// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "base/message_loop/message_pump_libevent.h"
#include <errno.h>
#include <unistd.h>
#include <utility>
#include "base/auto_reset.h"
#include "base/compiler_specific.h"
#include "base/files/file_util.h"
#include "base/logging.h"
#include "base/posix/eintr_wrapper.h"
#include "base/third_party/libevent/event.h"
#include "base/time/time.h"
#include "base/trace_event/trace_event.h"
#include "build/build_config.h"
#if defined(OS_MACOSX)
#include "base/mac/scoped_nsautorelease_pool.h"
#endif
// Lifecycle of struct event
// Libevent uses two main data structures:
// struct event_base (of which there is one per message pump), and
// struct event (of which there is roughly one per socket).
// The socket's struct event is created in
// MessagePumpLibevent::WatchFileDescriptor(),
// is owned by the FdWatchController, and is destroyed in
// StopWatchingFileDescriptor().
// It is moved into and out of lists in struct event_base by
// the libevent functions event_add() and event_del().
//
// TODO(dkegel):
// At the moment bad things happen if a FdWatchController
// is active after its MessagePumpLibevent has been destroyed.
// See MessageLoopTest.FdWatchControllerOutlivesMessageLoop
// Not clear yet whether that situation occurs in practice,
// but if it does, we need to fix it.
namespace base {
MessagePumpLibevent::FdWatchController::FdWatchController(
const Location& from_here)
: FdWatchControllerInterface(from_here) {}
MessagePumpLibevent::FdWatchController::~FdWatchController() {
if (event_) {
StopWatchingFileDescriptor();
}
if (was_destroyed_) {
DCHECK(!*was_destroyed_);
*was_destroyed_ = true;
}
}
bool MessagePumpLibevent::FdWatchController::StopWatchingFileDescriptor() {
std::unique_ptr<event> e = ReleaseEvent();
if (!e)
return true;
// event_del() is a no-op if the event isn't active.
int rv = event_del(e.get());
pump_ = nullptr;
watcher_ = nullptr;
return (rv == 0);
}
void MessagePumpLibevent::FdWatchController::Init(std::unique_ptr<event> e) {
DCHECK(e);
DCHECK(!event_);
event_ = std::move(e);
}
std::unique_ptr<event> MessagePumpLibevent::FdWatchController::ReleaseEvent() {
return std::move(event_);
}
void MessagePumpLibevent::FdWatchController::OnFileCanReadWithoutBlocking(
int fd,
MessagePumpLibevent* pump) {
// Since OnFileCanWriteWithoutBlocking() gets called first, it can stop
// watching the file descriptor.
if (!watcher_)
return;
watcher_->OnFileCanReadWithoutBlocking(fd);
}
void MessagePumpLibevent::FdWatchController::OnFileCanWriteWithoutBlocking(
int fd,
MessagePumpLibevent* pump) {
DCHECK(watcher_);
watcher_->OnFileCanWriteWithoutBlocking(fd);
}
MessagePumpLibevent::MessagePumpLibevent()
: keep_running_(true),
in_run_(false),
processed_io_events_(false),
event_base_(event_base_new()),
wakeup_pipe_in_(-1),
wakeup_pipe_out_(-1) {
if (!Init())
NOTREACHED();
}
MessagePumpLibevent::~MessagePumpLibevent() {
DCHECK(wakeup_event_);
DCHECK(event_base_);
event_del(wakeup_event_);
delete wakeup_event_;
if (wakeup_pipe_in_ >= 0) {
if (IGNORE_EINTR(close(wakeup_pipe_in_)) < 0)
DPLOG(ERROR) << "close";
}
if (wakeup_pipe_out_ >= 0) {
if (IGNORE_EINTR(close(wakeup_pipe_out_)) < 0)
DPLOG(ERROR) << "close";
}
event_base_free(event_base_);
}
bool MessagePumpLibevent::WatchFileDescriptor(int fd,
bool persistent,
int mode,
FdWatchController* controller,
FdWatcher* delegate) {
DCHECK_GE(fd, 0);
DCHECK(controller);
DCHECK(delegate);
DCHECK(mode == WATCH_READ || mode == WATCH_WRITE || mode == WATCH_READ_WRITE);
// WatchFileDescriptor should be called on the pump thread. It is not
// threadsafe, and your watcher may never be registered.
