/*******************************************************************************
* Copyright 2013-2018 Intel Corporation
* All Rights Reserved.
*
* If this software was obtained under the Intel Simplified Software License,
* the following terms apply:
*
* The source code, information and material ("Material") contained herein is
* owned by Intel Corporation or its suppliers or licensors, and title to such
* Material remains with Intel Corporation or its suppliers or licensors. The
* Material contains proprietary information of Intel or its suppliers and
* licensors. The Material is protected by worldwide copyright laws and treaty
* provisions. No part of the Material may be used, copied, reproduced,
* modified, published, uploaded, posted, transmitted, distributed or disclosed
* in any way without Intel's prior express written permission. No license under
* any patent, copyright or other intellectual property rights in the Material
* is granted to or conferred upon you, either expressly, by implication,
* inducement, estoppel or otherwise. Any license under such intellectual
* property rights must be express and approved by Intel in writing.
*
* Unless otherwise agreed by Intel in writing, you may not remove or alter this
* notice or any other notice embedded in Materials by Intel or Intel's
* suppliers or licensors in any way.
*
*
* If this software was obtained under the Apache License, Version 2.0 (the
* "License"), the following terms apply:
*
* You may not use this file except in compliance with the License. You may
* obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
*
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
*
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/
/*
//
// Purpose:
// Cryptography Primitive.
// RSA Functions
//
//
*/
#include "owndefs.h"
#include "owncp.h"
#include "pcpbn.h"
#include "pcpprimeg.h"
#include "pcpprng.h"
#include "pcpngrsa.h"
static int cpMillerRabinTest(BNU_CHUNK_T* pW, cpSize nsW,
const BNU_CHUNK_T* pE, cpSize bitsizeE,
int k,
const BNU_CHUNK_T* pPrime1,
gsModEngine* pMont,
BNU_CHUNK_T* pBuffer)
{
cpSize nsP = MOD_LEN(pMont);
/* to Montgomery Domain */
ZEXPAND_BNU(pW, nsW, nsP);
MOD_METHOD(pMont)->encode(pW, pW, pMont);
/* w = exp(w,e) */
gsMontExpWin_BNU_sscm(pW, pW, nsP, pE, bitsizeE, pMont, pBuffer);
/* if (w==1) ||(w==prime-1) => probably prime */
if ((0 == cpCmp_BNU(pW, nsP, MOD_MNT_R(pMont), nsP))
|| (0 == cpCmp_BNU(pW, nsP, pPrime1, nsP)))
return 1; /* witness of the primality */
while (--k) {
MOD_METHOD(pMont)->sqr(pW, pW, pMont);
if (0 == cpCmp_BNU(pW, nsP, MOD_MNT_R(pMont), nsP))
return 0; /* witness of the compositeness */
if (0 == cpCmp_BNU(pW, nsP, pPrime1, nsP))
return 1; /* witness of the primality */
}
return 0;
}
/* test if P is prime
returns:
IPP_IS_PRIME (==1) - prime value has been detected
IPP_IS_COMPOSITE (==0) - composite value has been detected
-1 - if internal error (ippStsNoErr != rndFunc())
*/
static int cpIsProbablyPrime(BNU_CHUNK_T* pPrime, int bitSize,
int nTrials,
IppBitSupplier rndFunc, void* pRndParam,
gsModEngine* pME,
BNU_CHUNK_T* pBuffer)
{
/* if test for trivial divisors passed*/
int ret = cpMimimalPrimeTest((Ipp32u*)pPrime, BITS2WORD32_SIZE(bitSize));
/* appy Miller-Rabin test */
if (ret) {
int ns = BITS_BNU_CHUNK(bitSize);
BNU_CHUNK_T* pPrime1 = pBuffer;
BNU_CHUNK_T* pOdd = pPrime1 + ns;
BNU_CHUNK_T* pWitness = pOdd + ns;
BNU_CHUNK_T* pMontPrime1 = pWitness + ns;
BNU_CHUNK_T* pScratchBuffer = pMontPrime1 + ns;
int k, a, lenOdd;
/* prime1 = prime-1 = odd*2^a */
cpDec_BNU(pPrime1, pPrime, ns, 1);
for (k = 0, a = 0; k<ns; k++) {
cpSize da = cpNTZ_BNU(pPrime1[k]);
a += da;
if (BNU_CHUNK_BITS != da)
break;
}
lenOdd = cpLSR_BNU(pOdd, pPrime1, ns, a);
FIX_BNU(pOdd, lenOdd);
/* prime1 to (Montgomery Domain) */
cpSub_BNU(pMontPrime1, pPrime, MOD_MNT_R(pME), ns);
for (k = 0, ret = 0; k<nTrials && !ret; k++) {
BNU_CHUNK_T one = 1;
ret = cpPRNGenRange(pWitness, &one, 1, pPrime1, ns, rndFunc, pRndParam);
if (ret <= 0) break; /* internal error */
/* test primality */
ret = cpMillerRabinTest(pWitness, ns,
//pOdd, lenOdd, a,
pOdd, bitSize - a, a,
pMontPrime1,
pME, pScratchBuffer);
}
}
return ret;
}