// © 2016 and later: Unicode, Inc. and others.
// License & terms of use: http://www.unicode.org/copyright.html
/*
******************************************************************************
* Copyright (C) 1997-2015, International Business Machines
* Corporation and others. All Rights Reserved.
******************************************************************************
* file name: nfsubs.cpp
* encoding: UTF-8
* tab size: 8 (not used)
* indentation:4
*
* Modification history
* Date Name Comments
* 10/11/2001 Doug Ported from ICU4J
*/
#include <stdio.h>
#include "utypeinfo.h" // for 'typeid' to work
#include "nfsubs.h"
#include "fmtableimp.h"
#include "putilimp.h"
#include "number_decimalquantity.h"
#if U_HAVE_RBNF
static const UChar gLessThan = 0x003c;
static const UChar gEquals = 0x003d;
static const UChar gGreaterThan = 0x003e;
static const UChar gPercent = 0x0025;
static const UChar gPound = 0x0023;
static const UChar gZero = 0x0030;
static const UChar gSpace = 0x0020;
static const UChar gEqualsEquals[] =
{
0x3D, 0x3D, 0
}; /* "==" */
static const UChar gGreaterGreaterGreaterThan[] =
{
0x3E, 0x3E, 0x3E, 0
}; /* ">>>" */
static const UChar gGreaterGreaterThan[] =
{
0x3E, 0x3E, 0
}; /* ">>" */
U_NAMESPACE_BEGIN
using number::impl::DecimalQuantity;
class SameValueSubstitution : public NFSubstitution {
public:
SameValueSubstitution(int32_t pos,
const NFRuleSet* ruleset,
const UnicodeString& description,
UErrorCode& status);
virtual ~SameValueSubstitution();
virtual int64_t transformNumber(int64_t number) const { return number; }
virtual double transformNumber(double number) const { return number; }
virtual double composeRuleValue(double newRuleValue, double /*oldRuleValue*/) const { return newRuleValue; }
virtual double calcUpperBound(double oldUpperBound) const { return oldUpperBound; }
virtual UChar tokenChar() const { return (UChar)0x003d; } // '='
public:
static UClassID getStaticClassID(void);
virtual UClassID getDynamicClassID(void) const;
};
SameValueSubstitution::~SameValueSubstitution() {}
class MultiplierSubstitution : public NFSubstitution {
int64_t divisor;
public:
MultiplierSubstitution(int32_t _pos,
const NFRule *rule,
const NFRuleSet* _ruleSet,
const UnicodeString& description,
UErrorCode& status)
: NFSubstitution(_pos, _ruleSet, description, status), divisor(rule->getDivisor())
{
if (divisor == 0) {
status = U_PARSE_ERROR;
}
}
virtual ~MultiplierSubstitution();
virtual void setDivisor(int32_t radix, int16_t exponent, UErrorCode& status) {
divisor = util64_pow(radix, exponent);
if(divisor == 0) {
status = U_PARSE_ERROR;
}
}
virtual UBool operator==(const NFSubstitution& rhs) const;
virtual int64_t transformNumber(int64_t number) const {
return number / divisor;
}
virtual double transformNumber(double number) const {
if (getRuleSet()) {
return uprv_floor(number / divisor);
} else {
return number / divisor;
}
}
virtual double composeRuleValue(double newRuleValue, double /*oldRuleValue*/) const {
return newRuleValue * divisor;
}
virtual double calcUpperBound(double /*oldUpperBound*/) const { return static_cast<double>(divisor); }
virtual UChar tokenChar() const { return (UChar)0x003c; } // '<'
public:
static UClassID getStaticClassID(void);
virtual UClassID getDynamicClassID(void) const;
};
MultiplierSubstitution::~MultiplierSubstitution() {}
class ModulusSubstitution : public NFSubstitution {
int64_t divisor;
const NFRule* ruleToUse;
public:
ModulusSubstitution(int32_t pos,
const NFRule* rule,
const NFRule* rulePredecessor,
const NFRuleSet* ruleSet,
const UnicodeString& description,
UErrorCode& status);
virtual ~ModulusSubstitution();
virtual void setDivisor(int32_t radix, int16_t exponent, UErrorCode& status) {
divisor = util64_pow(radix, exponent);
if (divisor == 0) {
status = U_PARSE_ERROR;
}
}
virtual UBool operator==(const NFSubstitution& rhs) const;
virtual void doSubstitution(int64_t number, UnicodeString& toInsertInto, int32_t pos, int32_t recursionCount, UErrorCode& status) const;
virtual void doSubstitution(double number, UnicodeString& toInsertInto, int32_t pos, int32_t recursionCount, UErrorCode& status) const;
virtual int64_t transformNumber(int64_t number) const { return number % divisor; }
virtual double transformNumber(double number) const { return uprv_fmod(number, static_cast<double>(divisor)); }
virtual UBool doParse(const UnicodeString& text,
ParsePosition& parsePosition,
double baseValue,
double upperBound,
UBool lenientParse,
uint32_t nonNumericalExecutedRuleMask,
Formattable& result) const;
virtual double composeRuleValue(double newRuleValue, double oldRuleValue) const {
return oldRuleValue - uprv_fmod(oldRuleValue, static_cast<double>(divisor)) + newRuleValue;
}
virtual double calcUpperBound(double /*oldUpperBound*/) const { return static_cast<double>(divisor); }
virtual UBool isModulusSubstitution() const { return TRUE; }
virtual UChar tokenChar() const { return (UChar)0x003e; } // '>'
virtual void toString(UnicodeString& result) const;
public:
static UClassID getStaticClassID(void);
virtual UClassID getDynamicClassID(void) const;
};
ModulusSubstitution::~ModulusSubstitution() {}
class IntegralPartSubstitution : public NFSubstitution {
public:
IntegralPartSubstitution(int32_t _pos,
const NFRuleSet* _ruleSet,
const UnicodeString& description,
