// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "ipc/ipc_channel_nacl.h"
#include <errno.h>
#include <stddef.h>
#include <stdint.h>
#include <sys/types.h>
#include <algorithm>
#include "base/bind.h"
#include "base/logging.h"
#include "base/macros.h"
#include "base/memory/ptr_util.h"
#include "base/message_loop/message_pump_for_io.h"
#include "base/single_thread_task_runner.h"
#include "base/synchronization/lock.h"
#include "base/task_runner_util.h"
#include "base/threading/simple_thread.h"
#include "base/threading/thread_task_runner_handle.h"
#include "ipc/ipc_listener.h"
#include "ipc/ipc_logging.h"
#include "ipc/ipc_message_attachment_set.h"
#include "ipc/ipc_platform_file_attachment_posix.h"
#include "native_client/src/public/imc_syscalls.h"
#include "native_client/src/public/imc_types.h"
namespace IPC {
struct MessageContents {
std::vector<char> data;
std::vector<int> fds;
};
namespace {
bool ReadDataOnReaderThread(int pipe, MessageContents* contents) {
DCHECK(pipe >= 0);
if (pipe < 0)
return false;
contents->data.resize(Channel::kReadBufferSize);
contents->fds.resize(NACL_ABI_IMC_DESC_MAX);
NaClAbiNaClImcMsgIoVec iov = { &contents->data[0], contents->data.size() };
NaClAbiNaClImcMsgHdr msg = {
&iov, 1, &contents->fds[0], contents->fds.size()
};
int bytes_read = imc_recvmsg(pipe, &msg, 0);
if (bytes_read <= 0) {
// NaClIPCAdapter::BlockingReceive returns -1 when the pipe closes (either
// due to error or for regular shutdown).
contents->data.clear();
contents->fds.clear();
return false;
}
DCHECK(bytes_read);
// Resize the buffers down to the number of bytes and fds we actually read.
contents->data.resize(bytes_read);
contents->fds.resize(msg.desc_length);
return true;
}
} // namespace
// static
constexpr size_t Channel::kMaximumMessageSize;
class ChannelNacl::ReaderThreadRunner
: public base::DelegateSimpleThread::Delegate {
public:
// |pipe|: A file descriptor from which we will read using imc_recvmsg.
// |data_read_callback|: A callback we invoke (on the main thread) when we
// have read data.
// |failure_callback|: A callback we invoke when we have a failure reading
// from |pipe|.
// |main_message_loop|: A proxy for the main thread, where we will invoke the
// above callbacks.
ReaderThreadRunner(
int pipe,
base::Callback<void(std::unique_ptr<MessageContents>)> data_read_callback,
base::Callback<void()> failure_callback,
scoped_refptr<base::SingleThreadTaskRunner> main_task_runner);
// DelegateSimpleThread implementation. Reads data from the pipe in a loop
// until either we are told to quit or a read fails.
void Run() override;
private:
int pipe_;
base::Callback<void(std::unique_ptr<MessageContents>)> data_read_callback_;
base::Callback<void ()> failure_callback_;
scoped_refptr<base::SingleThreadTaskRunner> main_task_runner_;
DISALLOW_COPY_AND_ASSIGN(ReaderThreadRunner);
};
ChannelNacl::ReaderThreadRunner::ReaderThreadRunner(
int pipe,
base::Callback<void(std::unique_ptr<MessageContents>)> data_read_callback,
base::Callback<void()> failure_callback,
scoped_refptr<base::SingleThreadTaskRunner> main_task_runner)
: pipe_(pipe),
data_read_callback_(data_read_callback),
failure_callback_(failure_callback),
main_task_runner_(main_task_runner) {}
void ChannelNacl::ReaderThreadRunner::Run() {
while (true) {
std::unique_ptr<MessageContents> msg_contents(new MessageContents);
bool success = ReadDataOnReaderThread(pipe_, msg_contents.get());
if (success) {
main_task_runner_->PostTask(
FROM_HERE,
base::Bind(data_read_callback_, base::Passed(&msg_contents)));
} else {
main_task_runner_->PostTask(FROM_HERE, failure_callback_);
// Because the read failed, we know we're going to quit. Don't bother
// trying to read again.
return;
}
}
}
ChannelNacl::ChannelNacl(const IPC::ChannelHandle& channel_handle,
Mode mode,
Listener* listener)
: ChannelReader(listener),
mode_(mode),
waiting_connect_(true),
pipe_(-1),
weak_ptr_factory_(this) {
if (!CreatePipe(channel_handle)) {
// The pipe may have been closed already.
