C++程序  |  993行  |  38.39 KB

/******************************************************************************
 *
 * Copyright (C) 2015 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at:
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 *
 *****************************************************************************
 * Originally developed and contributed by Ittiam Systems Pvt. Ltd, Bangalore
*/
/**
 *******************************************************************************
 * @file
 *  ih264_resi_trans_quant_sse42.c
 *
 * @brief
 *  Contains function definitions single stage  forward transform for H.264
 *  It will calculate the residue, do the cf and then do quantization
 *
 * @author
 *  Mohit [100664]
 *
 * @par List of Functions:
 *  - ih264_resi_trans_quant_4x4_sse42()
 *  - ih264_resi_trans_quant_chroma_4x4_sse42()
 *
 * @remarks
 *  None
 *
 *******************************************************************************
 */
/* System include files */
#include <stddef.h>

/* User include files */
#include "ih264_typedefs.h"
#include "ih264_defs.h"
#include "ih264_size_defs.h"
#include "ih264_macros.h"
#include "ih264_trans_macros.h"
#include "ih264_trans_data.h"
#include "ih264_structs.h"
#include "ih264_trans_quant_itrans_iquant.h"
#include <immintrin.h>
/**
 *******************************************************************************
 *
 * @brief
 *   This function performs forward transform and quantization on a 4*4 block
 *
 * @par Description:
 *   The function accepts source buffer and estimation buffer. From these, it
 *   computes the residue. This is residue is then transformed and quantized.
 *   The transform and quantization are in placed computed. They use the residue
 *   buffer for this.
 *
 * @param[in] pu1_src
 *   Pointer to source sub-block
 *
 * @param[in] pu1_pred
 *   Pointer to prediction sub-block
 *
 * @param[in] pi2_out
 *   Pointer to residual sub-block
 *
 * @param[in] src_strd
 *   Source stride
 *
 * @param[in] pred_strd
 *   Prediction stride
 *
 * @param[in] dst_strd
 *   Destination stride
 *
 * @param[in] u4_qbits
 *    QP_BITS_h264_4x4 + floor(QP/6)
 *
 * @param[in] pu2_threshold_matrix
 *   Pointer to Forward Quant Threshold Matrix
 *
 * @param[in] pu2_scale_matrix
 *   Pointer to Forward Quant Scale Matrix
 *
 * @param[in] u4_round_factor
 *   Quantization Round factor
 *
 * @param[out] pu1_nnz
 *   Total non-zero coefficients in the current sub-block
 *
 * @returns
 *
 * @remarks
 *   None
 *
 *******************************************************************************
 */
void ih264_resi_trans_quant_4x4_sse42(UWORD8 *pu1_src, UWORD8 *pu1_pred,
                                      WORD16 *pi2_out, WORD32 src_strd, WORD32 pred_strd,
                                      const UWORD16 *pu2_scale_matrix, const UWORD16 *pu2_threshold_matrix,
                                      UWORD32 u4_qbits, UWORD32 u4_round_factor, UWORD8 *pu1_nnz,
                                      WORD16 *pi2_alt_dc_addr)
{
    WORD32 tmp_dc, u4_zero_coeff, u4_nonzero_coeff = 0;
    WORD32 mask0, mask1;
    __m128i sum0, sum1, sum2, cmp0, cmp1;
    __m128i rnd_fact = _mm_set1_epi32(u4_round_factor);
    __m128i temp_2 = _mm_set1_epi16(2);
    __m128i temp_1 = _mm_set1_epi16(1);
    __m128i src_r0, src_r1, src_r2, src_r3;
    __m128i pred_r0, pred_r1, pred_r2, pred_r3;
    __m128i temp0, temp1, temp2, temp3;
    __m128i zero_8x16b = _mm_setzero_si128();          // all bits reset to zero
    __m128i sign_reg0, sign_reg2;
    __m128i scalemat_r0_r1, scalemat_r2_r3;

    UNUSED (pu2_threshold_matrix);

    scalemat_r0_r1 = _mm_loadu_si128((__m128i *) (pu2_scale_matrix)); //b00 b01 b02 b03 b10 b11 b12 b13 -- the scaling matrix 0th,1st row
    scalemat_r2_r3 = _mm_loadu_si128((__m128i *) (pu2_scale_matrix + 8)); //b20 b21 b22 b23 b30 b31 b32 b33 -- the scaling matrix 2nd,3rd row
    src_r0 = _mm_loadl_epi64((__m128i *) (&pu1_src[0])); //a00 a01 a02 a03 0 0 0 0 0 0 0 0 -- all 8 bits
    src_r1 = _mm_loadl_epi64((__m128i *) (&pu1_src[src_strd])); //a10 a11 a12 a13 0 0 0 0 0 0 0 0 -- all 8 bits
    src_r2 = _mm_loadl_epi64((__m128i *) (&pu1_src[2 * src_strd])); //a20 a21 a22 a23 0 0 0 0 0 0 0 0 -- all 8 bits
    src_r3 = _mm_loadl_epi64((__m128i *) (&pu1_src[3 * src_strd])); //a30 a31 a32 a33 0 0 0 0 0 0 0 0 -- all 8 bits

    src_r0 = _mm_cvtepu8_epi16(src_r0);
    src_r1 = _mm_cvtepu8_epi16(src_r1);
    src_r2 = _mm_cvtepu8_epi16(src_r2);
    src_r3 = _mm_cvtepu8_epi16(src_r3);

    pred_r0 = _mm_loadl_epi64((__m128i *) (&pu1_pred[0])); //p00 p01 p02 p03 0 0 0 0 0 0 0 0 -- all 8 bits
    pred_r1 = _mm_loadl_epi64((__m128i *) (&pu1_pred[pred_strd])); //p10 p11 p12 p13 0 0 0 0 0 0 0 0 -- all 8 bits
    pred_r2 = _mm_loadl_epi64((__m128i *) (&pu1_pred[2 * pred_strd])); //p20 p21 p22 p23 0 0 0 0 0 0 0 0 -- all 8 bits
    pred_r3 = _mm_loadl_epi64((__m128i *) (&pu1_pred[3 * pred_strd])); //p30 p31 p32 p33 0 0 0 0 0 0 0 0 -- all 8 bits

    pred_r0 = _mm_cvtepu8_epi16(pred_r0); //p00 p01 p02 p03 -- all 16 bits
    pred_r1 = _mm_cvtepu8_epi16(pred_r1); //p10 p11 p12 p13 -- all 16 bits
    pred_r2 = _mm_cvtepu8_epi16(pred_r2); //p20 p21 p22 p23 -- all 16 bits
    pred_r3 = _mm_cvtepu8_epi16(pred_r3); //p30 p31 p32 p33 -- all 16 bits

    src_r0 = _mm_sub_epi16(src_r0, pred_r0);
    src_r1 = _mm_sub_epi16(src_r1, pred_r1);
    src_r2 = _mm_sub_epi16(src_r2, pred_r2);
    src_r3 = _mm_sub_epi16(src_r3, pred_r3);