UErrorCode& status)
: NFSubstitution(_pos, _ruleSet, description, status) {}
virtual ~IntegralPartSubstitution();
virtual int64_t transformNumber(int64_t number) const { return number; }
virtual double transformNumber(double number) const { return uprv_floor(number); }
virtual double composeRuleValue(double newRuleValue, double oldRuleValue) const { return newRuleValue + oldRuleValue; }
virtual double calcUpperBound(double /*oldUpperBound*/) const { return DBL_MAX; }
virtual UChar tokenChar() const { return (UChar)0x003c; } // '<'
public:
static UClassID getStaticClassID(void);
virtual UClassID getDynamicClassID(void) const;
};
IntegralPartSubstitution::~IntegralPartSubstitution() {}
class FractionalPartSubstitution : public NFSubstitution {
UBool byDigits;
UBool useSpaces;
enum { kMaxDecimalDigits = 8 };
public:
FractionalPartSubstitution(int32_t pos,
const NFRuleSet* ruleSet,
const UnicodeString& description,
UErrorCode& status);
virtual ~FractionalPartSubstitution();
virtual UBool operator==(const NFSubstitution& rhs) const;
virtual void doSubstitution(double number, UnicodeString& toInsertInto, int32_t pos, int32_t recursionCount, UErrorCode& status) const;
virtual void doSubstitution(int64_t /*number*/, UnicodeString& /*toInsertInto*/, int32_t /*_pos*/, int32_t /*recursionCount*/, UErrorCode& /*status*/) const {}
virtual int64_t transformNumber(int64_t /*number*/) const { return 0; }
virtual double transformNumber(double number) const { return number - uprv_floor(number); }
virtual UBool doParse(const UnicodeString& text,
ParsePosition& parsePosition,
double baseValue,
double upperBound,
UBool lenientParse,
uint32_t nonNumericalExecutedRuleMask,
Formattable& result) const;
virtual double composeRuleValue(double newRuleValue, double oldRuleValue) const { return newRuleValue + oldRuleValue; }
virtual double calcUpperBound(double /*oldUpperBound*/) const { return 0.0; }
virtual UChar tokenChar() const { return (UChar)0x003e; } // '>'
public:
static UClassID getStaticClassID(void);
virtual UClassID getDynamicClassID(void) const;
};
FractionalPartSubstitution::~FractionalPartSubstitution() {}
class AbsoluteValueSubstitution : public NFSubstitution {
public:
AbsoluteValueSubstitution(int32_t _pos,
const NFRuleSet* _ruleSet,
const UnicodeString& description,
UErrorCode& status)
: NFSubstitution(_pos, _ruleSet, description, status) {}
virtual ~AbsoluteValueSubstitution();
virtual int64_t transformNumber(int64_t number) const { return number >= 0 ? number : -number; }
virtual double transformNumber(double number) const { return uprv_fabs(number); }
virtual double composeRuleValue(double newRuleValue, double /*oldRuleValue*/) const { return -newRuleValue; }
virtual double calcUpperBound(double /*oldUpperBound*/) const { return DBL_MAX; }
virtual UChar tokenChar() const { return (UChar)0x003e; } // '>'
public:
static UClassID getStaticClassID(void);
virtual UClassID getDynamicClassID(void) const;
};
AbsoluteValueSubstitution::~AbsoluteValueSubstitution() {}
class NumeratorSubstitution : public NFSubstitution {
double denominator;
int64_t ldenominator;
UBool withZeros;
public:
static inline UnicodeString fixdesc(const UnicodeString& desc) {
if (desc.endsWith(LTLT, 2)) {
UnicodeString result(desc, 0, desc.length()-1);
return result;
}
return desc;
}
NumeratorSubstitution(int32_t _pos,
double _denominator,
NFRuleSet* _ruleSet,
const UnicodeString& description,
UErrorCode& status)
: NFSubstitution(_pos, _ruleSet, fixdesc(description), status), denominator(_denominator)
{
ldenominator = util64_fromDouble(denominator);
withZeros = description.endsWith(LTLT, 2);
}
virtual ~NumeratorSubstitution();
virtual UBool operator==(const NFSubstitution& rhs) const;
virtual int64_t transformNumber(int64_t number) const { return number * ldenominator; }
virtual double transformNumber(double number) const { return uprv_round(number * denominator); }
virtual void doSubstitution(int64_t /*number*/, UnicodeString& /*toInsertInto*/, int32_t /*_pos*/, int32_t /*recursionCount*/, UErrorCode& /*status*/) const {}
virtual void doSubstitution(double number, UnicodeString& toInsertInto, int32_t pos, int32_t recursionCount, UErrorCode& status) const;
virtual UBool doParse(const UnicodeString& text,
ParsePosition& parsePosition,
double baseValue,
double upperBound,
UBool /*lenientParse*/,
uint32_t nonNumericalExecutedRuleMask,
Formattable& result) const;
virtual double composeRuleValue(double newRuleValue, double oldRuleValue) const { return newRuleValue / oldRuleValue; }
virtual double calcUpperBound(double /*oldUpperBound*/) const { return denominator; }
virtual UChar tokenChar() const { return (UChar)0x003c; } // '<'
private:
static const UChar LTLT[2];
public:
static UClassID getStaticClassID(void);
virtual UClassID getDynamicClassID(void) const;
};
NumeratorSubstitution::~NumeratorSubstitution() {}
NFSubstitution*
NFSubstitution::makeSubstitution(int32_t pos,
const NFRule* rule,
const NFRule* predecessor,
const NFRuleSet* ruleSet,
const RuleBasedNumberFormat* formatter,
const UnicodeString& description,
UErrorCode& status)
{
// if the description is empty, return a NullSubstitution
if (description.length() == 0) {
return NULL;
}
switch (description.charAt(0)) {
// if the description begins with '<'...
