/*******************************************************************************
* Copyright 2018 Intel Corporation
* All Rights Reserved.
*
* If this software was obtained under the Intel Simplified Software License,
* the following terms apply:
*
* The source code, information and material ("Material") contained herein is
* owned by Intel Corporation or its suppliers or licensors, and title to such
* Material remains with Intel Corporation or its suppliers or licensors. The
* Material contains proprietary information of Intel or its suppliers and
* licensors. The Material is protected by worldwide copyright laws and treaty
* provisions. No part of the Material may be used, copied, reproduced,
* modified, published, uploaded, posted, transmitted, distributed or disclosed
* in any way without Intel's prior express written permission. No license under
* any patent, copyright or other intellectual property rights in the Material
* is granted to or conferred upon you, either expressly, by implication,
* inducement, estoppel or otherwise. Any license under such intellectual
* property rights must be express and approved by Intel in writing.
*
* Unless otherwise agreed by Intel in writing, you may not remove or alter this
* notice or any other notice embedded in Materials by Intel or Intel's
* suppliers or licensors in any way.
*
*
* If this software was obtained under the Apache License, Version 2.0 (the
* "License"), the following terms apply:
*
* You may not use this file except in compliance with the License. You may
* obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
*
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
*
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/
/*
// Intel(R) Integrated Performance Primitives. Cryptography Primitives.
// Operations over GF(p).
//
// Context:
// ippsGFpMultiExp()
//
*/
#include "owndefs.h"
#include "owncp.h"
#include "pcpgfpstuff.h"
#include "pcpgfpxstuff.h"
#include "pcptool.h"
//tbcd: temporary excluded: #include <assert.h>
/*F*
// Name: ippsGFpMultiExp
//
// Purpose: Multiplies exponents of GF elements
//
// Returns: Reason:
// ippStsNullPtrErr NULL == pGFp
// NULL == ppElmA
// NULL == pR
// NULL == ppE
//
// ippStsContextMatchErr invalid pGFp->idCtx
// invalid ppElmA[i]->idCtx
// invalid pR->idCtx
// invalid ppE[i]->idCtx
//
// ippStsOutOfRangeErr GFPE_ROOM() != GFP_FELEN()
//
// ippStsBadArgErr 1>nItems
// nItems>6
//
// ippStsNoErr no error
//
// Parameters:
// ppElmA Pointer to the array of contexts of the finite field elements representing the base of the exponentiation.
// ppE Pointer to the array of the Big Number contexts storing the exponents.
// nItems Number of exponents.
// pR Pointer to the context of the resulting element of the finite field.
// pGFp Pointer to the context of the finite field.
// pScratchBuffer Pointer to the scratch buffer.
//
*F*/
IPPFUN(IppStatus, ippsGFpMultiExp,(const IppsGFpElement* const ppElmA[], const IppsBigNumState* const ppE[], int nItems,
IppsGFpElement* pR, IppsGFpState* pGFp,
Ipp8u* pScratchBuffer))
{
IPP_BAD_PTR2_RET(ppElmA, ppE);
if(nItems==1)
return ippsGFpExp(ppElmA[0], ppE[0], pR, pGFp, pScratchBuffer);
else {
/* test number of exponents */
IPP_BADARG_RET(1>nItems || nItems>IPP_MAX_EXPONENT_NUM, ippStsBadArgErr);
IPP_BAD_PTR2_RET(pR, pGFp);
pGFp = (IppsGFpState*)( IPP_ALIGNED_PTR(pGFp, GFP_ALIGNMENT) );
IPP_BADARG_RET( !GFP_TEST_ID(pGFp), ippStsContextMatchErr );
IPP_BADARG_RET( !GFPE_TEST_ID(pR), ippStsContextMatchErr );
{
int n;
gsModEngine* pGFE = GFP_PMA(pGFp);
IPP_BADARG_RET( GFPE_ROOM(pR)!=GFP_FELEN(pGFE), ippStsOutOfRangeErr);
/* test all ppElmA[] and ppE[] pairs */
for(n=0; n<nItems; n++) {
const IppsGFpElement* pElmA = ppElmA[n];
const IppsBigNumState* pE = ppE[n];
IPP_BAD_PTR2_RET(pElmA, pE);
IPP_BADARG_RET( !GFPE_TEST_ID(pElmA), ippStsContextMatchErr );
pE = (IppsBigNumState*)( IPP_ALIGNED_PTR(pE, BN_ALIGNMENT) );
IPP_BADARG_RET( !BN_VALID_ID(pE), ippStsContextMatchErr );
IPP_BADARG_RET( (GFPE_ROOM(pElmA)!=GFP_FELEN(pGFE)) || (GFPE_ROOM(pR)!=GFP_FELEN(pGFE)), ippStsOutOfRangeErr);
}
if(NULL==pScratchBuffer) {
mod_mul mulF = GFP_METHOD(pGFE)->mul;
BNU_CHUNK_T* pTmpR = cpGFpGetPool(1, pGFE);
//tbcd: temporary excluded: assert(NULL!=pTmpR);
cpGFpxExp(GFPE_DATA(pR), GFPE_DATA(ppElmA[0]), BN_NUMBER(ppE[0]), BN_SIZE(ppE[0]), pGFE, 0);
for(n=1; n<nItems; n++) {
cpGFpxExp(pTmpR, GFPE_DATA(ppElmA[n]), BN_NUMBER(ppE[n]), BN_SIZE(ppE[n]), pGFE, 0);
mulF(GFPE_DATA(pR), GFPE_DATA(pR), pTmpR, pGFE);
}
cpGFpReleasePool(1, pGFE);
}
else {
const BNU_CHUNK_T* ppAdata[IPP_MAX_EXPONENT_NUM];
const BNU_CHUNK_T* ppEdata[IPP_MAX_EXPONENT_NUM];
int nsEdataLen[IPP_MAX_EXPONENT_NUM];
for(n=0; n<nItems; n++) {
ppAdata[n] = GFPE_DATA(ppElmA[n]);
ppEdata[n] = BN_NUMBER(ppE[n]);
nsEdataLen[n] = BN_SIZE(ppE[n]);
}
cpGFpxMultiExp(GFPE_DATA(pR), ppAdata, ppEdata, nsEdataLen, nItems, pGFE, pScratchBuffer);
}
return ippStsNoErr;
}
}
}