr_out(ctx, 1, "cliprect (%d,%d)\n",
data[1] & 0xffff, data[2] >> 16);
instr_out(ctx, 2, "cliprect (%d,%d)\n",
data[2] & 0xffff, data[3] >> 16);
return len;
case 0x11:
decode_2d_br00(ctx, "XY_SETUP_MONO_PATTERN_SL_BLT");
len = (data[0] & 0x000000ff) + 2;
if (len != 9)
fprintf(out,
"Bad count in XY_SETUP_MONO_PATTERN_SL_BLT\n");
decode_2d_br01(ctx);
instr_out(ctx, 2, "cliprect (%d,%d)\n",
data[2] & 0xffff, data[2] >> 16);
instr_out(ctx, 3, "cliprect (%d,%d)\n",
data[3] & 0xffff, data[3] >> 16);
instr_out(ctx, 4, "setup dst offset 0x%08x\n",
data[4]);
instr_out(ctx, 5, "setup background color\n");
instr_out(ctx, 6, "setup foreground color\n");
instr_out(ctx, 7, "mono pattern dw0\n");
instr_out(ctx, 8, "mono pattern dw1\n");
return len;
case 0x50:
decode_2d_br00(ctx, "XY_COLOR_BLT");
len = (data[0] & 0x000000ff) + 2;
if (len != 6)
fprintf(out, "Bad count in XY_COLOR_BLT\n");
decode_2d_br01(ctx);
instr_out(ctx, 2, "(%d,%d)\n",
data[2] & 0xffff, data[2] >> 16);
instr_out(ctx, 3, "(%d,%d)\n",
data[3] & 0xffff, data[3] >> 16);
instr_out(ctx, 4, "offset 0x%08x\n", data[4]);
instr_out(ctx, 5, "color\n");
return len;
case 0x53:
decode_2d_br00(ctx, "XY_SRC_COPY_BLT");
len = (data[0] & 0x000000ff) + 2;
if (len != 8)
fprintf(out, "Bad count in XY_SRC_COPY_BLT\n");
decode_2d_br01(ctx);
instr_out(ctx, 2, "dst (%d,%d)\n",
data[2] & 0xffff, data[2] >> 16);
instr_out(ctx, 3, "dst (%d,%d)\n",
data[3] & 0xffff, data[3] >> 16);
instr_out(ctx, 4, "dst offset 0x%08x\n", data[4]);
instr_out(ctx, 5, "src (%d,%d)\n",
data[5] & 0xffff, data[5] >> 16);
instr_out(ctx, 6, "src pitch %d\n",
(short)(data[6] & 0xffff));
instr_out(ctx, 7, "src offset 0x%08x\n", data[7]);
return len;
}
for (opcode = 0; opcode < sizeof(opcodes_2d) / sizeof(opcodes_2d[0]);
opcode++) {
if ((data[0] & 0x1fc00000) >> 22 == opcodes_2d[opcode].opcode) {
unsigned int i;
len = 1;
instr_out(ctx, 0, "%s\n",
opcodes_2d[opcode].name);
if (opcodes_2d[opcode].max_len > 1) {
len = (data[0] & 0x000000ff) + 2;
if (len < opcodes_2d[opcode].min_len ||
len > opcodes_2d[opcode].max_len) {
fprintf(out, "Bad count in %s\n",
opcodes_2d[opcode].name);
}
}
for (i = 1; i < len; i++) {
instr_out(ctx, i, "dword %d\n", i);
}
return len;
}
}
instr_out(ctx, 0, "2D UNKNOWN\n");
return 1;
}
static int
decode_3d_1c(struct drm_intel_decode *ctx)
{
uint32_t *data = ctx->data;
uint32_t opcode;
opcode = (data[0] & 0x00f80000) >> 19;
switch (opcode) {
case 0x11:
instr_out(ctx, 0,
"3DSTATE_DEPTH_SUBRECTANGLE_DISABLE\n");
return 1;
case 0x10:
instr_out(ctx, 0, "3DSTATE_SCISSOR_ENABLE %s\n",
data[0] & 1 ? "enabled" : "disabled");
return 1;
case 0x01:
instr_out(ctx, 0, "3DSTATE_MAP_COORD_SET_I830\n");
return 1;
case 0x0a:
instr_out(ctx, 0, "3DSTATE_MAP_CUBE_I830\n");
return 1;
case 0x05:
instr_out(ctx, 0, "3DSTATE_MAP_TEX_STREAM_I830\n");
return 1;
}
instr_out(ctx, 0, "3D UNKNOWN: 3d_1c opcode = 0x%x\n",
opcode);
return 1;
}
/** Sets the string dstname to describe the destination of the PS instruction */
static void
i915_get_instruction_dst(uint32_t *data, int i, char *dstname, int do_mask)
{
uint32_t a0 = data[i];
int dst_nr = (a0 >> 14) & 0xf;
char dstmask[8];
const char *sat;
if (do_mask) {
if (((a0 >> 10) & 0xf) == 0xf) {
dstmask[0] = 0;
} else {
int dstmask_index = 0;
dstmask[dstmask_index++] = '.';
if (a0 & (1 << 10))
dstmask[dstmask_index++] = 'x';
if (a0 & (1 << 11))
dstmask[dstmask_index++] = 'y';
if (a0 & (1 << 12))
dstmask[dstmask_index++] = 'z';
if (a0 & (1 << 13))
dstmask[dstmask_index++] = 'w';
dstmask[dstmask_index++] = 0;
}
if (a0 & (1 << 22))
sat = ".sat";
else
sat = "";
} else {
dstmask[0] = 0;
sat = "";
}
switch ((a0 >> 19) & 0x7) {
case 0:
if (dst_nr > 15)
fprintf(out, "bad destination reg R%d\n", dst_nr);
sprintf(dstname, "R%d%s%s", dst_nr, dstmask, sat);
break;
case 4:
if (dst_nr > 0)
fprintf(out, "bad destination reg oC%d\n", dst_nr);
sprintf(dstname, "oC%s%s", dstmask, sat);
break;
case 5:
if (dst_nr > 0)
fprintf(out, "bad destination reg oD%d\n", dst_nr);
sprintf(dstname, "oD%s%s", dstmask, sat);
break;
case 6:
if (dst_nr > 3)
fprintf(out, "bad destination reg U%d\n", dst_nr);
sprintf(dstname, "U%d%s%s", dst_nr, dstmask, sat);
break;
default:
sprintf(dstname, "RESERVED");
break;
}
}
static const char *
i915_get_channel_swizzle(uint32_t select)
{
switch (select & 0x7) {
case 0:
return (select & 8) ? "-x" : "x";
case 1:
return (select & 8) ? "-y" : "y";
case 2:
return (select & 8) ? "-z" : "z";
case 3:
return (select & 8) ? "-w" : "w";
case 4:
return (select & 8) ? "-0" : "0";
case 5:
return (select & 8) ? "-1" : "1";
default:
return (select & 8) ? "-bad" : "bad";
}
}
static void
i915_get_instruction_src_name(uint32_t src_type, uint32_t src_nr, char *name)
{
switch (src_type) {
case 0:
sprintf(name, "R%d", src_nr);
if (src_nr > 15)
fprintf(out, "bad src reg %s\n", name);
break;
case 1:
if (src_nr < 8)
sprintf(name, "T%d", src_nr);
else if (src_nr == 8)
sprintf(name, "DIFFUSE");
else if (src_nr == 9)
sprintf(name, "SPECULAR");
else if (src_nr == 10)
sprintf(name, "FOG");
else {
fprintf(out, "bad src reg T%d\n", src_nr);
sprintf(name, "RESERVED");
}
break;
case 2:
sprintf(name, "C%d", src_nr);
if (src_nr > 31)
fprintf(out, "bad src reg %s\n", name);
break;
case 4:
sprintf(name, "oC");
if (src_nr > 0)
fprintf(out, "bad src reg oC%d\n", src_nr);
break;
case 5:
sprintf(name, "oD");
if (src_nr > 0)
fprintf(out, "bad src reg oD%d\n", src_nr);
break;
case 6:
sprintf(name, "U%d", src_nr);
if (src_nr > 3)
fprintf(out, "bad src reg %s\n", name);
break;
default:
fprintf(out, "bad src reg type %d\n", src_type);
sprintf(name, "RESERVED");
break;
}
}
static void i915_get_instruction_src0(uint32_t *data, int i, char *srcname)
{
uint32_t a0 = data[i];
uint32_t a1 = data[i + 1];
int src_nr = (a0 >> 2) & 0x1f;
const char *swizzle_x = i915_get_channel_swizzle((a1 >> 28) & 0xf);
const char *swizzle_y = i915_get_channel_swizzle((a1 >> 24) & 0xf);
const char *swizzle_z = i915_get_channel_swizzle((a1 >> 20) & 0xf);
const char *swizzle_w = i915_get_channel_swizzle((a1 >> 16) & 0xf);
char swizzle[100];
i915_get_instruction_src_name((a0 >> 7) & 0x7, src_nr, srcname);
sprintf(swizzle, ".%s%s%s%s", swizzle_x, swizzle_y, swizzle_z,
swizzle_w);
if (strcmp(swizzle, ".xyzw") != 0)
strcat(srcname, swizzle);
}
static void i915_get_instruction_src1(uint32_t *data, int i, char *srcname)
{
uint32_t a1 = data[i + 1];
uint32_t a2 = data[i + 2];
int src_nr = (a1 >> 8) & 0x1f;
const char *swizzle_x = i915_get_channel_swizzle((a1 >> 4) & 0xf);
const char *swizzle_y = i915_get_channel_swizzle((a1 >> 0) & 0xf);
const char *swizzle_z = i915_get_channel_swizzle((a2 >> 28) & 0xf);
const char *swizzle_w = i915_get_channel_swizzle((a2 >> 24) & 0xf);
char swizzle[100];
i915_get_instruction_src_name((a1 >> 13) & 0x7, src_nr, srcname);
sprintf(swizzle, ".%s%s%s%s", swizzle_x, swizzle_y, swizzle_z,
swizzle_w);
if (strcmp(swizzle, ".xyzw") != 0)
strcat(srcname, swizzle);
}
static void i915_get_instruction_src2(uint32_t *data, int i, char *srcname)
{
uint32_t a2 = data[i + 2];
int src_nr = (a2 >> 16) & 0x1f;
const char *swizzle_x = i915_get_channel_swizzle((a2 >> 12) & 0xf);
const char *swizzle_y = i915_get_channel_swizzle((a2 >> 8) & 0xf);
const char *swizzle_z = i915_get_channel_swizzle((a2 >> 4) & 0xf);
const char *swizzle_w = i915_get_channel_swizzle((a2 >> 0) & 0xf);
char swizzle[100];
i915_get_instruction_src_name((a2 >> 21) & 0x7, src_nr, srcname);
sprintf(swizzle, ".%s%s%s%s", swizzle_x, swizzle_y, swizzle_z,
swizzle_w);
if (strcmp(swizzle, ".xyzw") != 0)
strcat(srcname, swizzle);
}
static void
i915_get_instruction_addr(uint32_t src_type, uint32_t src_nr, char *name)
{
switch (src_type) {
case 0:
sprintf(name, "R%d", src_nr);
if (src_nr > 15)
fprintf(out, "bad src reg %s\n", name);
break;
case 1:
if (src_nr < 8)
sprintf(name, "T%d", src_nr);
else if (src_nr == 8)
sprintf(name, "DIFFUSE");
else if (src_nr == 9)
sprintf(name, "SPECULAR");
else if (src_nr == 10)
sprintf(name, "FOG");
else {
fprintf(out, "bad src reg T%d\n", src_nr);
sprintf(name, "RESERVED");
}
break;
case 4:
sprintf(name, "oC");
if (src_nr > 0)
fprintf(out, "bad src reg oC%d\n", src_nr);
break;
case 5:
sprintf(name, "oD");
if (src_nr > 0)
fprintf(out, "bad src reg oD%d\n", src_nr);
break;
default:
fprintf(out, "bad src reg type %d\n", src_type);
sprintf(name, "RESERVED");
break;
}
}
static void
i915_decode_alu1(struct drm_intel_decode *ctx,
int i, char *instr_prefix, const char *op_name)
{
char dst[100], src0[100];
i915_get_instruction_dst(ctx->data, i, dst, 1);
i915_get_instruction_src0(ctx->data, i, src0);
instr_out(ctx, i++, "%s: %s %s, %s\n", instr_prefix,
op_name, dst, src0);
instr_out(ctx, i++, "%s\n", instr_prefix);
instr_out(ctx, i++, "%s\n", instr_prefix);
}
static void
i915_decode_alu2(struct drm_intel_decode *ctx,
int i, char *instr_prefix, const char *op_name)
{
char dst[100], src0[100], src1[100];
i915_get_instruction_dst(ctx->data, i, dst, 1);
i915_get_instruction_src0(ctx->data, i, src0);
i915_get_instruction_src1(ctx->data, i, src1);
instr_out(ctx, i++, "%s: %s %s, %s, %s\n", instr_prefix,
op_name, dst, src0, src1);
instr_out(ctx, i++, "%s\n", instr_prefix);
instr_out(ctx, i++, "%s\n", instr_prefix);
}
static void
i915_decode_alu3(struct drm_intel_decode *ctx,
int i, char *instr_prefix, const char *op_name)
{
char dst[100], src0[100], src1[100], src2[100];
i915_get_instruction_dst(ctx->data, i, dst, 1);
i915_get_instruction_src0(ctx->data, i, src0);
i915_get_instruction_src1(ctx->data, i, src1);
i915_get_instruction_src2(ctx->data, i, src2);
instr_out(ctx, i++, "%s: %s %s, %s, %s, %s\n", instr_prefix,
op_name, dst, src0, src1, src2);
