// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "base/bind.h"
#include <memory>
#include <utility>
#include <vector>
#include "base/callback.h"
#include "base/macros.h"
#include "base/memory/ptr_util.h"
#include "base/memory/ref_counted.h"
#include "base/memory/weak_ptr.h"
#include "base/test/bind_test_util.h"
#include "base/test/gtest_util.h"
#include "build/build_config.h"
#include "testing/gmock/include/gmock/gmock.h"
#include "testing/gtest/include/gtest/gtest.h"
using ::testing::_;
using ::testing::Mock;
using ::testing::ByMove;
using ::testing::Return;
using ::testing::StrictMock;
namespace base {
namespace {
class IncompleteType;
class NoRef {
public:
NoRef() = default;
MOCK_METHOD0(VoidMethod0, void());
MOCK_CONST_METHOD0(VoidConstMethod0, void());
MOCK_METHOD0(IntMethod0, int());
MOCK_CONST_METHOD0(IntConstMethod0, int());
MOCK_METHOD1(VoidMethodWithIntArg, void(int));
MOCK_METHOD0(UniquePtrMethod0, std::unique_ptr<int>());
private:
// Particularly important in this test to ensure no copies are made.
DISALLOW_COPY_AND_ASSIGN(NoRef);
};
class HasRef : public NoRef {
public:
HasRef() = default;
MOCK_CONST_METHOD0(AddRef, void());
MOCK_CONST_METHOD0(Release, bool());
private:
// Particularly important in this test to ensure no copies are made.
DISALLOW_COPY_AND_ASSIGN(HasRef);
};
class HasRefPrivateDtor : public HasRef {
private:
~HasRefPrivateDtor() = default;
};
static const int kParentValue = 1;
static const int kChildValue = 2;
class Parent {
public:
virtual ~Parent() {}
void AddRef() const {}
void Release() const {}
virtual void VirtualSet() { value = kParentValue; }
void NonVirtualSet() { value = kParentValue; }
int value;
};
class Child : public Parent {
public:
~Child() override {}
void VirtualSet() override { value = kChildValue; }
void NonVirtualSet() { value = kChildValue; }
};
class NoRefParent {
public:
virtual ~NoRefParent() {}
virtual void VirtualSet() { value = kParentValue; }
void NonVirtualSet() { value = kParentValue; }
int value;
};
class NoRefChild : public NoRefParent {
public:
~NoRefChild() override {}
private:
void VirtualSet() override { value = kChildValue; }
void NonVirtualSet() { value = kChildValue; }
};
// Used for probing the number of copies and moves that occur if a type must be
// coerced during argument forwarding in the Run() methods.
struct DerivedCopyMoveCounter {
DerivedCopyMoveCounter(int* copies,
int* assigns,
int* move_constructs,
int* move_assigns)
: copies_(copies),
assigns_(assigns),
move_constructs_(move_constructs),
move_assigns_(move_assigns) {}
int* copies_;
int* assigns_;
int* move_constructs_;
int* move_assigns_;
};
// Used for probing the number of copies and moves in an argument.
class CopyMoveCounter {
public:
CopyMoveCounter(int* copies,
int* assigns,
int* move_constructs,
int* move_assigns)
: copies_(copies),
assigns_(assigns),
move_constructs_(move_constructs),
move_assigns_(move_assigns) {}
CopyMoveCounter(const CopyMoveCounter& other)
: copies_(other.copies_),
assigns_(other.assigns_),
move_constructs_(other.move_constructs_),
move_assigns_(other.move_assigns_) {
(*copies_)++;
}
CopyMoveCounter(CopyMoveCounter&& other)
: copies_(other.copies_),
assigns_(other.assigns_),
move_constructs_(other.move_constructs_),
move_assigns_(other.move_assigns_) {
(*move_constructs_)++;
}
// Probing for copies from coercion.
explicit CopyMoveCounter(const DerivedCopyMoveCounter& other)
: copies_(other.copies_),
assigns_(other.assigns_),
move_constructs_(other.move_constructs_),
move_assigns_(other.move_assigns_) {
(*copies_)++;
}
// Probing for moves from coercion.
explicit CopyMoveCounter(DerivedCopyMoveCounter&& other)
: copies_(other.copies_),
assigns_(other.assigns_),
move_constructs_(other.move_constructs_),
move_assigns_(other.move_assigns_) {
(*move_constructs_)++;
}
const CopyMoveCounter& operator=(const CopyMoveCounter& rhs) {
copies_ = rhs.copies_;
assigns_ = rhs.assigns_;
move_constructs_ = rhs.move_constructs_;
move_assigns_ = rhs.move_assigns_;
(*assigns_)++;
return *this;
}
const CopyMoveCounter& operator=(CopyMoveCounter&& rhs) {
copies_ = rhs.copies_;
assigns_ = rhs.assigns_;
move_constructs_ = rhs.move_constructs_;
move_assigns_ = rhs.move_assigns_;
(*move_assigns_)++;
return *this;
}
int copies() const {
return *copies_;
}
private:
int* copies_;
int* assigns_;
int* move_constructs_;
int* move_assigns_;
};
// Used for probing the number of copies in an argument. The instance is a
// copyable and non-movable type.
class CopyCounter {
public:
CopyCounter(int* copies, int* assigns)
: counter_(copies, assigns, nullptr, nullptr) {}
CopyCounter(const CopyCounter& other) = default;
CopyCounter& operator=(const CopyCounter& other) = default;
explicit CopyCounter(const DerivedCopyMoveCounter& other) : counter_(other) {}
int copies() const { return counter_.copies(); }
private:
CopyMoveCounter counter_;
};
// Used for probing the number of moves in an argument. The instance is a
// non-copyable and movable type.
class MoveCounter {
public:
MoveCounter(int* move_constructs, int* move_assigns)
: counter_(nullptr, nullptr, move_constructs, move_assigns) {}
MoveCounter(MoveCounter&& other) : counter_(std::move(other.counter_)) {}
MoveCounter& operator=(MoveCounter&& other) {
counter_ = std::move(other.counter_);
return *this;
}
explicit MoveCounter(DerivedCopyMoveCounter&& other)
: counter_(std::move(other)) {}
private:
CopyMoveCounter counter_;
};
class DeleteCounter {
public:
explicit DeleteCounter(int* deletes)
: deletes_(deletes) {
}
~DeleteCounter() {
(*deletes_)++;
}
void VoidMethod0() {}
private:
int* deletes_;
};
template <typename T>
T PassThru(T scoper) {
return scoper;
}
// Some test functions that we can Bind to.