case gLessThan:
// throw an exception if the rule is a negative number
// rule
if (rule->getBaseValue() == NFRule::kNegativeNumberRule) {
// throw new IllegalArgumentException("<< not allowed in negative-number rule");
status = U_PARSE_ERROR;
return NULL;
}
// if the rule is a fraction rule, return an
// IntegralPartSubstitution
else if (rule->getBaseValue() == NFRule::kImproperFractionRule
|| rule->getBaseValue() == NFRule::kProperFractionRule
|| rule->getBaseValue() == NFRule::kMasterRule) {
return new IntegralPartSubstitution(pos, ruleSet, description, status);
}
// if the rule set containing the rule is a fraction
// rule set, return a NumeratorSubstitution
else if (ruleSet->isFractionRuleSet()) {
return new NumeratorSubstitution(pos, (double)rule->getBaseValue(),
formatter->getDefaultRuleSet(), description, status);
}
// otherwise, return a MultiplierSubstitution
else {
return new MultiplierSubstitution(pos, rule, ruleSet,
description, status);
}
// if the description begins with '>'...
case gGreaterThan:
// if the rule is a negative-number rule, return
// an AbsoluteValueSubstitution
if (rule->getBaseValue() == NFRule::kNegativeNumberRule) {
return new AbsoluteValueSubstitution(pos, ruleSet, description, status);
}
// if the rule is a fraction rule, return a
// FractionalPartSubstitution
else if (rule->getBaseValue() == NFRule::kImproperFractionRule
|| rule->getBaseValue() == NFRule::kProperFractionRule
|| rule->getBaseValue() == NFRule::kMasterRule) {
return new FractionalPartSubstitution(pos, ruleSet, description, status);
}
// if the rule set owning the rule is a fraction rule set,
// throw an exception
else if (ruleSet->isFractionRuleSet()) {
// throw new IllegalArgumentException(">> not allowed in fraction rule set");
status = U_PARSE_ERROR;
return NULL;
}
// otherwise, return a ModulusSubstitution
else {
return new ModulusSubstitution(pos, rule, predecessor,
ruleSet, description, status);
}
// if the description begins with '=', always return a
// SameValueSubstitution
case gEquals:
return new SameValueSubstitution(pos, ruleSet, description, status);
// and if it's anything else, throw an exception
default:
// throw new IllegalArgumentException("Illegal substitution character");
status = U_PARSE_ERROR;
}
return NULL;
}
NFSubstitution::NFSubstitution(int32_t _pos,
const NFRuleSet* _ruleSet,
const UnicodeString& description,
UErrorCode& status)
: pos(_pos), ruleSet(NULL), numberFormat(NULL)
{
// the description should begin and end with the same character.
// If it doesn't that's a syntax error. Otherwise,
// makeSubstitution() was the only thing that needed to know
// about these characters, so strip them off
UnicodeString workingDescription(description);
if (description.length() >= 2
&& description.charAt(0) == description.charAt(description.length() - 1))
{
workingDescription.remove(description.length() - 1, 1);
workingDescription.remove(0, 1);
}
else if (description.length() != 0) {
// throw new IllegalArgumentException("Illegal substitution syntax");
status = U_PARSE_ERROR;
return;
}
if (workingDescription.length() == 0) {
// if the description was just two paired token characters
// (i.e., "<<" or ">>"), it uses the rule set it belongs to to
// format its result
this->ruleSet = _ruleSet;
}
else if (workingDescription.charAt(0) == gPercent) {
// if the description contains a rule set name, that's the rule
// set we use to format the result: get a reference to the
// names rule set
this->ruleSet = _ruleSet->getOwner()->findRuleSet(workingDescription, status);
}
else if (workingDescription.charAt(0) == gPound || workingDescription.charAt(0) ==gZero) {
// if the description begins with 0 or #, treat it as a
// DecimalFormat pattern, and initialize a DecimalFormat with
// that pattern (then set it to use the DecimalFormatSymbols
// belonging to our formatter)
const DecimalFormatSymbols* sym = _ruleSet->getOwner()->getDecimalFormatSymbols();
if (!sym) {
status = U_MISSING_RESOURCE_ERROR;
return;
}
DecimalFormat *tempNumberFormat = new DecimalFormat(workingDescription, *sym, status);
/* test for NULL */
if (!tempNumberFormat) {
status = U_MEMORY_ALLOCATION_ERROR;
return;
}
if (U_FAILURE(status)) {
delete tempNumberFormat;
return;
}
this->numberFormat = tempNumberFormat;
}
else if (workingDescription.charAt(0) == gGreaterThan) {
// if the description is ">>>", this substitution bypasses the
// usual rule-search process and always uses the rule that precedes
// it in its own rule set's rule list (this is used for place-value
// notations: formats where you want to see a particular part of
// a number even when it's 0)
// this causes problems when >>> is used in a frationalPartSubstitution
// this->ruleSet = NULL;
this->ruleSet = _ruleSet;
this->numberFormat = NULL;
}
else {
// and of the description is none of these things, it's a syntax error
// throw new IllegalArgumentException("Illegal substitution syntax");
status = U_PARSE_ERROR;
}
}
NFSubstitution::~NFSubstitution()
{
delete numberFormat;
numberFormat = NULL;
}
/**
* Set's the substitution's divisor. Used by NFRule.setBaseValue().
* A no-op for all substitutions except multiplier and modulus
* substitutions.