instr_out(ctx, i++, "%s\n", instr_prefix);
instr_out(ctx, i++, "%s\n", instr_prefix);
}
static void
i915_decode_tex(struct drm_intel_decode *ctx, int i,
const char *instr_prefix, const char *tex_name)
{
uint32_t t0 = ctx->data[i];
uint32_t t1 = ctx->data[i + 1];
char dst_name[100];
char addr_name[100];
int sampler_nr;
i915_get_instruction_dst(ctx->data, i, dst_name, 0);
i915_get_instruction_addr((t1 >> 24) & 0x7,
(t1 >> 17) & 0xf, addr_name);
sampler_nr = t0 & 0xf;
instr_out(ctx, i++, "%s: %s %s, S%d, %s\n", instr_prefix,
tex_name, dst_name, sampler_nr, addr_name);
instr_out(ctx, i++, "%s\n", instr_prefix);
instr_out(ctx, i++, "%s\n", instr_prefix);
}
static void
i915_decode_dcl(struct drm_intel_decode *ctx, int i, char *instr_prefix)
{
uint32_t d0 = ctx->data[i];
const char *sampletype;
int dcl_nr = (d0 >> 14) & 0xf;
const char *dcl_x = d0 & (1 << 10) ? "x" : "";
const char *dcl_y = d0 & (1 << 11) ? "y" : "";
const char *dcl_z = d0 & (1 << 12) ? "z" : "";
const char *dcl_w = d0 & (1 << 13) ? "w" : "";
char dcl_mask[10];
switch ((d0 >> 19) & 0x3) {
case 1:
sprintf(dcl_mask, ".%s%s%s%s", dcl_x, dcl_y, dcl_z, dcl_w);
if (strcmp(dcl_mask, ".") == 0)
fprintf(out, "bad (empty) dcl mask\n");
if (dcl_nr > 10)
fprintf(out, "bad T%d dcl register number\n", dcl_nr);
if (dcl_nr < 8) {
if (strcmp(dcl_mask, ".x") != 0 &&
strcmp(dcl_mask, ".xy") != 0 &&
strcmp(dcl_mask, ".xz") != 0 &&
strcmp(dcl_mask, ".w") != 0 &&
strcmp(dcl_mask, ".xyzw") != 0) {
fprintf(out, "bad T%d.%s dcl mask\n", dcl_nr,
dcl_mask);
}
instr_out(ctx, i++, "%s: DCL T%d%s\n",
instr_prefix, dcl_nr, dcl_mask);
} else {
if (strcmp(dcl_mask, ".xz") == 0)
fprintf(out, "errataed bad dcl mask %s\n",
dcl_mask);
else if (strcmp(dcl_mask, ".xw") == 0)
fprintf(out, "errataed bad dcl mask %s\n",
dcl_mask);
else if (strcmp(dcl_mask, ".xzw") == 0)
fprintf(out, "errataed bad dcl mask %s\n",
dcl_mask);
if (dcl_nr == 8) {
instr_out(ctx, i++,
"%s: DCL DIFFUSE%s\n", instr_prefix,
dcl_mask);
} else if (dcl_nr == 9) {
instr_out(ctx, i++,
"%s: DCL SPECULAR%s\n", instr_prefix,
dcl_mask);
} else if (dcl_nr == 10) {
instr_out(ctx, i++,
"%s: DCL FOG%s\n", instr_prefix,
dcl_mask);
}
}
instr_out(ctx, i++, "%s\n", instr_prefix);
instr_out(ctx, i++, "%s\n", instr_prefix);
break;
case 3:
switch ((d0 >> 22) & 0x3) {
case 0:
sampletype = "2D";
break;
case 1:
sampletype = "CUBE";
break;
case 2:
sampletype = "3D";
break;
default:
sampletype = "RESERVED";
break;
}
if (dcl_nr > 15)
fprintf(out, "bad S%d dcl register number\n", dcl_nr);
instr_out(ctx, i++, "%s: DCL S%d %s\n",
instr_prefix, dcl_nr, sampletype);
instr_out(ctx, i++, "%s\n", instr_prefix);
instr_out(ctx, i++, "%s\n", instr_prefix);
break;
default:
instr_out(ctx, i++, "%s: DCL RESERVED%d\n",
instr_prefix, dcl_nr);
instr_out(ctx, i++, "%s\n", instr_prefix);
instr_out(ctx, i++, "%s\n", instr_prefix);
}
}
static void
i915_decode_instruction(struct drm_intel_decode *ctx,
int i, char *instr_prefix)
{
switch ((ctx->data[i] >> 24) & 0x1f) {
case 0x0:
instr_out(ctx, i++, "%s: NOP\n", instr_prefix);
instr_out(ctx, i++, "%s\n", instr_prefix);
instr_out(ctx, i++, "%s\n", instr_prefix);
break;
case 0x01:
i915_decode_alu2(ctx, i, instr_prefix, "ADD");
break;
case 0x02:
i915_decode_alu1(ctx, i, instr_prefix, "MOV");
break;
case 0x03:
i915_decode_alu2(ctx, i, instr_prefix, "MUL");
break;
case 0x04:
i915_decode_alu3(ctx, i, instr_prefix, "MAD");
break;
case 0x05:
i915_decode_alu3(ctx, i, instr_prefix, "DP2ADD");
break;
case 0x06:
i915_decode_alu2(ctx, i, instr_prefix, "DP3");
break;
case 0x07:
i915_decode_alu2(ctx, i, instr_prefix, "DP4");
break;
case 0x08:
i915_decode_alu1(ctx, i, instr_prefix, "FRC");
break;
case 0x09:
i915_decode_alu1(ctx, i, instr_prefix, "RCP");
break;
case 0x0a:
i915_decode_alu1(ctx, i, instr_prefix, "RSQ");
break;
case 0x0b:
i915_decode_alu1(ctx, i, instr_prefix, "EXP");
break;
case 0x0c:
i915_decode_alu1(ctx, i, instr_prefix, "LOG");
break;
case 0x0d:
i915_decode_alu2(ctx, i, instr_prefix, "CMP");
break;
case 0x0e:
i915_decode_alu2(ctx, i, instr_prefix, "MIN");
break;
case 0x0f:
i915_decode_alu2(ctx, i, instr_prefix, "MAX");
break;
case 0x10:
i915_decode_alu1(ctx, i, instr_prefix, "FLR");
break;
case 0x11:
i915_decode_alu1(ctx, i, instr_prefix, "MOD");
break;
case 0x12:
i915_decode_alu1(ctx, i, instr_prefix, "TRC");
break;
case 0x13:
i915_decode_alu2(ctx, i, instr_prefix, "SGE");
break;
case 0x14:
i915_decode_alu2(ctx, i, instr_prefix, "SLT");
break;
case 0x15:
i915_decode_tex(ctx, i, instr_prefix, "TEXLD");
break;
case 0x16:
i915_decode_tex(ctx, i, instr_prefix, "TEXLDP");
break;
case 0x17:
i915_decode_tex(ctx, i, instr_prefix, "TEXLDB");
break;
case 0x19:
i915_decode_dcl(ctx, i, instr_prefix);
break;
default:
instr_out(ctx, i++, "%s: unknown\n", instr_prefix);
instr_out(ctx, i++, "%s\n", instr_prefix);
instr_out(ctx, i++, "%s\n", instr_prefix);
break;
}
}
static const char *
decode_compare_func(uint32_t op)
{
switch (op & 0x7) {
case 0:
return "always";
case 1:
return "never";
case 2:
return "less";
case 3:
return "equal";
case 4:
return "lequal";
case 5:
return "greater";
case 6:
return "notequal";
case 7:
return "gequal";
}
return "";
}
static const char *
decode_stencil_op(uint32_t op)
{
switch (op & 0x7) {
case 0:
return "keep";
case 1:
return "zero";
case 2:
return "replace";
case 3:
return "incr_sat";
case 4:
return "decr_sat";
case 5:
return "greater";
case 6:
return "incr";
case 7:
return "decr";
}
return "";
}
#if 0
static const char *
decode_logic_op(uint32_t op)
{
switch (op & 0xf) {
case 0:
return "clear";
case 1:
return "nor";
case 2:
return "and_inv";
case 3:
return "copy_inv";
case 4:
return "and_rvrse";
case 5:
return "inv";
case 6:
return "xor";
case 7:
return "nand";
case 8:
return "and";
case 9:
return "equiv";
case 10:
return "noop";
case 11:
return "or_inv";
case 12:
return "copy";
case 13:
return "or_rvrse";
case 14:
return "or";
case 15:
return "set";
}
return "";
}
#endif
static const char *
decode_blend_fact(uint32_t op)
{
switch (op & 0xf) {
case 1:
return "zero";
case 2:
return "one";
case 3:
return "src_colr";
case 4:
return "inv_src_colr";
case 5:
return "src_alpha";
case 6:
return "inv_src_alpha";
case 7:
return "dst_alpha";
case 8:
return "inv_dst_alpha";
case 9:
return "dst_colr";
case 10:
return "inv_dst_colr";
case 11:
return "src_alpha_sat";
case 12:
return "cnst_colr";
case 13:
return "inv_cnst_colr";
case 14:
return "cnst_alpha";
case 15:
return "inv_const_alpha";
}
return "";
}
static const char *
decode_tex_coord_mode(uint32_t mode)
{
switch (mode & 0x7) {
case 0:
return "wrap";
case 1:
return "mirror";
case 2:
return "clamp_edge";
case 3:
return "cube";
case 4:
return "clamp_border";
case 5:
return "mirror_once";
}
return "";
}
static const char *
decode_sample_filter(uint32_t mode)
{
switch (mode & 0x7) {
case 0:
return "nearest";
case 1:
return "linear";
case 2:
return "anisotropic";
case 3:
return "4x4_1";
case 4:
return "4x4_2";
case 5:
return "4x4_flat";
case 6:
return "6x5_mono";
}
return "";
}
static int
decode_3d_1d(struct drm_intel_decode *ctx)
{
unsigned int len, i, c, idx, word, map, sampler, instr;
const char *format, *zformat, *type;
uint32_t opcode;
uint32_t *data = ctx->data;
uint32_t devid = ctx->devid;
struct {
uint32_t opcode;
int i830_only;
unsigned int min_len;
unsigned int max_len;
const char *name;
} opcodes_3d_1d[] = {
{ 0x86, 0, 4, 4, "3DSTATE_CHROMA_KEY" },
{ 0x88, 0, 2, 2, "3DSTATE_CONSTANT_BLEND_COLOR" },
{ 0x99, 0, 2, 2, "3DSTATE_DEFAULT_DIFFUSE" },
{ 0x9a, 0, 2, 2, "3DSTATE_DEFAULT_SPECULAR" },
{ 0x98, 0, 2, 2, "3DSTATE_DEFAULT_Z" },
{ 0x97, 0, 2, 2, "3DSTATE_DEPTH_OFFSET_SCALE" },
{ 0x9d, 0, 65, 65, "3DSTATE_FILTER_COEFFICIENTS_4X4" },
{ 0x9e, 0, 4, 4, "3DSTATE_MONO_FILTER" },
{ 0x89, 0, 4, 4, "3DSTATE_FOG_MODE" },
{ 0x8f, 0, 2, 16, "3DSTATE_MAP_PALLETE_LOAD_32" },
{ 0x83, 0, 2, 2, "3DSTATE_SPAN_STIPPLE" },
{ 0x8c, 1, 2, 2, "3DSTATE_MAP_COORD_TRANSFORM_I830" },
{ 0x8b, 1, 2, 2, "3DSTATE_MAP_VERTEX_TRANSFORM_I830" },
{ 0x8d, 1, 3, 3, "3DSTATE_W_STATE_I830" },
{ 0x01, 1, 2, 2, "3DSTATE_COLOR_FACTOR_I830" },
{ 0x02, 1, 2, 2, "3DSTATE_MAP_COORD_SETBIND_I830"},
}, *opcode_3d_1d;
opcode = (data[0] & 0x00ff0000) >> 16;
switch (opcode) {
case 0x07:
/* This instruction is unusual. A 0 length means just
* 1 DWORD instead of 2. The 0 length is specified in
* one place to be unsupported, but stated to be
* required in another, and 0 length LOAD_INDIRECTs
* appear to cause no harm at least.
*/
instr_out(ctx, 0, "3DSTATE_LOAD_INDIRECT\n");
len = (data[0] & 0x000000ff) + 1;
i = 1;
if (data[0] & (0x01 << 8)) {
instr_out(ctx, i++, "SIS.0\n");
instr_out(ctx, i++, "SIS.1\n");
}
if (data[0] & (0x02 << 8)) {
instr_out(ctx, i++, "DIS.0\n");
}
if (data[0] & (0x04 << 8)) {
instr_out(ctx, i++, "SSB.0\n");
instr_out(ctx, i++, "SSB.1\n");
}
if (data[0] & (0x08 << 8)) {
instr_out(ctx, i++, "MSB.0\n");
instr_out(ctx, i++, "MSB.1\n");
}
if (data[0] & (0x10 << 8)) {
instr_out(ctx, i++, "PSP.0\n");
instr_out(ctx, i++, "PSP.1\n");
}
if (data[0] & (0x20 << 8)) {
instr_out(ctx, i++, "PSC.0\n");
instr_out(ctx, i++, "PSC.1\n");
}
if (len != i) {
fprintf(out, "Bad count in 3DSTATE_LOAD_INDIRECT\n");
return len;
}
return len;
case 0x04:
instr_out(ctx, 0,
"3DSTATE_LOAD_STATE_IMMEDIATE_1\n");
len = (data[0] & 0x0000000f) + 2;
i = 1;
for (word = 0; word <= 8; word++) {
if (data[0] & (1 << (4 + word))) {
/* save vertex state for decode */
if (!IS_GEN2(devid)) {
int tex_num;
if (word == 2) {
saved_s2_set = 1;
saved_s2 = data[i];
}
if (word == 4) {
saved_s4_set = 1;
saved_s4 = data[i];
}
switch (word) {
case 0:
instr_out(ctx, i,
"S0: vbo offset: 0x%08x%s\n",
data[i] & (~1),
data[i] & 1 ?
