#ifndef JEMALLOC_INTERNAL_MUTEX_H
#define JEMALLOC_INTERNAL_MUTEX_H
#include "jemalloc/internal/atomic.h"
#include "jemalloc/internal/mutex_prof.h"
#include "jemalloc/internal/tsd.h"
#include "jemalloc/internal/witness.h"
typedef enum {
/* Can only acquire one mutex of a given witness rank at a time. */
malloc_mutex_rank_exclusive,
/*
* Can acquire multiple mutexes of the same witness rank, but in
* address-ascending order only.
*/
malloc_mutex_address_ordered
} malloc_mutex_lock_order_t;
typedef struct malloc_mutex_s malloc_mutex_t;
struct malloc_mutex_s {
union {
struct {
/*
* prof_data is defined first to reduce cacheline
* bouncing: the data is not touched by the mutex holder
* during unlocking, while might be modified by
* contenders. Having it before the mutex itself could
* avoid prefetching a modified cacheline (for the
* unlocking thread).
*/
mutex_prof_data_t prof_data;
#ifdef _WIN32
# if _WIN32_WINNT >= 0x0600
SRWLOCK lock;
# else
CRITICAL_SECTION lock;
# endif
#elif (defined(JEMALLOC_OS_UNFAIR_LOCK))
os_unfair_lock lock;
#elif (defined(JEMALLOC_OSSPIN))
OSSpinLock lock;
#elif (defined(JEMALLOC_MUTEX_INIT_CB))
pthread_mutex_t lock;
malloc_mutex_t *postponed_next;
#else
pthread_mutex_t lock;
#endif
};
/*
* We only touch witness when configured w/ debug. However we
* keep the field in a union when !debug so that we don't have
* to pollute the code base with #ifdefs, while avoid paying the
* memory cost.
*/
#if !defined(JEMALLOC_DEBUG)
witness_t witness;
malloc_mutex_lock_order_t lock_order;
#endif
};
#if defined(JEMALLOC_DEBUG)
witness_t witness;
malloc_mutex_lock_order_t lock_order;
#endif
};
/*
* Based on benchmark results, a fixed spin with this amount of retries works
* well for our critical sections.
*/
#define MALLOC_MUTEX_MAX_SPIN 250
#ifdef _WIN32
# if _WIN32_WINNT >= 0x0600
# define MALLOC_MUTEX_LOCK(m) AcquireSRWLockExclusive(&(m)->lock)
# define MALLOC_MUTEX_UNLOCK(m) ReleaseSRWLockExclusive(&(m)->lock)
# define MALLOC_MUTEX_TRYLOCK(m) (!TryAcquireSRWLockExclusive(&(m)->lock))
# else
# define MALLOC_MUTEX_LOCK(m) EnterCriticalSection(&(m)->lock)
# define MALLOC_MUTEX_UNLOCK(m) LeaveCriticalSection(&(m)->lock)
# define MALLOC_MUTEX_TRYLOCK(m) (!TryEnterCriticalSection(&(m)->lock))
# endif
#elif (defined(JEMALLOC_OS_UNFAIR_LOCK))
# define MALLOC_MUTEX_LOCK(m) os_unfair_lock_lock(&(m)->lock)
# define MALLOC_MUTEX_UNLOCK(m) os_unfair_lock_unlock(&(m)->lock)
# define MALLOC_MUTEX_TRYLOCK(m) (!os_unfair_lock_trylock(&(m)->lock))
#elif (defined(JEMALLOC_OSSPIN))
# define MALLOC_MUTEX_LOCK(m) OSSpinLockLock(&(m)->lock)
# define MALLOC_MUTEX_UNLOCK(m) OSSpinLockUnlock(&(m)->lock)
# define MALLOC_MUTEX_TRYLOCK(m) (!OSSpinLockTry(&(m)->lock))
#else
# define MALLOC_MUTEX_LOCK(m) pthread_mutex_lock(&(m)->lock)
# define MALLOC_MUTEX_UNLOCK(m) pthread_mutex_unlock(&(m)->lock)
# define MALLOC_MUTEX_TRYLOCK(m) (pthread_mutex_trylock(&(m)->lock) != 0)
#endif
#define LOCK_PROF_DATA_INITIALIZER \
{NSTIME_ZERO_INITIALIZER, NSTIME_ZERO_INITIALIZER, 0, 0, 0, \
ATOMIC_INIT(0), 0, NULL, 0}
#ifdef _WIN32
# define MALLOC_MUTEX_INITIALIZER
#elif (defined(JEMALLOC_OS_UNFAIR_LOCK))
# define MALLOC_MUTEX_INITIALIZER \
{{{LOCK_PROF_DATA_INITIALIZER, OS_UNFAIR_LOCK_INIT}}, \
WITNESS_INITIALIZER("mutex", WITNESS_RANK_OMIT)}
#elif (defined(JEMALLOC_OSSPIN))
# define MALLOC_MUTEX_INITIALIZER \
{{{LOCK_PROF_DATA_INITIALIZER, 0}}, \
WITNESS_INITIALIZER("mutex", WITNESS_RANK_OMIT)}
#elif (defined(JEMALLOC_MUTEX_INIT_CB))
# define MALLOC_MUTEX_INITIALIZER \
{{{LOCK_PROF_DATA_INITIALIZER, PTHREAD_MUTEX_INITIALIZER, NULL}}, \
WITNESS_INITIALIZER("mutex", WITNESS_RANK_OMIT)}
#else
# define MALLOC_MUTEX_TYPE PTHREAD_MUTEX_DEFAULT
# define MALLOC_MUTEX_INITIALIZER \
{{{LOCK_PROF_DATA_INITIALIZER, PTHREAD_MUTEX_INITIALIZER}}, \
WITNESS_INITIALIZER("mutex", WITNESS_RANK_OMIT)}
#endif