template <typename T>
T PolymorphicIdentity(T t) {
return t;
}
template <typename... Ts>
struct VoidPolymorphic {
static void Run(Ts... t) {}
};
int Identity(int n) {
return n;
}
int ArrayGet(const int array[], int n) {
return array[n];
}
int Sum(int a, int b, int c, int d, int e, int f) {
return a + b + c + d + e + f;
}
const char* CStringIdentity(const char* s) {
return s;
}
int GetCopies(const CopyMoveCounter& counter) {
return counter.copies();
}
int UnwrapNoRefParent(NoRefParent p) {
return p.value;
}
int UnwrapNoRefParentPtr(NoRefParent* p) {
return p->value;
}
int UnwrapNoRefParentConstRef(const NoRefParent& p) {
return p.value;
}
void RefArgSet(int &n) {
n = 2;
}
void PtrArgSet(int *n) {
*n = 2;
}
int FunctionWithWeakFirstParam(WeakPtr<NoRef> o, int n) {
return n;
}
int FunctionWithScopedRefptrFirstParam(const scoped_refptr<HasRef>& o, int n) {
return n;
}
void TakesACallback(const Closure& callback) {
callback.Run();
}
int Noexcept() noexcept {
return 42;
}
class BindTest : public ::testing::Test {
public:
BindTest() {
const_has_ref_ptr_ = &has_ref_;
const_no_ref_ptr_ = &no_ref_;
static_func_mock_ptr = &static_func_mock_;
}
~BindTest() override = default;
static void VoidFunc0() {
static_func_mock_ptr->VoidMethod0();
}
static int IntFunc0() { return static_func_mock_ptr->IntMethod0(); }
int NoexceptMethod() noexcept { return 42; }
int ConstNoexceptMethod() const noexcept { return 42; }
protected:
StrictMock<NoRef> no_ref_;
StrictMock<HasRef> has_ref_;
const HasRef* const_has_ref_ptr_;
const NoRef* const_no_ref_ptr_;
StrictMock<NoRef> static_func_mock_;
// Used by the static functions to perform expectations.
static StrictMock<NoRef>* static_func_mock_ptr;
private:
DISALLOW_COPY_AND_ASSIGN(BindTest);
};
StrictMock<NoRef>* BindTest::static_func_mock_ptr;
StrictMock<NoRef>* g_func_mock_ptr;
void VoidFunc0() {
g_func_mock_ptr->VoidMethod0();
}
int IntFunc0() {
return g_func_mock_ptr->IntMethod0();
}
TEST_F(BindTest, BasicTest) {
Callback<int(int, int, int)> cb = Bind(&Sum, 32, 16, 8);
EXPECT_EQ(92, cb.Run(13, 12, 11));
Callback<int(int, int, int, int, int, int)> c1 = Bind(&Sum);
EXPECT_EQ(69, c1.Run(14, 13, 12, 11, 10, 9));
Callback<int(int, int, int)> c2 = Bind(c1, 32, 16, 8);
EXPECT_EQ(86, c2.Run(11, 10, 9));
Callback<int()> c3 = Bind(c2, 4, 2, 1);
EXPECT_EQ(63, c3.Run());
}
// Test that currying the rvalue result of another Bind() works correctly.
// - rvalue should be usable as argument to Bind().
// - multiple runs of resulting Callback remain valid.
TEST_F(BindTest, CurryingRvalueResultOfBind) {
int n = 0;
RepeatingClosure cb = BindRepeating(&TakesACallback,
BindRepeating(&PtrArgSet, &n));
// If we implement Bind() such that the return value has auto_ptr-like
// semantics, the second call here will fail because ownership of
// the internal BindState<> would have been transfered to a *temporary*
// constructon of a Callback object on the first call.
cb.Run();
EXPECT_EQ(2, n);
n = 0;
cb.Run();
EXPECT_EQ(2, n);
}
TEST_F(BindTest, RepeatingCallbackBasicTest) {
RepeatingCallback<int(int)> c0 = BindRepeating(&Sum, 1, 2, 4, 8, 16);
// RepeatingCallback can run via a lvalue-reference.
EXPECT_EQ(63, c0.Run(32));
// It is valid to call a RepeatingCallback more than once.
EXPECT_EQ(54, c0.Run(23));
// BindRepeating can handle a RepeatingCallback as the target functor.
RepeatingCallback<int()> c1 = BindRepeating(c0, 11);
// RepeatingCallback can run via a rvalue-reference.
EXPECT_EQ(42, std::move(c1).Run());
// BindRepeating can handle a rvalue-reference of RepeatingCallback.
EXPECT_EQ(32, BindRepeating(std::move(c0), 1).Run());
}
TEST_F(BindTest, OnceCallbackBasicTest) {
OnceCallback<int(int)> c0 = BindOnce(&Sum, 1, 2, 4, 8, 16);
// OnceCallback can run via a rvalue-reference.
EXPECT_EQ(63, std::move(c0).Run(32));
// After running via the rvalue-reference, the value of the OnceCallback
// is undefined. The implementation simply clears the instance after the
// invocation.
EXPECT_TRUE(c0.is_null());
c0 = BindOnce(&Sum, 2, 3, 5, 7, 11);
// BindOnce can handle a rvalue-reference of OnceCallback as the target
// functor.
OnceCallback<int()> c1 = BindOnce(std::move(c0), 13);
EXPECT_EQ(41, std::move(c1).Run());
RepeatingCallback<int(int)> c2 = BindRepeating(&Sum, 2, 3, 5, 7, 11);
EXPECT_EQ(41, BindOnce(c2, 13).Run());
}
// IgnoreResult adapter test.
// - Function with return value.
// - Method with return value.
// - Const Method with return.
// - Method with return value bound to WeakPtr<>.
// - Const Method with return bound to WeakPtr<>.
TEST_F(BindTest, IgnoreResultForRepeating) {
EXPECT_CALL(static_func_mock_, IntMethod0()).WillOnce(Return(1337));
EXPECT_CALL(has_ref_, AddRef()).Times(2);
EXPECT_CALL(has_ref_, Release()).Times(2);
EXPECT_CALL(has_ref_, IntMethod0()).WillOnce(Return(10));
EXPECT_CALL(has_ref_, IntConstMethod0()).WillOnce(Return(11));
EXPECT_CALL(no_ref_, IntMethod0()).WillOnce(Return(12));
EXPECT_CALL(no_ref_, IntConstMethod0()).WillOnce(Return(13));
RepeatingClosure normal_func_cb = BindRepeating(IgnoreResult(&IntFunc0));
normal_func_cb.Run();
RepeatingClosure non_void_method_cb =
BindRepeating(IgnoreResult(&HasRef::IntMethod0), &has_ref_);
non_void_method_cb.Run();
RepeatingClosure non_void_const_method_cb =
BindRepeating(IgnoreResult(&HasRef::IntConstMethod0), &has_ref_);
non_void_const_method_cb.Run();
WeakPtrFactory<NoRef> weak_factory(&no_ref_);
WeakPtrFactory<const NoRef> const_weak_factory(const_no_ref_ptr_);
RepeatingClosure non_void_weak_method_cb =
BindRepeating(IgnoreResult(&NoRef::IntMethod0),
weak_factory.GetWeakPtr());
non_void_weak_method_cb.Run();
RepeatingClosure non_void_weak_const_method_cb =
BindRepeating(IgnoreResult(&NoRef::IntConstMethod0),
weak_factory.GetWeakPtr());
non_void_weak_const_method_cb.Run();
weak_factory.InvalidateWeakPtrs();
non_void_weak_const_method_cb.Run();
non_void_weak_method_cb.Run();
}
TEST_F(BindTest, IgnoreResultForOnce) {
EXPECT_CALL(static_func_mock_, IntMethod0()).WillOnce(Return(1337));
EXPECT_CALL(has_ref_, AddRef()).Times(2);
EXPECT_CALL(has_ref_, Release()).Times(2);
EXPECT_CALL(has_ref_, IntMethod0()).WillOnce(Return(10));
EXPECT_CALL(has_ref_, IntConstMethod0()).WillOnce(Return(11));
OnceClosure normal_func_cb = BindOnce(IgnoreResult(&IntFunc0));
std::move(normal_func_cb).Run();
OnceClosure non_void_method_cb =
BindOnce(IgnoreResult(&HasRef::IntMethod0), &has_ref_);
std::move(non_void_method_cb).Run();
OnceClosure non_void_const_method_cb =
BindOnce(IgnoreResult(&HasRef::IntConstMethod0), &has_ref_);
std::move(non_void_const_method_cb).Run();
WeakPtrFactory<NoRef> weak_factory(&no_ref_);
WeakPtrFactory<const NoRef> const_weak_factory(const_no_ref_ptr_);
OnceClosure non_void_weak_method_cb =
BindOnce(IgnoreResult(&NoRef::IntMethod0),
weak_factory.GetWeakPtr());
OnceClosure non_void_weak_const_method_cb =
BindOnce(IgnoreResult(&NoRef::IntConstMethod0),
weak_factory.GetWeakPtr());
weak_factory.InvalidateWeakPtrs();
std::move(non_void_weak_const_method_cb).Run();
std::move(non_void_weak_method_cb).Run();
}
// Functions that take reference parameters.