", auto cache invalidate disabled"
: "");
break;
case 1:
instr_out(ctx, i,
"S1: vertex width: %i, vertex pitch: %i\n",
(data[i] >> 24) &
0x3f,
(data[i] >> 16) &
0x3f);
break;
case 2:
instr_out(ctx, i,
"S2: texcoord formats: ");
for (tex_num = 0;
tex_num < 8; tex_num++) {
switch ((data[i] >>
tex_num *
4) & 0xf) {
case 0:
fprintf(out,
"%i=2D ",
tex_num);
break;
case 1:
fprintf(out,
"%i=3D ",
tex_num);
break;
case 2:
fprintf(out,
"%i=4D ",
tex_num);
break;
case 3:
fprintf(out,
"%i=1D ",
tex_num);
break;
case 4:
fprintf(out,
"%i=2D_16 ",
tex_num);
break;
case 5:
fprintf(out,
"%i=4D_16 ",
tex_num);
break;
case 0xf:
fprintf(out,
"%i=NP ",
tex_num);
break;
}
}
fprintf(out, "\n");
break;
case 3:
instr_out(ctx, i,
"S3: not documented\n");
break;
case 4:
{
const char *cullmode = "";
const char *vfmt_xyzw = "";
switch ((data[i] >> 13)
& 0x3) {
case 0:
cullmode =
"both";
break;
case 1:
cullmode =
"none";
break;
case 2:
cullmode = "cw";
break;
case 3:
cullmode =
"ccw";
break;
}
switch (data[i] &
(7 << 6 | 1 <<
2)) {
case 1 << 6:
vfmt_xyzw =
"XYZ,";
break;
case 2 << 6:
vfmt_xyzw =
"XYZW,";
break;
case 3 << 6:
vfmt_xyzw =
"XY,";
break;
case 4 << 6:
vfmt_xyzw =
"XYW,";
break;
case 1 << 6 | 1 << 2:
vfmt_xyzw =
"XYZF,";
break;
case 2 << 6 | 1 << 2:
vfmt_xyzw =
"XYZWF,";
break;
case 3 << 6 | 1 << 2:
vfmt_xyzw =
"XYF,";
break;
case 4 << 6 | 1 << 2:
vfmt_xyzw =
"XYWF,";
break;
}
instr_out(ctx, i,
"S4: point_width=%i, line_width=%.1f,"
"%s%s%s%s%s cullmode=%s, vfmt=%s%s%s%s%s%s "
"%s%s%s%s%s\n",
(data[i] >>
23) & 0x1ff,
((data[i] >>
19) & 0xf) /
2.0,
data[i] & (0xf
<<
15)
?
" flatshade="
: "",
data[i] & (1
<<
18)
? "Alpha," :
"",
data[i] & (1
<<
17)
? "Fog," : "",
data[i] & (1
<<
16)
? "Specular,"
: "",
data[i] & (1
<<
15)
? "Color," :
"", cullmode,
data[i] & (1
<<
12)
?
"PointWidth,"
: "",
data[i] & (1
<<
11)
? "SpecFog," :
"",
data[i] & (1
<<
10)
? "Color," :
"",
data[i] & (1
<<
9)
? "DepthOfs,"
: "",
vfmt_xyzw,
data[i] & (1
<<
9)
? "FogParam,"
: "",
data[i] & (1
<<
5)
?
"force default diffuse, "
: "",
data[i] & (1
<<
4)
?
"force default specular, "
: "",
data[i] & (1
<<
3)
?
"local depth ofs enable, "
: "",
data[i] & (1
<<
1)
?
"point sprite enable, "
: "",
data[i] & (1
<<
0)
?
"line AA enable, "
: "");
break;
}
case 5:
{
instr_out(ctx, i,
"S5:%s%s%s%s%s"
"%s%s%s%s stencil_ref=0x%x, stencil_test=%s, "
"stencil_fail=%s, stencil_pass_z_fail=%s, "
"stencil_pass_z_pass=%s, %s%s%s%s\n",
data[i] & (0xf
<<
28)
?
" write_disable="
: "",
data[i] & (1
<<
31)
? "Alpha," :
"",
data[i] & (1
<<
30)
? "Red," : "",
data[i] & (1
<<
29)
? "Green," :
"",
data[i] & (1
<<
28)
? "Blue," :
"",
data[i] & (1
<<
27)
?
" force default point size,"
: "",
data[i] & (1
<<
26)
?
" last pixel enable,"
: "",
data[i] & (1
<<
25)
?
" global depth ofs enable,"
: "",
data[i] & (1
<<
24)
?
" fog enable,"
: "",
(data[i] >>
16) & 0xff,
decode_compare_func
(data[i] >>
13),
decode_stencil_op
(data[i] >>
10),
decode_stencil_op
(data[i] >>
7),
decode_stencil_op
(data[i] >>
4),
data[i] & (1
<<
3)
?
"stencil write enable, "
: "",
data[i] & (1
<<
2)
?
"stencil test enable, "
: "",
data[i] & (1
<<
1)
?
"color dither enable, "
: "",
data[i] & (1
<<
0)
?
"logicop enable, "
: "");
}
break;
case 6:
instr_out(ctx, i,
"S6: %salpha_test=%s, alpha_ref=0x%x, "
"depth_test=%s, %ssrc_blnd_fct=%s, dst_blnd_fct=%s, "
"%s%stristrip_provoking_vertex=%i\n",
data[i] & (1 << 31) ?
"alpha test enable, "
: "",
decode_compare_func
(data[i] >> 28),
data[i] & (0xff <<
20),
decode_compare_func
(data[i] >> 16),
data[i] & (1 << 15) ?
"cbuf blend enable, "
: "",
decode_blend_fact(data
[i]
>>
8),
decode_blend_fact(data
[i]
>>
4),
data[i] & (1 << 3) ?
"depth write enable, "
: "",
data[i] & (1 << 2) ?
"cbuf write enable, "
: "",
data[i] & (0x3));
break;
case 7:
instr_out(ctx, i,
"S7: depth offset constant: 0x%08x\n",
data[i]);
break;
}
} else {
instr_out(ctx, i,
"S%d: 0x%08x\n", word, data[i]);
}
i++;
}
}
if (len != i) {
fprintf(out,
"Bad count in 3DSTATE_LOAD_STATE_IMMEDIATE_1\n");
}
return len;
case 0x03:
instr_out(ctx, 0,
"3DSTATE_LOAD_STATE_IMMEDIATE_2\n");
len = (data[0] & 0x0000000f) + 2;
i = 1;
for (word = 6; word <= 14; word++) {
if (data[0] & (1 << word)) {
if (word == 6)
instr_out(ctx, i++,
"TBCF\n");
else if (word >= 7 && word <= 10) {
instr_out(ctx, i++,
"TB%dC\n", word - 7);
instr_out(ctx, i++,
"TB%dA\n", word - 7);
} else if (word >= 11 && word <= 14) {
instr_out(ctx, i,
"TM%dS0: offset=0x%08x, %s\n",
word - 11,
data[i] & 0xfffffffe,
data[i] & 1 ? "use fence" :
"");
i++;
instr_out(ctx, i,
"TM%dS1: height=%i, width=%i, %s\n",
word - 11, data[i] >> 21,
(data[i] >> 10) & 0x3ff,
data[i] & 2 ? (data[i] & 1 ?
"y-tiled" :
"x-tiled") :
"");
i++;
instr_out(ctx, i,
"TM%dS2: pitch=%i, \n",
word - 11,
((data[i] >> 21) + 1) * 4);
i++;
instr_out(ctx, i++,
"TM%dS3\n", word - 11);
instr_out(ctx, i++,
"TM%dS4: dflt color\n",
word - 11);
}
}
}
if (len != i) {
fprintf(out,
"Bad count in 3DSTATE_LOAD_STATE_IMMEDIATE_2\n");
}
return len;
case 0x00:
instr_out(ctx, 0, "3DSTATE_MAP_STATE\n");
len = (data[0] & 0x0000003f) + 2;
instr_out(ctx, 1, "mask\n");
i = 2;
for (map = 0; map <= 15; map++) {
if (data[1] & (1 << map)) {
int width, height, pitch, dword;
const char *tiling;
dword = data[i];
instr_out(ctx, i++,
"map %d MS2 %s%s%s\n", map,
dword & (1 << 31) ?
"untrusted surface, " : "",
dword & (1 << 1) ?
"vertical line stride enable, " : "",
dword & (1 << 0) ?
"vertical ofs enable, " : "");
dword = data[i];
width = ((dword >> 10) & ((1 << 11) - 1)) + 1;
height = ((dword >> 21) & ((1 << 11) - 1)) + 1;
tiling = "none";
if (dword & (1 << 2))
tiling = "fenced";
else if (dword & (1 << 1))
tiling = dword & (1 << 0) ? "Y" : "X";
type = " BAD";
format = "BAD";
switch ((dword >> 7) & 0x7) {
case 1:
type = "8b";
switch ((dword >> 3) & 0xf) {
case 0:
format = "I";
break;
case 1:
format = "L";
break;
case 4:
format = "A";
break;
case 5:
format = " mono";
break;
}
break;
case 2:
type = "16b";
switch ((dword >> 3) & 0xf) {
case 0:
format = " rgb565";
break;
case 1:
format = " argb1555";
break;
case 2:
format = " argb4444";
break;
case 5:
format = " ay88";
break;
case 6:
format = " bump655";
break;
case 7:
format = "I";
break;
case 8:
format = "L";
break;
case 9:
format = "A";
break;
}
break;
case 3:
type = "32b";
switch ((dword >> 3) & 0xf) {
case 0:
format = " argb8888";
break;
case 1:
format = " abgr8888";
break;
case 2:
format = " xrgb8888";
break;
case 3:
format = " xbgr8888";
break;
case 4:
format = " qwvu8888";
break;
case 5:
format = " axvu8888";
break;
case 6:
format = " lxvu8888";
break;
case 7:
format = " xlvu8888";
break;
case 8:
format = " argb2101010";
break;
case 9:
format = " abgr2101010";
break;
case 10:
format = " awvu2101010";
break;
case 11:
format = " gr1616";
break;
case 12:
format = " vu1616";
break;
case 13:
format = " xI824";
break;
case 14:
format = " xA824";
break;
case 15:
format = " xL824";
break;
}
break;
case 5:
type = "422";
switch ((dword >> 3) & 0xf) {
case 0:
format = " yuv_swapy";
break;
case 1:
format = " yuv";
break;
case 2:
format = " yuv_swapuv";
break;
case 3:
format = " yuv_swapuvy";
break;
}
break;
case 6:
type = "compressed";
switch ((dword >> 3) & 0x7) {
case 0:
format = " dxt1";
break;
case 1:
format = " dxt2_3";
break;
case 2:
format = " dxt4_5";
break;
case 3:
format = " fxt1";
break;
case 4:
format = " dxt1_rb";
break;
}
break;
case 7:
type = "4b indexed";
switch ((dword >> 3) & 0xf) {
case 7:
format = " argb8888";
break;
}
break;
}
dword = data[i];
instr_out(ctx, i++,
"map %d MS3 [width=%d, height=%d, format=%s%s, tiling=%s%s]\n",
map, width, height, type, format,
tiling,
dword & (1 << 9) ? " palette select" :
"");
dword = data[i];
pitch =
4 * (((dword >> 21) & ((1 << 11) - 1)) + 1);
instr_out(ctx, i++,
"map %d MS4 [pitch=%d, max_lod=%i, vol_depth=%i, cube_face_ena=%x, %s]\n",
map, pitch, (dword >> 9) & 0x3f,
dword & 0xff, (dword >> 15) & 0x3f,
dword & (1 << 8) ? "miplayout legacy"
: "miplayout right");
}
}
if (len != i) {
fprintf(out, "Bad count in 3DSTATE_MAP_STATE\n");
return len;
}
return len;
case 0x06:
instr_out(ctx, 0,
"3DSTATE_PIXEL_SHADER_CONSTANTS\n");
len = (data[0] & 0x000000ff) + 2;
i = 2;
for (c = 0; c <= 31; c++) {
if (data[1] & (1 << c)) {
instr_out(ctx, i, "C%d.X = %f\n", c,
int_as_float(data[i]));
i++;
instr_out(ctx, i, "C%d.Y = %f\n",
c, int_as_float(data[i]));
i++;
instr_out(ctx, i, "C%d.Z = %f\n",
c, int_as_float(data[i]));
i++;
instr_out(ctx, i, "C%d.W = %f\n",
c, int_as_float(data[i]));
i++;
}
}
if (len != i) {
fprintf(out,
"Bad count in 3DSTATE_PIXEL_SHADER_CONSTANTS\n");
}
return len;
case 0x05:
instr_out(ctx, 0, "3DSTATE_PIXEL_SHADER_PROGRAM\n");
len = (data[0] & 0x000000ff) + 2;
if ((len - 1) % 3 != 0 || len > 370) {
fprintf(out,
"Bad count in 3DSTATE_PIXEL_SHADER_PROGRAM\n");
}
i = 1;
for (instr = 0; instr < (len - 1) / 3; instr++) {
char instr_prefix[10];
sprintf(instr_prefix, "PS%03d", instr);
i915_decode_instruction(ctx, i,
instr_prefix);
i += 3;
}
return len;
case 0x01:
if (IS_GEN2(devid))
break;
instr_out(ctx, 0, "3DSTATE_SAMPLER_STATE\n");
instr_out(ctx, 1, "mask\n");
len = (data[0] & 0x0000003f) + 2;
i = 2;
for (sampler = 0; sampler <= 15; sampler++) {
if (data[1] & (1 << sampler)) {
uint32_t dword;
const char *mip_filter = "";
dword = data[i];
switch ((dword >> 20) & 0x3) {
case 0:
mip_filter = "none";
break;
case 1:
mip_filter = "nearest";
break;
case 3:
mip_filter = "linear";
break;
}
instr_out(ctx, i++,
"sampler %d SS2:%s%s%s "
"base_mip_level=%i, mip_filter=%s, mag_filter=%s, min_filter=%s "
"lod_bias=%.2f,%s max_aniso=%i, shadow_func=%s\n",
sampler,
dword & (1 << 31) ? " reverse gamma,"
: "",
dword & (1 << 30) ? " packed2planar,"
: "",
dword & (1 << 29) ?