    /* Perform Forward transform */
    /*-------------------------------------------------------------*/
    /* DCT [ Horizontal transformation ]                          */
    /*-------------------------------------------------------------*/
    // Matrix transpose
    /*
     *  a0 a1 a2 a3
     *  b0 b1 b2 b3
     *  c0 c1 c2 c3
     *  d0 d1 d2 d3
     */
    temp0 = _mm_unpacklo_epi16(src_r0, src_r1);                 //a0 b0 a1 b1 a2 b2 a3 b3
    temp2 = _mm_unpacklo_epi16(src_r2, src_r3);                 //c0 d0 c1 d1 c2 d2 c3 d3
    temp1 = _mm_unpacklo_epi32(temp0, temp2);                   //a0 b0 c0 d0 a1 b1 c1 d1
    temp3 = _mm_unpackhi_epi32(temp0, temp2);                   //a2 b2 c2 d2 a3 b3 c3 d3

    src_r0 = _mm_unpacklo_epi64(temp1, zero_8x16b);             //a0 b0 c0 d0
    src_r1 = _mm_unpackhi_epi64(temp1, zero_8x16b);             //a1 b1 c1 d1
    src_r2 = _mm_unpacklo_epi64(temp3, zero_8x16b);             //a2 b2 c2 d2
    src_r3 = _mm_unpackhi_epi64(temp3, zero_8x16b);             //a3 b3 c3 d3

    /*----------------------------------------------------------*/
    /* x0 = z0 + z3                                             */
    temp0 = _mm_add_epi16(src_r0, src_r3);
    /* x1 = z1 + z2                                             */
    temp1 = _mm_add_epi16(src_r1, src_r2);
    /* x2 = z1 - z2                                             */
    temp2 = _mm_sub_epi16(src_r1, src_r2);
    /* x3 = z0 - z3                                             */
    temp3 = _mm_sub_epi16(src_r0, src_r3);

    /* z0 = x0 + x1                                             */
    src_r0 = _mm_add_epi16(temp0, temp1);
    /* z1 = (x3 << 1) + x2                                      */
    src_r1 = _mm_slli_epi16(temp3, 1);                          //(x3<<1)
    src_r1 = _mm_add_epi16(src_r1, temp2);
    /* z2 = x0 - x1                                             */
    src_r2 = _mm_sub_epi16(temp0, temp1);
    /* z3 = x3 - (x2 << 1)                                      */
    src_r3 = _mm_slli_epi16(temp2, 1);                          //(x2<<1)
    src_r3 = _mm_sub_epi16(temp3, src_r3);

    // Matrix transpose
    /*
     *  a0 b0 c0 d0
     *  a1 b1 c1 d1
     *  a2 b2 c2 d2
     *  a3 b3 c3 d3
     */
    temp0 = _mm_unpacklo_epi16(src_r0, src_r1);                 //a0 a1 b0 b1 c0 c1 d0 d1
    temp2 = _mm_unpacklo_epi16(src_r2, src_r3);                 //a2 a3 b2 b3 c2 c3 d2 d3
    temp1 = _mm_unpacklo_epi32(temp0, temp2);                   //a0 a1 a2 a3 b0 b1 b2 b3
    temp3 = _mm_unpackhi_epi32(temp0, temp2);                   //c0 c1 c2 c3 d0 d1 d2 d3

    src_r0 = _mm_unpacklo_epi64(temp1, zero_8x16b);             //a0 a1 a2 a3
    src_r1 = _mm_unpackhi_epi64(temp1, zero_8x16b);             //b0 b1 b2 b3
    src_r2 = _mm_unpacklo_epi64(temp3, zero_8x16b);             //c0 c1 c2 c3
    src_r3 = _mm_unpackhi_epi64(temp3, zero_8x16b);             //d0 d1 d2 d3

    /*----------------------------------------------------------*/
    /* x0 = z0 + z3                                             */
    temp0 = _mm_add_epi16(src_r0, src_r3);
    /* x1 = z1 + z2                                             */
    temp1 = _mm_add_epi16(src_r1, src_r2);
    /* x2 = z1 - z2                                             */
    temp2 = _mm_sub_epi16(src_r1, src_r2);
    /* x3 = z0 - z3                                             */
    temp3 = _mm_sub_epi16(src_r0, src_r3);

    /* z0 = x0 + x1                                             */
    src_r0 = _mm_add_epi16(temp0, temp1);
    /* z1 = (x3 << 1) + x2                                      */
    src_r1 = _mm_slli_epi16(temp3, 1);                          //(x3<<1)
    src_r1 = _mm_add_epi16(src_r1, temp2);
    /* z2 = x0 - x1                                             */
    src_r2 = _mm_sub_epi16(temp0, temp1);
    /* z3 = x3 - (x2 << 1)                                      */
    src_r3 = _mm_slli_epi16(temp2, 1);                          //(x2<<1)
    src_r3 = _mm_sub_epi16(temp3, src_r3);

    tmp_dc = _mm_extract_epi16(src_r0,0);                       //a0
    *pi2_alt_dc_addr = tmp_dc;

    src_r0 = _mm_unpacklo_epi64(src_r0, src_r1);                //a0 a1 a2 a3 b0 b1 b2 b3
    src_r2 = _mm_unpacklo_epi64(src_r2, src_r3);                //c0 c1 c2 c3 d0 d1 d2 d3
    sign_reg0 = _mm_cmpgt_epi16(zero_8x16b,src_r0);
    sign_reg2 = _mm_cmpgt_epi16(zero_8x16b,src_r2);

    sign_reg0 = _mm_mullo_epi16(temp_2,sign_reg0);
    sign_reg2 = _mm_mullo_epi16(temp_2,sign_reg2);

    sign_reg0 = _mm_add_epi16(temp_1,sign_reg0);
    sign_reg2 = _mm_add_epi16(temp_1,sign_reg2);

    src_r0 = _mm_abs_epi16(src_r0);
    src_r2 = _mm_abs_epi16(src_r2);

    src_r1 = _mm_srli_si128(src_r0, 8);
    src_r0 = _mm_cvtepu16_epi32(src_r0);
    src_r1 = _mm_cvtepu16_epi32(src_r1);
    src_r3 = _mm_srli_si128(src_r2, 8);
    src_r2 = _mm_cvtepu16_epi32(src_r2);
    src_r3 = _mm_cvtepu16_epi32(src_r3);