DCHECK(watch_file_descriptor_caller_checker_.CalledOnValidThread());
int event_mask = persistent ? EV_PERSIST : 0;
if (mode & WATCH_READ) {
event_mask |= EV_READ;
}
if (mode & WATCH_WRITE) {
event_mask |= EV_WRITE;
}
std::unique_ptr<event> evt(controller->ReleaseEvent());
if (!evt) {
// Ownership is transferred to the controller.
evt.reset(new event);
} else {
// Make sure we don't pick up any funky internal libevent masks.
int old_interest_mask = evt->ev_events & (EV_READ | EV_WRITE | EV_PERSIST);
// Combine old/new event masks.
event_mask |= old_interest_mask;
// Must disarm the event before we can reuse it.
event_del(evt.get());
// It's illegal to use this function to listen on 2 separate fds with the
// same |controller|.
if (EVENT_FD(evt.get()) != fd) {
NOTREACHED() << "FDs don't match" << EVENT_FD(evt.get()) << "!=" << fd;
return false;
}
}
// Set current interest mask and message pump for this event.
event_set(evt.get(), fd, event_mask, OnLibeventNotification, controller);
// Tell libevent which message pump this socket will belong to when we add it.
if (event_base_set(event_base_, evt.get())) {
DPLOG(ERROR) << "event_base_set(fd=" << EVENT_FD(evt.get()) << ")";
return false;
}
// Add this socket to the list of monitored sockets.
if (event_add(evt.get(), nullptr)) {
DPLOG(ERROR) << "event_add failed(fd=" << EVENT_FD(evt.get()) << ")";
return false;
}
controller->Init(std::move(evt));
controller->set_watcher(delegate);
controller->set_pump(this);
return true;
}
// Tell libevent to break out of inner loop.
static void timer_callback(int fd, short events, void* context) {
event_base_loopbreak((struct event_base*)context);
}
// Reentrant!
void MessagePumpLibevent::Run(Delegate* delegate) {
AutoReset<bool> auto_reset_keep_running(&keep_running_, true);
AutoReset<bool> auto_reset_in_run(&in_run_, true);
// event_base_loopexit() + EVLOOP_ONCE is leaky, see http://crbug.com/25641.
// Instead, make our own timer and reuse it on each call to event_base_loop().
std::unique_ptr<event> timer_event(new event);
for (;;) {
#if defined(OS_MACOSX)
mac::ScopedNSAutoreleasePool autorelease_pool;
#endif
bool did_work = delegate->DoWork();
if (!keep_running_)
break;
event_base_loop(event_base_, EVLOOP_NONBLOCK);
did_work |= processed_io_events_;
processed_io_events_ = false;
if (!keep_running_)
break;
did_work |= delegate->DoDelayedWork(&delayed_work_time_);
if (!keep_running_)
break;
if (did_work)
continue;
did_work = delegate->DoIdleWork();
if (!keep_running_)
break;
if (did_work)
continue;
// EVLOOP_ONCE tells libevent to only block once,
// but to service all pending events when it wakes up.
if (delayed_work_time_.is_null()) {
event_base_loop(event_base_, EVLOOP_ONCE);
} else {
TimeDelta delay = delayed_work_time_ - TimeTicks::Now();
if (delay > TimeDelta()) {
struct timeval poll_tv;
poll_tv.tv_sec = delay.InSeconds();
poll_tv.tv_usec = delay.InMicroseconds() % Time::kMicrosecondsPerSecond;
event_set(timer_event.get(), -1, 0, timer_callback, event_base_);
event_base_set(event_base_, timer_event.get());
event_add(timer_event.get(), &poll_tv);
event_base_loop(event_base_, EVLOOP_ONCE);
event_del(timer_event.get());
} else {
// It looks like delayed_work_time_ indicates a time in the past, so we
// need to call DoDelayedWork now.
