// Copyright 2007, Google Inc.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Author: wan@google.com (Zhanyong Wan)
// Google Mock - a framework for writing C++ mock classes.
//
// This file tests the built-in actions in gmock-more-actions.h.
#include "gmock/gmock-more-actions.h"
#include <functional>
#include <sstream>
#include <string>
#include "gmock/gmock.h"
#include "gtest/gtest.h"
#include "gtest/internal/gtest-linked_ptr.h"
namespace testing {
namespace gmock_more_actions_test {
using ::std::plus;
using ::std::string;
using ::std::tr1::get;
using ::std::tr1::make_tuple;
using ::std::tr1::tuple;
using ::std::tr1::tuple_element;
using testing::_;
using testing::Action;
using testing::ActionInterface;
using testing::DeleteArg;
using testing::Invoke;
using testing::Return;
using testing::ReturnArg;
using testing::ReturnPointee;
using testing::SaveArg;
using testing::SaveArgPointee;
using testing::SetArgReferee;
using testing::StaticAssertTypeEq;
using testing::Unused;
using testing::WithArg;
using testing::WithoutArgs;
using testing::internal::linked_ptr;
// For suppressing compiler warnings on conversion possibly losing precision.
inline short Short(short n) { return n; } // NOLINT
inline char Char(char ch) { return ch; }
// Sample functions and functors for testing Invoke() and etc.
int Nullary() { return 1; }
class NullaryFunctor {
public:
int operator()() { return 2; }
};
bool g_done = false;
void VoidNullary() { g_done = true; }
class VoidNullaryFunctor {
public:
void operator()() { g_done = true; }
};
bool Unary(int x) { return x < 0; }
const char* Plus1(const char* s) { return s + 1; }
void VoidUnary(int /* n */) { g_done = true; }
bool ByConstRef(const string& s) { return s == "Hi"; }
const double g_double = 0;
bool ReferencesGlobalDouble(const double& x) { return &x == &g_double; }
string ByNonConstRef(string& s) { return s += "+"; } // NOLINT
struct UnaryFunctor {
int operator()(bool x) { return x ? 1 : -1; }
};
const char* Binary(const char* input, short n) { return input + n; } // NOLINT
void VoidBinary(int, char) { g_done = true; }
int Ternary(int x, char y, short z) { return x + y + z; } // NOLINT
void VoidTernary(int, char, bool) { g_done = true; }
int SumOf4(int a, int b, int c, int d) { return a + b + c + d; }
int SumOfFirst2(int a, int b, Unused, Unused) { return a + b; }
void VoidFunctionWithFourArguments(char, int, float, double) { g_done = true; }
string Concat4(const char* s1, const char* s2, const char* s3,
const char* s4) {
return string(s1) + s2 + s3 + s4;
}
int SumOf5(int a, int b, int c, int d, int e) { return a + b + c + d + e; }
struct SumOf5Functor {
int operator()(int a, int b, int c, int d, int e) {
return a + b + c + d + e;
}
};
string Concat5(const char* s1, const char* s2, const char* s3,
const char* s4, const char* s5) {
return string(s1) + s2 + s3 + s4 + s5;
}
int SumOf6(int a, int b, int c, int d, int e, int f) {
return a + b + c + d + e + f;
}
struct SumOf6Functor {
int operator()(int a, int b, int c, int d, int e, int f) {
return a + b + c + d + e + f;
}
};
string Concat6(const char* s1, const char* s2, const char* s3,
const char* s4, const char* s5, const char* s6) {
return string(s1) + s2 + s3 + s4 + s5 + s6;
}
string Concat7(const char* s1, const char* s2, const char* s3,
const char* s4, const char* s5, const char* s6,
const char* s7) {
return string(s1) + s2 + s3 + s4 + s5 + s6 + s7;
}
string Concat8(const char* s1, const char* s2, const char* s3,
const char* s4, const char* s5, const char* s6,
const char* s7, const char* s8) {
return string(s1) + s2 + s3 + s4 + s5 + s6 + s7 + s8;
}
string Concat9(const char* s1, const char* s2, const char* s3,
const char* s4, const char* s5, const char* s6,
const char* s7, const char* s8, const char* s9) {
return string(s1) + s2 + s3 + s4 + s5 + s6 + s7 + s8 + s9;