* @param radix The radix of the divisor
* @param exponent The exponent of the divisor
*/
void
NFSubstitution::setDivisor(int32_t /*radix*/, int16_t /*exponent*/, UErrorCode& /*status*/) {
// a no-op for all substitutions except multiplier and modulus substitutions
}
void
NFSubstitution::setDecimalFormatSymbols(const DecimalFormatSymbols &newSymbols, UErrorCode& /*status*/) {
if (numberFormat != NULL) {
numberFormat->setDecimalFormatSymbols(newSymbols);
}
}
//-----------------------------------------------------------------------
// boilerplate
//-----------------------------------------------------------------------
UOBJECT_DEFINE_RTTI_IMPLEMENTATION(NFSubstitution)
/**
* Compares two substitutions for equality
* @param The substitution to compare this one to
* @return true if the two substitutions are functionally equivalent
*/
UBool
NFSubstitution::operator==(const NFSubstitution& rhs) const
{
// compare class and all of the fields all substitutions have
// in common
// this should be called by subclasses before their own equality tests
return typeid(*this) == typeid(rhs)
&& pos == rhs.pos
&& (ruleSet == NULL) == (rhs.ruleSet == NULL)
// && ruleSet == rhs.ruleSet causes circularity, other checks to make instead?
&& (numberFormat == NULL
? (rhs.numberFormat == NULL)
: (*numberFormat == *rhs.numberFormat));
}
/**
* Returns a textual description of the substitution
* @return A textual description of the substitution. This might
* not be identical to the description it was created from, but
* it'll produce the same result.
*/
void
NFSubstitution::toString(UnicodeString& text) const
{
// use tokenChar() to get the character at the beginning and
// end of the substitutin token. In between them will go
// either the name of the rule set it uses, or the pattern of
// the DecimalFormat it uses
text.remove();
text.append(tokenChar());
UnicodeString temp;
if (ruleSet != NULL) {
ruleSet->getName(temp);
} else if (numberFormat != NULL) {
numberFormat->toPattern(temp);
}
text.append(temp);
text.append(tokenChar());
}
//-----------------------------------------------------------------------
// formatting
//-----------------------------------------------------------------------
/**
* Performs a mathematical operation on the number, formats it using
* either ruleSet or decimalFormat, and inserts the result into
* toInsertInto.
* @param number The number being formatted.
* @param toInsertInto The string we insert the result into
* @param pos The position in toInsertInto where the owning rule's
* rule text begins (this value is added to this substitution's
* position to determine exactly where to insert the new text)
*/
void
NFSubstitution::doSubstitution(int64_t number, UnicodeString& toInsertInto, int32_t _pos, int32_t recursionCount, UErrorCode& status) const
{
if (ruleSet != NULL) {
// Perform a transformation on the number that is dependent
// on the type of substitution this is, then just call its
// rule set's format() method to format the result
ruleSet->format(transformNumber(number), toInsertInto, _pos + this->pos, recursionCount, status);
} else if (numberFormat != NULL) {
if (number <= MAX_INT64_IN_DOUBLE) {
// or perform the transformation on the number (preserving
// the result's fractional part if the formatter it set
// to show it), then use that formatter's format() method
// to format the result
double numberToFormat = transformNumber((double)number);
if (numberFormat->getMaximumFractionDigits() == 0) {
numberToFormat = uprv_floor(numberToFormat);
}
UnicodeString temp;
numberFormat->format(numberToFormat, temp, status);
toInsertInto.insert(_pos + this->pos, temp);
}
else {
// We have gone beyond double precision. Something has to give.
// We're favoring accuracy of the large number over potential rules
// that round like a CompactDecimalFormat, which is not a common use case.
//
// Perform a transformation on the number that is dependent
// on the type of substitution this is, then just call its
// rule set's format() method to format the result
int64_t numberToFormat = transformNumber(number);
UnicodeString temp;
numberFormat->format(numberToFormat, temp, status);
toInsertInto.insert(_pos + this->pos, temp);
}
}
}
/**
* Performs a mathematical operation on the number, formats it using
* either ruleSet or decimalFormat, and inserts the result into
* toInsertInto.
* @param number The number being formatted.
* @param toInsertInto The string we insert the result into
* @param pos The position in toInsertInto where the owning rule's
* rule text begins (this value is added to this substitution's
* position to determine exactly where to insert the new text)
*/
void
NFSubstitution::doSubstitution(double number, UnicodeString& toInsertInto, int32_t _pos, int32_t recursionCount, UErrorCode& status) const {
// perform a transformation on the number being formatted that
// is dependent on the type of substitution this is
double numberToFormat = transformNumber(number);
if (uprv_isInfinite(numberToFormat)) {
// This is probably a minus rule. Combine it with an infinite rule.
const NFRule *infiniteRule = ruleSet->findDoubleRule(uprv_getInfinity());
infiniteRule->doFormat(numberToFormat, toInsertInto, _pos + this->pos, recursionCount, status);
return;
}
// if the result is an integer, from here on out we work in integer
// space (saving time and memory and preserving accuracy)
if (numberToFormat == uprv_floor(numberToFormat) && ruleSet != NULL) {
ruleSet->format(util64_fromDouble(numberToFormat), toInsertInto, _pos + this->pos, recursionCount, status);
// if the result isn't an integer, then call either our rule set's
// format() method or our DecimalFormat's format() method to
// format the result
} else {
if (ruleSet != NULL) {
ruleSet->format(numberToFormat, toInsertInto, _pos + this->pos, recursionCount, status);
} else if (numberFormat != NULL) {
UnicodeString temp;
numberFormat->format(numberToFormat, temp);
toInsertInto.insert(_pos + this->pos, temp);
}
}
}
//-----------------------------------------------------------------------
// parsing
//-----------------------------------------------------------------------
#ifdef RBNF_DEBUG
#include <stdio.h>
#endif
/**
* Parses a string using the rule set or DecimalFormat belonging
* to this substitution. If there's a match, a mathematical
* operation (the inverse of the one used in formatting) is
* performed on the result of the parse and the value passed in
* and returned as the result. The parse position is updated to
* point to the first unmatched character in the string.