const char *modestr = (mode_ & MODE_SERVER_FLAG) ? "server" : "client";
LOG(WARNING) << "Unable to create pipe in " << modestr << " mode";
}
}
ChannelNacl::~ChannelNacl() {
CleanUp();
Close();
}
bool ChannelNacl::Connect() {
WillConnect();
if (pipe_ == -1) {
DLOG(WARNING) << "Channel creation failed";
return false;
}
// Note that Connect is called on the "Channel" thread (i.e., the same thread
// where Channel::Send will be called, and the same thread that should receive
// messages). The constructor might be invoked on another thread (see
// ChannelProxy for an example of that). Therefore, we must wait until Connect
// is called to decide which SingleThreadTaskRunner to pass to
// ReaderThreadRunner.
reader_thread_runner_.reset(new ReaderThreadRunner(
pipe_,
base::Bind(&ChannelNacl::DidRecvMsg, weak_ptr_factory_.GetWeakPtr()),
base::Bind(&ChannelNacl::ReadDidFail, weak_ptr_factory_.GetWeakPtr()),
base::ThreadTaskRunnerHandle::Get()));
reader_thread_.reset(
new base::DelegateSimpleThread(reader_thread_runner_.get(),
"ipc_channel_nacl reader thread"));
reader_thread_->Start();
waiting_connect_ = false;
// If there were any messages queued before connection, send them.
ProcessOutgoingMessages();
base::ThreadTaskRunnerHandle::Get()->PostTask(
FROM_HERE, base::Bind(&ChannelNacl::CallOnChannelConnected,
weak_ptr_factory_.GetWeakPtr()));
return true;
}
void ChannelNacl::Close() {
// For now, we assume that at shutdown, the reader thread will be woken with
// a failure (see NaClIPCAdapter::BlockingRead and CloseChannel). Or... we
// might simply be killed with no chance to clean up anyway :-).
// If untrusted code tries to close the channel prior to shutdown, it's likely
// to hang.
// TODO(dmichael): Can we do anything smarter here to make sure the reader
// thread wakes up and quits?
reader_thread_->Join();
close(pipe_);
pipe_ = -1;
reader_thread_runner_.reset();
reader_thread_.reset();
read_queue_.clear();
output_queue_.clear();
}
bool ChannelNacl::Send(Message* message) {
DCHECK(!message->HasAttachments());
DVLOG(2) << "sending message @" << message << " on channel @" << this
<< " with type " << message->type();
std::unique_ptr<Message> message_ptr(message);
#if BUILDFLAG(IPC_MESSAGE_LOG_ENABLED)
Logging::GetInstance()->OnSendMessage(message_ptr.get());
#endif // BUILDFLAG(IPC_MESSAGE_LOG_ENABLED)
TRACE_EVENT_WITH_FLOW0(TRACE_DISABLED_BY_DEFAULT("ipc.flow"),
"ChannelNacl::Send",
message->header()->flags,
TRACE_EVENT_FLAG_FLOW_OUT);
output_queue_.push_back(std::move(message_ptr));
if (!waiting_connect_)
return ProcessOutgoingMessages();
return true;
}
void ChannelNacl::DidRecvMsg(std::unique_ptr<MessageContents> contents) {
// Close sets the pipe to -1. It's possible we'll get a buffer sent to us from
// the reader thread after Close is called. If so, we ignore it.
if (pipe_ == -1)
return;
auto data = std::make_unique<std::vector<char>>();
data->swap(contents->data);
read_queue_.push_back(std::move(data));
input_attachments_.reserve(contents->fds.size());
for (int fd : contents->fds) {
input_attachments_.push_back(
new internal::PlatformFileAttachment(base::ScopedFD(fd)));
}
contents->fds.clear();
// In POSIX, we would be told when there are bytes to read by implementing
// OnFileCanReadWithoutBlocking in MessagePumpForIO::FdWatcher. In NaCl, we
// instead know at this point because the reader thread posted some data to
// us.
ProcessIncomingMessages();
}
void ChannelNacl::ReadDidFail() {
Close();
}
bool ChannelNacl::CreatePipe(
const IPC::ChannelHandle& channel_handle) {
DCHECK(pipe_ == -1);
// There's one possible case in NaCl:
// 1) It's a channel wrapping a pipe that is given to us.
// We don't support these:
// 2) It's for a named channel.
// 3) It's for a client that we implement ourself.