" colorspace conversion," : "",
(dword >> 22) & 0x1f, mip_filter,
decode_sample_filter(dword >> 17),
decode_sample_filter(dword >> 14),
((dword >> 5) & 0x1ff) / (0x10 * 1.0),
dword & (1 << 4) ? " shadow," : "",
dword & (1 << 3) ? 4 : 2,
decode_compare_func(dword));
dword = data[i];
instr_out(ctx, i++,
"sampler %d SS3: min_lod=%.2f,%s "
"tcmode_x=%s, tcmode_y=%s, tcmode_z=%s,%s texmap_idx=%i,%s\n",
sampler,
((dword >> 24) & 0xff) / (0x10 * 1.0),
dword & (1 << 17) ?
" kill pixel enable," : "",
decode_tex_coord_mode(dword >> 12),
decode_tex_coord_mode(dword >> 9),
decode_tex_coord_mode(dword >> 6),
dword & (1 << 5) ?
" normalized coords," : "",
(dword >> 1) & 0xf,
dword & (1 << 0) ? " deinterlacer," :
"");
dword = data[i];
instr_out(ctx, i++,
"sampler %d SS4: border color\n",
sampler);
}
}
if (len != i) {
fprintf(out, "Bad count in 3DSTATE_SAMPLER_STATE\n");
}
return len;
case 0x85:
len = (data[0] & 0x0000000f) + 2;
if (len != 2)
fprintf(out,
"Bad count in 3DSTATE_DEST_BUFFER_VARIABLES\n");
instr_out(ctx, 0,
"3DSTATE_DEST_BUFFER_VARIABLES\n");
switch ((data[1] >> 8) & 0xf) {
case 0x0:
format = "g8";
break;
case 0x1:
format = "x1r5g5b5";
break;
case 0x2:
format = "r5g6b5";
break;
case 0x3:
format = "a8r8g8b8";
break;
case 0x4:
format = "ycrcb_swapy";
break;
case 0x5:
format = "ycrcb_normal";
break;
case 0x6:
format = "ycrcb_swapuv";
break;
case 0x7:
format = "ycrcb_swapuvy";
break;
case 0x8:
format = "a4r4g4b4";
break;
case 0x9:
format = "a1r5g5b5";
break;
case 0xa:
format = "a2r10g10b10";
break;
default:
format = "BAD";
break;
}
switch ((data[1] >> 2) & 0x3) {
case 0x0:
zformat = "u16";
break;
case 0x1:
zformat = "f16";
break;
case 0x2:
zformat = "u24x8";
break;
default:
zformat = "BAD";
break;
}
instr_out(ctx, 1,
"%s format, %s depth format, early Z %sabled\n",
format, zformat,
(data[1] & (1 << 31)) ? "en" : "dis");
return len;
case 0x8e:
{
const char *name, *tiling;
len = (data[0] & 0x0000000f) + 2;
if (len != 3)
fprintf(out,
"Bad count in 3DSTATE_BUFFER_INFO\n");
switch ((data[1] >> 24) & 0x7) {
case 0x3:
name = "color";
break;
case 0x7:
name = "depth";
break;
default:
name = "unknown";
break;
}
tiling = "none";
if (data[1] & (1 << 23))
tiling = "fenced";
else if (data[1] & (1 << 22))
tiling = data[1] & (1 << 21) ? "Y" : "X";
instr_out(ctx, 0, "3DSTATE_BUFFER_INFO\n");
instr_out(ctx, 1,
"%s, tiling = %s, pitch=%d\n", name, tiling,
data[1] & 0xffff);
instr_out(ctx, 2, "address\n");
return len;
}
case 0x81:
len = (data[0] & 0x0000000f) + 2;
if (len != 3)
fprintf(out,
"Bad count in 3DSTATE_SCISSOR_RECTANGLE\n");
instr_out(ctx, 0, "3DSTATE_SCISSOR_RECTANGLE\n");
instr_out(ctx, 1, "(%d,%d)\n",
data[1] & 0xffff, data[1] >> 16);
instr_out(ctx, 2, "(%d,%d)\n",
data[2] & 0xffff, data[2] >> 16);
return len;
case 0x80:
len = (data[0] & 0x0000000f) + 2;
if (len != 5)
fprintf(out,
"Bad count in 3DSTATE_DRAWING_RECTANGLE\n");
instr_out(ctx, 0, "3DSTATE_DRAWING_RECTANGLE\n");
instr_out(ctx, 1, "%s\n",
data[1] & (1 << 30) ? "depth ofs disabled " : "");
instr_out(ctx, 2, "(%d,%d)\n",
data[2] & 0xffff, data[2] >> 16);
instr_out(ctx, 3, "(%d,%d)\n",
data[3] & 0xffff, data[3] >> 16);
instr_out(ctx, 4, "(%d,%d)\n",
data[4] & 0xffff, data[4] >> 16);
return len;
case 0x9c:
len = (data[0] & 0x0000000f) + 2;
if (len != 7)
fprintf(out, "Bad count in 3DSTATE_CLEAR_PARAMETERS\n");
instr_out(ctx, 0, "3DSTATE_CLEAR_PARAMETERS\n");
instr_out(ctx, 1, "prim_type=%s, clear=%s%s%s\n",
data[1] & (1 << 16) ? "CLEAR_RECT" : "ZONE_INIT",
data[1] & (1 << 2) ? "color," : "",
data[1] & (1 << 1) ? "depth," : "",
data[1] & (1 << 0) ? "stencil," : "");
instr_out(ctx, 2, "clear color\n");
instr_out(ctx, 3, "clear depth/stencil\n");
instr_out(ctx, 4, "color value (rgba8888)\n");
instr_out(ctx, 5, "depth value %f\n",
int_as_float(data[5]));
instr_out(ctx, 6, "clear stencil\n");
return len;
}
for (idx = 0; idx < ARRAY_SIZE(opcodes_3d_1d); idx++) {
opcode_3d_1d = &opcodes_3d_1d[idx];
if (opcode_3d_1d->i830_only && !IS_GEN2(devid))
continue;
if (((data[0] & 0x00ff0000) >> 16) == opcode_3d_1d->opcode) {
len = 1;
instr_out(ctx, 0, "%s\n",
opcode_3d_1d->name);
if (opcode_3d_1d->max_len > 1) {
len = (data[0] & 0x0000ffff) + 2;
if (len < opcode_3d_1d->min_len ||
len > opcode_3d_1d->max_len) {
fprintf(out, "Bad count in %s\n",
opcode_3d_1d->name);
}
}
for (i = 1; i < len; i++) {
instr_out(ctx, i, "dword %d\n", i);
}
return len;
}
}
instr_out(ctx, 0, "3D UNKNOWN: 3d_1d opcode = 0x%x\n",
opcode);
return 1;
}
static int
decode_3d_primitive(struct drm_intel_decode *ctx)
{
uint32_t *data = ctx->data;
uint32_t count = ctx->count;
char immediate = (data[0] & (1 << 23)) == 0;
unsigned int len, i, j, ret;
const char *primtype;
int original_s2 = saved_s2;
int original_s4 = saved_s4;
switch ((data[0] >> 18) & 0xf) {
case 0x0:
primtype = "TRILIST";
break;
case 0x1:
primtype = "TRISTRIP";
break;
case 0x2:
primtype = "TRISTRIP_REVERSE";
break;
case 0x3:
primtype = "TRIFAN";
break;
case 0x4:
primtype = "POLYGON";
break;
case 0x5:
primtype = "LINELIST";
break;
case 0x6:
primtype = "LINESTRIP";
break;
case 0x7:
primtype = "RECTLIST";
break;
case 0x8:
primtype = "POINTLIST";
break;
case 0x9:
primtype = "DIB";
break;
case 0xa:
primtype = "CLEAR_RECT";
saved_s4 = 3 << 6;
saved_s2 = ~0;
break;
default:
primtype = "unknown";
break;
}
/* XXX: 3DPRIM_DIB not supported */
if (immediate) {
len = (data[0] & 0x0003ffff) + 2;
instr_out(ctx, 0, "3DPRIMITIVE inline %s\n",
primtype);
if (count < len)
BUFFER_FAIL(count, len, "3DPRIMITIVE inline");
if (!saved_s2_set || !saved_s4_set) {
fprintf(out, "unknown vertex format\n");
for (i = 1; i < len; i++) {
instr_out(ctx, i,
" vertex data (%f float)\n",
int_as_float(data[i]));
}
} else {
unsigned int vertex = 0;
for (i = 1; i < len;) {
unsigned int tc;
#define VERTEX_OUT(fmt, ...) do { \
if (i < len) \
instr_out(ctx, i, " V%d."fmt"\n", vertex, __VA_ARGS__); \
else \
fprintf(out, " missing data in V%d\n", vertex); \
i++; \
} while (0)
VERTEX_OUT("X = %f", int_as_float(data[i]));
VERTEX_OUT("Y = %f", int_as_float(data[i]));
switch (saved_s4 >> 6 & 0x7) {
case 0x1:
VERTEX_OUT("Z = %f",
int_as_float(data[i]));
break;
case 0x2:
VERTEX_OUT("Z = %f",
int_as_float(data[i]));
VERTEX_OUT("W = %f",
int_as_float(data[i]));
break;
case 0x3:
break;
case 0x4:
VERTEX_OUT("W = %f",
int_as_float(data[i]));
break;
default:
fprintf(out, "bad S4 position mask\n");
}
if (saved_s4 & (1 << 10)) {
VERTEX_OUT
("color = (A=0x%02x, R=0x%02x, G=0x%02x, "
"B=0x%02x)", data[i] >> 24,
(data[i] >> 16) & 0xff,
(data[i] >> 8) & 0xff,
data[i] & 0xff);
}
if (saved_s4 & (1 << 11)) {
VERTEX_OUT
("spec = (A=0x%02x, R=0x%02x, G=0x%02x, "
"B=0x%02x)", data[i] >> 24,
(data[i] >> 16) & 0xff,
(data[i] >> 8) & 0xff,
data[i] & 0xff);
}
if (saved_s4 & (1 << 12))
VERTEX_OUT("width = 0x%08x)", data[i]);
for (tc = 0; tc <= 7; tc++) {
switch ((saved_s2 >> (tc * 4)) & 0xf) {
case 0x0:
VERTEX_OUT("T%d.X = %f", tc,
int_as_float(data
[i]));
VERTEX_OUT("T%d.Y = %f", tc,
int_as_float(data
[i]));
break;
case 0x1:
VERTEX_OUT("T%d.X = %f", tc,
int_as_float(data
[i]));
VERTEX_OUT("T%d.Y = %f", tc,
int_as_float(data
[i]));
VERTEX_OUT("T%d.Z = %f", tc,
int_as_float(data
[i]));
break;
case 0x2:
VERTEX_OUT("T%d.X = %f", tc,
int_as_float(data
[i]));
VERTEX_OUT("T%d.Y = %f", tc,
int_as_float(data
[i]));
VERTEX_OUT("T%d.Z = %f", tc,
int_as_float(data
[i]));
VERTEX_OUT("T%d.W = %f", tc,
int_as_float(data
[i]));
break;
case 0x3:
VERTEX_OUT("T%d.X = %f", tc,
int_as_float(data
[i]));
break;
case 0x4:
VERTEX_OUT
("T%d.XY = 0x%08x half-float",
tc, data[i]);
break;
case 0x5:
VERTEX_OUT
("T%d.XY = 0x%08x half-float",
tc, data[i]);
VERTEX_OUT
("T%d.ZW = 0x%08x half-float",
tc, data[i]);
break;
case 0xf:
break;
default:
fprintf(out,
"bad S2.T%d format\n",
tc);
}
}
vertex++;
}
}
ret = len;
} else {
/* indirect vertices */
len = data[0] & 0x0000ffff; /* index count */
if (data[0] & (1 << 17)) {
/* random vertex access */
if (count < (len + 1) / 2 + 1) {
BUFFER_FAIL(count, (len + 1) / 2 + 1,
"3DPRIMITIVE random indirect");
}
instr_out(ctx, 0,
"3DPRIMITIVE random indirect %s (%d)\n",
primtype, len);
if (len == 0) {
/* vertex indices continue until 0xffff is
* found
*/
for (i = 1; i < count; i++) {
if ((data[i] & 0xffff) == 0xffff) {
instr_out(ctx, i,
" indices: (terminator)\n");
ret = i;
goto out;
} else if ((data[i] >> 16) == 0xffff) {
instr_out(ctx, i,
" indices: 0x%04x, (terminator)\n",
data[i] & 0xffff);
ret = i;
goto out;
} else {
instr_out(ctx, i,
" indices: 0x%04x, 0x%04x\n",
data[i] & 0xffff,
data[i] >> 16);
}
}
fprintf(out,
"3DPRIMITIVE: no terminator found in index buffer\n");
ret = count;
goto out;
} else {
/* fixed size vertex index buffer */
for (j = 1, i = 0; i < len; i += 2, j++) {
if (i * 2 == len - 1) {
instr_out(ctx, j,
" indices: 0x%04x\n",
data[j] & 0xffff);
} else {
instr_out(ctx, j,
" indices: 0x%04x, 0x%04x\n",
data[j] & 0xffff,
data[j] >> 16);
}
}
}
ret = (len + 1) / 2 + 1;
goto out;
} else {
/* sequential vertex access */
instr_out(ctx, 0,
"3DPRIMITIVE sequential indirect %s, %d starting from "
"%d\n", primtype, len, data[1] & 0xffff);
instr_out(ctx, 1, " start\n");
ret = 2;
goto out;
}
}
out:
saved_s2 = original_s2;
saved_s4 = original_s4;
return ret;
}
static int
decode_3d(struct drm_intel_decode *ctx)
{
uint32_t opcode;