* @param text The string to parse
* @param parsePosition On entry, ignored, but assumed to be 0.
* On exit, this is updated to point to the first unmatched
* character (or 0 if the substitution didn't match)
* @param baseValue A partial parse result that should be
* combined with the result of this parse
* @param upperBound When searching the rule set for a rule
* matching the string passed in, only rules with base values
* lower than this are considered
* @param lenientParse If true and matching against rules fails,
* the substitution will also try matching the text against
* numerals using a default-costructed NumberFormat. If false,
* no extra work is done. (This value is false whenever the
* formatter isn't in lenient-parse mode, but is also false
* under some conditions even when the formatter _is_ in
* lenient-parse mode.)
* @return If there's a match, this is the result of composing
* baseValue with whatever was returned from matching the
* characters. This will be either a Long or a Double. If there's
* no match this is new Long(0) (not null), and parsePosition
* is left unchanged.
*/
UBool
NFSubstitution::doParse(const UnicodeString& text,
ParsePosition& parsePosition,
double baseValue,
double upperBound,
UBool lenientParse,
uint32_t nonNumericalExecutedRuleMask,
Formattable& result) const
{
#ifdef RBNF_DEBUG
fprintf(stderr, "<nfsubs> %x bv: %g ub: %g\n", this, baseValue, upperBound);
#endif
// figure out the highest base value a rule can have and match
// the text being parsed (this varies according to the type of
// substitutions: multiplier, modulus, and numerator substitutions
// restrict the search to rules with base values lower than their
// own; same-value substitutions leave the upper bound wherever
// it was, and the others allow any rule to match
upperBound = calcUpperBound(upperBound);
// use our rule set to parse the text. If that fails and
// lenient parsing is enabled (this is always false if the
// formatter's lenient-parsing mode is off, but it may also
// be false even when the formatter's lenient-parse mode is
// on), then also try parsing the text using a default-
// constructed NumberFormat
if (ruleSet != NULL) {
ruleSet->parse(text, parsePosition, upperBound, nonNumericalExecutedRuleMask, result);
if (lenientParse && !ruleSet->isFractionRuleSet() && parsePosition.getIndex() == 0) {
UErrorCode status = U_ZERO_ERROR;
NumberFormat* fmt = NumberFormat::createInstance(status);
if (U_SUCCESS(status)) {
fmt->parse(text, result, parsePosition);
}
delete fmt;
}
// ...or use our DecimalFormat to parse the text
} else if (numberFormat != NULL) {
numberFormat->parse(text, result, parsePosition);
}
// if the parse was successful, we've already advanced the caller's
// parse position (this is the one function that doesn't have one
// of its own). Derive a parse result and return it as a Long,
// if possible, or a Double
if (parsePosition.getIndex() != 0) {
UErrorCode status = U_ZERO_ERROR;
double tempResult = result.getDouble(status);
// composeRuleValue() produces a full parse result from
// the partial parse result passed to this function from
// the caller (this is either the owning rule's base value
// or the partial result obtained from composing the
// owning rule's base value with its other substitution's
// parse result) and the partial parse result obtained by
// matching the substitution (which will be the same value
// the caller would get by parsing just this part of the
// text with RuleBasedNumberFormat.parse() ). How the two
// values are used to derive the full parse result depends
// on the types of substitutions: For a regular rule, the
// ultimate result is its multiplier substitution's result
// times the rule's divisor (or the rule's base value) plus
// the modulus substitution's result (which will actually
// supersede part of the rule's base value). For a negative-
// number rule, the result is the negative of its substitution's
// result. For a fraction rule, it's the sum of its two
// substitution results. For a rule in a fraction rule set,
// it's the numerator substitution's result divided by
// the rule's base value. Results from same-value substitutions
// propagate back upard, and null substitutions don't affect
// the result.
tempResult = composeRuleValue(tempResult, baseValue);
result.setDouble(tempResult);
return TRUE;
// if the parse was UNsuccessful, return 0
} else {
result.setLong(0);
return FALSE;
}
}
/**
* Returns true if this is a modulus substitution. (We didn't do this
* with instanceof partially because it causes source files to
* proliferate and partially because we have to port this to C++.)
* @return true if this object is an instance of ModulusSubstitution
*/
UBool
NFSubstitution::isModulusSubstitution() const {
return FALSE;
}
//===================================================================
// SameValueSubstitution
//===================================================================
/**
* A substitution that passes the value passed to it through unchanged.
* Represented by == in rule descriptions.
*/
SameValueSubstitution::SameValueSubstitution(int32_t _pos,
const NFRuleSet* _ruleSet,
const UnicodeString& description,
UErrorCode& status)
: NFSubstitution(_pos, _ruleSet, description, status)
{
if (0 == description.compare(gEqualsEquals, 2)) {
// throw new IllegalArgumentException("== is not a legal token");
status = U_PARSE_ERROR;
}
}
UOBJECT_DEFINE_RTTI_IMPLEMENTATION(SameValueSubstitution)
//===================================================================
// MultiplierSubstitution
//===================================================================
UOBJECT_DEFINE_RTTI_IMPLEMENTATION(MultiplierSubstitution)
UBool MultiplierSubstitution::operator==(const NFSubstitution& rhs) const
{
return NFSubstitution::operator==(rhs) &&
divisor == ((const MultiplierSubstitution*)&rhs)->divisor;
}
//===================================================================
// ModulusSubstitution
//===================================================================
/**
* A substitution that divides the number being formatted by the its rule's
* divisor and formats the remainder. Represented by ">>" in a
* regular rule.