}
string Concat10(const char* s1, const char* s2, const char* s3,
const char* s4, const char* s5, const char* s6,
const char* s7, const char* s8, const char* s9,
const char* s10) {
return string(s1) + s2 + s3 + s4 + s5 + s6 + s7 + s8 + s9 + s10;
}
class Foo {
public:
Foo() : value_(123) {}
int Nullary() const { return value_; }
short Unary(long x) { return static_cast<short>(value_ + x); } // NOLINT
string Binary(const string& str, char c) const { return str + c; }
int Ternary(int x, bool y, char z) { return value_ + x + y*z; }
int SumOf4(int a, int b, int c, int d) const {
return a + b + c + d + value_;
}
int SumOfLast2(Unused, Unused, int a, int b) const { return a + b; }
int SumOf5(int a, int b, int c, int d, int e) { return a + b + c + d + e; }
int SumOf6(int a, int b, int c, int d, int e, int f) {
return a + b + c + d + e + f;
}
string Concat7(const char* s1, const char* s2, const char* s3,
const char* s4, const char* s5, const char* s6,
const char* s7) {
return string(s1) + s2 + s3 + s4 + s5 + s6 + s7;
}
string Concat8(const char* s1, const char* s2, const char* s3,
const char* s4, const char* s5, const char* s6,
const char* s7, const char* s8) {
return string(s1) + s2 + s3 + s4 + s5 + s6 + s7 + s8;
}
string Concat9(const char* s1, const char* s2, const char* s3,
const char* s4, const char* s5, const char* s6,
const char* s7, const char* s8, const char* s9) {
return string(s1) + s2 + s3 + s4 + s5 + s6 + s7 + s8 + s9;
}
string Concat10(const char* s1, const char* s2, const char* s3,
const char* s4, const char* s5, const char* s6,
const char* s7, const char* s8, const char* s9,
const char* s10) {
return string(s1) + s2 + s3 + s4 + s5 + s6 + s7 + s8 + s9 + s10;
}
private:
int value_;
};
// Tests using Invoke() with a nullary function.
TEST(InvokeTest, Nullary) {
Action<int()> a = Invoke(Nullary); // NOLINT
EXPECT_EQ(1, a.Perform(make_tuple()));
}
// Tests using Invoke() with a unary function.
TEST(InvokeTest, Unary) {
Action<bool(int)> a = Invoke(Unary); // NOLINT
EXPECT_FALSE(a.Perform(make_tuple(1)));
EXPECT_TRUE(a.Perform(make_tuple(-1)));
}
// Tests using Invoke() with a binary function.
TEST(InvokeTest, Binary) {
Action<const char*(const char*, short)> a = Invoke(Binary); // NOLINT
const char* p = "Hello";
EXPECT_EQ(p + 2, a.Perform(make_tuple(p, Short(2))));
}
// Tests using Invoke() with a ternary function.
TEST(InvokeTest, Ternary) {
Action<int(int, char, short)> a = Invoke(Ternary); // NOLINT
EXPECT_EQ(6, a.Perform(make_tuple(1, '\2', Short(3))));
}
// Tests using Invoke() with a 4-argument function.
TEST(InvokeTest, FunctionThatTakes4Arguments) {
Action<int(int, int, int, int)> a = Invoke(SumOf4); // NOLINT
EXPECT_EQ(1234, a.Perform(make_tuple(1000, 200, 30, 4)));
}
// Tests using Invoke() with a 5-argument function.
TEST(InvokeTest, FunctionThatTakes5Arguments) {
Action<int(int, int, int, int, int)> a = Invoke(SumOf5); // NOLINT
EXPECT_EQ(12345, a.Perform(make_tuple(10000, 2000, 300, 40, 5)));
}
// Tests using Invoke() with a 6-argument function.
TEST(InvokeTest, FunctionThatTakes6Arguments) {
Action<int(int, int, int, int, int, int)> a = Invoke(SumOf6); // NOLINT
EXPECT_EQ(123456, a.Perform(make_tuple(100000, 20000, 3000, 400, 50, 6)));
}
// A helper that turns the type of a C-string literal from const
// char[N] to const char*.
inline const char* CharPtr(const char* s) { return s; }
// Tests using Invoke() with a 7-argument function.
TEST(InvokeTest, FunctionThatTakes7Arguments) {
Action<string(const char*, const char*, const char*, const char*,
const char*, const char*, const char*)> a =
Invoke(Concat7);
EXPECT_EQ("1234567",
a.Perform(make_tuple(CharPtr("1"), CharPtr("2"), CharPtr("3"),
CharPtr("4"), CharPtr("5"), CharPtr("6"),
CharPtr("7"))));
}
// Tests using Invoke() with a 8-argument function.