delayed_work_time_ = TimeTicks();
}
}
if (!keep_running_)
break;
}
}
void MessagePumpLibevent::Quit() {
DCHECK(in_run_) << "Quit was called outside of Run!";
// Tell both libevent and Run that they should break out of their loops.
keep_running_ = false;
ScheduleWork();
}
void MessagePumpLibevent::ScheduleWork() {
// Tell libevent (in a threadsafe way) that it should break out of its loop.
char buf = 0;
int nwrite = HANDLE_EINTR(write(wakeup_pipe_in_, &buf, 1));
DCHECK(nwrite == 1 || errno == EAGAIN)
<< "[nwrite:" << nwrite << "] [errno:" << errno << "]";
}
void MessagePumpLibevent::ScheduleDelayedWork(
const TimeTicks& delayed_work_time) {
// We know that we can't be blocked on Wait right now since this method can
// only be called on the same thread as Run, so we only need to update our
// record of how long to sleep when we do sleep.
delayed_work_time_ = delayed_work_time;
}
bool MessagePumpLibevent::Init() {
int fds[2];
if (!CreateLocalNonBlockingPipe(fds)) {
DPLOG(ERROR) << "pipe creation failed";
return false;
}
wakeup_pipe_out_ = fds[0];
wakeup_pipe_in_ = fds[1];
wakeup_event_ = new event;
event_set(wakeup_event_, wakeup_pipe_out_, EV_READ | EV_PERSIST,
OnWakeup, this);
event_base_set(event_base_, wakeup_event_);
if (event_add(wakeup_event_, nullptr))
return false;
return true;
}
// static
void MessagePumpLibevent::OnLibeventNotification(int fd,
short flags,
void* context) {
FdWatchController* controller = static_cast<FdWatchController*>(context);
DCHECK(controller);
TRACE_EVENT2("toplevel", "MessagePumpLibevent::OnLibeventNotification",
"src_file", controller->created_from_location().file_name(),
"src_func", controller->created_from_location().function_name());
TRACE_HEAP_PROFILER_API_SCOPED_TASK_EXECUTION heap_profiler_scope(
controller->created_from_location().file_name());
MessagePumpLibevent* pump = controller->pump();
pump->processed_io_events_ = true;
if ((flags & (EV_READ | EV_WRITE)) == (EV_READ | EV_WRITE)) {
// Both callbacks will be called. It is necessary to check that |controller|
// is not destroyed.
bool controller_was_destroyed = false;
controller->was_destroyed_ = &controller_was_destroyed;
controller->OnFileCanWriteWithoutBlocking(fd, pump);
if (!controller_was_destroyed)
controller->OnFileCanReadWithoutBlocking(fd, pump);
if (!controller_was_destroyed)
controller->was_destroyed_ = nullptr;
} else if (flags & EV_WRITE) {
controller->OnFileCanWriteWithoutBlocking(fd, pump);
} else if (flags & EV_READ) {
controller->OnFileCanReadWithoutBlocking(fd, pump);
}
}
// Called if a byte is received on the wakeup pipe.
// static
void MessagePumpLibevent::OnWakeup(int socket, short flags, void* context) {
MessagePumpLibevent* that = static_cast<MessagePumpLibevent*>(context);
DCHECK(that->wakeup_pipe_out_ == socket);
// Remove and discard the wakeup byte.
char buf;
int nread = HANDLE_EINTR(read(socket, &buf, 1));
DCHECK_EQ(nread, 1);
that->processed_io_events_ = true;
// Tell libevent to break out of inner loop.
event_base_loopbreak(that->event_base_);
}
} // namespace base