unsigned int idx;
uint32_t *data = ctx->data;
struct {
uint32_t opcode;
unsigned int min_len;
unsigned int max_len;
const char *name;
} opcodes_3d[] = {
{ 0x06, 1, 1, "3DSTATE_ANTI_ALIASING" },
{ 0x08, 1, 1, "3DSTATE_BACKFACE_STENCIL_OPS" },
{ 0x09, 1, 1, "3DSTATE_BACKFACE_STENCIL_MASKS" },
{ 0x16, 1, 1, "3DSTATE_COORD_SET_BINDINGS" },
{ 0x15, 1, 1, "3DSTATE_FOG_COLOR" },
{ 0x0b, 1, 1, "3DSTATE_INDEPENDENT_ALPHA_BLEND" },
{ 0x0d, 1, 1, "3DSTATE_MODES_4" },
{ 0x0c, 1, 1, "3DSTATE_MODES_5" },
{ 0x07, 1, 1, "3DSTATE_RASTERIZATION_RULES"},
}, *opcode_3d;
opcode = (data[0] & 0x1f000000) >> 24;
switch (opcode) {
case 0x1f:
return decode_3d_primitive(ctx);
case 0x1d:
return decode_3d_1d(ctx);
case 0x1c:
return decode_3d_1c(ctx);
}
for (idx = 0; idx < ARRAY_SIZE(opcodes_3d); idx++) {
opcode_3d = &opcodes_3d[idx];
if (opcode == opcode_3d->opcode) {
unsigned int len = 1, i;
instr_out(ctx, 0, "%s\n", opcode_3d->name);
if (opcode_3d->max_len > 1) {
len = (data[0] & 0xff) + 2;
if (len < opcode_3d->min_len ||
len > opcode_3d->max_len) {
fprintf(out, "Bad count in %s\n",
opcode_3d->name);
}
}
for (i = 1; i < len; i++) {
instr_out(ctx, i, "dword %d\n", i);
}
return len;
}
}
instr_out(ctx, 0, "3D UNKNOWN: 3d opcode = 0x%x\n", opcode);
return 1;
}
static const char *get_965_surfacetype(unsigned int surfacetype)
{
switch (surfacetype) {
case 0:
return "1D";
case 1:
return "2D";
case 2:
return "3D";
case 3:
return "CUBE";
case 4:
return "BUFFER";
case 7:
return "NULL";
default:
return "unknown";
}
}
static const char *get_965_depthformat(unsigned int depthformat)
{
switch (depthformat) {
case 0:
return "s8_z24float";
case 1:
return "z32float";
case 2:
return "z24s8";
case 5:
return "z16";
default:
return "unknown";
}
}
static const char *get_965_element_component(uint32_t data, int component)
{
uint32_t component_control = (data >> (16 + (3 - component) * 4)) & 0x7;
switch (component_control) {
case 0:
return "nostore";
case 1:
switch (component) {
case 0:
return "X";
case 1:
return "Y";
case 2:
return "Z";
case 3:
return "W";
default:
return "fail";
}
case 2:
return "0.0";
case 3:
return "1.0";
case 4:
return "0x1";
case 5:
return "VID";
default:
return "fail";
}
}
static const char *get_965_prim_type(uint32_t primtype)
{
switch (primtype) {
case 0x01:
return "point list";
case 0x02:
return "line list";
case 0x03:
return "line strip";
case 0x04:
return "tri list";
case 0x05:
return "tri strip";
case 0x06:
return "tri fan";
case 0x07:
return "quad list";
case 0x08:
return "quad strip";
case 0x09:
return "line list adj";
case 0x0a:
return "line strip adj";
case 0x0b:
return "tri list adj";
case 0x0c:
return "tri strip adj";
case 0x0d:
return "tri strip reverse";
case 0x0e:
return "polygon";
case 0x0f:
return "rect list";
case 0x10:
return "line loop";
case 0x11:
return "point list bf";
case 0x12:
return "line strip cont";
case 0x13:
return "line strip bf";
case 0x14:
return "line strip cont bf";
case 0x15:
return "tri fan no stipple";
default:
return "fail";
}
}
static int
i965_decode_urb_fence(struct drm_intel_decode *ctx, int len)
{
uint32_t vs_fence, clip_fence, gs_fence, sf_fence, vfe_fence, cs_fence;
uint32_t *data = ctx->data;
if (len != 3)
fprintf(out, "Bad count in URB_FENCE\n");
vs_fence = data[1] & 0x3ff;
gs_fence = (data[1] >> 10) & 0x3ff;
clip_fence = (data[1] >> 20) & 0x3ff;
sf_fence = data[2] & 0x3ff;
vfe_fence = (data[2] >> 10) & 0x3ff;
cs_fence = (data[2] >> 20) & 0x7ff;
instr_out(ctx, 0, "URB_FENCE: %s%s%s%s%s%s\n",
(data[0] >> 13) & 1 ? "cs " : "",
(data[0] >> 12) & 1 ? "vfe " : "",
(data[0] >> 11) & 1 ? "sf " : "",
(data[0] >> 10) & 1 ? "clip " : "",
(data[0] >> 9) & 1 ? "gs " : "",
(data[0] >> 8) & 1 ? "vs " : "");
instr_out(ctx, 1,
"vs fence: %d, clip_fence: %d, gs_fence: %d\n",
vs_fence, clip_fence, gs_fence);
instr_out(ctx, 2,
"sf fence: %d, vfe_fence: %d, cs_fence: %d\n",
sf_fence, vfe_fence, cs_fence);
if (gs_fence < vs_fence)
fprintf(out, "gs fence < vs fence!\n");
if (clip_fence < gs_fence)
fprintf(out, "clip fence < gs fence!\n");
if (sf_fence < clip_fence)
fprintf(out, "sf fence < clip fence!\n");
if (cs_fence < sf_fence)
fprintf(out, "cs fence < sf fence!\n");
return len;
}
static void
state_base_out(struct drm_intel_decode *ctx, unsigned int index,
const char *name)
{
if (ctx->data[index] & 1) {
instr_out(ctx, index,
"%s state base address 0x%08x\n", name,
ctx->data[index] & ~1);
} else {
instr_out(ctx, index, "%s state base not updated\n",
name);
}
}
static void
state_max_out(struct drm_intel_decode *ctx, unsigned int index,
const char *name)
{
if (ctx->data[index] & 1) {
if (ctx->data[index] == 1) {
instr_out(ctx, index,
"%s state upper bound disabled\n", name);
} else {
instr_out(ctx, index,
"%s state upper bound 0x%08x\n", name,
ctx->data[index] & ~1);
}
} else {
instr_out(ctx, index,
"%s state upper bound not updated\n", name);
}
}
static int
gen7_3DSTATE_VIEWPORT_STATE_POINTERS_CC(struct drm_intel_decode *ctx)
{
instr_out(ctx, 0, "3DSTATE_VIEWPORT_STATE_POINTERS_CC\n");
instr_out(ctx, 1, "pointer to CC viewport\n");
return 2;
}
static int
gen7_3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP(struct drm_intel_decode *ctx)
{
instr_out(ctx, 0, "3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP\n");
instr_out(ctx, 1, "pointer to SF_CLIP viewport\n");
return 2;
}
static int
gen7_3DSTATE_BLEND_STATE_POINTERS(struct drm_intel_decode *ctx)
{
instr_out(ctx, 0, "3DSTATE_BLEND_STATE_POINTERS\n");
instr_out(ctx, 1, "pointer to BLEND_STATE at 0x%08x (%s)\n",
ctx->data[1] & ~1,
(ctx->data[1] & 1) ? "changed" : "unchanged");
return 2;
}
static int
gen7_3DSTATE_DEPTH_STENCIL_STATE_POINTERS(struct drm_intel_decode *ctx)
{
instr_out(ctx, 0, "3DSTATE_DEPTH_STENCIL_STATE_POINTERS\n");
instr_out(ctx, 1,
"pointer to DEPTH_STENCIL_STATE at 0x%08x (%s)\n",
ctx->data[1] & ~1,
(ctx->data[1] & 1) ? "changed" : "unchanged");
return 2;
}
static int
gen7_3DSTATE_HIER_DEPTH_BUFFER(struct drm_intel_decode *ctx)
{
instr_out(ctx, 0, "3DSTATE_HIER_DEPTH_BUFFER\n");
instr_out(ctx, 1, "pitch %db\n",
(ctx->data[1] & 0x1ffff) + 1);
instr_out(ctx, 2, "pointer to HiZ buffer\n");
return 3;
}
static int
gen6_3DSTATE_CC_STATE_POINTERS(struct drm_intel_decode *ctx)
{
instr_out(ctx, 0, "3DSTATE_CC_STATE_POINTERS\n");
instr_out(ctx, 1, "blend change %d\n", ctx->data[1] & 1);
instr_out(ctx, 2, "depth stencil change %d\n",
ctx->data[2] & 1);
instr_out(ctx, 3, "cc change %d\n", ctx->data[3] & 1);
return 4;
}
static int
gen7_3DSTATE_CC_STATE_POINTERS(struct drm_intel_decode *ctx)
{
instr_out(ctx, 0, "3DSTATE_CC_STATE_POINTERS\n");
instr_out(ctx, 1, "pointer to COLOR_CALC_STATE at 0x%08x "
"(%s)\n",
ctx->data[1] & ~1,
(ctx->data[1] & 1) ? "changed" : "unchanged");
return 2;
}
static int
gen7_3DSTATE_URB_unit(struct drm_intel_decode *ctx, const char *unit)
{
int start_kb = ((ctx->data[1] >> 25) & 0x3f) * 8;
/* the field is # of 512-bit rows - 1, we print bytes */
int entry_size = (((ctx->data[1] >> 16) & 0x1ff) + 1);
int nr_entries = ctx->data[1] & 0xffff;
instr_out(ctx, 0, "3DSTATE_URB_%s\n", unit);
instr_out(ctx, 1,
"%dKB start, size=%d 64B rows, nr_entries=%d, total size %dB\n",
start_kb, entry_size, nr_entries, nr_entries * 64 * entry_size);
return 2;
}
static int
gen7_3DSTATE_URB_VS(struct drm_intel_decode *ctx)
{
return gen7_3DSTATE_URB_unit(ctx, "VS");
}
static int
gen7_3DSTATE_URB_HS(struct drm_intel_decode *ctx)
{
return gen7_3DSTATE_URB_unit(ctx, "HS");
}
static int
gen7_3DSTATE_URB_DS(struct drm_intel_decode *ctx)
{
return gen7_3DSTATE_URB_unit(ctx, "DS");
}
static int
gen7_3DSTATE_URB_GS(struct drm_intel_decode *ctx)
{
return gen7_3DSTATE_URB_unit(ctx, "GS");
}
static int
gen7_3DSTATE_CONSTANT(struct drm_intel_decode *ctx, const char *unit)
{
int rlen[4];
rlen[0] = (ctx->data[1] >> 0) & 0xffff;
rlen[1] = (ctx->data[1] >> 16) & 0xffff;
rlen[2] = (ctx->data[2] >> 0) & 0xffff;
rlen[3] = (ctx->data[2] >> 16) & 0xffff;
instr_out(ctx, 0, "3DSTATE_CONSTANT_%s\n", unit);
instr_out(ctx, 1, "len 0 = %d, len 1 = %d\n", rlen[0], rlen[1]);
instr_out(ctx, 2, "len 2 = %d, len 3 = %d\n", rlen[2], rlen[3]);
instr_out(ctx, 3, "pointer to constbuf 0\n");
instr_out(ctx, 4, "pointer to constbuf 1\n");
instr_out(ctx, 5, "pointer to constbuf 2\n");
instr_out(ctx, 6, "pointer to constbuf 3\n");
return 7;
}
static int
gen7_3DSTATE_CONSTANT_VS(struct drm_intel_decode *ctx)
{
return gen7_3DSTATE_CONSTANT(ctx, "VS");
}
static int
gen7_3DSTATE_CONSTANT_GS(struct drm_intel_decode *ctx)
{
return gen7_3DSTATE_CONSTANT(ctx, "GS");
}
static int
gen7_3DSTATE_CONSTANT_PS(struct drm_intel_decode *ctx)
{
return gen7_3DSTATE_CONSTANT(ctx, "PS");
}
static int
gen7_3DSTATE_CONSTANT_DS(struct drm_intel_decode *ctx)
{
return gen7_3DSTATE_CONSTANT(ctx, "DS");
}
static int
gen7_3DSTATE_CONSTANT_HS(struct drm_intel_decode *ctx)
{
return gen7_3DSTATE_CONSTANT(ctx, "HS");
}
static int
gen6_3DSTATE_WM(struct drm_intel_decode *ctx)
{
instr_out(ctx, 0, "3DSTATE_WM\n");
instr_out(ctx, 1, "kernel start pointer 0\n");
instr_out(ctx, 2,
"SPF=%d, VME=%d, Sampler Count %d, "
"Binding table count %d\n",
(ctx->data[2] >> 31) & 1,
(ctx->data[2] >> 30) & 1,
(ctx->data[2] >> 27) & 7,
(ctx->data[2] >> 18) & 0xff);
instr_out(ctx, 3, "scratch offset\n");
instr_out(ctx, 4,
"Depth Clear %d, Depth Resolve %d, HiZ Resolve %d, "