    temp0 = _mm_cvtepu16_epi32(scalemat_r0_r1);
    scalemat_r0_r1 = _mm_srli_si128(scalemat_r0_r1, 8);
    temp2 = _mm_cvtepu16_epi32(scalemat_r2_r3);
    scalemat_r2_r3 = _mm_srli_si128(scalemat_r2_r3, 8);
    temp1 = _mm_cvtepu16_epi32(scalemat_r0_r1);
    temp3 = _mm_cvtepu16_epi32(scalemat_r2_r3);

    temp0 = _mm_mullo_epi32(temp0, src_r0);
    temp1 = _mm_mullo_epi32(temp1, src_r1);
    temp2 = _mm_mullo_epi32(temp2, src_r2);
    temp3 = _mm_mullo_epi32(temp3, src_r3);

    temp0 = _mm_add_epi32(temp0,rnd_fact);
    temp1 = _mm_add_epi32(temp1,rnd_fact);
    temp2 = _mm_add_epi32(temp2,rnd_fact);
    temp3 = _mm_add_epi32(temp3,rnd_fact);

    temp0 = _mm_srli_epi32(temp0,u4_qbits);
    temp1 = _mm_srli_epi32(temp1,u4_qbits);
    temp2 = _mm_srli_epi32(temp2,u4_qbits);
    temp3 = _mm_srli_epi32(temp3,u4_qbits);

    temp0 =  _mm_packs_epi32 (temp0,temp1);
    temp2 =  _mm_packs_epi32 (temp2,temp3);

    temp0 =  _mm_sign_epi16(temp0, sign_reg0);
    temp2 =  _mm_sign_epi16(temp2, sign_reg2);

    _mm_storeu_si128((__m128i *) (&pi2_out[0]), temp0);
    _mm_storeu_si128((__m128i *) (&pi2_out[8]), temp2);

    cmp0 = _mm_cmpeq_epi16(temp0, zero_8x16b);
    cmp1 = _mm_cmpeq_epi16(temp2, zero_8x16b);

    mask0 = _mm_movemask_epi8(cmp0);
    mask1 = _mm_movemask_epi8(cmp1);
    u4_zero_coeff = 0;
    if(mask0)
    {
        if(mask0 == 0xffff)
            u4_zero_coeff+=8;
        else
        {
            cmp0 = _mm_and_si128(temp_1, cmp0);
            sum0 = _mm_hadd_epi16(cmp0, zero_8x16b);
            sum1 = _mm_hadd_epi16(sum0, zero_8x16b);
            sum2 = _mm_hadd_epi16(sum1, zero_8x16b);
            u4_zero_coeff += _mm_cvtsi128_si32(sum2);
        }
    }
    if(mask1)
    {
        if(mask1 == 0xffff)
            u4_zero_coeff+=8;
        else
        {
            cmp1 = _mm_and_si128(temp_1, cmp1);
            sum0 = _mm_hadd_epi16(cmp1, zero_8x16b);
            sum1 = _mm_hadd_epi16(sum0, zero_8x16b);
            sum2 = _mm_hadd_epi16(sum1, zero_8x16b);
            u4_zero_coeff += _mm_cvtsi128_si32(sum2);
        }
    }

    /* Return total nonzero coefficients in the current sub block */
    u4_nonzero_coeff = 16 - u4_zero_coeff;
    *pu1_nnz =  u4_nonzero_coeff;
}

/**
 *******************************************************************************
 *
 * @brief
 *   This function performs forward transform and quantization on a 4*4 chroma block
 *
 * @par Description:
 *   The function accepts source buffer and estimation buffer. From these, it
 *   computes the residue. This is residue is then transformed and quantized.
 *   The transform and quantization are in placed computed. They use the residue
 *   buffer for this.
 *
 * @param[in] pu1_src
 *   Pointer to source sub-block
 *
 * @param[in] pu1_pred
 *   Pointer to prediction sub-block
 *
 * @param[in] pi2_out
 *   Pointer to residual sub-block
 *
 * @param[in] src_strd
 *   Source stride
 *
 * @param[in] pred_strd
 *   Prediction stride
 *
 * @param[in] dst_strd
 *   Destination stride
 *
 * @param[in] u4_qbits
 *    QP_BITS_h264_4x4 + floor(QP/6)
 *
 * @param[in] pu2_threshold_matrix
 *   Pointer to Forward Quant Threshold Matrix
 *
 * @param[in] pu2_scale_matrix
 *   Pointer to Forward Quant Scale Matrix
 *
 * @param[in] u4_round_factor
 *   Quantization Round factor
 *
 * @param[out] pu1_nnz
 *   Total non-zero coefficients in the current sub-block
 *
 * @returns
 *
 * @remarks
 *   None
 *
 *******************************************************************************
 */
void ih264_resi_trans_quant_chroma_4x4_sse42(UWORD8 *pu1_src,UWORD8 *pu1_pred,WORD16 *pi2_out,
                                            WORD32 src_strd,WORD32 pred_strd,
                                            const UWORD16 *pu2_scale_matrix,
                                            const UWORD16 *pu2_threshold_matrix,
                                            UWORD32 u4_qbits,UWORD32 u4_round_factor,
                                            UWORD8  *pu1_nnz, WORD16 *pi2_alt_dc_addr)
{
    WORD32 tmp_dc, u4_zero_coeff, u4_nonzero_coeff = 0;
    WORD32 mask0, mask1;
    __m128i cmp0, cmp1, sum0, sum1, sum2;
    __m128i rnd_fact = _mm_set1_epi32(u4_round_factor);
    __m128i temp_2 = _mm_set1_epi16(2);
    __m128i temp_1 = _mm_set1_epi16(1);
    __m128i src_r0, src_r1, src_r2, src_r3;
    __m128i pred_r0, pred_r1, pred_r2, pred_r3;
    __m128i temp0, temp1, temp2, temp3;
    __m128i zero_8x16b = _mm_setzero_si128();          // all bits reset to zero
    __m128i sign_reg0, sign_reg2;
    __m128i scalemat_r0_r1, scalemat_r2_r3;
    __m128i chroma_mask = _mm_set1_epi16 (0xFF);