TEST(InvokeTest, FunctionThatTakes8Arguments) {
Action<string(const char*, const char*, const char*, const char*,
const char*, const char*, const char*, const char*)> a =
Invoke(Concat8);
EXPECT_EQ("12345678",
a.Perform(make_tuple(CharPtr("1"), CharPtr("2"), CharPtr("3"),
CharPtr("4"), CharPtr("5"), CharPtr("6"),
CharPtr("7"), CharPtr("8"))));
}
// Tests using Invoke() with a 9-argument function.
TEST(InvokeTest, FunctionThatTakes9Arguments) {
Action<string(const char*, const char*, const char*, const char*,
const char*, const char*, const char*, const char*,
const char*)> a = Invoke(Concat9);
EXPECT_EQ("123456789",
a.Perform(make_tuple(CharPtr("1"), CharPtr("2"), CharPtr("3"),
CharPtr("4"), CharPtr("5"), CharPtr("6"),
CharPtr("7"), CharPtr("8"), CharPtr("9"))));
}
// Tests using Invoke() with a 10-argument function.
TEST(InvokeTest, FunctionThatTakes10Arguments) {
Action<string(const char*, const char*, const char*, const char*,
const char*, const char*, const char*, const char*,
const char*, const char*)> a = Invoke(Concat10);
EXPECT_EQ("1234567890",
a.Perform(make_tuple(CharPtr("1"), CharPtr("2"), CharPtr("3"),
CharPtr("4"), CharPtr("5"), CharPtr("6"),
CharPtr("7"), CharPtr("8"), CharPtr("9"),
CharPtr("0"))));
}
// Tests using Invoke() with functions with parameters declared as Unused.
TEST(InvokeTest, FunctionWithUnusedParameters) {
Action<int(int, int, double, const string&)> a1 =
Invoke(SumOfFirst2);
EXPECT_EQ(12, a1.Perform(make_tuple(10, 2, 5.6, CharPtr("hi"))));
Action<int(int, int, bool, int*)> a2 =
Invoke(SumOfFirst2);
EXPECT_EQ(23, a2.Perform(make_tuple(20, 3, true, static_cast<int*>(NULL))));
}
// Tests using Invoke() with methods with parameters declared as Unused.
TEST(InvokeTest, MethodWithUnusedParameters) {
Foo foo;
Action<int(string, bool, int, int)> a1 =
Invoke(&foo, &Foo::SumOfLast2);
EXPECT_EQ(12, a1.Perform(make_tuple(CharPtr("hi"), true, 10, 2)));
Action<int(char, double, int, int)> a2 =
Invoke(&foo, &Foo::SumOfLast2);
EXPECT_EQ(23, a2.Perform(make_tuple('a', 2.5, 20, 3)));
}
// Tests using Invoke() with a functor.
TEST(InvokeTest, Functor) {
Action<long(long, int)> a = Invoke(plus<long>()); // NOLINT
EXPECT_EQ(3L, a.Perform(make_tuple(1, 2)));
}
// Tests using Invoke(f) as an action of a compatible type.
TEST(InvokeTest, FunctionWithCompatibleType) {
Action<long(int, short, char, bool)> a = Invoke(SumOf4); // NOLINT
EXPECT_EQ(4321, a.Perform(make_tuple(4000, Short(300), Char(20), true)));
}
// Tests using Invoke() with an object pointer and a method pointer.
// Tests using Invoke() with a nullary method.
TEST(InvokeMethodTest, Nullary) {
Foo foo;
Action<int()> a = Invoke(&foo, &Foo::Nullary); // NOLINT
EXPECT_EQ(123, a.Perform(make_tuple()));
}
// Tests using Invoke() with a unary method.
TEST(InvokeMethodTest, Unary) {
Foo foo;
Action<short(long)> a = Invoke(&foo, &Foo::Unary); // NOLINT
EXPECT_EQ(4123, a.Perform(make_tuple(4000)));
}
// Tests using Invoke() with a binary method.
TEST(InvokeMethodTest, Binary) {
Foo foo;
Action<string(const string&, char)> a = Invoke(&foo, &Foo::Binary);
string s("Hell");
EXPECT_EQ("Hello", a.Perform(make_tuple(s, 'o')));
}
// Tests using Invoke() with a ternary method.