"Dispatch GRF start[0] %d, start[1] %d, start[2] %d\n",
(ctx->data[4] & (1 << 30)) != 0,
(ctx->data[4] & (1 << 28)) != 0,
(ctx->data[4] & (1 << 27)) != 0,
(ctx->data[4] >> 16) & 0x7f,
(ctx->data[4] >> 8) & 0x7f,
(ctx->data[4] & 0x7f));
instr_out(ctx, 5,
"MaxThreads %d, PS KillPixel %d, PS computed Z %d, "
"PS use sourceZ %d, Thread Dispatch %d, PS use sourceW %d, "
"Dispatch32 %d, Dispatch16 %d, Dispatch8 %d\n",
((ctx->data[5] >> 25) & 0x7f) + 1,
(ctx->data[5] & (1 << 22)) != 0,
(ctx->data[5] & (1 << 21)) != 0,
(ctx->data[5] & (1 << 20)) != 0,
(ctx->data[5] & (1 << 19)) != 0,
(ctx->data[5] & (1 << 8)) != 0,
(ctx->data[5] & (1 << 2)) != 0,
(ctx->data[5] & (1 << 1)) != 0,
(ctx->data[5] & (1 << 0)) != 0);
instr_out(ctx, 6,
"Num SF output %d, Pos XY offset %d, ZW interp mode %d , "
"Barycentric interp mode 0x%x, Point raster rule %d, "
"Multisample mode %d, "
"Multisample Dispatch mode %d\n",
(ctx->data[6] >> 20) & 0x3f,
(ctx->data[6] >> 18) & 3,
(ctx->data[6] >> 16) & 3,
(ctx->data[6] >> 10) & 0x3f,
(ctx->data[6] & (1 << 9)) != 0,
(ctx->data[6] >> 1) & 3,
(ctx->data[6] & 1));
instr_out(ctx, 7, "kernel start pointer 1\n");
instr_out(ctx, 8, "kernel start pointer 2\n");
return 9;
}
static int
gen7_3DSTATE_WM(struct drm_intel_decode *ctx)
{
const char *computed_depth = "";
const char *early_depth = "";
const char *zw_interp = "";
switch ((ctx->data[1] >> 23) & 0x3) {
case 0:
computed_depth = "";
break;
case 1:
computed_depth = "computed depth";
break;
case 2:
computed_depth = "computed depth >=";
break;
case 3:
computed_depth = "computed depth <=";
break;
}
switch ((ctx->data[1] >> 21) & 0x3) {
case 0:
early_depth = "";
break;
case 1:
early_depth = ", EDSC_PSEXEC";
break;
case 2:
early_depth = ", EDSC_PREPS";
break;
case 3:
early_depth = ", BAD EDSC";
break;
}
switch ((ctx->data[1] >> 17) & 0x3) {
case 0:
early_depth = "";
break;
case 1:
early_depth = ", BAD ZW interp";
break;
case 2:
early_depth = ", ZW centroid";
break;
case 3:
early_depth = ", ZW sample";
break;
}
instr_out(ctx, 0, "3DSTATE_WM\n");
instr_out(ctx, 1, "(%s%s%s%s%s%s)%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
(ctx->data[1] & (1 << 11)) ? "PP " : "",
(ctx->data[1] & (1 << 12)) ? "PC " : "",
(ctx->data[1] & (1 << 13)) ? "PS " : "",
(ctx->data[1] & (1 << 14)) ? "NPP " : "",
(ctx->data[1] & (1 << 15)) ? "NPC " : "",
(ctx->data[1] & (1 << 16)) ? "NPS " : "",
(ctx->data[1] & (1 << 30)) ? ", depth clear" : "",
(ctx->data[1] & (1 << 29)) ? "" : ", disabled",
(ctx->data[1] & (1 << 28)) ? ", depth resolve" : "",
(ctx->data[1] & (1 << 27)) ? ", hiz resolve" : "",
(ctx->data[1] & (1 << 25)) ? ", kill" : "",
computed_depth,
early_depth,
zw_interp,
(ctx->data[1] & (1 << 20)) ? ", source depth" : "",
(ctx->data[1] & (1 << 19)) ? ", source W" : "",
(ctx->data[1] & (1 << 10)) ? ", coverage" : "",
(ctx->data[1] & (1 << 4)) ? ", poly stipple" : "",
(ctx->data[1] & (1 << 3)) ? ", line stipple" : "",
(ctx->data[1] & (1 << 2)) ? ", point UL" : ", point UR"
);
instr_out(ctx, 2, "MS\n");
return 3;
}
static int
gen4_3DPRIMITIVE(struct drm_intel_decode *ctx)
{
instr_out(ctx, 0,
"3DPRIMITIVE: %s %s\n",
get_965_prim_type((ctx->data[0] >> 10) & 0x1f),
(ctx->data[0] & (1 << 15)) ? "random" : "sequential");
instr_out(ctx, 1, "vertex count\n");
instr_out(ctx, 2, "start vertex\n");
instr_out(ctx, 3, "instance count\n");
instr_out(ctx, 4, "start instance\n");
instr_out(ctx, 5, "index bias\n");
return 6;
}
static int
gen7_3DPRIMITIVE(struct drm_intel_decode *ctx)
{
bool indirect = !!(ctx->data[0] & (1 << 10));
instr_out(ctx, 0,
"3DPRIMITIVE: %s%s\n",
indirect ? " indirect" : "",
(ctx->data[0] & (1 << 8)) ? " predicated" : "");
instr_out(ctx, 1, "%s %s\n",
get_965_prim_type(ctx->data[1] & 0x3f),
(ctx->data[1] & (1 << 8)) ? "random" : "sequential");
instr_out(ctx, 2, indirect ? "ignored" : "vertex count\n");
instr_out(ctx, 3, indirect ? "ignored" : "start vertex\n");
instr_out(ctx, 4, indirect ? "ignored" : "instance count\n");
instr_out(ctx, 5, indirect ? "ignored" : "start instance\n");
instr_out(ctx, 6, indirect ? "ignored" : "index bias\n");
return 7;
}
static int
decode_3d_965(struct drm_intel_decode *ctx)
{
uint32_t opcode;
unsigned int len;
unsigned int i, j, sba_len;
const char *desc1 = NULL;
uint32_t *data = ctx->data;
uint32_t devid = ctx->devid;
struct {
uint32_t opcode;
uint32_t len_mask;
int unsigned min_len;
int unsigned max_len;
const char *name;
int gen;
int (*func)(struct drm_intel_decode *ctx);
} opcodes_3d[] = {
{ 0x6000, 0x00ff, 3, 3, "URB_FENCE" },
{ 0x6001, 0xffff, 2, 2, "CS_URB_STATE" },
{ 0x6002, 0x00ff, 2, 2, "CONSTANT_BUFFER" },
{ 0x6101, 0xffff, 6, 10, "STATE_BASE_ADDRESS" },
{ 0x6102, 0xffff, 2, 2, "STATE_SIP" },
{ 0x6104, 0xffff, 1, 1, "3DSTATE_PIPELINE_SELECT" },
{ 0x680b, 0xffff, 1, 1, "3DSTATE_VF_STATISTICS" },
{ 0x6904, 0xffff, 1, 1, "3DSTATE_PIPELINE_SELECT" },
{ 0x7800, 0xffff, 7, 7, "3DSTATE_PIPELINED_POINTERS" },
{ 0x7801, 0x00ff, 4, 6, "3DSTATE_BINDING_TABLE_POINTERS" },
{ 0x7802, 0x00ff, 4, 4, "3DSTATE_SAMPLER_STATE_POINTERS" },
{ 0x7805, 0x00ff, 7, 7, "3DSTATE_DEPTH_BUFFER", 7 },
{ 0x7805, 0x00ff, 3, 3, "3DSTATE_URB" },
{ 0x7804, 0x00ff, 3, 3, "3DSTATE_CLEAR_PARAMS" },
{ 0x7806, 0x00ff, 3, 3, "3DSTATE_STENCIL_BUFFER" },
{ 0x790f, 0x00ff, 3, 3, "3DSTATE_HIER_DEPTH_BUFFER", 6 },
{ 0x7807, 0x00ff, 3, 3, "3DSTATE_HIER_DEPTH_BUFFER", 7, gen7_3DSTATE_HIER_DEPTH_BUFFER },
{ 0x7808, 0x00ff, 5, 257, "3DSTATE_VERTEX_BUFFERS" },
{ 0x7809, 0x00ff, 3, 256, "3DSTATE_VERTEX_ELEMENTS" },
{ 0x780a, 0x00ff, 3, 3, "3DSTATE_INDEX_BUFFER" },
{ 0x780b, 0xffff, 1, 1, "3DSTATE_VF_STATISTICS" },
{ 0x780d, 0x00ff, 4, 4, "3DSTATE_VIEWPORT_STATE_POINTERS" },
{ 0x780e, 0xffff, 4, 4, NULL, 6, gen6_3DSTATE_CC_STATE_POINTERS },
{ 0x780e, 0x00ff, 2, 2, NULL, 7, gen7_3DSTATE_CC_STATE_POINTERS },
{ 0x780f, 0x00ff, 2, 2, "3DSTATE_SCISSOR_POINTERS" },
{ 0x7810, 0x00ff, 6, 6, "3DSTATE_VS" },
{ 0x7811, 0x00ff, 7, 7, "3DSTATE_GS" },
{ 0x7812, 0x00ff, 4, 4, "3DSTATE_CLIP" },
{ 0x7813, 0x00ff, 20, 20, "3DSTATE_SF", 6 },
{ 0x7813, 0x00ff, 7, 7, "3DSTATE_SF", 7 },
{ 0x7814, 0x00ff, 3, 3, "3DSTATE_WM", 7, gen7_3DSTATE_WM },
{ 0x7814, 0x00ff, 9, 9, "3DSTATE_WM", 6, gen6_3DSTATE_WM },
{ 0x7815, 0x00ff, 5, 5, "3DSTATE_CONSTANT_VS_STATE", 6 },
{ 0x7815, 0x00ff, 7, 7, "3DSTATE_CONSTANT_VS", 7, gen7_3DSTATE_CONSTANT_VS },
{ 0x7816, 0x00ff, 5, 5, "3DSTATE_CONSTANT_GS_STATE", 6 },
{ 0x7816, 0x00ff, 7, 7, "3DSTATE_CONSTANT_GS", 7, gen7_3DSTATE_CONSTANT_GS },
{ 0x7817, 0x00ff, 5, 5, "3DSTATE_CONSTANT_PS_STATE", 6 },
{ 0x7817, 0x00ff, 7, 7, "3DSTATE_CONSTANT_PS", 7, gen7_3DSTATE_CONSTANT_PS },
{ 0x7818, 0xffff, 2, 2, "3DSTATE_SAMPLE_MASK" },
{ 0x7819, 0x00ff, 7, 7, "3DSTATE_CONSTANT_HS", 7, gen7_3DSTATE_CONSTANT_HS },
{ 0x781a, 0x00ff, 7, 7, "3DSTATE_CONSTANT_DS", 7, gen7_3DSTATE_CONSTANT_DS },
{ 0x781b, 0x00ff, 7, 7, "3DSTATE_HS" },
{ 0x781c, 0x00ff, 4, 4, "3DSTATE_TE" },
{ 0x781d, 0x00ff, 6, 6, "3DSTATE_DS" },
{ 0x781e, 0x00ff, 3, 3, "3DSTATE_STREAMOUT" },
{ 0x781f, 0x00ff, 14, 14, "3DSTATE_SBE" },
{ 0x7820, 0x00ff, 8, 8, "3DSTATE_PS" },
{ 0x7821, 0x00ff, 2, 2, NULL, 7, gen7_3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP },
{ 0x7823, 0x00ff, 2, 2, NULL, 7, gen7_3DSTATE_VIEWPORT_STATE_POINTERS_CC },
{ 0x7824, 0x00ff, 2, 2, NULL, 7, gen7_3DSTATE_BLEND_STATE_POINTERS },
{ 0x7825, 0x00ff, 2, 2, NULL, 7, gen7_3DSTATE_DEPTH_STENCIL_STATE_POINTERS },
{ 0x7826, 0x00ff, 2, 2, "3DSTATE_BINDING_TABLE_POINTERS_VS" },
{ 0x7827, 0x00ff, 2, 2, "3DSTATE_BINDING_TABLE_POINTERS_HS" },
{ 0x7828, 0x00ff, 2, 2, "3DSTATE_BINDING_TABLE_POINTERS_DS" },
{ 0x7829, 0x00ff, 2, 2, "3DSTATE_BINDING_TABLE_POINTERS_GS" },
{ 0x782a, 0x00ff, 2, 2, "3DSTATE_BINDING_TABLE_POINTERS_PS" },
{ 0x782b, 0x00ff, 2, 2, "3DSTATE_SAMPLER_STATE_POINTERS_VS" },
{ 0x782c, 0x00ff, 2, 2, "3DSTATE_SAMPLER_STATE_POINTERS_HS" },
{ 0x782d, 0x00ff, 2, 2, "3DSTATE_SAMPLER_STATE_POINTERS_DS" },
{ 0x782e, 0x00ff, 2, 2, "3DSTATE_SAMPLER_STATE_POINTERS_GS" },
{ 0x782f, 0x00ff, 2, 2, "3DSTATE_SAMPLER_STATE_POINTERS_PS" },
{ 0x7830, 0x00ff, 2, 2, NULL, 7, gen7_3DSTATE_URB_VS },
{ 0x7831, 0x00ff, 2, 2, NULL, 7, gen7_3DSTATE_URB_HS },
{ 0x7832, 0x00ff, 2, 2, NULL, 7, gen7_3DSTATE_URB_DS },
{ 0x7833, 0x00ff, 2, 2, NULL, 7, gen7_3DSTATE_URB_GS },
{ 0x7900, 0xffff, 4, 4, "3DSTATE_DRAWING_RECTANGLE" },
{ 0x7901, 0xffff, 5, 5, "3DSTATE_CONSTANT_COLOR" },
{ 0x7905, 0xffff, 5, 7, "3DSTATE_DEPTH_BUFFER" },
{ 0x7906, 0xffff, 2, 2, "3DSTATE_POLY_STIPPLE_OFFSET" },
{ 0x7907, 0xffff, 33, 33, "3DSTATE_POLY_STIPPLE_PATTERN" },
{ 0x7908, 0xffff, 3, 3, "3DSTATE_LINE_STIPPLE" },
{ 0x7909, 0xffff, 2, 2, "3DSTATE_GLOBAL_DEPTH_OFFSET_CLAMP" },
{ 0x7909, 0xffff, 2, 2, "3DSTATE_CLEAR_PARAMS" },
{ 0x790a, 0xffff, 3, 3, "3DSTATE_AA_LINE_PARAMETERS" },
{ 0x790b, 0xffff, 4, 4, "3DSTATE_GS_SVB_INDEX" },
{ 0x790d, 0xffff, 3, 3, "3DSTATE_MULTISAMPLE", 6 },
{ 0x790d, 0xffff, 4, 4, "3DSTATE_MULTISAMPLE", 7 },
{ 0x7910, 0x00ff, 2, 2, "3DSTATE_CLEAR_PARAMS" },
{ 0x7912, 0x00ff, 2, 2, "3DSTATE_PUSH_CONSTANT_ALLOC_VS" },
{ 0x7913, 0x00ff, 2, 2, "3DSTATE_PUSH_CONSTANT_ALLOC_HS" },
{ 0x7914, 0x00ff, 2, 2, "3DSTATE_PUSH_CONSTANT_ALLOC_DS" },
{ 0x7915, 0x00ff, 2, 2, "3DSTATE_PUSH_CONSTANT_ALLOC_GS" },
{ 0x7916, 0x00ff, 2, 2, "3DSTATE_PUSH_CONSTANT_ALLOC_PS" },