    UNUSED (pu2_threshold_matrix);

    scalemat_r0_r1 = _mm_loadu_si128((__m128i *) (pu2_scale_matrix)); //b00 b01 b02 b03 b10 b11 b12 b13 -- the scaling matrix 0th,1st row
    scalemat_r2_r3 = _mm_loadu_si128((__m128i *) (pu2_scale_matrix + 8)); //b20 b21 b22 b23 b30 b31 b32 b33 -- the scaling matrix 2nd,3rd row
    src_r0 = _mm_loadl_epi64((__m128i *) (&pu1_src[0])); //a00 a01 a02 a03 0 0 0 0 0 0 0 0 -- all 8 bits
    src_r1 = _mm_loadl_epi64((__m128i *) (&pu1_src[src_strd])); //a10 a11 a12 a13 0 0 0 0 0 0 0 0 -- all 8 bits
    src_r2 = _mm_loadl_epi64((__m128i *) (&pu1_src[2 * src_strd])); //a20 a21 a22 a23 0 0 0 0 0 0 0 0 -- all 8 bits
    src_r3 = _mm_loadl_epi64((__m128i *) (&pu1_src[3 * src_strd])); //a30 a31 a32 a33 0 0 0 0 0 0 0 0 -- all 8 bits

    src_r0 = _mm_and_si128(src_r0, chroma_mask);
    src_r1 = _mm_and_si128(src_r1, chroma_mask);
    src_r2 = _mm_and_si128(src_r2, chroma_mask);
    src_r3 = _mm_and_si128(src_r3, chroma_mask);
//  src_r0 = _mm_cvtepu8_epi16(src_r0);
//  src_r1 = _mm_cvtepu8_epi16(src_r1);
//  src_r2 = _mm_cvtepu8_epi16(src_r2);
//  src_r3 = _mm_cvtepu8_epi16(src_r3);

    pred_r0 = _mm_loadl_epi64((__m128i *) (&pu1_pred[0])); //p00 p01 p02 p03 0 0 0 0 0 0 0 0 -- all 8 bits
    pred_r1 = _mm_loadl_epi64((__m128i *) (&pu1_pred[pred_strd])); //p10 p11 p12 p13 0 0 0 0 0 0 0 0 -- all 8 bits
    pred_r2 = _mm_loadl_epi64((__m128i *) (&pu1_pred[2 * pred_strd])); //p20 p21 p22 p23 0 0 0 0 0 0 0 0 -- all 8 bits
    pred_r3 = _mm_loadl_epi64((__m128i *) (&pu1_pred[3 * pred_strd])); //p30 p31 p32 p33 0 0 0 0 0 0 0 0 -- all 8 bits

    pred_r0 = _mm_and_si128(pred_r0, chroma_mask);
    pred_r1 = _mm_and_si128(pred_r1, chroma_mask);
    pred_r2 = _mm_and_si128(pred_r2, chroma_mask);
    pred_r3 = _mm_and_si128(pred_r3, chroma_mask);
//  pred_r0 = _mm_cvtepu8_epi16(pred_r0); //p00 p01 p02 p03 -- all 16 bits
//  pred_r1 = _mm_cvtepu8_epi16(pred_r1); //p10 p11 p12 p13 -- all 16 bits
//  pred_r2 = _mm_cvtepu8_epi16(pred_r2); //p20 p21 p22 p23 -- all 16 bits
//  pred_r3 = _mm_cvtepu8_epi16(pred_r3); //p30 p31 p32 p33 -- all 16 bits

    src_r0 = _mm_sub_epi16(src_r0, pred_r0);
    src_r1 = _mm_sub_epi16(src_r1, pred_r1);
    src_r2 = _mm_sub_epi16(src_r2, pred_r2);
    src_r3 = _mm_sub_epi16(src_r3, pred_r3);

    /* Perform Forward transform */
    /*-------------------------------------------------------------*/
    /* DCT [ Horizontal transformation ]                          */
    /*-------------------------------------------------------------*/
    // Matrix transpose
    /*
     *  a0 a1 a2 a3
     *  b0 b1 b2 b3
     *  c0 c1 c2 c3
     *  d0 d1 d2 d3
     */
    temp0 = _mm_unpacklo_epi16(src_r0, src_r1);                 //a0 b0 a1 b1 a2 b2 a3 b3
    temp2 = _mm_unpacklo_epi16(src_r2, src_r3);                 //c0 d0 c1 d1 c2 d2 c3 d3
    temp1 = _mm_unpacklo_epi32(temp0, temp2);                   //a0 b0 c0 d0 a1 b1 c1 d1
    temp3 = _mm_unpackhi_epi32(temp0, temp2);                   //a2 b2 c2 d2 a3 b3 c3 d3

    src_r0 = _mm_unpacklo_epi64(temp1, zero_8x16b);             //a0 b0 c0 d0
    src_r1 = _mm_unpackhi_epi64(temp1, zero_8x16b);             //a1 b1 c1 d1
    src_r2 = _mm_unpacklo_epi64(temp3, zero_8x16b);             //a2 b2 c2 d2
    src_r3 = _mm_unpackhi_epi64(temp3, zero_8x16b);             //a3 b3 c3 d3

    /*----------------------------------------------------------*/
    /* x0 = z0 + z3                                             */
    temp0 = _mm_add_epi16(src_r0, src_r3);
    /* x1 = z1 + z2                                             */
    temp1 = _mm_add_epi16(src_r1, src_r2);
    /* x2 = z1 - z2                                             */
    temp2 = _mm_sub_epi16(src_r1, src_r2);
    /* x3 = z0 - z3                                             */
    temp3 = _mm_sub_epi16(src_r0, src_r3);

    /* z0 = x0 + x1                                             */
    src_r0 = _mm_add_epi16(temp0, temp1);
    /* z1 = (x3 << 1) + x2                                      */
    src_r1 = _mm_slli_epi16(temp3, 1);                          //(x3<<1)
    src_r1 = _mm_add_epi16(src_r1, temp2);
    /* z2 = x0 - x1                                             */
    src_r2 = _mm_sub_epi16(temp0, temp1);
    /* z3 = x3 - (x2 << 1)                                      */
    src_r3 = _mm_slli_epi16(temp2, 1);                          //(x2<<1)
    src_r3 = _mm_sub_epi16(temp3, src_r3);

