/*******************************************************************************
* Copyright 2002-2018 Intel Corporation
* All Rights Reserved.
*
* If this software was obtained under the Intel Simplified Software License,
* the following terms apply:
*
* The source code, information and material ("Material") contained herein is
* owned by Intel Corporation or its suppliers or licensors, and title to such
* Material remains with Intel Corporation or its suppliers or licensors. The
* Material contains proprietary information of Intel or its suppliers and
* licensors. The Material is protected by worldwide copyright laws and treaty
* provisions. No part of the Material may be used, copied, reproduced,
* modified, published, uploaded, posted, transmitted, distributed or disclosed
* in any way without Intel's prior express written permission. No license under
* any patent, copyright or other intellectual property rights in the Material
* is granted to or conferred upon you, either expressly, by implication,
* inducement, estoppel or otherwise. Any license under such intellectual
* property rights must be express and approved by Intel in writing.
*
* Unless otherwise agreed by Intel in writing, you may not remove or alter this
* notice or any other notice embedded in Materials by Intel or Intel's
* suppliers or licensors in any way.
*
*
* If this software was obtained under the Apache License, Version 2.0 (the
* "License"), the following terms apply:
*
* You may not use this file except in compliance with the License. You may
* obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
*
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
*
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/
/*
// Intel(R) Integrated Performance Primitives
// Cryptographic Primitives (ippcp)
//
// Contents:
// ippsMontMul()
//
*/
#include "owndefs.h"
#include "owncp.h"
#include "pcpbn.h"
#include "pcpmontgomery.h"
#include "pcptool.h"
/*F*
// Name: ippsMontMul
//
// Purpose: Computes Montgomery modular multiplication for positive big
// number integers of Montgomery form. The following pseudocode
// represents this function:
// r <- ( a * b * R^(-1) ) mod m
//
// Returns: Reason:
// ippStsNoErr Returns no error.
// ippStsNullPtrErr Returns an error when pointers are null.
// ippStsBadArgErr Returns an error when a or b is a negative integer.
// ippStsScaleRangeErr Returns an error when a or b is more than m.
// ippStsOutOfRangeErr Returns an error when IppsBigNumState *r is larger than
// IppsMontState *m.
// ippStsContextMatchErr Returns an error when the context parameter does
// not match the operation.
//
// Parameters:
// pA Multiplicand within the range [0, m - 1].
// pB Multiplier within the range [0, m - 1].
// pCtx Modulus.
// pR Montgomery multiplication result.
//
// Notes: The size of IppsBigNumState *r should not be less than the data
// length of the modulus m.
*F*/
IPPFUN(IppStatus, ippsMontMul, (const IppsBigNumState* pA, const IppsBigNumState* pB, IppsMontState* pCtx, IppsBigNumState* pR))
{
IPP_BAD_PTR4_RET(pA, pB, pCtx, pR);
pCtx = (IppsMontState*)(IPP_ALIGNED_PTR((pCtx), MONT_ALIGNMENT));
pA = (IppsBigNumState*)( IPP_ALIGNED_PTR(pA, BN_ALIGNMENT) );
pB = (IppsBigNumState*)( IPP_ALIGNED_PTR(pB, BN_ALIGNMENT) );
pR = (IppsBigNumState*)( IPP_ALIGNED_PTR(pR, BN_ALIGNMENT) );
IPP_BADARG_RET(!MNT_VALID_ID(pCtx), ippStsContextMatchErr);
IPP_BADARG_RET(!BN_VALID_ID(pA), ippStsContextMatchErr);
IPP_BADARG_RET(!BN_VALID_ID(pB), ippStsContextMatchErr);
IPP_BADARG_RET(!BN_VALID_ID(pR), ippStsContextMatchErr);
IPP_BADARG_RET(BN_NEGATIVE(pA) || BN_NEGATIVE(pB), ippStsBadArgErr);
IPP_BADARG_RET(cpCmp_BNU(BN_NUMBER(pA), BN_SIZE(pA), MOD_MODULUS( MNT_ENGINE(pCtx) ), MOD_LEN( MNT_ENGINE(pCtx) )) >= 0, ippStsScaleRangeErr);
IPP_BADARG_RET(cpCmp_BNU(BN_NUMBER(pB), BN_SIZE(pB), MOD_MODULUS( MNT_ENGINE(pCtx) ), MOD_LEN( MNT_ENGINE(pCtx) )) >= 0, ippStsScaleRangeErr);
IPP_BADARG_RET(BN_ROOM(pR) < MOD_LEN( MNT_ENGINE(pCtx) ), ippStsOutOfRangeErr);
{
const int usedPoolLen = 2;
cpSize nsM = MOD_LEN( MNT_ENGINE(pCtx) );
BNU_CHUNK_T* pDataR = BN_NUMBER(pR);
BNU_CHUNK_T* pDataA = gsModPoolAlloc(MNT_ENGINE(pCtx), usedPoolLen);
BNU_CHUNK_T* pDataB = pDataA + nsM;
//tbcd: temporary excluded: assert(NULL!=pDataA);
ZEXPAND_COPY_BNU(pDataA, nsM, BN_NUMBER(pA), BN_SIZE(pA));
ZEXPAND_COPY_BNU(pDataB, nsM, BN_NUMBER(pB), BN_SIZE(pB));
MOD_METHOD( MNT_ENGINE(pCtx) )->mul(pDataR, pDataA, pDataB, MNT_ENGINE(pCtx));
gsModPoolFree(MNT_ENGINE(pCtx), usedPoolLen);
FIX_BNU(pDataR, nsM);
BN_SIZE(pR) = nsM;
BN_SIGN(pR) = ippBigNumPOS;
return ippStsNoErr;
}
}