// - Forced reference parameter type still stores a copy.
// - Forced const reference parameter type still stores a copy.
TEST_F(BindTest, ReferenceArgumentBindingForRepeating) {
int n = 1;
int& ref_n = n;
const int& const_ref_n = n;
RepeatingCallback<int()> ref_copies_cb = BindRepeating(&Identity, ref_n);
EXPECT_EQ(n, ref_copies_cb.Run());
n++;
EXPECT_EQ(n - 1, ref_copies_cb.Run());
RepeatingCallback<int()> const_ref_copies_cb =
BindRepeating(&Identity, const_ref_n);
EXPECT_EQ(n, const_ref_copies_cb.Run());
n++;
EXPECT_EQ(n - 1, const_ref_copies_cb.Run());
}
TEST_F(BindTest, ReferenceArgumentBindingForOnce) {
int n = 1;
int& ref_n = n;
const int& const_ref_n = n;
OnceCallback<int()> ref_copies_cb = BindOnce(&Identity, ref_n);
n++;
EXPECT_EQ(n - 1, std::move(ref_copies_cb).Run());
OnceCallback<int()> const_ref_copies_cb =
BindOnce(&Identity, const_ref_n);
n++;
EXPECT_EQ(n - 1, std::move(const_ref_copies_cb).Run());
}
// Check that we can pass in arrays and have them be stored as a pointer.
// - Array of values stores a pointer.
// - Array of const values stores a pointer.
TEST_F(BindTest, ArrayArgumentBindingForRepeating) {
int array[4] = {1, 1, 1, 1};
const int (*const_array_ptr)[4] = &array;
RepeatingCallback<int()> array_cb = BindRepeating(&ArrayGet, array, 1);
EXPECT_EQ(1, array_cb.Run());
RepeatingCallback<int()> const_array_cb =
BindRepeating(&ArrayGet, *const_array_ptr, 1);
EXPECT_EQ(1, const_array_cb.Run());
array[1] = 3;
EXPECT_EQ(3, array_cb.Run());
EXPECT_EQ(3, const_array_cb.Run());
}
TEST_F(BindTest, ArrayArgumentBindingForOnce) {
int array[4] = {1, 1, 1, 1};
const int (*const_array_ptr)[4] = &array;
OnceCallback<int()> array_cb = BindOnce(&ArrayGet, array, 1);
OnceCallback<int()> const_array_cb =
BindOnce(&ArrayGet, *const_array_ptr, 1);
array[1] = 3;
EXPECT_EQ(3, std::move(array_cb).Run());
EXPECT_EQ(3, std::move(const_array_cb).Run());
}
// WeakPtr() support.
// - Method bound to WeakPtr<> to non-const object.
// - Const method bound to WeakPtr<> to non-const object.
// - Const method bound to WeakPtr<> to const object.
// - Normal Function with WeakPtr<> as P1 can have return type and is
// not canceled.
TEST_F(BindTest, WeakPtrForRepeating) {
EXPECT_CALL(no_ref_, VoidMethod0());
EXPECT_CALL(no_ref_, VoidConstMethod0()).Times(2);
WeakPtrFactory<NoRef> weak_factory(&no_ref_);
WeakPtrFactory<const NoRef> const_weak_factory(const_no_ref_ptr_);
RepeatingClosure method_cb =
BindRepeating(&NoRef::VoidMethod0, weak_factory.GetWeakPtr());
method_cb.Run();
RepeatingClosure const_method_cb =
BindRepeating(&NoRef::VoidConstMethod0, const_weak_factory.GetWeakPtr());
const_method_cb.Run();
RepeatingClosure const_method_const_ptr_cb =
BindRepeating(&NoRef::VoidConstMethod0, const_weak_factory.GetWeakPtr());
const_method_const_ptr_cb.Run();
RepeatingCallback<int(int)> normal_func_cb =
BindRepeating(&FunctionWithWeakFirstParam, weak_factory.GetWeakPtr());
EXPECT_EQ(1, normal_func_cb.Run(1));
weak_factory.InvalidateWeakPtrs();
const_weak_factory.InvalidateWeakPtrs();
method_cb.Run();
const_method_cb.Run();
const_method_const_ptr_cb.Run();
// Still runs even after the pointers are invalidated.
EXPECT_EQ(2, normal_func_cb.Run(2));
}
TEST_F(BindTest, WeakPtrForOnce) {
WeakPtrFactory<NoRef> weak_factory(&no_ref_);
WeakPtrFactory<const NoRef> const_weak_factory(const_no_ref_ptr_);
OnceClosure method_cb =
BindOnce(&NoRef::VoidMethod0, weak_factory.GetWeakPtr());
OnceClosure const_method_cb =
BindOnce(&NoRef::VoidConstMethod0, const_weak_factory.GetWeakPtr());
OnceClosure const_method_const_ptr_cb =
BindOnce(&NoRef::VoidConstMethod0, const_weak_factory.GetWeakPtr());
Callback<int(int)> normal_func_cb =
Bind(&FunctionWithWeakFirstParam, weak_factory.GetWeakPtr());
weak_factory.InvalidateWeakPtrs();
const_weak_factory.InvalidateWeakPtrs();
std::move(method_cb).Run();
std::move(const_method_cb).Run();
std::move(const_method_const_ptr_cb).Run();
// Still runs even after the pointers are invalidated.
EXPECT_EQ(2, std::move(normal_func_cb).Run(2));
}
// ConstRef() wrapper support.