    // Matrix transpose
    /*
     *  a0 b0 c0 d0
     *  a1 b1 c1 d1
     *  a2 b2 c2 d2
     *  a3 b3 c3 d3
     */
    temp0 = _mm_unpacklo_epi16(src_r0, src_r1);                 //a0 a1 b0 b1 c0 c1 d0 d1
    temp2 = _mm_unpacklo_epi16(src_r2, src_r3);                 //a2 a3 b2 b3 c2 c3 d2 d3
    temp1 = _mm_unpacklo_epi32(temp0, temp2);                   //a0 a1 a2 a3 b0 b1 b2 b3
    temp3 = _mm_unpackhi_epi32(temp0, temp2);                   //c0 c1 c2 c3 d0 d1 d2 d3

    src_r0 = _mm_unpacklo_epi64(temp1, zero_8x16b);             //a0 a1 a2 a3
    src_r1 = _mm_unpackhi_epi64(temp1, zero_8x16b);             //b0 b1 b2 b3
    src_r2 = _mm_unpacklo_epi64(temp3, zero_8x16b);             //c0 c1 c2 c3
    src_r3 = _mm_unpackhi_epi64(temp3, zero_8x16b);             //d0 d1 d2 d3

    /*----------------------------------------------------------*/
    /* x0 = z0 + z3                                             */
    temp0 = _mm_add_epi16(src_r0, src_r3);
    /* x1 = z1 + z2                                             */
    temp1 = _mm_add_epi16(src_r1, src_r2);
    /* x2 = z1 - z2                                             */
    temp2 = _mm_sub_epi16(src_r1, src_r2);
    /* x3 = z0 - z3                                             */
    temp3 = _mm_sub_epi16(src_r0, src_r3);

    /* z0 = x0 + x1                                             */
    src_r0 = _mm_add_epi16(temp0, temp1);
    /* z1 = (x3 << 1) + x2                                      */
    src_r1 = _mm_slli_epi16(temp3, 1);                          //(x3<<1)
    src_r1 = _mm_add_epi16(src_r1, temp2);
    /* z2 = x0 - x1                                             */
    src_r2 = _mm_sub_epi16(temp0, temp1);
    /* z3 = x3 - (x2 << 1)                                      */
    src_r3 = _mm_slli_epi16(temp2, 1);                          //(x2<<1)
    src_r3 = _mm_sub_epi16(temp3, src_r3);

    tmp_dc = _mm_extract_epi16(src_r0,0);                       //a0
    *pi2_alt_dc_addr = tmp_dc;

    src_r0 = _mm_unpacklo_epi64(src_r0, src_r1);                //a0 a1 a2 a3 b0 b1 b2 b3
    src_r2 = _mm_unpacklo_epi64(src_r2, src_r3);                //c0 c1 c2 c3 d0 d1 d2 d3
    sign_reg0 = _mm_cmpgt_epi16(zero_8x16b,src_r0);
    sign_reg2 = _mm_cmpgt_epi16(zero_8x16b,src_r2);

    sign_reg0 = _mm_mullo_epi16(temp_2,sign_reg0);
    sign_reg2 = _mm_mullo_epi16(temp_2,sign_reg2);

    sign_reg0 = _mm_add_epi16(temp_1,sign_reg0);
    sign_reg2 = _mm_add_epi16(temp_1,sign_reg2);

    src_r0 = _mm_abs_epi16(src_r0);
    src_r2 = _mm_abs_epi16(src_r2);

    src_r1 = _mm_srli_si128(src_r0, 8);
    src_r0 = _mm_cvtepu16_epi32(src_r0);
    src_r1 = _mm_cvtepu16_epi32(src_r1);
    src_r3 = _mm_srli_si128(src_r2, 8);
    src_r2 = _mm_cvtepu16_epi32(src_r2);
    src_r3 = _mm_cvtepu16_epi32(src_r3);

    temp0 = _mm_cvtepu16_epi32(scalemat_r0_r1);
    scalemat_r0_r1 = _mm_srli_si128(scalemat_r0_r1, 8);
    temp2 = _mm_cvtepu16_epi32(scalemat_r2_r3);
    scalemat_r2_r3 = _mm_srli_si128(scalemat_r2_r3, 8);
    temp1 = _mm_cvtepu16_epi32(scalemat_r0_r1);
    temp3 = _mm_cvtepu16_epi32(scalemat_r2_r3);

    temp0 = _mm_mullo_epi32(temp0, src_r0);
    temp1 = _mm_mullo_epi32(temp1, src_r1);
    temp2 = _mm_mullo_epi32(temp2, src_r2);
    temp3 = _mm_mullo_epi32(temp3, src_r3);

    temp0 = _mm_add_epi32(temp0,rnd_fact);
    temp1 = _mm_add_epi32(temp1,rnd_fact);
    temp2 = _mm_add_epi32(temp2,rnd_fact);
    temp3 = _mm_add_epi32(temp3,rnd_fact);

    temp0 = _mm_srli_epi32(temp0,u4_qbits);
    temp1 = _mm_srli_epi32(temp1,u4_qbits);
    temp2 = _mm_srli_epi32(temp2,u4_qbits);
    temp3 = _mm_srli_epi32(temp3,u4_qbits);

    temp0 =  _mm_packs_epi32 (temp0,temp1);
    temp2 =  _mm_packs_epi32 (temp2,temp3);

    temp0 =  _mm_sign_epi16(temp0, sign_reg0);
    temp2 =  _mm_sign_epi16(temp2, sign_reg2);

    //temp0 = _mm_insert_epi16(temp0, tmp_dc, 0);

    _mm_storeu_si128((__m128i *) (&pi2_out[0]), temp0);
    _mm_storeu_si128((__m128i *) (&pi2_out[8]), temp2);

    cmp0 = _mm_cmpeq_epi16(temp0, zero_8x16b);
    cmp1 = _mm_cmpeq_epi16(temp2, zero_8x16b);

    mask0 = _mm_movemask_epi8(cmp0);
    mask1 = _mm_movemask_epi8(cmp1);
    u4_zero_coeff = 0;
    if(mask0)
    {
        if(mask0 == 0xffff)
            u4_zero_coeff+=8;
        else
        {
            cmp0 = _mm_and_si128(temp_1, cmp0);
            sum0 = _mm_hadd_epi16(cmp0, zero_8x16b);
            sum1 = _mm_hadd_epi16(sum0, zero_8x16b);
            sum2 = _mm_hadd_epi16(sum1, zero_8x16b);
            u4_zero_coeff += _mm_cvtsi128_si32(sum2);
        }
    }
    if(mask1)
    {
        if(mask1 == 0xffff)
            u4_zero_coeff+=8;
        else
        {
            cmp1 = _mm_and_si128(temp_1, cmp1);
            sum0 = _mm_hadd_epi16(cmp1, zero_8x16b);
            sum1 = _mm_hadd_epi16(sum0, zero_8x16b);
            sum2 = _mm_hadd_epi16(sum1, zero_8x16b);
            u4_zero_coeff += _mm_cvtsi128_si32(sum2);
        }
    }