{ 0x7917, 0x00ff, 2, 2+128*2, "3DSTATE_SO_DECL_LIST" },
{ 0x7918, 0x00ff, 4, 4, "3DSTATE_SO_BUFFER" },
{ 0x7a00, 0x00ff, 4, 6, "PIPE_CONTROL" },
{ 0x7b00, 0x00ff, 7, 7, NULL, 7, gen7_3DPRIMITIVE },
{ 0x7b00, 0x00ff, 6, 6, NULL, 0, gen4_3DPRIMITIVE },
}, *opcode_3d = NULL;
opcode = (data[0] & 0xffff0000) >> 16;
for (i = 0; i < ARRAY_SIZE(opcodes_3d); i++) {
if (opcode != opcodes_3d[i].opcode)
continue;
/* If it's marked as not our gen, skip. */
if (opcodes_3d[i].gen && opcodes_3d[i].gen != ctx->gen)
continue;
opcode_3d = &opcodes_3d[i];
break;
}
if (opcode_3d) {
if (opcode_3d->max_len == 1)
len = 1;
else
len = (data[0] & opcode_3d->len_mask) + 2;
if (len < opcode_3d->min_len ||
len > opcode_3d->max_len) {
fprintf(out, "Bad length %d in %s, expected %d-%d\n",
len, opcode_3d->name,
opcode_3d->min_len, opcode_3d->max_len);
}
} else {
len = (data[0] & 0x0000ffff) + 2;
}
switch (opcode) {
case 0x6000:
return i965_decode_urb_fence(ctx, len);
case 0x6001:
instr_out(ctx, 0, "CS_URB_STATE\n");
instr_out(ctx, 1,
"entry_size: %d [%d bytes], n_entries: %d\n",
(data[1] >> 4) & 0x1f,
(((data[1] >> 4) & 0x1f) + 1) * 64, data[1] & 0x7);
return len;
case 0x6002:
instr_out(ctx, 0, "CONSTANT_BUFFER: %s\n",
(data[0] >> 8) & 1 ? "valid" : "invalid");
instr_out(ctx, 1,
"offset: 0x%08x, length: %d bytes\n", data[1] & ~0x3f,
((data[1] & 0x3f) + 1) * 64);
return len;
case 0x6101:
i = 0;
instr_out(ctx, 0, "STATE_BASE_ADDRESS\n");
i++;
if (IS_GEN6(devid) || IS_GEN7(devid))
sba_len = 10;
else if (IS_GEN5(devid))
sba_len = 8;
else
sba_len = 6;
if (len != sba_len)
fprintf(out, "Bad count in STATE_BASE_ADDRESS\n");
state_base_out(ctx, i++, "general");
state_base_out(ctx, i++, "surface");
if (IS_GEN6(devid) || IS_GEN7(devid))
state_base_out(ctx, i++, "dynamic");
state_base_out(ctx, i++, "indirect");
if (IS_GEN5(devid) || IS_GEN6(devid) || IS_GEN7(devid))
state_base_out(ctx, i++, "instruction");
state_max_out(ctx, i++, "general");
if (IS_GEN6(devid) || IS_GEN7(devid))
state_max_out(ctx, i++, "dynamic");
state_max_out(ctx, i++, "indirect");
if (IS_GEN5(devid) || IS_GEN6(devid) || IS_GEN7(devid))
state_max_out(ctx, i++, "instruction");
return len;
case 0x7800:
instr_out(ctx, 0, "3DSTATE_PIPELINED_POINTERS\n");
instr_out(ctx, 1, "VS state\n");
instr_out(ctx, 2, "GS state\n");
instr_out(ctx, 3, "Clip state\n");
instr_out(ctx, 4, "SF state\n");
instr_out(ctx, 5, "WM state\n");
instr_out(ctx, 6, "CC state\n");
return len;
case 0x7801:
if (len != 6 && len != 4)
fprintf(out,
"Bad count in 3DSTATE_BINDING_TABLE_POINTERS\n");
if (len == 6) {
instr_out(ctx, 0,
"3DSTATE_BINDING_TABLE_POINTERS\n");
instr_out(ctx, 1, "VS binding table\n");
instr_out(ctx, 2, "GS binding table\n");
instr_out(ctx, 3, "Clip binding table\n");
instr_out(ctx, 4, "SF binding table\n");
instr_out(ctx, 5, "WM binding table\n");
} else {
instr_out(ctx, 0,
"3DSTATE_BINDING_TABLE_POINTERS: VS mod %d, "
"GS mod %d, PS mod %d\n",
(data[0] & (1 << 8)) != 0,
(data[0] & (1 << 9)) != 0,
(data[0] & (1 << 12)) != 0);
instr_out(ctx, 1, "VS binding table\n");
instr_out(ctx, 2, "GS binding table\n");
instr_out(ctx, 3, "WM binding table\n");
}
return len;
case 0x7802:
instr_out(ctx, 0,
"3DSTATE_SAMPLER_STATE_POINTERS: VS mod %d, "
"GS mod %d, PS mod %d\n", (data[0] & (1 << 8)) != 0,
(data[0] & (1 << 9)) != 0,
(data[0] & (1 << 12)) != 0);
instr_out(ctx, 1, "VS sampler state\n");
instr_out(ctx, 2, "GS sampler state\n");
instr_out(ctx, 3, "WM sampler state\n");
return len;
case 0x7805:
/* Actually 3DSTATE_DEPTH_BUFFER on gen7. */
if (ctx->gen == 7)
break;
instr_out(ctx, 0, "3DSTATE_URB\n");
instr_out(ctx, 1,
"VS entries %d, alloc size %d (1024bit row)\n",
data[1] & 0xffff, ((data[1] >> 16) & 0x07f) + 1);
instr_out(ctx, 2,
"GS entries %d, alloc size %d (1024bit row)\n",
(data[2] >> 8) & 0x3ff, (data[2] & 7) + 1);
return len;
case 0x7808:
if ((len - 1) % 4 != 0)
fprintf(out, "Bad count in 3DSTATE_VERTEX_BUFFERS\n");
instr_out(ctx, 0, "3DSTATE_VERTEX_BUFFERS\n");
for (i = 1; i < len;) {
int idx, access;
if (IS_GEN6(devid)) {
idx = 26;
access = 20;
} else {
idx = 27;
access = 26;
}
instr_out(ctx, i,
"buffer %d: %s, pitch %db\n", data[i] >> idx,
data[i] & (1 << access) ? "random" :
"sequential", data[i] & 0x07ff);
i++;
instr_out(ctx, i++, "buffer address\n");
instr_out(ctx, i++, "max index\n");
instr_out(ctx, i++, "mbz\n");
}
return len;
case 0x7809:
if ((len + 1) % 2 != 0)
fprintf(out, "Bad count in 3DSTATE_VERTEX_ELEMENTS\n");
instr_out(ctx, 0, "3DSTATE_VERTEX_ELEMENTS\n");
for (i = 1; i < len;) {
instr_out(ctx, i,
"buffer %d: %svalid, type 0x%04x, "
"src offset 0x%04x bytes\n",
data[i] >> ((IS_GEN6(devid) || IS_GEN7(devid)) ? 26 : 27),
data[i] & (1 << ((IS_GEN6(devid) || IS_GEN7(devid)) ? 25 : 26)) ?
"" : "in", (data[i] >> 16) & 0x1ff,
data[i] & 0x07ff);
i++;
instr_out(ctx, i, "(%s, %s, %s, %s), "
"dst offset 0x%02x bytes\n",
get_965_element_component(data[i], 0),
get_965_element_component(data[i], 1),
get_965_element_component(data[i], 2),
get_965_element_component(data[i], 3),
(data[i] & 0xff) * 4);
i++;
}
return len;
case 0x780d:
instr_out(ctx, 0,
"3DSTATE_VIEWPORT_STATE_POINTERS\n");
instr_out(ctx, 1, "clip\n");
instr_out(ctx, 2, "sf\n");
instr_out(ctx, 3, "cc\n");
return len;
case 0x780a:
instr_out(ctx, 0, "3DSTATE_INDEX_BUFFER\n");
instr_out(ctx, 1, "beginning buffer address\n");
instr_out(ctx, 2, "ending buffer address\n");
return len;
case 0x780f:
instr_out(ctx, 0, "3DSTATE_SCISSOR_POINTERS\n");
instr_out(ctx, 1, "scissor rect offset\n");
return len;
case 0x7810:
instr_out(ctx, 0, "3DSTATE_VS\n");
instr_out(ctx, 1, "kernel pointer\n");
instr_out(ctx, 2,
"SPF=%d, VME=%d, Sampler Count %d, "
"Binding table count %d\n", (data[2] >> 31) & 1,
(data[2] >> 30) & 1, (data[2] >> 27) & 7,
(data[2] >> 18) & 0xff);
instr_out(ctx, 3, "scratch offset\n");
instr_out(ctx, 4,
"Dispatch GRF start %d, VUE read length %d, "
"VUE read offset %d\n", (data[4] >> 20) & 0x1f,
(data[4] >> 11) & 0x3f, (data[4] >> 4) & 0x3f);
instr_out(ctx, 5,
"Max Threads %d, Vertex Cache %sable, "
"VS func %sable\n", ((data[5] >> 25) & 0x7f) + 1,
(data[5] & (1 << 1)) != 0 ? "dis" : "en",
(data[5] & 1) != 0 ? "en" : "dis");
return len;
case 0x7811:
instr_out(ctx, 0, "3DSTATE_GS\n");
instr_out(ctx, 1, "kernel pointer\n");
instr_out(ctx, 2,
"SPF=%d, VME=%d, Sampler Count %d, "
"Binding table count %d\n", (data[2] >> 31) & 1,
(data[2] >> 30) & 1, (data[2] >> 27) & 7,
(data[2] >> 18) & 0xff);
instr_out(ctx, 3, "scratch offset\n");
instr_out(ctx, 4,
"Dispatch GRF start %d, VUE read length %d, "
"VUE read offset %d\n", (data[4] & 0xf),
(data[4] >> 11) & 0x3f, (data[4] >> 4) & 0x3f);
instr_out(ctx, 5,
"Max Threads %d, Rendering %sable\n",
((data[5] >> 25) & 0x7f) + 1,
(data[5] & (1 << 8)) != 0 ? "en" : "dis");
instr_out(ctx, 6,
"Reorder %sable, Discard Adjaceny %sable, "
"GS %sable\n",
(data[6] & (1 << 30)) != 0 ? "en" : "dis",
(data[6] & (1 << 29)) != 0 ? "en" : "dis",
(data[6] & (1 << 15)) != 0 ? "en" : "dis");
return len;
case 0x7812:
instr_out(ctx, 0, "3DSTATE_CLIP\n");
instr_out(ctx, 1,
"UserClip distance cull test mask 0x%x\n",
data[1] & 0xff);
instr_out(ctx, 2,
"Clip %sable, API mode %s, Viewport XY test %sable, "
"Viewport Z test %sable, Guardband test %sable, Clip mode %d, "
"Perspective Divide %sable, Non-Perspective Barycentric %sable, "
"Tri Provoking %d, Line Provoking %d, Trifan Provoking %d\n",
(data[2] & (1 << 31)) != 0 ? "en" : "dis",
(data[2] & (1 << 30)) != 0 ? "D3D" : "OGL",
(data[2] & (1 << 28)) != 0 ? "en" : "dis",
(data[2] & (1 << 27)) != 0 ? "en" : "dis",
(data[2] & (1 << 26)) != 0 ? "en" : "dis",
(data[2] >> 13) & 7,
(data[2] & (1 << 9)) != 0 ? "dis" : "en",
(data[2] & (1 << 8)) != 0 ? "en" : "dis",
(data[2] >> 4) & 3, (data[2] >> 2) & 3,
(data[2] & 3));
instr_out(ctx, 3,
"Min PointWidth %d, Max PointWidth %d, "
"Force Zero RTAIndex %sable, Max VPIndex %d\n",
(data[3] >> 17) & 0x7ff, (data[3] >> 6) & 0x7ff,
(data[3] & (1 << 5)) != 0 ? "en" : "dis",
(data[3] & 0xf));
return len;
case 0x7813:
if (ctx->gen == 7)
break;
instr_out(ctx, 0, "3DSTATE_SF\n");
instr_out(ctx, 1,
"Attrib Out %d, Attrib Swizzle %sable, VUE read length %d, "
"VUE read offset %d\n", (data[1] >> 22) & 0x3f,
(data[1] & (1 << 21)) != 0 ? "en" : "dis",
(data[1] >> 11) & 0x1f, (data[1] >> 4) & 0x3f);
instr_out(ctx, 2,
"Legacy Global DepthBias %sable, FrontFace fill %d, BF fill %d, "
"VP transform %sable, FrontWinding_%s\n",
(data[2] & (1 << 11)) != 0 ? "en" : "dis",
(data[2] >> 5) & 3, (data[2] >> 3) & 3,
(data[2] & (1 << 1)) != 0 ? "en" : "dis",
(data[2] & 1) != 0 ? "CCW" : "CW");
instr_out(ctx, 3,
"AA %sable, CullMode %d, Scissor %sable, Multisample m ode %d\n",
(data[3] & (1 << 31)) != 0 ? "en" : "dis",
(data[3] >> 29) & 3,
(data[3] & (1 << 11)) != 0 ? "en" : "dis",
(data[3] >> 8) & 3);
instr_out(ctx, 4,
"Last Pixel %sable, SubPixel Precision %d, Use PixelWidth %d\n",
(data[4] & (1 << 31)) != 0 ? "en" : "dis",
(data[4] & (1 << 12)) != 0 ? 4 : 8,
(data[4] & (1 << 11)) != 0);
instr_out(ctx, 5,
"Global Depth Offset Constant %f\n",
*(float *)(&data[5]));
instr_out(ctx, 6, "Global Depth Offset Scale %f\n",
*(float *)(&data[6]));
instr_out(ctx, 7, "Global Depth Offset Clamp %f\n",
*(float *)(&data[7]));
for (i = 0, j = 0; i < 8; i++, j += 2)
instr_out(ctx, i + 8,
"Attrib %d (Override %s%s%s%s, Const Source %d, Swizzle Select %d, "