// - Binding w/o ConstRef takes a copy.
// - Binding a ConstRef takes a reference.
// - Binding ConstRef to a function ConstRef does not copy on invoke.
TEST_F(BindTest, ConstRefForRepeating) {
int n = 1;
RepeatingCallback<int()> copy_cb = BindRepeating(&Identity, n);
RepeatingCallback<int()> const_ref_cb = BindRepeating(&Identity, ConstRef(n));
EXPECT_EQ(n, copy_cb.Run());
EXPECT_EQ(n, const_ref_cb.Run());
n++;
EXPECT_EQ(n - 1, copy_cb.Run());
EXPECT_EQ(n, const_ref_cb.Run());
int copies = 0;
int assigns = 0;
int move_constructs = 0;
int move_assigns = 0;
CopyMoveCounter counter(&copies, &assigns, &move_constructs, &move_assigns);
RepeatingCallback<int()> all_const_ref_cb =
BindRepeating(&GetCopies, ConstRef(counter));
EXPECT_EQ(0, all_const_ref_cb.Run());
EXPECT_EQ(0, copies);
EXPECT_EQ(0, assigns);
EXPECT_EQ(0, move_constructs);
EXPECT_EQ(0, move_assigns);
}
TEST_F(BindTest, ConstRefForOnce) {
int n = 1;
OnceCallback<int()> copy_cb = BindOnce(&Identity, n);
OnceCallback<int()> const_ref_cb = BindOnce(&Identity, ConstRef(n));
n++;
EXPECT_EQ(n - 1, std::move(copy_cb).Run());
EXPECT_EQ(n, std::move(const_ref_cb).Run());
int copies = 0;
int assigns = 0;
int move_constructs = 0;
int move_assigns = 0;
CopyMoveCounter counter(&copies, &assigns, &move_constructs, &move_assigns);
OnceCallback<int()> all_const_ref_cb =
BindOnce(&GetCopies, ConstRef(counter));
EXPECT_EQ(0, std::move(all_const_ref_cb).Run());
EXPECT_EQ(0, copies);
EXPECT_EQ(0, assigns);
EXPECT_EQ(0, move_constructs);
EXPECT_EQ(0, move_assigns);
}
// Test Owned() support.
TEST_F(BindTest, OwnedForRepeating) {
int deletes = 0;
DeleteCounter* counter = new DeleteCounter(&deletes);
// If we don't capture, delete happens on Callback destruction/reset.
// return the same value.
RepeatingCallback<DeleteCounter*()> no_capture_cb =
BindRepeating(&PolymorphicIdentity<DeleteCounter*>, Owned(counter));
ASSERT_EQ(counter, no_capture_cb.Run());
ASSERT_EQ(counter, no_capture_cb.Run());
EXPECT_EQ(0, deletes);
no_capture_cb.Reset(); // This should trigger a delete.
EXPECT_EQ(1, deletes);
deletes = 0;
counter = new DeleteCounter(&deletes);
RepeatingClosure own_object_cb =
BindRepeating(&DeleteCounter::VoidMethod0, Owned(counter));
own_object_cb.Run();
EXPECT_EQ(0, deletes);
own_object_cb.Reset();
EXPECT_EQ(1, deletes);
}
TEST_F(BindTest, OwnedForOnce) {
int deletes = 0;
DeleteCounter* counter = new DeleteCounter(&deletes);
// If we don't capture, delete happens on Callback destruction/reset.
// return the same value.
OnceCallback<DeleteCounter*()> no_capture_cb =
BindOnce(&PolymorphicIdentity<DeleteCounter*>, Owned(counter));
EXPECT_EQ(0, deletes);
no_capture_cb.Reset(); // This should trigger a delete.
EXPECT_EQ(1, deletes);
deletes = 0;
counter = new DeleteCounter(&deletes);
OnceClosure own_object_cb =
BindOnce(&DeleteCounter::VoidMethod0, Owned(counter));
EXPECT_EQ(0, deletes);
own_object_cb.Reset();
EXPECT_EQ(1, deletes);
}
template <typename T>
class BindVariantsTest : public ::testing::Test {
};
struct RepeatingTestConfig {
template <typename Signature>
using CallbackType = RepeatingCallback<Signature>;
using ClosureType = RepeatingClosure;
template <typename F, typename... Args>
static CallbackType<MakeUnboundRunType<F, Args...>>
Bind(F&& f, Args&&... args) {
return BindRepeating(std::forward<F>(f), std::forward<Args>(args)...);
}
};
struct OnceTestConfig {
template <typename Signature>
using CallbackType = OnceCallback<Signature>;
using ClosureType = OnceClosure;
template <typename F, typename... Args>
static CallbackType<MakeUnboundRunType<F, Args...>>
Bind(F&& f, Args&&... args) {
return BindOnce(std::forward<F>(f), std::forward<Args>(args)...);
}
};
using BindVariantsTestConfig = ::testing::Types<
RepeatingTestConfig, OnceTestConfig>;
TYPED_TEST_CASE(BindVariantsTest, BindVariantsTestConfig);
template <typename TypeParam, typename Signature>
using CallbackType = typename TypeParam::template CallbackType<Signature>;
// Function type support.
// - Normal function.
// - Normal function bound with non-refcounted first argument.
// - Method bound to non-const object.
// - Method bound to scoped_refptr.
// - Const method bound to non-const object.
// - Const method bound to const object.
// - Derived classes can be used with pointers to non-virtual base functions.
// - Derived classes can be used with pointers to virtual base functions (and
// preserve virtual dispatch).
TYPED_TEST(BindVariantsTest, FunctionTypeSupport) {
using ClosureType = typename TypeParam::ClosureType;
StrictMock<HasRef> has_ref;
StrictMock<NoRef> no_ref;
StrictMock<NoRef> static_func_mock;
const HasRef* const_has_ref_ptr = &has_ref;
g_func_mock_ptr = &static_func_mock;
EXPECT_CALL(static_func_mock, VoidMethod0());
EXPECT_CALL(has_ref, AddRef()).Times(4);
EXPECT_CALL(has_ref, Release()).Times(4);
EXPECT_CALL(has_ref, VoidMethod0()).Times(2);
EXPECT_CALL(has_ref, VoidConstMethod0()).Times(2);
ClosureType normal_cb = TypeParam::Bind(&VoidFunc0);
CallbackType<TypeParam, NoRef*()> normal_non_refcounted_cb =
TypeParam::Bind(&PolymorphicIdentity<NoRef*>, &no_ref);
std::move(normal_cb).Run();
EXPECT_EQ(&no_ref, std::move(normal_non_refcounted_cb).Run());
ClosureType method_cb = TypeParam::Bind(&HasRef::VoidMethod0, &has_ref);
ClosureType method_refptr_cb =
TypeParam::Bind(&HasRef::VoidMethod0, WrapRefCounted(&has_ref));
ClosureType const_method_nonconst_obj_cb =
TypeParam::Bind(&HasRef::VoidConstMethod0, &has_ref);
ClosureType const_method_const_obj_cb =
TypeParam::Bind(&HasRef::VoidConstMethod0, const_has_ref_ptr);
std::move(method_cb).Run();
std::move(method_refptr_cb).Run();
std::move(const_method_nonconst_obj_cb).Run();
std::move(const_method_const_obj_cb).Run();
Child child;
child.value = 0;
ClosureType virtual_set_cb = TypeParam::Bind(&Parent::VirtualSet, &child);
std::move(virtual_set_cb).Run();
EXPECT_EQ(kChildValue, child.value);
child.value = 0;
ClosureType non_virtual_set_cb =
TypeParam::Bind(&Parent::NonVirtualSet, &child);
std::move(non_virtual_set_cb).Run();
EXPECT_EQ(kParentValue, child.value);
}
// Return value support.