    /* Return total nonzero coefficients in the current sub block */
    u4_nonzero_coeff = 16 - u4_zero_coeff;
    *pu1_nnz =  u4_nonzero_coeff;

}


/**
 *******************************************************************************
 *
 * @brief
 *   This function performs forward hadamard transform and quantization on a 4*4 block
 *
 * @par Description:
 *   The function accepts source buffer and estimation buffer. From these, it
 *   computes the residue. This is residue is then transformed and quantized.
 *   The transform and quantization are in placed computed. They use the residue
 *   buffer for this.
 *
 * @param[in] pu1_src
 *   Pointer to source sub-block
 *
 * @param[in] pu1_pred
 *   Pointer to prediction sub-block
 *
 * @param[in] pi2_out
 *   Pointer to residual sub-block
 *
 * @param[in] src_strd
 *   Source stride
 *
 * @param[in] pred_strd
 *   Prediction stride
 *
 * @param[in] dst_strd
 *   Destination stride
 *
 * @param[in] u4_qbits
 *    QP_BITS_h264_4x4 + floor(QP/6)
 *
 * @param[in] pu2_threshold_matrix
 *   Pointer to Forward Quant Threshold Matrix
 *
 * @param[in] pu2_scale_matrix
 *   Pointer to Forward Quant Scale Matrix
 *
 * @param[in] u4_round_factor
 *   Quantization Round factor
 *
 * @param[out] pu1_nnz
 *   Total non-zero coefficients in the current sub-block
 *
 * @returns
 *
 * @remarks
 *   None
 *
 */

void ih264_hadamard_quant_4x4_sse42(WORD16 *pi2_src, WORD16 *pi2_dst,
                          const UWORD16 *pu2_scale_matrix,
                          const UWORD16 *pu2_threshold_matrix, UWORD32 u4_qbits,
                          UWORD32 u4_round_factor,UWORD8  *pu1_nnz
                          )
{
    WORD32 u4_zero_coeff,u4_nonzero_coeff=0;
    __m128i cmp0, cmp1, sum0, sum1, sum2;
    WORD32 mask0, mask1;
    __m128i src_r0_r1, src_r2_r3, sign_reg;
    __m128i src_r0, src_r1, src_r2, src_r3;
    __m128i zero_8x16b = _mm_setzero_si128();
    __m128i temp0, temp1, temp2, temp3;
    __m128i sign_reg0, sign_reg1, sign_reg2, sign_reg3;
    __m128i temp_1 = _mm_set1_epi16(1);
    __m128i rnd_fact = _mm_set1_epi32(u4_round_factor);
    __m128i scale_val = _mm_set1_epi32(pu2_scale_matrix[0]);

    UNUSED (pu2_threshold_matrix);

    src_r0_r1 = _mm_loadu_si128((__m128i *) (pi2_src)); //a00 a01 a02 a03 a10 a11 a12 a13 -- the source matrix 0th,1st row
    src_r2_r3 = _mm_loadu_si128((__m128i *) (pi2_src + 8)); //a20 a21 a22 a23 a30 a31 a32 a33 -- the source matrix 2nd,3rd row
    sign_reg = _mm_cmpgt_epi16(zero_8x16b, src_r0_r1);
    src_r0 = _mm_unpacklo_epi16(src_r0_r1, sign_reg);   //a0 a1 a2 a3
    src_r1 = _mm_unpackhi_epi16(src_r0_r1, sign_reg);   //b0 b1 b2 b3
    sign_reg = _mm_cmpgt_epi16(zero_8x16b, src_r2_r3);
    src_r2 = _mm_unpacklo_epi16(src_r2_r3, sign_reg);   //c0 c1 c2 c3
    src_r3 = _mm_unpackhi_epi16(src_r2_r3, sign_reg);   //d0 d1 d2 d3

    /* Perform Inverse transform */
    /*-------------------------------------------------------------*/
    /* Forward DC transform [ Horizontal transformation ]                          */
    /*-------------------------------------------------------------*/
    // Matrix transpose
    /*
     *  a0 a1 a2 a3
     *  b0 b1 b2 b3
     *  c0 c1 c2 c3
     *  d0 d1 d2 d3
     */
    temp0 = _mm_unpacklo_epi32(src_r0, src_r1);                  //a0 b0 a1 b1
    temp2 = _mm_unpacklo_epi32(src_r2, src_r3);                  //c0 d0 c1 d1
    temp1 = _mm_unpackhi_epi32(src_r0, src_r1);                  //a2 b2 a3 b3
    temp3 = _mm_unpackhi_epi32(src_r2, src_r3);                  //c2 d2 c3 d3
    src_r0 = _mm_unpacklo_epi64(temp0, temp2);                    //a0 b0 c0 d0
    src_r1 = _mm_unpackhi_epi64(temp0, temp2);                    //a1 b1 c1 d1
    src_r2 = _mm_unpacklo_epi64(temp1, temp3);                    //a2 b2 c2 d2
    src_r3 = _mm_unpackhi_epi64(temp1, temp3);                    //a3 b3 c3 d3

    temp0 = _mm_add_epi32(src_r0, src_r3);
    temp1 = _mm_add_epi32(src_r1, src_r2);
    temp2 = _mm_sub_epi32(src_r1, src_r2);
    temp3 = _mm_sub_epi32(src_r0, src_r3);

    src_r0 = _mm_add_epi32(temp0, temp1);
    src_r1 = _mm_add_epi32(temp2, temp3);
    src_r2 = _mm_sub_epi32(temp0, temp1);
    src_r3 = _mm_sub_epi32(temp3, temp2);

    /*-------------------------------------------------------------*/
    /* Forward DC transform [ Vertical transformation ]                          */
    /*-------------------------------------------------------------*/
    // Matrix transpose
    /*
     *  a0 b0 c0 d0
     *  a1 b1 c1 d1
     *  a2 b2 c2 d2
     *  a3 b3 c3 d3
     */
    temp0 = _mm_unpacklo_epi32(src_r0, src_r1);                  //a0 a1 b0 b1
    temp2 = _mm_unpacklo_epi32(src_r2, src_r3);                  //a2 a3 b2 b3
    temp1 = _mm_unpackhi_epi32(src_r0, src_r1);                  //c0 c1 d0 d1
    temp3 = _mm_unpackhi_epi32(src_r2, src_r3);                  //c2 c3 d2 d3
    src_r0 = _mm_unpacklo_epi64(temp0, temp2);                   //a0 a1 a2 a3
    src_r1 = _mm_unpackhi_epi64(temp0, temp2);                   //b0 b1 b2 b3
    src_r2 = _mm_unpacklo_epi64(temp1, temp3);                   //c0 c1 c2 c3
    src_r3 = _mm_unpackhi_epi64(temp1, temp3);                   //d0 d1 d2 d3

    temp0 = _mm_add_epi32(src_r0, src_r3);
    temp1 = _mm_add_epi32(src_r1, src_r2);
    temp2 = _mm_sub_epi32(src_r1, src_r2);
    temp3 = _mm_sub_epi32(src_r0, src_r3);

    src_r0 = _mm_add_epi32(temp0, temp1);
    src_r1 = _mm_add_epi32(temp2, temp3);
    src_r2 = _mm_sub_epi32(temp0, temp1);
    src_r3 = _mm_sub_epi32(temp3, temp2);

    src_r0 = _mm_srai_epi32(src_r0, 1);
    src_r1 = _mm_srai_epi32(src_r1, 1);
    src_r2 = _mm_srai_epi32(src_r2, 1);
    src_r3 = _mm_srai_epi32(src_r3, 1);