TEST(InvokeMethodTest, Ternary) {
Foo foo;
Action<int(int, bool, char)> a = Invoke(&foo, &Foo::Ternary); // NOLINT
EXPECT_EQ(1124, a.Perform(make_tuple(1000, true, Char(1))));
}
// Tests using Invoke() with a 4-argument method.
TEST(InvokeMethodTest, MethodThatTakes4Arguments) {
Foo foo;
Action<int(int, int, int, int)> a = Invoke(&foo, &Foo::SumOf4); // NOLINT
EXPECT_EQ(1357, a.Perform(make_tuple(1000, 200, 30, 4)));
}
// Tests using Invoke() with a 5-argument method.
TEST(InvokeMethodTest, MethodThatTakes5Arguments) {
Foo foo;
Action<int(int, int, int, int, int)> a = Invoke(&foo, &Foo::SumOf5); // NOLINT
EXPECT_EQ(12345, a.Perform(make_tuple(10000, 2000, 300, 40, 5)));
}
// Tests using Invoke() with a 6-argument method.
TEST(InvokeMethodTest, MethodThatTakes6Arguments) {
Foo foo;
Action<int(int, int, int, int, int, int)> a = // NOLINT
Invoke(&foo, &Foo::SumOf6);
EXPECT_EQ(123456, a.Perform(make_tuple(100000, 20000, 3000, 400, 50, 6)));
}
// Tests using Invoke() with a 7-argument method.
TEST(InvokeMethodTest, MethodThatTakes7Arguments) {
Foo foo;
Action<string(const char*, const char*, const char*, const char*,
const char*, const char*, const char*)> a =
Invoke(&foo, &Foo::Concat7);
EXPECT_EQ("1234567",
a.Perform(make_tuple(CharPtr("1"), CharPtr("2"), CharPtr("3"),
CharPtr("4"), CharPtr("5"), CharPtr("6"),
CharPtr("7"))));
}
// Tests using Invoke() with a 8-argument method.
TEST(InvokeMethodTest, MethodThatTakes8Arguments) {
Foo foo;
Action<string(const char*, const char*, const char*, const char*,
const char*, const char*, const char*, const char*)> a =
Invoke(&foo, &Foo::Concat8);
EXPECT_EQ("12345678",
a.Perform(make_tuple(CharPtr("1"), CharPtr("2"), CharPtr("3"),
CharPtr("4"), CharPtr("5"), CharPtr("6"),
CharPtr("7"), CharPtr("8"))));
}
// Tests using Invoke() with a 9-argument method.
TEST(InvokeMethodTest, MethodThatTakes9Arguments) {
Foo foo;
Action<string(const char*, const char*, const char*, const char*,
const char*, const char*, const char*, const char*,
const char*)> a = Invoke(&foo, &Foo::Concat9);
EXPECT_EQ("123456789",
a.Perform(make_tuple(CharPtr("1"), CharPtr("2"), CharPtr("3"),
CharPtr("4"), CharPtr("5"), CharPtr("6"),
CharPtr("7"), CharPtr("8"), CharPtr("9"))));
}
// Tests using Invoke() with a 10-argument method.
TEST(InvokeMethodTest, MethodThatTakes10Arguments) {
Foo foo;
Action<string(const char*, const char*, const char*, const char*,
const char*, const char*, const char*, const char*,
const char*, const char*)> a = Invoke(&foo, &Foo::Concat10);
EXPECT_EQ("1234567890",
a.Perform(make_tuple(CharPtr("1"), CharPtr("2"), CharPtr("3"),
CharPtr("4"), CharPtr("5"), CharPtr("6"),
CharPtr("7"), CharPtr("8"), CharPtr("9"),
CharPtr("0"))));
}
// Tests using Invoke(f) as an action of a compatible type.
TEST(InvokeMethodTest, MethodWithCompatibleType) {
Foo foo;
Action<long(int, short, char, bool)> a = // NOLINT
Invoke(&foo, &Foo::SumOf4);
EXPECT_EQ(4444, a.Perform(make_tuple(4000, Short(300), Char(20), true)));
}
// Tests using WithoutArgs with an action that takes no argument.
TEST(WithoutArgsTest, NoArg) {
Action<int(int n)> a = WithoutArgs(Invoke(Nullary)); // NOLINT
EXPECT_EQ(1, a.Perform(make_tuple(2)));
}
// Tests using WithArg with an action that takes 1 argument.