*/
ModulusSubstitution::ModulusSubstitution(int32_t _pos,
const NFRule* rule,
const NFRule* predecessor,
const NFRuleSet* _ruleSet,
const UnicodeString& description,
UErrorCode& status)
: NFSubstitution(_pos, _ruleSet, description, status)
, divisor(rule->getDivisor())
, ruleToUse(NULL)
{
// the owning rule's divisor controls the behavior of this
// substitution: rather than keeping a backpointer to the rule,
// we keep a copy of the divisor
if (divisor == 0) {
status = U_PARSE_ERROR;
}
if (0 == description.compare(gGreaterGreaterGreaterThan, 3)) {
// the >>> token doesn't alter how this substituion calculates the
// values it uses for formatting and parsing, but it changes
// what's done with that value after it's obtained: >>> short-
// circuits the rule-search process and goes straight to the
// specified rule to format the substitution value
ruleToUse = predecessor;
}
}
UOBJECT_DEFINE_RTTI_IMPLEMENTATION(ModulusSubstitution)
UBool ModulusSubstitution::operator==(const NFSubstitution& rhs) const
{
return NFSubstitution::operator==(rhs) &&
divisor == ((const ModulusSubstitution*)&rhs)->divisor &&
ruleToUse == ((const ModulusSubstitution*)&rhs)->ruleToUse;
}
//-----------------------------------------------------------------------
// formatting
//-----------------------------------------------------------------------
/**
* If this is a >>> substitution, use ruleToUse to fill in
* the substitution. Otherwise, just use the superclass function.
* @param number The number being formatted
* @toInsertInto The string to insert the result of this substitution
* into
* @param pos The position of the rule text in toInsertInto
*/
void
ModulusSubstitution::doSubstitution(int64_t number, UnicodeString& toInsertInto, int32_t _pos, int32_t recursionCount, UErrorCode& status) const
{
// if this isn't a >>> substitution, just use the inherited version
// of this function (which uses either a rule set or a DecimalFormat
// to format its substitution value)
if (ruleToUse == NULL) {
NFSubstitution::doSubstitution(number, toInsertInto, _pos, recursionCount, status);
// a >>> substitution goes straight to a particular rule to
// format the substitution value
} else {
int64_t numberToFormat = transformNumber(number);
ruleToUse->doFormat(numberToFormat, toInsertInto, _pos + getPos(), recursionCount, status);
}
}
/**
* If this is a >>> substitution, use ruleToUse to fill in
* the substitution. Otherwise, just use the superclass function.
* @param number The number being formatted
* @toInsertInto The string to insert the result of this substitution
* into
* @param pos The position of the rule text in toInsertInto
*/
void
ModulusSubstitution::doSubstitution(double number, UnicodeString& toInsertInto, int32_t _pos, int32_t recursionCount, UErrorCode& status) const
{
// if this isn't a >>> substitution, just use the inherited version
// of this function (which uses either a rule set or a DecimalFormat
// to format its substitution value)
if (ruleToUse == NULL) {
NFSubstitution::doSubstitution(number, toInsertInto, _pos, recursionCount, status);
// a >>> substitution goes straight to a particular rule to
// format the substitution value
} else {
double numberToFormat = transformNumber(number);
ruleToUse->doFormat(numberToFormat, toInsertInto, _pos + getPos(), recursionCount, status);
}
}
//-----------------------------------------------------------------------
// parsing
//-----------------------------------------------------------------------
/**
* If this is a >>> substitution, match only against ruleToUse.
* Otherwise, use the superclass function.
* @param text The string to parse
* @param parsePosition Ignored on entry, updated on exit to point to
* the first unmatched character.
* @param baseValue The partial parse result prior to calling this
* routine.
*/
UBool
ModulusSubstitution::doParse(const UnicodeString& text,
ParsePosition& parsePosition,
double baseValue,
double upperBound,
UBool lenientParse,
uint32_t nonNumericalExecutedRuleMask,
Formattable& result) const
{
// if this isn't a >>> substitution, we can just use the
// inherited parse() routine to do the parsing
if (ruleToUse == NULL) {
return NFSubstitution::doParse(text, parsePosition, baseValue, upperBound, lenientParse, nonNumericalExecutedRuleMask, result);
// but if it IS a >>> substitution, we have to do it here: we
// use the specific rule's doParse() method, and then we have to
// do some of the other work of NFRuleSet.parse()
} else {
ruleToUse->doParse(text, parsePosition, FALSE, upperBound, nonNumericalExecutedRuleMask, result);
if (parsePosition.getIndex() != 0) {
UErrorCode status = U_ZERO_ERROR;
double tempResult = result.getDouble(status);
tempResult = composeRuleValue(tempResult, baseValue);
result.setDouble(tempResult);
}
return TRUE;
}
}
/**
* Returns a textual description of the substitution
* @return A textual description of the substitution. This might
* not be identical to the description it was created from, but
* it'll produce the same result.
*/
void
ModulusSubstitution::toString(UnicodeString& text) const
{
// use tokenChar() to get the character at the beginning and
// end of the substitutin token. In between them will go
// either the name of the rule set it uses, or the pattern of
// the DecimalFormat it uses
if ( ruleToUse != NULL ) { // Must have been a >>> substitution.
text.remove();
text.append(tokenChar());
text.append(tokenChar());
text.append(tokenChar());
} else { // Otherwise just use the super-class function.
NFSubstitution::toString(text);
}
}
//===================================================================
// IntegralPartSubstitution
//===================================================================
UOBJECT_DEFINE_RTTI_IMPLEMENTATION(IntegralPartSubstitution)
//===================================================================
// FractionalPartSubstitution
//===================================================================
/**
* Constructs a FractionalPartSubstitution. This object keeps a flag
* telling whether it should format by digits or not. In addition,
* it marks the rule set it calls (if any) as a fraction rule set.