    // Quantization
    sign_reg0 = _mm_cmpgt_epi32(zero_8x16b, src_r0);        //Find sign of each value for later restoration
    sign_reg1 = _mm_cmpgt_epi32(zero_8x16b, src_r1);
    sign_reg2 = _mm_cmpgt_epi32(zero_8x16b, src_r2);
    sign_reg3 = _mm_cmpgt_epi32(zero_8x16b, src_r3);

    sign_reg0 = _mm_packs_epi32(sign_reg0, sign_reg1);      //Sign = -1 or 0 depending on <0 or >0 respectively
    sign_reg2 = _mm_packs_epi32(sign_reg2, sign_reg3);

    sign_reg0 = _mm_slli_epi16(sign_reg0, 1);               //Sign = -2 or 0 depending on <0 or >0 respectively
    sign_reg2 = _mm_slli_epi16(sign_reg2, 1);

    sign_reg0 = _mm_add_epi16(temp_1,sign_reg0);            //Sign = -1 or 1 depending on <0 or >0 respectively
    sign_reg2 = _mm_add_epi16(temp_1,sign_reg2);

    src_r0 = _mm_abs_epi32(src_r0);                         //Absolute values
    src_r1 = _mm_abs_epi32(src_r1);
    src_r2 = _mm_abs_epi32(src_r2);
    src_r3 = _mm_abs_epi32(src_r3);

    temp0 = _mm_mullo_epi32(scale_val, src_r0);             //multiply by pu2_scale_matrix[0]
    temp1 = _mm_mullo_epi32(scale_val, src_r1);
    temp2 = _mm_mullo_epi32(scale_val, src_r2);
    temp3 = _mm_mullo_epi32(scale_val, src_r3);

    temp0 = _mm_add_epi32(temp0,rnd_fact);                  //Add round factor
    temp1 = _mm_add_epi32(temp1,rnd_fact);
    temp2 = _mm_add_epi32(temp2,rnd_fact);
    temp3 = _mm_add_epi32(temp3,rnd_fact);

    temp0 = _mm_srli_epi32(temp0,u4_qbits);                 //RIght shift by qbits, unsigned variable, so shift right immediate works
    temp1 = _mm_srli_epi32(temp1,u4_qbits);
    temp2 = _mm_srli_epi32(temp2,u4_qbits);
    temp3 = _mm_srli_epi32(temp3,u4_qbits);

    temp0 =  _mm_packs_epi32 (temp0,temp1);                 //Final values are 16-bits only.
    temp2 =  _mm_packs_epi32 (temp2,temp3);

    temp0 =  _mm_sign_epi16(temp0, sign_reg0);              //Sign restoration
    temp2 =  _mm_sign_epi16(temp2, sign_reg2);

    _mm_storeu_si128((__m128i *) (&pi2_dst[0]), temp0);
    _mm_storeu_si128((__m128i *) (&pi2_dst[8]), temp2);

    cmp0 = _mm_cmpeq_epi16(temp0, zero_8x16b);
    cmp1 = _mm_cmpeq_epi16(temp2, zero_8x16b);

    mask0 = _mm_movemask_epi8(cmp0);
    mask1 = _mm_movemask_epi8(cmp1);
    u4_zero_coeff = 0;
    if(mask0)
    {
        if(mask0 == 0xffff)
            u4_zero_coeff+=8;
        else
        {
            cmp0 = _mm_and_si128(temp_1, cmp0);
            sum0 = _mm_hadd_epi16(cmp0, zero_8x16b);
            sum1 = _mm_hadd_epi16(sum0, zero_8x16b);
            sum2 = _mm_hadd_epi16(sum1, zero_8x16b);
            u4_zero_coeff += _mm_cvtsi128_si32(sum2);
        }
    }
    if(mask1)
    {
        if(mask1 == 0xffff)
            u4_zero_coeff+=8;
        else
        {
            cmp1 = _mm_and_si128(temp_1, cmp1);
            sum0 = _mm_hadd_epi16(cmp1, zero_8x16b);
            sum1 = _mm_hadd_epi16(sum0, zero_8x16b);
            sum2 = _mm_hadd_epi16(sum1, zero_8x16b);
            u4_zero_coeff += _mm_cvtsi128_si32(sum2);
        }
    }

    /* Return total nonzero coefficients in the current sub block */
    u4_nonzero_coeff = 16 - u4_zero_coeff;
    pu1_nnz[0] =  u4_nonzero_coeff;
}


/**
 *******************************************************************************
 *
 * @brief
 *   This function performs forward hadamard transform and quantization on a 2*2 block
 *   for both U and V planes
 *
 * @par Description:
 *   The function accepts source buffer and estimation buffer. From these, it
 *   computes the residue. This is residue is then transformed and quantized.
 *   The transform and quantization are in placed computed. They use the residue
 *   buffer for this.
 *
 * @param[in] pu1_src
 *   Pointer to source sub-block
 *
 * @param[in] pu1_pred
 *   Pointer to prediction sub-block
 *
 * @param[in] pi2_out
 *   Pointer to residual sub-block
 *
 * @param[in] src_strd
 *   Source stride
 *
 * @param[in] pred_strd
 *   Prediction stride
 *
 * @param[in] dst_strd
 *   Destination stride
 *
 * @param[in] u4_qbits
 *    QP_BITS_h264_4x4 + floor(QP/6)
 *
 * @param[in] pu2_threshold_matrix
 *   Pointer to Forward Quant Threshold Matrix
 *
 * @param[in] pu2_scale_matrix
 *   Pointer to Forward Quant Scale Matrix
 *
 * @param[in] u4_round_factor
 *   Quantization Round factor
 *
 * @param[out] pu1_nnz
 *   Total non-zero coefficients in the current sub-block
 *
 * @returns
 *
 * @remarks
 *   NNZ for dc is populated at 0 and 5th position of pu1_nnz
 *
 */