// - Function with return value.
// - Method with return value.
// - Const method with return value.
// - Move-only return value.
TYPED_TEST(BindVariantsTest, ReturnValues) {
StrictMock<NoRef> static_func_mock;
StrictMock<HasRef> has_ref;
g_func_mock_ptr = &static_func_mock;
const HasRef* const_has_ref_ptr = &has_ref;
EXPECT_CALL(static_func_mock, IntMethod0()).WillOnce(Return(1337));
EXPECT_CALL(has_ref, AddRef()).Times(4);
EXPECT_CALL(has_ref, Release()).Times(4);
EXPECT_CALL(has_ref, IntMethod0()).WillOnce(Return(31337));
EXPECT_CALL(has_ref, IntConstMethod0())
.WillOnce(Return(41337))
.WillOnce(Return(51337));
EXPECT_CALL(has_ref, UniquePtrMethod0())
.WillOnce(Return(ByMove(std::make_unique<int>(42))));
CallbackType<TypeParam, int()> normal_cb = TypeParam::Bind(&IntFunc0);
CallbackType<TypeParam, int()> method_cb =
TypeParam::Bind(&HasRef::IntMethod0, &has_ref);
CallbackType<TypeParam, int()> const_method_nonconst_obj_cb =
TypeParam::Bind(&HasRef::IntConstMethod0, &has_ref);
CallbackType<TypeParam, int()> const_method_const_obj_cb =
TypeParam::Bind(&HasRef::IntConstMethod0, const_has_ref_ptr);
CallbackType<TypeParam, std::unique_ptr<int>()> move_only_rv_cb =
TypeParam::Bind(&HasRef::UniquePtrMethod0, &has_ref);
EXPECT_EQ(1337, std::move(normal_cb).Run());
EXPECT_EQ(31337, std::move(method_cb).Run());
EXPECT_EQ(41337, std::move(const_method_nonconst_obj_cb).Run());
EXPECT_EQ(51337, std::move(const_method_const_obj_cb).Run());
EXPECT_EQ(42, *std::move(move_only_rv_cb).Run());
}
// Argument binding tests.
// - Argument binding to primitive.
// - Argument binding to primitive pointer.
// - Argument binding to a literal integer.
// - Argument binding to a literal string.
// - Argument binding with template function.
// - Argument binding to an object.
// - Argument binding to pointer to incomplete type.
// - Argument gets type converted.
// - Pointer argument gets converted.
// - Const Reference forces conversion.
TYPED_TEST(BindVariantsTest, ArgumentBinding) {
int n = 2;
EXPECT_EQ(n, TypeParam::Bind(&Identity, n).Run());
EXPECT_EQ(&n, TypeParam::Bind(&PolymorphicIdentity<int*>, &n).Run());
EXPECT_EQ(3, TypeParam::Bind(&Identity, 3).Run());
EXPECT_STREQ("hi", TypeParam::Bind(&CStringIdentity, "hi").Run());
EXPECT_EQ(4, TypeParam::Bind(&PolymorphicIdentity<int>, 4).Run());
NoRefParent p;
p.value = 5;
EXPECT_EQ(5, TypeParam::Bind(&UnwrapNoRefParent, p).Run());
IncompleteType* incomplete_ptr = reinterpret_cast<IncompleteType*>(123);
EXPECT_EQ(incomplete_ptr,
TypeParam::Bind(&PolymorphicIdentity<IncompleteType*>,
incomplete_ptr).Run());
NoRefChild c;
c.value = 6;
EXPECT_EQ(6, TypeParam::Bind(&UnwrapNoRefParent, c).Run());
c.value = 7;
EXPECT_EQ(7, TypeParam::Bind(&UnwrapNoRefParentPtr, &c).Run());
c.value = 8;
EXPECT_EQ(8, TypeParam::Bind(&UnwrapNoRefParentConstRef, c).Run());
}
// Unbound argument type support tests.
// - Unbound value.
// - Unbound pointer.
// - Unbound reference.
// - Unbound const reference.
// - Unbound unsized array.
// - Unbound sized array.
// - Unbound array-of-arrays.
TYPED_TEST(BindVariantsTest, UnboundArgumentTypeSupport) {
CallbackType<TypeParam, void(int)> unbound_value_cb =
TypeParam::Bind(&VoidPolymorphic<int>::Run);
CallbackType<TypeParam, void(int*)> unbound_pointer_cb =
TypeParam::Bind(&VoidPolymorphic<int*>::Run);
CallbackType<TypeParam, void(int&)> unbound_ref_cb =
TypeParam::Bind(&VoidPolymorphic<int&>::Run);
CallbackType<TypeParam, void(const int&)> unbound_const_ref_cb =
TypeParam::Bind(&VoidPolymorphic<const int&>::Run);
CallbackType<TypeParam, void(int[])> unbound_unsized_array_cb =
TypeParam::Bind(&VoidPolymorphic<int[]>::Run);
CallbackType<TypeParam, void(int[2])> unbound_sized_array_cb =
TypeParam::Bind(&VoidPolymorphic<int[2]>::Run);
CallbackType<TypeParam, void(int[][2])> unbound_array_of_arrays_cb =
TypeParam::Bind(&VoidPolymorphic<int[][2]>::Run);
CallbackType<TypeParam, void(int&)> unbound_ref_with_bound_arg =
TypeParam::Bind(&VoidPolymorphic<int, int&>::Run, 1);
}
// Function with unbound reference parameter.
// - Original parameter is modified by callback.
TYPED_TEST(BindVariantsTest, UnboundReferenceSupport) {
int n = 0;
CallbackType<TypeParam, void(int&)> unbound_ref_cb =
TypeParam::Bind(&RefArgSet);
std::move(unbound_ref_cb).Run(n);
EXPECT_EQ(2, n);
}
// Unretained() wrapper support.
// - Method bound to Unretained() non-const object.
// - Const method bound to Unretained() non-const object.
// - Const method bound to Unretained() const object.