// 4) It's the initial IPC channel.
if (channel_handle.socket.fd == -1) {
NOTIMPLEMENTED();
return false;
}
pipe_ = channel_handle.socket.fd;
return true;
}
bool ChannelNacl::ProcessOutgoingMessages() {
DCHECK(!waiting_connect_); // Why are we trying to send messages if there's
// no connection?
if (output_queue_.empty())
return true;
if (pipe_ == -1)
return false;
// Write out all the messages. The trusted implementation is guaranteed to not
// block. See NaClIPCAdapter::Send for the implementation of imc_sendmsg.
while (!output_queue_.empty()) {
std::unique_ptr<Message> msg = std::move(output_queue_.front());
output_queue_.pop_front();
const size_t num_fds = msg->attachment_set()->size();
DCHECK(num_fds <= MessageAttachmentSet::kMaxDescriptorsPerMessage);
std::vector<int> fds;
fds.reserve(num_fds);
for (size_t i = 0; i < num_fds; i++) {
scoped_refptr<MessageAttachment> attachment =
msg->attachment_set()->GetAttachmentAt(i);
DCHECK_EQ(MessageAttachment::Type::PLATFORM_FILE, attachment->GetType());
fds.push_back(static_cast<internal::PlatformFileAttachment&>(*attachment)
.TakePlatformFile());
}
NaClAbiNaClImcMsgIoVec iov = {
const_cast<void*>(msg->data()), msg->size()
};
NaClAbiNaClImcMsgHdr msgh = {&iov, 1, fds.data(), num_fds};
ssize_t bytes_written = imc_sendmsg(pipe_, &msgh, 0);
DCHECK(bytes_written); // The trusted side shouldn't return 0.
if (bytes_written < 0) {
// The trusted side should only ever give us an error of EPIPE. We
// should never be interrupted, nor should we get EAGAIN.
DCHECK(errno == EPIPE);
Close();
PLOG(ERROR) << "pipe_ error on "
<< pipe_
<< " Currently writing message of size: "
<< msg->size();
return false;
} else {
msg->attachment_set()->CommitAllDescriptors();
}
// Message sent OK!
DVLOG(2) << "sent message @" << msg.get() << " with type " << msg->type()
<< " on fd " << pipe_;
}
return true;
}
void ChannelNacl::CallOnChannelConnected() {
listener()->OnChannelConnected(-1);
}
ChannelNacl::ReadState ChannelNacl::ReadData(
char* buffer,
int buffer_len,
int* bytes_read) {
*bytes_read = 0;
if (pipe_ == -1)
return READ_FAILED;
if (read_queue_.empty())
return READ_PENDING;
while (!read_queue_.empty() && *bytes_read < buffer_len) {
std::vector<char>* vec = read_queue_.front().get();
size_t bytes_to_read = buffer_len - *bytes_read;
if (vec->size() <= bytes_to_read) {
// We can read and discard the entire vector.
std::copy(vec->begin(), vec->end(), buffer + *bytes_read);
*bytes_read += vec->size();
read_queue_.pop_front();
} else {
// Read all the bytes we can and discard them from the front of the
// vector. (This can be slowish, since erase has to move the back of the
// vector to the front, but it's hopefully a temporary hack and it keeps
// the code simple).
std::copy(vec->begin(), vec->begin() + bytes_to_read,
buffer + *bytes_read);
vec->erase(vec->begin(), vec->begin() + bytes_to_read);
*bytes_read += bytes_to_read;
}
}
return READ_SUCCEEDED;
}
bool ChannelNacl::ShouldDispatchInputMessage(Message* msg) {
return true;
}
bool ChannelNacl::GetAttachments(Message* msg) {
uint16_t header_fds = msg->header()->num_fds;
CHECK(header_fds == input_attachments_.size());
if (header_fds == 0)
return true; // Nothing to do.
for (auto& attachment : input_attachments_) {
msg->attachment_set()->AddAttachment(std::move(attachment));
}
input_attachments_.clear();
return true;
}
bool ChannelNacl::DidEmptyInputBuffers() {
// When the input data buffer is empty, the attachments should be too.
return input_attachments_.empty();
}
void ChannelNacl::HandleInternalMessage(const Message& msg) {
// The trusted side IPC::Channel should handle the "hello" handshake; we
// should not receive the "Hello" message.
NOTREACHED();
}
// Channel's methods
// static
std::unique_ptr<Channel> Channel::Create(
const IPC::ChannelHandle& channel_handle,
Mode mode,
Listener* listener) {
return std::make_unique<ChannelNacl>(channel_handle, mode, listener);
}
} // namespace IPC