*/
FractionalPartSubstitution::FractionalPartSubstitution(int32_t _pos,
const NFRuleSet* _ruleSet,
const UnicodeString& description,
UErrorCode& status)
: NFSubstitution(_pos, _ruleSet, description, status)
, byDigits(FALSE)
, useSpaces(TRUE)
{
// akk, ruleSet can change in superclass constructor
if (0 == description.compare(gGreaterGreaterThan, 2) ||
0 == description.compare(gGreaterGreaterGreaterThan, 3) ||
_ruleSet == getRuleSet()) {
byDigits = TRUE;
if (0 == description.compare(gGreaterGreaterGreaterThan, 3)) {
useSpaces = FALSE;
}
} else {
// cast away const
((NFRuleSet*)getRuleSet())->makeIntoFractionRuleSet();
}
}
//-----------------------------------------------------------------------
// formatting
//-----------------------------------------------------------------------
/**
* If in "by digits" mode, fills in the substitution one decimal digit
* at a time using the rule set containing this substitution.
* Otherwise, uses the superclass function.
* @param number The number being formatted
* @param toInsertInto The string to insert the result of formatting
* the substitution into
* @param pos The position of the owning rule's rule text in
* toInsertInto
*/
void
FractionalPartSubstitution::doSubstitution(double number, UnicodeString& toInsertInto,
int32_t _pos, int32_t recursionCount, UErrorCode& status) const
{
// if we're not in "byDigits" mode, just use the inherited
// doSubstitution() routine
if (!byDigits) {
NFSubstitution::doSubstitution(number, toInsertInto, _pos, recursionCount, status);
// if we're in "byDigits" mode, transform the value into an integer
// by moving the decimal point eight places to the right and
// pulling digits off the right one at a time, formatting each digit
// as an integer using this substitution's owning rule set
// (this is slower, but more accurate, than doing it from the
// other end)
} else {
// int32_t numberToFormat = (int32_t)uprv_round(transformNumber(number) * uprv_pow(10, kMaxDecimalDigits));
// // this flag keeps us from formatting trailing zeros. It starts
// // out false because we're pulling from the right, and switches
// // to true the first time we encounter a non-zero digit
// UBool doZeros = FALSE;
// for (int32_t i = 0; i < kMaxDecimalDigits; i++) {
// int64_t digit = numberToFormat % 10;
// if (digit != 0 || doZeros) {
// if (doZeros && useSpaces) {
// toInsertInto.insert(_pos + getPos(), gSpace);
// }
// doZeros = TRUE;
// getRuleSet()->format(digit, toInsertInto, _pos + getPos());
// }
// numberToFormat /= 10;
// }
DecimalQuantity dl;
dl.setToDouble(number);
dl.roundToMagnitude(-20, UNUM_ROUND_HALFEVEN, status); // round to 20 fraction digits.
UBool pad = FALSE;
for (int32_t didx = dl.getLowerDisplayMagnitude(); didx<0; didx++) {
// Loop iterates over fraction digits, starting with the LSD.
// include both real digits from the number, and zeros
// to the left of the MSD but to the right of the decimal point.
if (pad && useSpaces) {
toInsertInto.insert(_pos + getPos(), gSpace);
} else {
pad = TRUE;
}
int64_t digit = dl.getDigit(didx);
getRuleSet()->format(digit, toInsertInto, _pos + getPos(), recursionCount, status);
}
if (!pad) {
// hack around lack of precision in digitlist. if we would end up with
// "foo point" make sure we add a " zero" to the end.
getRuleSet()->format((int64_t)0, toInsertInto, _pos + getPos(), recursionCount, status);
}
}
}
//-----------------------------------------------------------------------
// parsing
//-----------------------------------------------------------------------
/**
* If in "by digits" mode, parses the string as if it were a string
* of individual digits; otherwise, uses the superclass function.
* @param text The string to parse
* @param parsePosition Ignored on entry, but updated on exit to point
* to the first unmatched character
* @param baseValue The partial parse result prior to entering this
* function
* @param upperBound Only consider rules with base values lower than
* this when filling in the substitution
* @param lenientParse If true, try matching the text as numerals if
* matching as words doesn't work
* @return If the match was successful, the current partial parse
* result; otherwise new Long(0). The result is either a Long or
* a Double.
*/
UBool
FractionalPartSubstitution::doParse(const UnicodeString& text,
ParsePosition& parsePosition,
double baseValue,
double /*upperBound*/,
UBool lenientParse,
uint32_t nonNumericalExecutedRuleMask,
Formattable& resVal) const
{
// if we're not in byDigits mode, we can just use the inherited
// doParse()
if (!byDigits) {
return NFSubstitution::doParse(text, parsePosition, baseValue, 0, lenientParse, nonNumericalExecutedRuleMask, resVal);
// if we ARE in byDigits mode, parse the text one digit at a time
// using this substitution's owning rule set (we do this by setting
// upperBound to 10 when calling doParse() ) until we reach
// nonmatching text
} else {
UnicodeString workText(text);
ParsePosition workPos(1);
double result = 0;
int32_t digit;
// double p10 = 0.1;
DecimalQuantity dl;
int32_t totalDigits = 0;
NumberFormat* fmt = NULL;
while (workText.length() > 0 && workPos.getIndex() != 0) {
workPos.setIndex(0);
Formattable temp;
getRuleSet()->parse(workText, workPos, 10, nonNumericalExecutedRuleMask, temp);
UErrorCode status = U_ZERO_ERROR;
digit = temp.getLong(status);
// digit = temp.getType() == Formattable::kLong ?