TEST(WithArgTest, OneArg) {
Action<bool(double x, int n)> b = WithArg<1>(Invoke(Unary)); // NOLINT
EXPECT_TRUE(b.Perform(make_tuple(1.5, -1)));
EXPECT_FALSE(b.Perform(make_tuple(1.5, 1)));
}
TEST(ReturnArgActionTest, WorksForOneArgIntArg0) {
const Action<int(int)> a = ReturnArg<0>();
EXPECT_EQ(5, a.Perform(make_tuple(5)));
}
TEST(ReturnArgActionTest, WorksForMultiArgBoolArg0) {
const Action<bool(bool, bool, bool)> a = ReturnArg<0>();
EXPECT_TRUE(a.Perform(make_tuple(true, false, false)));
}
TEST(ReturnArgActionTest, WorksForMultiArgStringArg2) {
const Action<string(int, int, string, int)> a = ReturnArg<2>();
EXPECT_EQ("seven", a.Perform(make_tuple(5, 6, string("seven"), 8)));
}
TEST(SaveArgActionTest, WorksForSameType) {
int result = 0;
const Action<void(int n)> a1 = SaveArg<0>(&result);
a1.Perform(make_tuple(5));
EXPECT_EQ(5, result);
}
TEST(SaveArgActionTest, WorksForCompatibleType) {
int result = 0;
const Action<void(bool, char)> a1 = SaveArg<1>(&result);
a1.Perform(make_tuple(true, 'a'));
EXPECT_EQ('a', result);
}
TEST(SaveArgPointeeActionTest, WorksForSameType) {
int result = 0;
const int value = 5;
const Action<void(const int*)> a1 = SaveArgPointee<0>(&result);
a1.Perform(make_tuple(&value));
EXPECT_EQ(5, result);
}
TEST(SaveArgPointeeActionTest, WorksForCompatibleType) {
int result = 0;
char value = 'a';
const Action<void(bool, char*)> a1 = SaveArgPointee<1>(&result);
a1.Perform(make_tuple(true, &value));
EXPECT_EQ('a', result);
}
TEST(SaveArgPointeeActionTest, WorksForLinkedPtr) {
int result = 0;
linked_ptr<int> value(new int(5));
const Action<void(linked_ptr<int>)> a1 = SaveArgPointee<0>(&result);
a1.Perform(make_tuple(value));
EXPECT_EQ(5, result);
}
TEST(SetArgRefereeActionTest, WorksForSameType) {
int value = 0;
const Action<void(int&)> a1 = SetArgReferee<0>(1);
a1.Perform(tuple<int&>(value));
EXPECT_EQ(1, value);
}
TEST(SetArgRefereeActionTest, WorksForCompatibleType) {
int value = 0;
const Action<void(int, int&)> a1 = SetArgReferee<1>('a');
a1.Perform(tuple<int, int&>(0, value));
EXPECT_EQ('a', value);
}
TEST(SetArgRefereeActionTest, WorksWithExtraArguments) {
int value = 0;
const Action<void(bool, int, int&, const char*)> a1 = SetArgReferee<2>('a');
a1.Perform(tuple<bool, int, int&, const char*>(true, 0, value, "hi"));
EXPECT_EQ('a', value);
}
// A class that can be used to verify that its destructor is called: it will set
// the bool provided to the constructor to true when destroyed.
class DeletionTester {
public:
explicit DeletionTester(bool* is_deleted)
: is_deleted_(is_deleted) {
// Make sure the bit is set to false.
*is_deleted_ = false;
}
~DeletionTester() {
*is_deleted_ = true;
}
private:
bool* is_deleted_;
};
TEST(DeleteArgActionTest, OneArg) {
bool is_deleted = false;
DeletionTester* t = new DeletionTester(&is_deleted);
const Action<void(DeletionTester*)> a1 = DeleteArg<0>(); // NOLINT
EXPECT_FALSE(is_deleted);
a1.Perform(make_tuple(t));
EXPECT_TRUE(is_deleted);
}
TEST(DeleteArgActionTest, TenArgs) {
bool is_deleted = false;
DeletionTester* t = new DeletionTester(&is_deleted);
const Action<void(bool, int, int, const char*, bool,
int, int, int, int, DeletionTester*)> a1 = DeleteArg<9>();
EXPECT_FALSE(is_deleted);
a1.Perform(make_tuple(true, 5, 6, CharPtr("hi"), false, 7, 8, 9, 10, t));
EXPECT_TRUE(is_deleted);
}
#if GTEST_HAS_EXCEPTIONS
TEST(ThrowActionTest, ThrowsGivenExceptionInVoidFunction) {
const Action<void(int n)> a = Throw('a');
EXPECT_THROW(a.Perform(make_tuple(0)), char);
}
class MyException {};
TEST(ThrowActionTest, ThrowsGivenExceptionInNonVoidFunction) {
const Action<double(char ch)> a = Throw(MyException());
EXPECT_THROW(a.Perform(make_tuple('0')), MyException);
}
TEST(ThrowActionTest, ThrowsGivenExceptionInNullaryFunction) {
const Action<double()> a = Throw(MyException());
EXPECT_THROW(a.Perform(make_tuple()), MyException);
}
#endif // GTEST_HAS_EXCEPTIONS
// Tests that SetArrayArgument<N>(first, last) sets the elements of the array
// pointed to by the N-th (0-based) argument to values in range [first, last).