TYPED_TEST(BindVariantsTest, Unretained) {
StrictMock<NoRef> no_ref;
const NoRef* const_no_ref_ptr = &no_ref;
EXPECT_CALL(no_ref, VoidMethod0());
EXPECT_CALL(no_ref, VoidConstMethod0()).Times(2);
TypeParam::Bind(&NoRef::VoidMethod0, Unretained(&no_ref)).Run();
TypeParam::Bind(&NoRef::VoidConstMethod0, Unretained(&no_ref)).Run();
TypeParam::Bind(&NoRef::VoidConstMethod0, Unretained(const_no_ref_ptr)).Run();
}
TYPED_TEST(BindVariantsTest, ScopedRefptr) {
StrictMock<HasRef> has_ref;
EXPECT_CALL(has_ref, AddRef()).Times(1);
EXPECT_CALL(has_ref, Release()).Times(1);
const scoped_refptr<HasRef> refptr(&has_ref);
CallbackType<TypeParam, int()> scoped_refptr_const_ref_cb =
TypeParam::Bind(&FunctionWithScopedRefptrFirstParam,
base::ConstRef(refptr), 1);
EXPECT_EQ(1, std::move(scoped_refptr_const_ref_cb).Run());
}
TYPED_TEST(BindVariantsTest, UniquePtrReceiver) {
std::unique_ptr<StrictMock<NoRef>> no_ref(new StrictMock<NoRef>);
EXPECT_CALL(*no_ref, VoidMethod0()).Times(1);
TypeParam::Bind(&NoRef::VoidMethod0, std::move(no_ref)).Run();
}
// Tests for Passed() wrapper support:
// - Passed() can be constructed from a pointer to scoper.
// - Passed() can be constructed from a scoper rvalue.
// - Using Passed() gives Callback Ownership.
// - Ownership is transferred from Callback to callee on the first Run().
// - Callback supports unbound arguments.
template <typename T>
class BindMoveOnlyTypeTest : public ::testing::Test {
};
struct CustomDeleter {
void operator()(DeleteCounter* c) { delete c; }
};
using MoveOnlyTypesToTest =
::testing::Types<std::unique_ptr<DeleteCounter>,
std::unique_ptr<DeleteCounter, CustomDeleter>>;
TYPED_TEST_CASE(BindMoveOnlyTypeTest, MoveOnlyTypesToTest);
TYPED_TEST(BindMoveOnlyTypeTest, PassedToBoundCallback) {
int deletes = 0;
TypeParam ptr(new DeleteCounter(&deletes));
Callback<TypeParam()> callback = Bind(&PassThru<TypeParam>, Passed(&ptr));
EXPECT_FALSE(ptr.get());
EXPECT_EQ(0, deletes);
// If we never invoke the Callback, it retains ownership and deletes.
callback.Reset();
EXPECT_EQ(1, deletes);
}
TYPED_TEST(BindMoveOnlyTypeTest, PassedWithRvalue) {
int deletes = 0;
Callback<TypeParam()> callback = Bind(
&PassThru<TypeParam>, Passed(TypeParam(new DeleteCounter(&deletes))));
EXPECT_EQ(0, deletes);
// If we never invoke the Callback, it retains ownership and deletes.
callback.Reset();
EXPECT_EQ(1, deletes);
}
// Check that ownership can be transferred back out.
TYPED_TEST(BindMoveOnlyTypeTest, ReturnMoveOnlyType) {
int deletes = 0;
DeleteCounter* counter = new DeleteCounter(&deletes);
Callback<TypeParam()> callback =
Bind(&PassThru<TypeParam>, Passed(TypeParam(counter)));
TypeParam result = callback.Run();
ASSERT_EQ(counter, result.get());
EXPECT_EQ(0, deletes);
// Resetting does not delete since ownership was transferred.
callback.Reset();
EXPECT_EQ(0, deletes);
// Ensure that we actually did get ownership.
result.reset();
EXPECT_EQ(1, deletes);
}
TYPED_TEST(BindMoveOnlyTypeTest, UnboundForwarding) {
int deletes = 0;
TypeParam ptr(new DeleteCounter(&deletes));
// Test unbound argument forwarding.
Callback<TypeParam(TypeParam)> cb_unbound = Bind(&PassThru<TypeParam>);
cb_unbound.Run(std::move(ptr));
EXPECT_EQ(1, deletes);
}
void VerifyVector(const std::vector<std::unique_ptr<int>>& v) {
ASSERT_EQ(1u, v.size());
EXPECT_EQ(12345, *v[0]);
}
std::vector<std::unique_ptr<int>> AcceptAndReturnMoveOnlyVector(
std::vector<std::unique_ptr<int>> v) {
VerifyVector(v);
return v;
}
// Test that a vector containing move-only types can be used with Callback.
TEST_F(BindTest, BindMoveOnlyVector) {
using MoveOnlyVector = std::vector<std::unique_ptr<int>>;
MoveOnlyVector v;
v.push_back(WrapUnique(new int(12345)));
// Early binding should work:
base::Callback<MoveOnlyVector()> bound_cb =
base::Bind(&AcceptAndReturnMoveOnlyVector, Passed(&v));
MoveOnlyVector intermediate_result = bound_cb.Run();
VerifyVector(intermediate_result);
// As should passing it as an argument to Run():
base::Callback<MoveOnlyVector(MoveOnlyVector)> unbound_cb =
base::Bind(&AcceptAndReturnMoveOnlyVector);
MoveOnlyVector final_result = unbound_cb.Run(std::move(intermediate_result));
VerifyVector(final_result);
}
// Argument copy-constructor usage for non-reference copy-only parameters.
// - Bound arguments are only copied once.
// - Forwarded arguments are only copied once.
// - Forwarded arguments with coercions are only copied twice (once for the
// coercion, and one for the final dispatch).
TEST_F(BindTest, ArgumentCopies) {
int copies = 0;
int assigns = 0;
CopyCounter counter(&copies, &assigns);
Bind(&VoidPolymorphic<CopyCounter>::Run, counter);
EXPECT_EQ(1, copies);
EXPECT_EQ(0, assigns);
copies = 0;
assigns = 0;
Bind(&VoidPolymorphic<CopyCounter>::Run, CopyCounter(&copies, &assigns));
EXPECT_EQ(1, copies);
EXPECT_EQ(0, assigns);
copies = 0;
assigns = 0;
Bind(&VoidPolymorphic<CopyCounter>::Run).Run(counter);
EXPECT_EQ(2, copies);
EXPECT_EQ(0, assigns);
copies = 0;
assigns = 0;
Bind(&VoidPolymorphic<CopyCounter>::Run).Run(CopyCounter(&copies, &assigns));
EXPECT_EQ(1, copies);
EXPECT_EQ(0, assigns);
copies = 0;
assigns = 0;
DerivedCopyMoveCounter derived(&copies, &assigns, nullptr, nullptr);
Bind(&VoidPolymorphic<CopyCounter>::Run).Run(CopyCounter(derived));
EXPECT_EQ(2, copies);
EXPECT_EQ(0, assigns);
copies = 0;
assigns = 0;
Bind(&VoidPolymorphic<CopyCounter>::Run)
.Run(CopyCounter(
DerivedCopyMoveCounter(&copies, &assigns, nullptr, nullptr)));
EXPECT_EQ(2, copies);
EXPECT_EQ(0, assigns);
}
// Argument move-constructor usage for move-only parameters.
// - Bound arguments passed by move are not copied.