// temp.getLong() :
// (int32_t)temp.getDouble();
if (lenientParse && workPos.getIndex() == 0) {
if (!fmt) {
status = U_ZERO_ERROR;
fmt = NumberFormat::createInstance(status);
if (U_FAILURE(status)) {
delete fmt;
fmt = NULL;
}
}
if (fmt) {
fmt->parse(workText, temp, workPos);
digit = temp.getLong(status);
}
}
if (workPos.getIndex() != 0) {
dl.appendDigit(static_cast<int8_t>(digit), 0, true);
totalDigits++;
// result += digit * p10;
// p10 /= 10;
parsePosition.setIndex(parsePosition.getIndex() + workPos.getIndex());
workText.removeBetween(0, workPos.getIndex());
while (workText.length() > 0 && workText.charAt(0) == gSpace) {
workText.removeBetween(0, 1);
parsePosition.setIndex(parsePosition.getIndex() + 1);
}
}
}
delete fmt;
dl.adjustMagnitude(-totalDigits);
result = dl.toDouble();
result = composeRuleValue(result, baseValue);
resVal.setDouble(result);
return TRUE;
}
}
UBool
FractionalPartSubstitution::operator==(const NFSubstitution& rhs) const
{
return NFSubstitution::operator==(rhs) &&
((const FractionalPartSubstitution*)&rhs)->byDigits == byDigits;
}
UOBJECT_DEFINE_RTTI_IMPLEMENTATION(FractionalPartSubstitution)
//===================================================================
// AbsoluteValueSubstitution
//===================================================================
UOBJECT_DEFINE_RTTI_IMPLEMENTATION(AbsoluteValueSubstitution)
//===================================================================
// NumeratorSubstitution
//===================================================================
void
NumeratorSubstitution::doSubstitution(double number, UnicodeString& toInsertInto, int32_t apos, int32_t recursionCount, UErrorCode& status) const {
// perform a transformation on the number being formatted that
// is dependent on the type of substitution this is
double numberToFormat = transformNumber(number);
int64_t longNF = util64_fromDouble(numberToFormat);
const NFRuleSet* aruleSet = getRuleSet();
if (withZeros && aruleSet != NULL) {
// if there are leading zeros in the decimal expansion then emit them
int64_t nf =longNF;
int32_t len = toInsertInto.length();
while ((nf *= 10) < denominator) {
toInsertInto.insert(apos + getPos(), gSpace);
aruleSet->format((int64_t)0, toInsertInto, apos + getPos(), recursionCount, status);
}
apos += toInsertInto.length() - len;
}
// if the result is an integer, from here on out we work in integer
// space (saving time and memory and preserving accuracy)
if (numberToFormat == longNF && aruleSet != NULL) {
aruleSet->format(longNF, toInsertInto, apos + getPos(), recursionCount, status);
// if the result isn't an integer, then call either our rule set's
// format() method or our DecimalFormat's format() method to
// format the result
} else {
if (aruleSet != NULL) {
aruleSet->format(numberToFormat, toInsertInto, apos + getPos(), recursionCount, status);
} else {
UnicodeString temp;
getNumberFormat()->format(numberToFormat, temp, status);
toInsertInto.insert(apos + getPos(), temp);
}
}
}
UBool
NumeratorSubstitution::doParse(const UnicodeString& text,
ParsePosition& parsePosition,
double baseValue,
double upperBound,
UBool /*lenientParse*/,
uint32_t nonNumericalExecutedRuleMask,
Formattable& result) const
{
// we don't have to do anything special to do the parsing here,
// but we have to turn lenient parsing off-- if we leave it on,
// it SERIOUSLY messes up the algorithm
// if withZeros is true, we need to count the zeros
// and use that to adjust the parse result
UErrorCode status = U_ZERO_ERROR;
int32_t zeroCount = 0;
UnicodeString workText(text);
if (withZeros) {
ParsePosition workPos(1);
Formattable temp;
while (workText.length() > 0 && workPos.getIndex() != 0) {
workPos.setIndex(0);
getRuleSet()->parse(workText, workPos, 1, nonNumericalExecutedRuleMask, temp); // parse zero or nothing at all
if (workPos.getIndex() == 0) {
// we failed, either there were no more zeros, or the number was formatted with digits
// either way, we're done
break;
}
++zeroCount;
parsePosition.setIndex(parsePosition.getIndex() + workPos.getIndex());
workText.remove(0, workPos.getIndex());
while (workText.length() > 0 && workText.charAt(0) == gSpace) {
workText.remove(0, 1);
parsePosition.setIndex(parsePosition.getIndex() + 1);
}
}
workText = text;
workText.remove(0, (int32_t)parsePosition.getIndex());
parsePosition.setIndex(0);
}
// we've parsed off the zeros, now let's parse the rest from our current position
NFSubstitution::doParse(workText, parsePosition, withZeros ? 1 : baseValue, upperBound, FALSE, nonNumericalExecutedRuleMask, result);
if (withZeros) {
// any base value will do in this case. is there a way to
// force this to not bother trying all the base values?
// compute the 'effective' base and prescale the value down
int64_t n = result.getLong(status); // force conversion!
int64_t d = 1;
int32_t pow = 0;
while (d <= n) {
d *= 10;
++pow;
}
// now add the zeros
while (zeroCount > 0) {
d *= 10;
--zeroCount;
}
// d is now our true denominator
result.setDouble((double)n/(double)d);
}
return TRUE;
}
UBool
NumeratorSubstitution::operator==(const NFSubstitution& rhs) const
{
return NFSubstitution::operator==(rhs) &&
denominator == ((const NumeratorSubstitution*)&rhs)->denominator;
}
UOBJECT_DEFINE_RTTI_IMPLEMENTATION(NumeratorSubstitution)
const UChar NumeratorSubstitution::LTLT[] = { 0x003c, 0x003c };
U_NAMESPACE_END
/* U_HAVE_RBNF */
#endif