"Source %d); Attrib %d (Override %s%s%s%s, Const Source %d, Swizzle Select %d, Source %d)\n",
j + 1,
(data[8 + i] & (1 << 31)) != 0 ? "W" : "",
(data[8 + i] & (1 << 30)) != 0 ? "Z" : "",
(data[8 + i] & (1 << 29)) != 0 ? "Y" : "",
(data[8 + i] & (1 << 28)) != 0 ? "X" : "",
(data[8 + i] >> 25) & 3,
(data[8 + i] >> 22) & 3,
(data[8 + i] >> 16) & 0x1f, j,
(data[8 + i] & (1 << 15)) != 0 ? "W" : "",
(data[8 + i] & (1 << 14)) != 0 ? "Z" : "",
(data[8 + i] & (1 << 13)) != 0 ? "Y" : "",
(data[8 + i] & (1 << 12)) != 0 ? "X" : "",
(data[8 + i] >> 9) & 3,
(data[8 + i] >> 6) & 3, (data[8 + i] & 0x1f));
instr_out(ctx, 16,
"Point Sprite TexCoord Enable\n");
instr_out(ctx, 17, "Const Interp Enable\n");
instr_out(ctx, 18,
"Attrib 7-0 WrapShortest Enable\n");
instr_out(ctx, 19,
"Attrib 15-8 WrapShortest Enable\n");
return len;
case 0x7900:
instr_out(ctx, 0, "3DSTATE_DRAWING_RECTANGLE\n");
instr_out(ctx, 1, "top left: %d,%d\n",
data[1] & 0xffff, (data[1] >> 16) & 0xffff);
instr_out(ctx, 2, "bottom right: %d,%d\n",
data[2] & 0xffff, (data[2] >> 16) & 0xffff);
instr_out(ctx, 3, "origin: %d,%d\n",
(int)data[3] & 0xffff, ((int)data[3] >> 16) & 0xffff);
return len;
case 0x7905:
instr_out(ctx, 0, "3DSTATE_DEPTH_BUFFER\n");
if (IS_GEN5(devid) || IS_GEN6(devid))
instr_out(ctx, 1,
"%s, %s, pitch = %d bytes, %stiled, HiZ %d, Separate Stencil %d\n",
get_965_surfacetype(data[1] >> 29),
get_965_depthformat((data[1] >> 18) & 0x7),
(data[1] & 0x0001ffff) + 1,
data[1] & (1 << 27) ? "" : "not ",
(data[1] & (1 << 22)) != 0,
(data[1] & (1 << 21)) != 0);
else
instr_out(ctx, 1,
"%s, %s, pitch = %d bytes, %stiled\n",
get_965_surfacetype(data[1] >> 29),
get_965_depthformat((data[1] >> 18) & 0x7),
(data[1] & 0x0001ffff) + 1,
data[1] & (1 << 27) ? "" : "not ");
instr_out(ctx, 2, "depth offset\n");
instr_out(ctx, 3, "%dx%d\n",
((data[3] & 0x0007ffc0) >> 6) + 1,
((data[3] & 0xfff80000) >> 19) + 1);
instr_out(ctx, 4, "volume depth\n");
if (len >= 6)
instr_out(ctx, 5, "\n");
if (len >= 7) {
if (IS_GEN6(devid))
instr_out(ctx, 6, "\n");
else
instr_out(ctx, 6,
"render target view extent\n");
}
return len;
case 0x7a00:
if (IS_GEN6(devid) || IS_GEN7(devid)) {
if (len != 4 && len != 5)
fprintf(out, "Bad count in PIPE_CONTROL\n");
switch ((data[1] >> 14) & 0x3) {
case 0:
desc1 = "no write";
break;
case 1:
desc1 = "qword write";
break;
case 2:
desc1 = "PS_DEPTH_COUNT write";
break;
case 3:
desc1 = "TIMESTAMP write";
break;
}
instr_out(ctx, 0, "PIPE_CONTROL\n");
instr_out(ctx, 1,
"%s, %s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
desc1,
data[1] & (1 << 20) ? "cs stall, " : "",
data[1] & (1 << 19) ?
"global snapshot count reset, " : "",
data[1] & (1 << 18) ? "tlb invalidate, " : "",
data[1] & (1 << 17) ? "gfdt flush, " : "",
data[1] & (1 << 17) ? "media state clear, " :
"",
data[1] & (1 << 13) ? "depth stall, " : "",
data[1] & (1 << 12) ?
"render target cache flush, " : "",
data[1] & (1 << 11) ?
"instruction cache invalidate, " : "",
data[1] & (1 << 10) ?
"texture cache invalidate, " : "",
data[1] & (1 << 9) ?
"indirect state invalidate, " : "",
data[1] & (1 << 8) ? "notify irq, " : "",
data[1] & (1 << 7) ? "PIPE_CONTROL flush, " :
"",
data[1] & (1 << 6) ? "protect mem app_id, " :
"", data[1] & (1 << 5) ? "DC flush, " : "",
data[1] & (1 << 4) ? "vf fetch invalidate, " :
"",
data[1] & (1 << 3) ?
"constant cache invalidate, " : "",
data[1] & (1 << 2) ?
"state cache invalidate, " : "",
data[1] & (1 << 1) ? "stall at scoreboard, " :
"",
data[1] & (1 << 0) ? "depth cache flush, " :
"");
if (len == 5) {
instr_out(ctx, 2,
"destination address\n");
instr_out(ctx, 3,
"immediate dword low\n");
instr_out(ctx, 4,
"immediate dword high\n");
} else {
for (i = 2; i < len; i++) {
instr_out(ctx, i, "\n");
}
}
return len;
} else {
if (len != 4)
fprintf(out, "Bad count in PIPE_CONTROL\n");
switch ((data[0] >> 14) & 0x3) {
case 0:
desc1 = "no write";
break;
case 1:
desc1 = "qword write";
break;
case 2:
desc1 = "PS_DEPTH_COUNT write";
break;
case 3:
desc1 = "TIMESTAMP write";
break;
}
instr_out(ctx, 0,
"PIPE_CONTROL: %s, %sdepth stall, %sRC write flush, "
"%sinst flush\n",
desc1,
data[0] & (1 << 13) ? "" : "no ",
data[0] & (1 << 12) ? "" : "no ",
data[0] & (1 << 11) ? "" : "no ");
instr_out(ctx, 1, "destination address\n");
instr_out(ctx, 2, "immediate dword low\n");
instr_out(ctx, 3, "immediate dword high\n");
return len;
}
}
if (opcode_3d) {
if (opcode_3d->func) {
return opcode_3d->func(ctx);
} else {
instr_out(ctx, 0, "%s\n", opcode_3d->name);
for (i = 1; i < len; i++) {
instr_out(ctx, i, "dword %d\n", i);
}
return len;
}
}
instr_out(ctx, 0, "3D UNKNOWN: 3d_965 opcode = 0x%x\n",
opcode);
return 1;
}
static int
decode_3d_i830(struct drm_intel_decode *ctx)
{
unsigned int idx;
uint32_t opcode;
uint32_t *data = ctx->data;
struct {
uint32_t opcode;
unsigned int min_len;
unsigned int max_len;
const char *name;
} opcodes_3d[] = {
{ 0x02, 1, 1, "3DSTATE_MODES_3" },
{ 0x03, 1, 1, "3DSTATE_ENABLES_1" },
{ 0x04, 1, 1, "3DSTATE_ENABLES_2" },
{ 0x05, 1, 1, "3DSTATE_VFT0" },
{ 0x06, 1, 1, "3DSTATE_AA" },
{ 0x07, 1, 1, "3DSTATE_RASTERIZATION_RULES" },
{ 0x08, 1, 1, "3DSTATE_MODES_1" },
{ 0x09, 1, 1, "3DSTATE_STENCIL_TEST" },
{ 0x0a, 1, 1, "3DSTATE_VFT1" },
{ 0x0b, 1, 1, "3DSTATE_INDPT_ALPHA_BLEND" },
{ 0x0c, 1, 1, "3DSTATE_MODES_5" },
{ 0x0d, 1, 1, "3DSTATE_MAP_BLEND_OP" },
{ 0x0e, 1, 1, "3DSTATE_MAP_BLEND_ARG" },
{ 0x0f, 1, 1, "3DSTATE_MODES_2" },
{ 0x15, 1, 1, "3DSTATE_FOG_COLOR" },
{ 0x16, 1, 1, "3DSTATE_MODES_4"},
}, *opcode_3d;
opcode = (data[0] & 0x1f000000) >> 24;
switch (opcode) {
case 0x1f:
return decode_3d_primitive(ctx);
case 0x1d:
return decode_3d_1d(ctx);
case 0x1c:
return decode_3d_1c(ctx);
}
for (idx = 0; idx < ARRAY_SIZE(opcodes_3d); idx++) {
opcode_3d = &opcodes_3d[idx];
if ((data[0] & 0x1f000000) >> 24 == opcode_3d->opcode) {
unsigned int len = 1, i;
instr_out(ctx, 0, "%s\n", opcode_3d->name);
if (opcode_3d->max_len > 1) {
len = (data[0] & 0xff) + 2;
if (len < opcode_3d->min_len ||
len > opcode_3d->max_len) {
fprintf(out, "Bad count in %s\n",
opcode_3d->name);
}
}
for (i = 1; i < len; i++) {
instr_out(ctx, i, "dword %d\n", i);
}
return len;
}
}
instr_out(ctx, 0, "3D UNKNOWN: 3d_i830 opcode = 0x%x\n",
opcode);
return 1;
}
struct drm_intel_decode *
drm_intel_decode_context_alloc(uint32_t devid)
{
struct drm_intel_decode *ctx;
ctx = calloc(1, sizeof(struct drm_intel_decode));
if (!ctx)
return NULL;
ctx->devid = devid;
ctx->out = stdout;
if (IS_GEN10(devid))
ctx->gen = 10;
else if (IS_GEN9(devid))
ctx->gen = 9;
else if (IS_GEN8(devid))
ctx->gen = 8;
else if (IS_GEN7(devid))
ctx->gen = 7;
else if (IS_GEN6(devid))
ctx->gen = 6;
else if (IS_GEN5(devid))
ctx->gen = 5;
else if (IS_GEN4(devid))
ctx->gen = 4;
else if (IS_9XX(devid))
ctx->gen = 3;
else {
assert(IS_GEN2(devid));
ctx->gen = 2;
}
return ctx;
}
void
drm_intel_decode_context_free(struct drm_intel_decode *ctx)
{
free(ctx);
}
void
drm_intel_decode_set_dump_past_end(struct drm_intel_decode *ctx,
int dump_past_end)
{
ctx->dump_past_end = !!dump_past_end;
}
void
drm_intel_decode_set_batch_pointer(struct drm_intel_decode *ctx,
void *data, uint32_t hw_offset, int count)
{
ctx->base_data = data;
ctx->base_hw_offset = hw_offset;
ctx->base_count = count;
}
void
drm_intel_decode_set_head_tail(struct drm_intel_decode *ctx,
uint32_t head, uint32_t tail)
{
ctx->head = head;
ctx->tail = tail;
}
void
drm_intel_decode_set_output_file(struct drm_intel_decode *ctx,
FILE *output)
{
ctx->out = output;
}
/**
* Decodes an i830-i915 batch buffer, writing the output to stdout.
*
* \param data batch buffer contents
* \param count number of DWORDs to decode in the batch buffer
* \param hw_offset hardware address for the buffer
*/
void
drm_intel_decode(struct drm_intel_decode *ctx)
{
int ret;
unsigned int index = 0;
uint32_t devid;
int size;
void *temp;
if (!ctx)
return;
/* Put a scratch page full of obviously undefined data after
* the batchbuffer. This lets us avoid a bunch of length
* checking in statically sized packets.
*/
size = ctx->base_count * 4;
temp = malloc(size + 4096);
memcpy(temp, ctx->base_data, size);
memset((char *)temp + size, 0xd0, 4096);
ctx->data = temp;
ctx->hw_offset = ctx->base_hw_offset;
ctx->count = ctx->base_count;
devid = ctx->devid;
head_offset = ctx->head;
tail_offset = ctx->tail;
out = ctx->out;
saved_s2_set = 0;
saved_s4_set = 1;
while (ctx->count > 0) {
index = 0;
switch ((ctx->data[index] & 0xe0000000) >> 29) {
case 0x0:
ret = decode_mi(ctx);
/* If MI_BATCHBUFFER_END happened, then dump
* the rest of the output in case we some day
* want it in debugging, but don't decode it
* since it'll just confuse in the common
* case.
*/
if (ret == -1) {
if (ctx->dump_past_end) {
index++;
} else {
for (index = index + 1; index < ctx->count;
index++) {
instr_out(ctx, index, "\n");
}
}
} else
index += ret;
break;
case 0x2:
index += decode_2d(ctx);
break;
case 0x3:
if (IS_9XX(devid) && !IS_GEN3(devid)) {
index +=
decode_3d_965(ctx);
} else if (IS_GEN3(devid)) {
index += decode_3d(ctx);
} else {
index +=
decode_3d_i830(ctx);
}
break;
default:
instr_out(ctx, index, "UNKNOWN\n");
index++;
break;
}
fflush(out);
if (ctx->count < index)
break;
ctx->count -= index;
ctx->data += index;
ctx->hw_offset += 4 * index;
}
free(temp);
}