#ifdef JEMALLOC_LAZY_LOCK
extern bool isthreaded;
#else
# undef isthreaded /* Undo private_namespace.h definition. */
# define isthreaded true
#endif
bool malloc_mutex_init(malloc_mutex_t *mutex, const char *name,
witness_rank_t rank, malloc_mutex_lock_order_t lock_order);
void malloc_mutex_prefork(tsdn_t *tsdn, malloc_mutex_t *mutex);
void malloc_mutex_postfork_parent(tsdn_t *tsdn, malloc_mutex_t *mutex);
void malloc_mutex_postfork_child(tsdn_t *tsdn, malloc_mutex_t *mutex);
bool malloc_mutex_boot(void);
void malloc_mutex_prof_data_reset(tsdn_t *tsdn, malloc_mutex_t *mutex);
void malloc_mutex_lock_slow(malloc_mutex_t *mutex);
static inline void
malloc_mutex_lock_final(malloc_mutex_t *mutex) {
MALLOC_MUTEX_LOCK(mutex);
}
static inline bool
malloc_mutex_trylock_final(malloc_mutex_t *mutex) {
return MALLOC_MUTEX_TRYLOCK(mutex);
}
static inline void
mutex_owner_stats_update(tsdn_t *tsdn, malloc_mutex_t *mutex) {
if (config_stats) {
mutex_prof_data_t *data = &mutex->prof_data;
data->n_lock_ops++;
if (data->prev_owner != tsdn) {
data->prev_owner = tsdn;
data->n_owner_switches++;
}
}
}
/* Trylock: return false if the lock is successfully acquired. */
static inline bool
malloc_mutex_trylock(tsdn_t *tsdn, malloc_mutex_t *mutex) {
witness_assert_not_owner(tsdn_witness_tsdp_get(tsdn), &mutex->witness);
if (isthreaded) {
if (malloc_mutex_trylock_final(mutex)) {
return true;
}
mutex_owner_stats_update(tsdn, mutex);
}
witness_lock(tsdn_witness_tsdp_get(tsdn), &mutex->witness);
return false;
}
/* Aggregate lock prof data. */
static inline void
malloc_mutex_prof_merge(mutex_prof_data_t *sum, mutex_prof_data_t *data) {
nstime_add(&sum->tot_wait_time, &data->tot_wait_time);
if (nstime_compare(&sum->max_wait_time, &data->max_wait_time) < 0) {
nstime_copy(&sum->max_wait_time, &data->max_wait_time);
}
sum->n_wait_times += data->n_wait_times;
sum->n_spin_acquired += data->n_spin_acquired;
if (sum->max_n_thds < data->max_n_thds) {
sum->max_n_thds = data->max_n_thds;
}
uint32_t cur_n_waiting_thds = atomic_load_u32(&sum->n_waiting_thds,
ATOMIC_RELAXED);
uint32_t new_n_waiting_thds = cur_n_waiting_thds + atomic_load_u32(
&data->n_waiting_thds, ATOMIC_RELAXED);
atomic_store_u32(&sum->n_waiting_thds, new_n_waiting_thds,
ATOMIC_RELAXED);
sum->n_owner_switches += data->n_owner_switches;
sum->n_lock_ops += data->n_lock_ops;
}
static inline void
malloc_mutex_lock(tsdn_t *tsdn, malloc_mutex_t *mutex) {
witness_assert_not_owner(tsdn_witness_tsdp_get(tsdn), &mutex->witness);
if (isthreaded) {
if (malloc_mutex_trylock_final(mutex)) {
malloc_mutex_lock_slow(mutex);
}
mutex_owner_stats_update(tsdn, mutex);
}
witness_lock(tsdn_witness_tsdp_get(tsdn), &mutex->witness);
}
static inline void
malloc_mutex_unlock(tsdn_t *tsdn, malloc_mutex_t *mutex) {
witness_unlock(tsdn_witness_tsdp_get(tsdn), &mutex->witness);
if (isthreaded) {
MALLOC_MUTEX_UNLOCK(mutex);
}
}
static inline void
malloc_mutex_assert_owner(tsdn_t *tsdn, malloc_mutex_t *mutex) {
witness_assert_owner(tsdn_witness_tsdp_get(tsdn), &mutex->witness);
}
static inline void
malloc_mutex_assert_not_owner(tsdn_t *tsdn, malloc_mutex_t *mutex) {
witness_assert_not_owner(tsdn_witness_tsdp_get(tsdn), &mutex->witness);
}
/* Copy the prof data from mutex for processing. */
static inline void
malloc_mutex_prof_read(tsdn_t *tsdn, mutex_prof_data_t *data,
malloc_mutex_t *mutex) {
mutex_prof_data_t *source = &mutex->prof_data;
/* Can only read holding the mutex. */
malloc_mutex_assert_owner(tsdn, mutex);
/*
* Not *really* allowed (we shouldn't be doing non-atomic loads of
* atomic data), but the mutex protection makes this safe, and writing
* a member-for-member copy is tedious for this situation.
*/
*data = *source;
/* n_wait_thds is not reported (modified w/o locking). */
atomic_store_u32(&data->n_waiting_thds, 0, ATOMIC_RELAXED);
}
#endif /* JEMALLOC_INTERNAL_MUTEX_H */