TEST(SetArrayArgumentTest, SetsTheNthArray) {
typedef void MyFunction(bool, int*, char*);
int numbers[] = { 1, 2, 3 };
Action<MyFunction> a = SetArrayArgument<1>(numbers, numbers + 3);
int n[4] = {};
int* pn = n;
char ch[4] = {};
char* pch = ch;
a.Perform(make_tuple(true, pn, pch));
EXPECT_EQ(1, n[0]);
EXPECT_EQ(2, n[1]);
EXPECT_EQ(3, n[2]);
EXPECT_EQ(0, n[3]);
EXPECT_EQ('\0', ch[0]);
EXPECT_EQ('\0', ch[1]);
EXPECT_EQ('\0', ch[2]);
EXPECT_EQ('\0', ch[3]);
// Tests first and last are iterators.
std::string letters = "abc";
a = SetArrayArgument<2>(letters.begin(), letters.end());
std::fill_n(n, 4, 0);
std::fill_n(ch, 4, '\0');
a.Perform(make_tuple(true, pn, pch));
EXPECT_EQ(0, n[0]);
EXPECT_EQ(0, n[1]);
EXPECT_EQ(0, n[2]);
EXPECT_EQ(0, n[3]);
EXPECT_EQ('a', ch[0]);
EXPECT_EQ('b', ch[1]);
EXPECT_EQ('c', ch[2]);
EXPECT_EQ('\0', ch[3]);
}
// Tests SetArrayArgument<N>(first, last) where first == last.
TEST(SetArrayArgumentTest, SetsTheNthArrayWithEmptyRange) {
typedef void MyFunction(bool, int*);
int numbers[] = { 1, 2, 3 };
Action<MyFunction> a = SetArrayArgument<1>(numbers, numbers);
int n[4] = {};
int* pn = n;
a.Perform(make_tuple(true, pn));
EXPECT_EQ(0, n[0]);
EXPECT_EQ(0, n[1]);
EXPECT_EQ(0, n[2]);
EXPECT_EQ(0, n[3]);
}
// Tests SetArrayArgument<N>(first, last) where *first is convertible
// (but not equal) to the argument type.
TEST(SetArrayArgumentTest, SetsTheNthArrayWithConvertibleType) {
typedef void MyFunction(bool, char*);
int codes[] = { 97, 98, 99 };
Action<MyFunction> a = SetArrayArgument<1>(codes, codes + 3);
char ch[4] = {};
char* pch = ch;
a.Perform(make_tuple(true, pch));
EXPECT_EQ('a', ch[0]);
EXPECT_EQ('b', ch[1]);
EXPECT_EQ('c', ch[2]);
EXPECT_EQ('\0', ch[3]);
}
// Test SetArrayArgument<N>(first, last) with iterator as argument.
TEST(SetArrayArgumentTest, SetsTheNthArrayWithIteratorArgument) {
typedef void MyFunction(bool, std::back_insert_iterator<std::string>);
std::string letters = "abc";
Action<MyFunction> a = SetArrayArgument<1>(letters.begin(), letters.end());
std::string s;
a.Perform(make_tuple(true, back_inserter(s)));
EXPECT_EQ(letters, s);
}
TEST(ReturnPointeeTest, Works) {
int n = 42;
const Action<int()> a = ReturnPointee(&n);
EXPECT_EQ(42, a.Perform(make_tuple()));
n = 43;
EXPECT_EQ(43, a.Perform(make_tuple()));
}
} // namespace gmock_generated_actions_test
} // namespace testing