void ih264_hadamard_quant_2x2_uv_sse42(WORD16 *pi2_src, WORD16 *pi2_dst,
                            const UWORD16 *pu2_scale_matrix,
                            const UWORD16 *pu2_threshold_matrix, UWORD32 u4_qbits,
                            UWORD32 u4_round_factor,UWORD8  *pu1_nnz)
{
    WORD32 val, nonzero_coeff_0=0, nonzero_coeff_1=0;
    __m128i cmp, cmp0, cmp1;
    __m128i sum0, sum1;
    WORD32 mask, mask0, mask1;
    __m128i src, plane_0, plane_1, temp0, temp1, sign_reg;
    __m128i zero_8x16b = _mm_setzero_si128();
    __m128i scale_val = _mm_set1_epi32(pu2_scale_matrix[0]);
    __m128i sign_reg0, sign_reg1;
    __m128i temp_1 = _mm_set1_epi16(1);
    __m128i rnd_fact = _mm_set1_epi32(u4_round_factor);

    UNUSED (pu2_threshold_matrix);

    src = _mm_loadu_si128((__m128i *)pi2_src);          //a0 a1 a2 a3 b0 b1 b2 b3
    sign_reg = _mm_cmpgt_epi16(zero_8x16b, src);
    plane_0 = _mm_unpacklo_epi16(src, sign_reg);        //a0 a1 a2 a3 -- 32 bits
    plane_1 = _mm_unpackhi_epi16(src, sign_reg);        //b0 b1 b2 b3 -- 32 bits

    temp0 = _mm_hadd_epi32(plane_0, plane_1);           //a0+a1 a2+a3 b0+b1 b2+b3
    temp1 = _mm_hsub_epi32(plane_0, plane_1);           //a0-a1 a2-a3 b0-b1 b2-b3

    plane_0 = _mm_hadd_epi32(temp0, temp1);             //a0+a1+a2+a3 b0+b1+b2+b3 a0-a1+a2-a3 b0-b1+b2-b3
    plane_1 = _mm_hsub_epi32(temp0, temp1);             //a0+a1-a2-a3 b0+b1-b2-b3 a0-a1-a2+a3 b0-b1-b2+b3

    temp0 = _mm_unpacklo_epi32(plane_0, plane_1);       //a0+a1+a2+a3 a0+a1-a2-a3 b0+b1+b2+b3 b0+b1-b2-b3
    temp1 = _mm_unpackhi_epi32(plane_0, plane_1);       //a0-a1+a2-a3 a0-a1-a2+a3 b0-b1+b2-b3 b0-b1-b2+b3

    plane_0 = _mm_unpacklo_epi64(temp0, temp1);         //a0+a1+a2+a3 a0+a1-a2-a3 a0-a1+a2-a3 a0-a1-a2+a3
    plane_1 = _mm_unpackhi_epi64(temp0, temp1);         //b0+b1+b2+b3 b0+b1-b2-b3 b0-b1+b2-b3 b0-b1-b2+b3

    plane_0 = _mm_shuffle_epi32(plane_0, 0xd8);         //a0+a1+a2+a3 a0-a1+a2-a3 a0+a1-a2-a3 a0-a1-a2+a3
    plane_1 = _mm_shuffle_epi32(plane_1, 0xd8);         //b0+b1+b2+b3 b0-b1+b2-b3 b0+b1-b2-b3 b0-b1-b2+b3
    // Quantization
    sign_reg0 = _mm_cmpgt_epi32(zero_8x16b, plane_0);       //Find sign of each value for later restoration
    sign_reg1 = _mm_cmpgt_epi32(zero_8x16b, plane_1);

    sign_reg0 = _mm_packs_epi32(sign_reg0, sign_reg1);      //Sign = -1 or 0 depending on <0 or >0 respectively
    sign_reg0 = _mm_slli_epi16(sign_reg0, 1);               //Sign = -2 or 0 depending on <0 or >0 respectively
    sign_reg0 = _mm_add_epi16(temp_1,sign_reg0);            //Sign = -1 or 1 depending on <0 or >0 respectively

    plane_0 = _mm_abs_epi32(plane_0);                           //Absolute values
    plane_1 = _mm_abs_epi32(plane_1);

    temp0 = _mm_mullo_epi32(scale_val, plane_0);                //multiply by pu2_scale_matrix[0]
    temp1 = _mm_mullo_epi32(scale_val, plane_1);                //multiply by pu2_scale_matrix[0]

    temp0 = _mm_add_epi32(temp0,rnd_fact);                  //Add round factor
    temp1 = _mm_add_epi32(temp1,rnd_fact);

    temp0 = _mm_srli_epi32(temp0,u4_qbits);                 //RIght shift by qbits, unsigned variable, so shift right immediate works
    temp1 = _mm_srli_epi32(temp1,u4_qbits);

    temp0 =  _mm_packs_epi32 (temp0,temp1);                 //Final values are 16-bits only.
    temp0 =  _mm_sign_epi16(temp0, sign_reg0);              //Sign restoration

    _mm_storeu_si128((__m128i *) (&pi2_dst[0]), temp0);

    cmp = _mm_cmpeq_epi16(temp0, zero_8x16b);
    mask = _mm_movemask_epi8(cmp);
    mask0 = mask & 0xff;
    mask1 = mask>>8;
    if(mask0)
    {
        if(mask0 == 0xff)
            nonzero_coeff_0 += 4;
        else
        {
            cmp0 = _mm_and_si128(temp_1, cmp);
            sum0 = _mm_hadd_epi16(cmp0, zero_8x16b);
            sum1 = _mm_hadd_epi16(sum0, zero_8x16b);
            val = _mm_cvtsi128_si32(sum1);
            val = val & 0xffff;
            nonzero_coeff_0 += val;
        }
    }
    if(mask1)
    {
        if(mask1 == 0xff)
            nonzero_coeff_1 += 4;
        else
        {
            cmp1 = _mm_srli_si128(cmp, 8);
            cmp1 = _mm_and_si128(temp_1, cmp1);
            sum0 = _mm_hadd_epi16(cmp1, zero_8x16b);
            sum1 = _mm_hadd_epi16(sum0, zero_8x16b);
            nonzero_coeff_1 += _mm_cvtsi128_si32(sum1);
        }
    }

    pu1_nnz[0] = 4 - nonzero_coeff_0;
    pu1_nnz[1] = 4 - nonzero_coeff_1;

}