TEST_F(BindTest, ArgumentMoves) {
int move_constructs = 0;
int move_assigns = 0;
Bind(&VoidPolymorphic<const MoveCounter&>::Run,
MoveCounter(&move_constructs, &move_assigns));
EXPECT_EQ(1, move_constructs);
EXPECT_EQ(0, move_assigns);
// TODO(tzik): Support binding move-only type into a non-reference parameter
// of a variant of Callback.
move_constructs = 0;
move_assigns = 0;
Bind(&VoidPolymorphic<MoveCounter>::Run)
.Run(MoveCounter(&move_constructs, &move_assigns));
EXPECT_EQ(1, move_constructs);
EXPECT_EQ(0, move_assigns);
move_constructs = 0;
move_assigns = 0;
Bind(&VoidPolymorphic<MoveCounter>::Run)
.Run(MoveCounter(DerivedCopyMoveCounter(
nullptr, nullptr, &move_constructs, &move_assigns)));
EXPECT_EQ(2, move_constructs);
EXPECT_EQ(0, move_assigns);
}
// Argument constructor usage for non-reference movable-copyable
// parameters.
// - Bound arguments passed by move are not copied.
// - Forwarded arguments are only copied once.
// - Forwarded arguments with coercions are only copied once and moved once.
TEST_F(BindTest, ArgumentCopiesAndMoves) {
int copies = 0;
int assigns = 0;
int move_constructs = 0;
int move_assigns = 0;
CopyMoveCounter counter(&copies, &assigns, &move_constructs, &move_assigns);
Bind(&VoidPolymorphic<CopyMoveCounter>::Run, counter);
EXPECT_EQ(1, copies);
EXPECT_EQ(0, assigns);
EXPECT_EQ(0, move_constructs);
EXPECT_EQ(0, move_assigns);
copies = 0;
assigns = 0;
move_constructs = 0;
move_assigns = 0;
Bind(&VoidPolymorphic<CopyMoveCounter>::Run,
CopyMoveCounter(&copies, &assigns, &move_constructs, &move_assigns));
EXPECT_EQ(0, copies);
EXPECT_EQ(0, assigns);
EXPECT_EQ(1, move_constructs);
EXPECT_EQ(0, move_assigns);
copies = 0;
assigns = 0;
move_constructs = 0;
move_assigns = 0;
Bind(&VoidPolymorphic<CopyMoveCounter>::Run).Run(counter);
EXPECT_EQ(1, copies);
EXPECT_EQ(0, assigns);
EXPECT_EQ(1, move_constructs);
EXPECT_EQ(0, move_assigns);
copies = 0;
assigns = 0;
move_constructs = 0;
move_assigns = 0;
Bind(&VoidPolymorphic<CopyMoveCounter>::Run)
.Run(CopyMoveCounter(&copies, &assigns, &move_constructs, &move_assigns));
EXPECT_EQ(0, copies);
EXPECT_EQ(0, assigns);
EXPECT_EQ(1, move_constructs);
EXPECT_EQ(0, move_assigns);
DerivedCopyMoveCounter derived_counter(&copies, &assigns, &move_constructs,
&move_assigns);
copies = 0;
assigns = 0;
move_constructs = 0;
move_assigns = 0;
Bind(&VoidPolymorphic<CopyMoveCounter>::Run)
.Run(CopyMoveCounter(derived_counter));
EXPECT_EQ(1, copies);
EXPECT_EQ(0, assigns);
EXPECT_EQ(1, move_constructs);
EXPECT_EQ(0, move_assigns);
copies = 0;
assigns = 0;
move_constructs = 0;
move_assigns = 0;
Bind(&VoidPolymorphic<CopyMoveCounter>::Run)
.Run(CopyMoveCounter(DerivedCopyMoveCounter(
&copies, &assigns, &move_constructs, &move_assigns)));
EXPECT_EQ(0, copies);
EXPECT_EQ(0, assigns);
EXPECT_EQ(2, move_constructs);
EXPECT_EQ(0, move_assigns);
}
TEST_F(BindTest, CapturelessLambda) {
EXPECT_FALSE(internal::IsCallableObject<void>::value);
EXPECT_FALSE(internal::IsCallableObject<int>::value);
EXPECT_FALSE(internal::IsCallableObject<void (*)()>::value);
EXPECT_FALSE(internal::IsCallableObject<void (NoRef::*)()>::value);
auto f = []() {};
EXPECT_TRUE(internal::IsCallableObject<decltype(f)>::value);
int i = 0;
auto g = [i]() { (void)i; };
EXPECT_TRUE(internal::IsCallableObject<decltype(g)>::value);
auto h = [](int, double) { return 'k'; };
EXPECT_TRUE((std::is_same<
char(int, double),
internal::ExtractCallableRunType<decltype(h)>>::value));
EXPECT_EQ(42, Bind([] { return 42; }).Run());
EXPECT_EQ(42, Bind([](int i) { return i * 7; }, 6).Run());
int x = 1;
base::Callback<void(int)> cb =
Bind([](int* x, int i) { *x *= i; }, Unretained(&x));
cb.Run(6);
EXPECT_EQ(6, x);
cb.Run(7);
EXPECT_EQ(42, x);
}
TEST_F(BindTest, EmptyFunctor) {
struct NonEmptyFunctor {
int operator()() const { return x; }
int x = 42;
};
struct EmptyFunctor {
int operator()() { return 42; }
};
struct EmptyFunctorConst {
int operator()() const { return 42; }
};
EXPECT_TRUE(internal::IsCallableObject<NonEmptyFunctor>::value);
EXPECT_TRUE(internal::IsCallableObject<EmptyFunctor>::value);
EXPECT_TRUE(internal::IsCallableObject<EmptyFunctorConst>::value);
EXPECT_EQ(42, BindOnce(EmptyFunctor()).Run());
EXPECT_EQ(42, BindOnce(EmptyFunctorConst()).Run());
EXPECT_EQ(42, BindRepeating(EmptyFunctorConst()).Run());
}
TEST_F(BindTest, CapturingLambdaForTesting) {
int x = 6;
EXPECT_EQ(42, BindLambdaForTesting([=](int y) { return x * y; }).Run(7));
auto f = [x](std::unique_ptr<int> y) { return x * *y; };
EXPECT_EQ(42, BindLambdaForTesting(f).Run(std::make_unique<int>(7)));
}
TEST_F(BindTest, Cancellation) {
EXPECT_CALL(no_ref_, VoidMethodWithIntArg(_)).Times(2);
WeakPtrFactory<NoRef> weak_factory(&no_ref_);
RepeatingCallback<void(int)> cb =
BindRepeating(&NoRef::VoidMethodWithIntArg, weak_factory.GetWeakPtr());
RepeatingClosure cb2 = BindRepeating(cb, 8);
OnceClosure cb3 = BindOnce(cb, 8);
OnceCallback<void(int)> cb4 =
BindOnce(&NoRef::VoidMethodWithIntArg, weak_factory.GetWeakPtr());
EXPECT_FALSE(cb4.IsCancelled());
OnceClosure cb5 = BindOnce(std::move(cb4), 8);
EXPECT_FALSE(cb.IsCancelled());
EXPECT_FALSE(cb2.IsCancelled());
EXPECT_FALSE(cb3.IsCancelled());
EXPECT_FALSE(cb5.IsCancelled());
cb.Run(6);
cb2.Run();
weak_factory.InvalidateWeakPtrs();
EXPECT_TRUE(cb.IsCancelled());
EXPECT_TRUE(cb2.IsCancelled());
EXPECT_TRUE(cb3.IsCancelled());
EXPECT_TRUE(cb5.IsCancelled());
cb.Run(6);
cb2.Run();
std::move(cb3).Run();
std::move(cb5).Run();
}
TEST_F(BindTest, OnceCallback) {
// Check if Callback variants have declarations of conversions as expected.
// Copy constructor and assignment of RepeatingCallback.
static_assert(std::is_constructible<
RepeatingClosure, const RepeatingClosure&>::value,
"RepeatingClosure should be copyable.");
static_assert(
std::is_assignable<RepeatingClosure, const RepeatingClosure&>::value,
"RepeatingClosure should be copy-assignable.");
// Move constructor and assignment of RepeatingCallback.
static_assert(std::is_constructible<
RepeatingClosure, RepeatingClosure&&>::value,
"RepeatingClosure should be movable.");
static_assert(std::is_assignable<RepeatingClosure, RepeatingClosure&&>::value,
"RepeatingClosure should be move-assignable");
// Conversions from OnceCallback to RepeatingCallback.
static_assert(!std::is_constructible<
RepeatingClosure, const OnceClosure&>::value,
"OnceClosure should not be convertible to RepeatingClosure.");
static_assert(
!std::is_assignable<RepeatingClosure, const OnceClosure&>::value,
"OnceClosure should not be convertible to RepeatingClosure.");
// Destructive conversions from OnceCallback to RepeatingCallback.
static_assert(!std::is_constructible<
RepeatingClosure, OnceClosure&&>::value,
"OnceClosure should not be convertible to RepeatingClosure.");
static_assert(!std::is_assignable<RepeatingClosure, OnceClosure&&>::value,
"OnceClosure should not be convertible to RepeatingClosure.");
// Copy constructor and assignment of OnceCallback.
static_assert(!std::is_constructible<
OnceClosure, const OnceClosure&>::value,
"OnceClosure should not be copyable.");
static_assert(!std::is_assignable<OnceClosure, const OnceClosure&>::value,
"OnceClosure should not be copy-assignable");
// Move constructor and assignment of OnceCallback.
static_assert(std::is_constructible<
OnceClosure, OnceClosure&&>::value,
"OnceClosure should be movable.");
static_assert(std::is_assignable<OnceClosure, OnceClosure&&>::value,
"OnceClosure should be move-assignable.");
// Conversions from RepeatingCallback to OnceCallback.
static_assert(std::is_constructible<
OnceClosure, const RepeatingClosure&>::value,
"RepeatingClosure should be convertible to OnceClosure.");
static_assert(std::is_assignable<OnceClosure, const RepeatingClosure&>::value,
"RepeatingClosure should be convertible to OnceClosure.");
// Destructive conversions from RepeatingCallback to OnceCallback.
static_assert(std::is_constructible<
OnceClosure, RepeatingClosure&&>::value,
"RepeatingClosure should be convertible to OnceClosure.");
static_assert(std::is_assignable<OnceClosure, RepeatingClosure&&>::value,
"RepeatingClosure should be covretible to OnceClosure.");
OnceClosure cb = BindOnce(&VoidPolymorphic<>::Run);
std::move(cb).Run();
// RepeatingCallback should be convertible to OnceCallback.
OnceClosure cb2 = BindRepeating(&VoidPolymorphic<>::Run);
std::move(cb2).Run();
RepeatingClosure cb3 = BindRepeating(&VoidPolymorphic<>::Run);
cb = cb3;
std::move(cb).Run();
cb = std::move(cb2);
OnceCallback<void(int)> cb4 =
BindOnce(&VoidPolymorphic<std::unique_ptr<int>, int>::Run,
std::make_unique<int>(0));
BindOnce(std::move(cb4), 1).Run();
}
// Callback construction and assignment tests.
// - Construction from an InvokerStorageHolder should not cause ref/deref.
// - Assignment from other callback should only cause one ref
//
// TODO(ajwong): Is there actually a way to test this?
#if defined(OS_WIN)
int __fastcall FastCallFunc(int n) {
return n;
}
int __stdcall StdCallFunc(int n) {
return n;
}
// Windows specific calling convention support.
// - Can bind a __fastcall function.
// - Can bind a __stdcall function.
TEST_F(BindTest, WindowsCallingConventions) {
Callback<int()> fastcall_cb = Bind(&FastCallFunc, 1);
EXPECT_EQ(1, fastcall_cb.Run());
Callback<int()> stdcall_cb = Bind(&StdCallFunc, 2);
EXPECT_EQ(2, stdcall_cb.Run());
}
#endif
// Test unwrapping the various wrapping functions.
TEST_F(BindTest, UnwrapUnretained) {
int i = 0;
auto unretained = Unretained(&i);
EXPECT_EQ(&i, internal::Unwrap(unretained));
EXPECT_EQ(&i, internal::Unwrap(std::move(unretained)));
}
TEST_F(BindTest, UnwrapConstRef) {
int p = 0;
auto const_ref = ConstRef(p);
EXPECT_EQ(&p, &internal::Unwrap(const_ref));
EXPECT_EQ(&p, &internal::Unwrap(std::move(const_ref)));
}
TEST_F(BindTest, UnwrapRetainedRef) {
auto p = MakeRefCounted<RefCountedData<int>>();
auto retained_ref = RetainedRef(p);
EXPECT_EQ(p.get(), internal::Unwrap(retained_ref));
EXPECT_EQ(p.get(), internal::Unwrap(std::move(retained_ref)));
}
TEST_F(BindTest, UnwrapOwned) {
int* p = new int;
auto owned = Owned(p);
EXPECT_EQ(p, internal::Unwrap(owned));
EXPECT_EQ(p, internal::Unwrap(std::move(owned)));
}
TEST_F(BindTest, UnwrapPassed) {
int* p = new int;
auto passed = Passed(WrapUnique(p));
EXPECT_EQ(p, internal::Unwrap(passed).get());
p = new int;
EXPECT_EQ(p, internal::Unwrap(Passed(WrapUnique(p))).get());
}
TEST_F(BindTest, BindNoexcept) {
EXPECT_EQ(42, base::BindOnce(&Noexcept).Run());
EXPECT_EQ(
42,
base::BindOnce(&BindTest::NoexceptMethod, base::Unretained(this)).Run());
EXPECT_EQ(
42, base::BindOnce(&BindTest::ConstNoexceptMethod, base::Unretained(this))
.Run());
}
// Test null callbacks cause a DCHECK.
TEST(BindDeathTest, NullCallback) {
base::Callback<void(int)> null_cb;
ASSERT_TRUE(null_cb.is_null());
EXPECT_DCHECK_DEATH(base::Bind(null_cb, 42));
}
} // namespace
} // namespace base